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ABSTRACT

Large Vision Language Models (LVLMs) possess extensive text knowledge but
struggles to utilize this knowledge for fine-grained image recognition, often fail-
ing to differentiate between visually similar categories. Existing fine-tuning meth-
ods using Reinforcement Learning (RL) with exact string-match reward are often
brittle, encourage memorization of training categories, and fail to elicit differential
reasoning needed for generalization to unseen classes. To address this, we propose
DiVE-k, Differential Visual rEasoning using top-k generations, framework that
leverages model’s own top-k predictions as a training signal. For each training
image, DiVE-k creates a multiple-choice question from the model’s top-k outputs
and uses RL to train the model to select the correct answer. This approach requires
the model to perform fine-grained differential reasoning among plausible options
and provides a simple, verifiable reward signal that mitigates memorization and
improves generalization. Experiments on five standard fine-grained datasets show
that our method significantly outperforms existing approaches. In the standard
base-to-novel generalization setting, DiVE-k surpasses the QWEN2.5-VL-7B and
ViRFT by 10.04% and 6.16% on the Harmonic Mean metric, respectively. Further
experiments show similar gains in mixed-domain and few-shot scenarios.

1 INTRODUCTION

We explore the task of zero-shot fine-grained image recognition, as a visual reasoning task building
on available Large Vision Language Models (LVLMs). Such capabilities are crucial for the gener-
alization of vision systems. In early zero-shot image recognition works, such as in CLIP (Radford
et al., 2021), the visual embedding from an image is matched against the text embedding of class
names to determine the most likely label. LVLMs, such as QWEN2-VL (Wang et al., 2024), contain
a Large Language Model (LLM) in themselves and are able to use their vast language knowledge
with unified multimodal pre-training to achieve impressive capabilities in zero-shot recognition.
however, the accuracy for fine-grained recognition is limited. We aim to improve accuracy by fine-
tuning on a subset of categories of a new dataset (called the “base” set) and test on “novel” categories
for which no training examples are seen. This setting is common (Zhou et al., 2022b) and relevant
for adapting models to new domains with limited training data.

Our approach is based on two key observations. First is that, the base model exhibits high variance
across its Pass@K performance: the correct label often appears among the K sampled response,
yet fails to get it correct as Pass@1, see Figure 1 (a). This indicates possible over-reliance on
coarse, salient attributes shared by related categories and may benefit from a fine-grained, differen-
tial reasoning to separate semantically similar categories. The second observation is that the LVLMs
actually contain detailed knowledge about the parts and attributes of the base and novel categories
which could be used for detailed, differential analysis.

Inspired by the success of Chain of Thought (CoT) reasoning (Wei et al., 2022) using Reinforcement
Learning (RL) (Guo et al., 2025) for pure language tasks such as mathematics and coding (Shao
et al., 2024b; Jiang et al., 2023), ViRFT (Liu et al., 2025) extended this idea to vision tasks such as
image classification. The key idea in ViRFT is to construct a verifiable reward (Lambert et al., 2024)
for image classification which allows visual reasoning RL training via GRPO (Shao et al., 2024b).
However, their verifiable reward obtained through exact string match between the category name and
the model’s final answer is brittle: (i) requiring ad hoc string post-processing and model responses
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Prompt: 
"This is an image containing a bird. 

Please identify the species of the bird 
based on the image"

Reasoning: The bird in the image has a small size, a slender body, and 
a pointed beak, which are characteristic features of sparrows. The 
bird's posture and the setting suggest it could be a tree sparrow, 
which is known for its similar appearance and habitat preferences.

Final Answer: tree Sparrow

top-k as Options : The bird in the image has a small size, a slender body, and a short, conical beak which is characteristic of 
sparrows. Based on these features, the most likely sparrows could be  A. ”chipping sparrow", B. ”field sparrow” C. ”tree 

sparrow", D. ”clay-colored sparrow. 
Differential Reasoning: The bird has a light brown coloration with a white throat, which is characteristic of the field 

sparrow. The chipping sparrow typically has a more streaked appearance on its back and a darker crown. The tree sparrow 
usually has a more distinct black cap and a reddish-brown breast. The clay-colored sparrow is smaller and has a more 

uniform brown coloration without the white throat. Therefore, the most likely bird in the image is the field sparrow.
Final Answer: field sparrow

Ours

QWEN2.5-VL-7B

Input

(a) Pass@k accuracy of QWEN2.5-VL  

(b) top-k as options elicits differential reasoning  

Base model relying on 
generic visual cues to 
make final prediction

Correct answer 
present in top-k 

top-k as options 
compels model to 

perform differential 
reasoning to find 

most relevant visual 
cues for prediction.

Figure 1: For fine-grained image recognition task, most salient visual attributes are often insufficient
to identify the correct category as its common among similar categories. (a) This leads to a signifi-
cant performance gap in model’s Pass@1 and Pass@20 accuracy (b) A differential reasoning can
help indicate out the key visual attributes that can help distinguish among similar categories. Base
model fails to use such discriminative features relying only on prominent visual features. We solve
this by using top-k as options (the most likely categories base model confuses it for) and utilizes
model’s text knowledge to resolve this confusion using differential reasoning (highlighted in green).

may use scientific or common names that cannot be validated by string matching; (ii) encourages
memorization of the training category names (Section 4.2.1); and (iii) fails to incentivize attribute-
level, discriminative reasoning see Figure 1b. This leads to a weak base to novel generalization and
a tendency to ignore useful text knowledge when visual evidences alone are ambiguous.

To overcome these deficiencies, we propose DiVE-k framework (Differential Visual rEasoning us-
ing top-k generations) that treats base model’s top-k generations, obtained via K rollouts, as training
primitive that enables differential visual reasoning. For each training image, we treat the top-k out-
puts of the base model as an explicit hypotheses set and train the model using RL to resolve this set
by selecting the correct element.

We formulate this as a Multiple-Choice-Question (MCQ) interface, using top-k as options leveraging
the model’s own distribution. This yields two advantages (i) differential reasoning: presenting the
model with its own top predictions as options compels it to move beyond simple pattern recognition.
Thus, the model learns to engage in fine-grained reasoning, identifying the specific attributes that
differentiate the correct answer from other plausible alternatives, as illustrated in Figure 1. (ii)
easily verifiable reward signal: the reward for a correct prediction becomes trivially verifiable as
model simply has to select the correct index from the given options. This contrasts with methods
such as ViRFT, which rely on an exact string match. Our approach further mitigates the category
name memorization issue and leads to better generalization on unseen categories.

Experiments on five standard fine-grained image classification datasets show that DiVE-k outper-
forms existing methods by a significant margin in two distinct zero-shot settings. For standard
base-to-novel generalization, our method surpasses pre-trained QWEN2.5-VL-7B and ViRFT by
10.04% and 6.16% on the Harmonic Mean (HM), respectively. This performance gain also extends
to mixed-domain zero-shot base-to-novel generalization setting, where we achieve improvements
of 9.03% against QWEN2.5-VL-7B and 4.02% against ViRFT. Further, we observe an average im-
provement of 7.73% compared to ViRFT on 4-shot image classification.

In summary, our main contributions are: (i) we propose DiVE-k framework which uses the top-k
generations of base model as a training signal for fine-grained image classification, (ii) we demon-
strate the benefits of using MCQ to distinguish among semantically similar categories, and (iii)
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we show improved performance on multiple fine-grained image classification datasets with detailed
ablation studies.

2 PRIOR WORK

Zero-shot fine-grained image classification Vision Language Models (VLMs) (Radford et al.,
2021; Li et al., 2022; Tschannen et al., 2025; Yuan et al., 2021) use the idea of aligning image
with text to achieve zero-shot learning (Lampert et al., 2013; Socher et al., 2013; Wang et al., 2018;
Zhang et al., 2017). Although very competent for image-text alignment, these models have lim-
ited world knowledge unlike LLMs (Radford et al., 2019; Brown et al., 2020; Touvron et al., 2023;
Chowdhery et al., 2023). An early line of research proposes the idea of prompt learning (Zhou et al.,
2022a; Khattak et al., 2023b) where a prompt vector is learned for text prompt’s context words.
Zheng et al. (2024c) uses LLM’s knowledge to learn the prompt vector. Another approach to bridge
the knowledge gap is by combining the perceptual strengths of VLMs with the linguistic abilities of
LLM (Esfandiarpoor & Bach, 2023; Menon & Vondrick, 2022; Pratt et al., 2023; Zeng et al., 2022;
Novack et al., 2023; Roth et al., 2023). Our work in part is inspired by FuDD (Esfandiarpoor &
Bach, 2023) that uses a multi-stage reasoning by using LLM knowledge to find pairwise discrimi-
native features to compliment VLM. However, FuDD generates a fixed set of text prompts offline,
limiting its ability to adapt its reasoning strategy to the specific difficulty of each input. Other related
work tries to use LLM as a tool for reasoning through programming and language reasoner (Chen
et al., 2023; Gupta & Kembhavi, 2023; Zhang et al., 2023; Surı́s et al., 2023). While these methods
improved model performance, the separation between the vision and language modules creates a
bottleneck, inhibiting seamless and integrated reasoning across modalities (Liu et al., 2023; 2024).

Recent LVLMs (Bai et al., 2025; Hurst et al., 2024; Team et al., 2023; 2025a) have excellent visual
understanding, such as VQA (Shao et al., 2024a), combining visual encoding directly into a LLM
architecture. This opens up the possibility of joint vision and text reasoning capability (Team et al.,
2025c; Bai et al., 2025; Team et al., 2025a). Additionally, recent success of RL for reasoning on
maths and coding tasks (Jaech et al., 2024; Guo et al., 2025; Team et al., 2025b) have transformed
the post-training reasoning research and there is a growing interest to extend these ideas to LVLMs.

Enhancing Reasoning with Reinforcement Learning . Building upon the seminal work of In-
context learning (Brown et al., 2020) and CoT (Wei et al., 2022), the field has moved beyond static
prompting by applying RL to fine-tune these reasoning processes (Jaech et al., 2024; Guo et al.,
2025; Team et al., 2025b). By treating the generation of a reasoning chain as a sequential decision-
making problem, RL-based methods can train models to produce more accurate and explainable
solutions. Recent breakthrough in DeepSeek-R1 (Shao et al., 2024b) showed the effectiveness of
CoT based training further making it more efficient using their GRPO algorithm. Inspired by these
success in text-based reasoning, a growing body of work apply RL to enhance the reasoning capabil-
ities of LVLMs for vision-centric tasks, such as image classification (Liu et al., 2025; Li et al., 2025),
Object detection, Grounding (Liu et al., 2025; Shen et al., 2025), and Visual Question Answering
(Cao et al., 2025; Sarch et al., 2025; Fan et al., 2025). Within our target domain of fine-grained
image recognition, the most pertinent work is ViRFT (Liu et al., 2025), which trains an LVLM using
exact string matching reward to foster visual reasoning. However, this reward mechanism proves
brittle, failing to generalize in base-to-novel settings. Furthermore, it does not fully leverage the
LLM’s inherent knowledge about fine-grained categories to incentivize the differential reasoning
necessary for distinguishing among similar options. Zhu et al. (2025); Chen et al. (2025) proposes
to enhance LLM performance by improving Pass@k accuracy. In contrast, we use model’s own
knowledge of Pass@k to improve their reasoning, specifically for vision-language task.

3 DIVE-K FRAMEWORK

DiVE-k framework employs a simple two step strategy which elicits a differential reasoning in
LVLM using its top-k generations as training signal. An overview of our proposed method is shown
in Figure 2. In the first step (red box in 2), we perform an offline top-k generation using the base
model to construct a potential hypotheses set to be used for constructing Multiple Choice Questions
(MCQs). In the second step (green box in 2), we use the MCQ dataset for RL training using GRPO.
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Prompt: ”This is an image containing a 
pet. Please identify the breed of the 

pet based on the image”

K rollouts
Bengal

european african lynx

+

Prompt: ”What is the most 
likely pet in the image from 
the given options {options}”

+
Policy model

πθ

KL

egyptian mau

Ground truth category

Group
Computation

...
top-k

A. european 
african lynx

B. bengal
C. egyptian mau

🔥

🔥 Trainable

Frozen

Gradient Flow

Input Image ( )I

O1

O2

OG

. . .

Ref model
πref

A1

A2

AG

. . .

<think> reasoning traces </think>
<answer> answer </answer>

Gradient 
flow

{options}

Figure 2: An overview of DiVE-k framework. First we do an offline option mining (red box) where
for each training image, we sample K rollouts from a pretrained LVLM and select top-k options by
frequency, ensuring the ground-truth appears. Next we perform RL training using GRPO on MCQ
prompts (green box): the model receives an image, a natural language prompt, and k options as input
and produces a reasoning chain and a final choice and is optimized with a simple, verifiable reward
that combines MCQ correctness and format compliance.

top-k as hypotheses set. In the first step of the DiVE-k framework, Given an image I and a text
query q, we use the base policy model πθ to rollout K responses Y = (y1, y2, ..., yK) sampled
through a specific decoding strategy (e.g. top−p nucleus sampling).

Y ∼ πθ(I, q,K) (1)

Each of these responses (yi ∈ Y) can be represented as yi = (ri, ci), where ri is the reasoning trace,
and ci is the final predicted category name. Let C be the unique category names set within the K
generated responses. Next, we count the frequencies of each category in C and using this frequency
count, we construct the option set Otop−k by selecting the k most frequent categories. The value of
k is set to k = min(m, |C|), where |C| is the number of unique categories, and we use m = 5. Let
ĉ be the ground-truth category name. To ensure that the correct answer is always an option during
training, we adjust the set if necessary. If ĉ /∈ Otop−k, we modify Otop−k by replacing the least
frequent candidate with the ground-truth ĉ.

Finally, the option set Otop−k is structured into a standard MCQ format. The options are enumerated
and assigned labels (e.g., A, B, C, ...). The options are randomly shuffled to avoid any option-order
bias. The ground-truth label, â, is the label corresponding to the correct category ĉ. Thus, each
sample in our final dataset, D, is a tuple (I, q,Oenum, â), where I is the image, q is the query, Oenum
is the enumerated list of option strings, and â is the ground-truth label for the correct option.

To focus on challenging examples through hard-negative mining, we filter out trivial cases from the
training set. Specifically, we exclude any sample for which the model generates only a single, correct
category prediction (i.e., |C| = 1 and C = {ĉ}). Note that our first step to generate options with the
same base model used as the policy model during training is crucial, as it ensures the categories are
drawn from the model’s own distribution and yields optimal learning as shown in section 4.3.1.

RL training using GRPO. We train the model using the MCQ dataset D constructed in step one.
Our task is defined by D consisting of (I, q,Oenum, â) as explained in previous section. Our goal is
to train LVLM as policy model πθ which can generate (s, a) where s is the intermediate reasoning
tokens and a is final answer. To achieve this, we train the model using GRPO algorithm (Shao et al.,
2024b). During training, for every data sample di, model generate N rollout (O0, O1, ..., ON ) using
the current policy model πθ. For each of these responses, reward (r0, r1, ..., rN ) is computed. These
rewards for each group is then used for group advantage estimation using equation 2

Ai =
ri − mean{r1, . . . , rN}

std{r1, . . . , rN}+ δ
, (2)

where δ is a small valued constant.
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Prompt: 
" This is an image 

containing a car. Please 
identify the model of the 

car"

ViRFT : 
<think>The image shows a red BMW vehicle with 

a distinctive front grille design, which is 
characteristic of BMW's X series. The most likely 
make and model is the 2012 BMW X3 SUV, as 
it matches the visual characteristics and era of 

the car shown in the image.</think>
<answer>2012 BMW X3 SUV </answer>

K rollouts Prompt: 
"This is an image containing a car. Please find the most likely car in the 

image from the below options {options} "

Ours : 
<think>The image shows a BMW SUV with a distinctive coupe-like roofline, 
which is characteristic of the BMW X6 model. The design features, such as 
the grille shape and the overall body style, align more closely with the X6 

than the X3. The X3 has a more boxy and traditional SUV look, while the 
X6 has a sleeker, more aerodynamic profile. The car appears to have a 

modern look, suggesting it is not an older model 2007 BMW X5 SUV</think>
<answer> B </answer>

Trained 
policy ( )πθ

Top-k as 
{options}

Input Image (I)

Trained 
policy ( )πθ

2012 BMW X3 SUV

2012 BMW X6 SUV

2007 BMW X5 SUV

Figure 3: An example to illustrate our inference pipeline (red arrows) and its comparison to exist-
ing method (blue arrows). Similar to training phase, we perform inference in two steps (right of
dotted line), where we first generate option by choosing top-k responses from K rollouts and then
model picks the correct answer among the options unlike open-ended one step inference of existing
methods (left of dotted line)

Our reward consists of two parts: first is MCQ reward (rmcq) and second is format reward (rformat).
rmcq checks for correctness in the response and rewards a value of 1.0 if model predicts the correct
option as answer and 0.0 otherwise as in equation 3

rmcq(â, a) =

{
1.0, if â = a

0.0 otherwise.
(3)

rformat encourages the correct formatting for the output response to make it easier to extract
<think> and <answer> tags. Our final reward (r) is defined as the weighted sum of these two:
r = λfrformat + λmrmcq . Our training objective function JGRPO(θ) is defined as:

JGRPO(θ) =
1

N

N∑
i=1

[min(siAi, clip(si, 1− ϵ, 1 + ϵ)Ai)− βDKL(πθ∥πref)] (4)

where ϵ and β are the hyperparameters. πref is the reference policy model (usually the pre-trained
model) used to control the divergence of trained policy. si =

πθ(oi|q)
πθold (oi|q)

, where πθold is the old policy
model before the update. Overall, this objective function aims to maximize the expected reward
while keeping the policy close to the reference policy for stable learning.

Inference. Figure 3 shows our inference pipeline and compares it to ViRFT which performs a
single-pass inference (left of the dotted line) to directly predict the category names, while we use
a two-step pipeline (right of the dotted line) similar to training phase. We use the trained policy
model to first generate potential options using top-k generations and then re-prompt the same policy
to select the correct option among the provided options. It should be noted that we do not add
ground-truth to the options if the first step fails to generate the ground-truth category as an option.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines and Datasets. We compare our results against the various baselines: 1) pre-trained
QWEN2.5-VL-7B (Bai et al., 2025) 2) Supervised Fine Tuning (SFT) (Zheng et al., 2024a) us-
ing full model and LoRA (Hu et al., 2022) training. 3) ViRFT (Liu et al., 2025) trained under the
same base-novel setting. 4) QWEN2.5-VL-7B and ViRFT using our inference pipeline 5) Consis-
tency as accuracy: During the two-step inference process, use the most consistent prediction from
K generation as final prediction. We also report performance of the proprietary models, Gemini2.5-
flash-light(Comanici et al., 2025), GPT-5-mini (OpenAI, 2025) and Grok4-fast (xAI, 2025), with
closed weights accessible through APIs (OpenRouter, 2024).

We evaluate our method on five standard fine-grained image classification dataset across various
domains, including OxfordFlowers-102 (Nilsback & Zisserman, 2008), CUB-200 (Wah et al., 2011),
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OxfordPets-37 (Parkhi et al., 2012), StanfordCars-196 (Krause et al., 2013) and FGVC Aircraft-100
(Maji et al., 2013). For the base-novel split, we follow previous work (Khattak et al., 2023a) to divide
the categories into equal halves for base and novel. For instance in CUB-200, the first 100 categories
are considered base and the other 100 are considered novel and similarly for other datasets. Note
that neither images nor the category names of the novel classes are seen during training.

Table 1: Quantitative comparison with existing methods on zero-shot base-to-novel generalization.
Our proposed methods shows strong generalization outperforming existing methods. B → Base, N
→ Novel , H → Harmonic Mean, Gemini2.5-f-l → Gemini2.5-flash-lite, QWEN2.5 → QWEN2.5-
VL-7B. Rows with * are results of existing method using our inference pipeline. Consistency →
Most consistent prediction in top-k generation as final answer.

Flowers CUB Pets Cars Aircraft Avg

Method B N H B N H B N H B N H B N H B N H

Proprietary Models
Gemini2.5-f-l 94.1 91.6 92.8 75.3 60.3 67.0 91.5 96.4 93.9 73.9 92.3 82.1 59.7 65.4 62.4 78.9 81.2 80.0
GPT-5-mini 97.4 94.4 95.9 76.3 64.7 70.0 93.1 97.5 95.2 82.0 94.7 87.9 60.2 74.5 66.6 81.8 85.1 83.4
Grok-4-fast 81.3 87.4 84.2 63.3 50.7 56.3 84.1 94.2 88.8 72.2 86.6 78.7 44.0 55.4 49.1 69.0 74.8 71.8

Method Comparison
CLIP 72.1 77.8 74.8 65.5 48.7 55.8 91.2 97.3 94.1 63.4 74.9 68.6 27.2 36.3 31.1 63.8 67.0 64.9
QWEN2.5 84.2 83.8 84.0 63.3 48.2 54.7 87.5 93.3 90.3 58.9 72.9 65.1 50.3 54.3 52.3 68.9 70.5 69.7
SFT (Full) 93.7 62.6 75.1 84.8 29.2 43.4 95.8 42.6 59.0 81.2 40.6 54.1 64.7 10.1 17.5 84.0 37.0 49.8
SFT (LoRA) 84.5 83.9 84.2 62.2 49.2 54.9 85.7 93.3 89.3 59.9 71.2 65.0 49.5 54.3 51.8 68.3 70.4 69.3
ViRFT 84.3 84.6 84.5 65.4 51.0 57.3 90.5 95.5 92.9 60.3 73.6 66.3 64.6 66.3 65.4 73.0 74.2 73.6
QWEN2.5* 90.7 87.9 89.3 68.5 58.7 63.2 85.6 93.8 89.5 63.3 76.6 69.4 63.3 68.0 65.6 74.3 77.0 75.6

Consistency 85.9 85.5 85.7 64.2 54.0 58.6 90.2 94.7 92.4 62.1 72.0 66.7 61.8 63.5 62.6 72.8 74.0 73.2
ViRFT* 89.5 87.9 88.7 70.0 60.0 64.8 92.6 92.8 92.7 64.8 76.9 70.4 66.4 67.8 67.1 76.8 77.1 76.9

Consistency 85.3 85.2 85.3 67.5 57.2 61.9 92.0 96.1 94.0 64.8 73.2 68.8 67.4 64.2 65.7 75.4 75.2 75.1
DiVE-k (ours) 97.4 88.9 92.9 80.5 65.5 72.2 89.1 94.2 91.6 69.0 76.2 72.4 68.1 69.1 68.6 80.8 78.8 79.8

Consistency 95.3 85.6 90.2 75.2 62.3 68.2 93.1 95.5 94.3 68.7 74.4 71.4 68.0 65.6 66.8 80.0 76.7 78.2

∆ vs ViRFT +13.1 +4.3 +8.4 +15.1 +14.5 +14.9 -1.4 -1.3 -1.3 +8.7 +2.6 +6.1 +3.5 +2.8 +3.2 +7.8 +4.6 +6.2
∆ vs QWEN2.5 +13.2 +5.1 +8.9 +17.2 +17.3 +17.5 +1.6 +0.9 +1.3 +10.1 +3.3 +7.3 +17.8 +14.8 +16.3 +11.9 +8.3 +10.1

Evaluation setting and Metric. We evaluate our method under two distinct zero-shot settings. The
first is the standard zero-shot base-to-novel generalization, following (Zheng et al., 2024b), where
a separate model is trained on the base classes of each dataset. The second is our proposed mixed-
dataset setting, designed to assess cross-domain generalization capabilities. Here, a single model is
trained on a unified dataset constructed by combining the base classes from all datasets. Addition-
ally, we also evaluate our method under few-shot classification setting with 4 shots per class. For
performance measurement, we report the classification accuracy on base and novel classes, along
with their Harmonic Mean (HM).

For evaluation, we use the LLM gemini-2.5-flash-lite (Comanici et al., 2025), where we provide the
ground-truth category name and model predicted category name and ask the LLM if they belong
to the same fine-grained category or not. This specifically helps us evaluate better for the answers
where model responds a scientific name and the provided ground-truth is common name and vice-
versa. We provide more details in Appendix A.1.2

Implementation Details. We use the pre-trained Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as our
base model and perform the RL training using the proposed method. We use K=20 during offline
option generation using K rollouts and other details are provided in Appendix A.1.1. For Zero Shot
Base-to-Novel training, we train the model for 400 steps, whereas for mixed data training, we train it
for 1 epoch. For few-shot training, we train each model for 200 steps following ViRFT. All models
are trained on three A6000 GPUs with 48GB memory with an overall batch size of 6. For GRPO, a
total of 4 responses are generated for each input sample. Following ViRFT, we use learning rate of
10−6, AdamW optimizer, linear scheduler and set λm = λf = 1. For ViRFT training, we use their
official code from github with some modification discussed in Appendix A.1.1.

4.2 RESULTS

4.2.1 ZERO-SHOT BASE-TO-NOVEL GENERALIZATION

We present the results for zero-shot base-to-novel generalization in Table 1. Across five fine-grained
benchmarks, DiVE-k shows the best generalization, yielding the highest average harmonic mean
(HM) of 79.8 with average base/novel accuracies of 80.8/78.8. Relative to the strongest baseline
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(ViRFT), this corresponds to gains of +7.8 base, +4.6 novel, and +6.2 HM. Even when baselines are
run with our inference pipeline (ViRFT*), we retain a +4.0 base, +1.8 novel improvements. Notably,
under our inference pipeline, ViRFT gain over QWEN2.5-VL-7B model on novel categories remains
marginal by +0.1 (77.0→77.1), suggesting their reward primarily reinforces base categories. In
contrast, our approach delivers a substantive +1.8 boost on novel classes under the same inference
setting, indicating better generalization beyond the training categories.

The improvements are especially pronounced on CUB (+14.9 HM) and Oxford Flowers (+8.5 HM),
and remain consistent on Stanford Cars (+6.1 HM) and FGVC Aircraft (+3.2 HM), indicating robust
zero-shot transfer. We observe a small regression on Pet data compared to ViRFT, possibly due to
more options leading the model to make more mistake during the second step. We show that our
method outperforms ViRFT for smaller K and provide more analysis for this in Ablation 4.3.2.

We also evaluate supervised fine-tuning (SFT) as a baseline. Although SFT yields strong accuracy
gains on base categories, its performance deteriorates sharply on novel categories, with an average
accuracy drop of 33.5% relative to the base model and a 19.9% reduction in HM. This sharp degra-
dation highlights SFT’s inability to generalize under the base-to-novel transfer setting. To provide a
broader perspective, we also include results from proprietary models which are likely much larger.
In this context, our method surpasses Grok4-fast and is on par with Gemini2.5-flash-light, though
GPT-5-mini leads. We provide more results using Gemma-3 (Team et al., 2025a) base model in
Appendix A.3.

Table 2: Quantitative comparison of our method with baselines under mixed-dataset base-to-novel
generalization. QWEN2.5 → QWEN2.5-VL-7B. Rows with * are results of existing method using
our inference pipeline. Consistency → Most consistent prediction in top-k generations as output.

Flowers CUB Pets Cars Aircraft Avg

Method B N H B N H B N H B N H B N H B N H

QWEN2.5 84.2 83.8 84.0 63.3 48.2 54.7 87.5 93.3 90.3 58.9 72.9 65.1 50.3 54.3 52.3 68.9 70.5 69.7
ViRFT 87.2 85.9 86.5 65.7 54.0 59.3 90.5 95.0 92.7 59.7 73.6 66.0 67.2 68.0 67.5 74.1 75.3 74.7
QWEN2.5* 90.7 87.9 89.3 68.5 58.7 63.2 85.6 93.8 89.5 63.3 76.6 69.4 63.3 68.0 65.6 74.3 77.0 75.6

Consistency 85.9 85.5 85.7 64.2 54.0 58.6 90.2 94.7 92.4 62.1 72.0 66.7 61.8 63.5 62.6 61.9 67.8 64.6
ViRFT* 90.2 87.9 89.0 71.3 58.3 64.2 90.2 91.6 90.9 63.7 76.6 69.6 66.9 66.4 66.7 76.5 76.2 76.1

Consistency 85.2 85.1 85.2 68.0 57.5 62.3 91.5 96.1 93.7 65.6 74.2 69.7 63.2 65.5 64.3 64.4 69.9 67.0
DiVE-k (ours) 97.4 89.9 93.5 76.8 61.3 68.2 87.8 94.7 91.1 68.5 78.5 73.1 65.5 69.7 67.5 79.2 78.8 78.7

Consistency 92.8 86.0 89.3 67.7 56.7 61.7 91.8 96.1 93.9 59.6 72.5 65.4 61.1 63.5 62.3 60.4 68.0 63.9

∆ vs ViRFT +10.2 +4.0 +7.0 +11.1 +7.3 +8.9 -2.7 -0.3 -1.6 +8.8 +4.9 +7.1 -1.7 +1.7 0.0 +5.1 +3.5 +4.0
∆ vs QWEN +13.2 +6.1 +9.5 +13.5 +13.1 +13.5 +0.3 +1.4 +0.8 +9.6 +5.6 +8.0 +15.2 +15.4 +15.2 +10.3 +8.3 +9.0

4.2.2 MIXED-DATASET BASE-TO-NOVEL GENERALIZATION

Training a single model on the union of base categories from all five datasets provide a strong eval-
uation of mixed-dataset generalization. Table 2 shows the quantitative results for this setting. Our
method attains the highest average harmonic mean (HM) of 78.7, improving over the pretrained
QWEN2.5-VL-7B by +9.0 HM and over ViRFT by +4.0 HM, with average base/novel gains of
+5.1/+3.5. Under our two-step inference on novel classes, ViRFT underperforms the pretrained
QWEN2.5-VL-7B (76.2 vs. 77.0), while our approach reaches 78.8, a +1.8 improvement. This
contrast suggests that ViRFT struggles to transfer when trained on the mixed base corpus, likely re-
inforcing base-only cues, whereas our method maintains robust generalization to unseen categories.

Table 3: Quantitative comparison of our proposed method under 4-shot setting.
Model Oxford Flowers CUB Oxford Pets Stanford Cars FGVC Aircraft Average

QWEN2.5-VL-7B 78.43 51.62 79.05 57.91 52.50 63.90
ViRFT 81.12 51.75 85.81 57.65 58.75 67.02
QWEN2.5-VL-7B* 85.04 56.87 80.40 63.46 64.67 70.09

consistency 81.86 53.00 85.81 58.30 56.36 67.07
ViRFT* 84.80 60.00 83.10 64.75 65.44 71.62

consistency 83.33 54.12 87.83 59.02 54.71 67.80
DiVE-k (Ours) 88.72 63.87 85.14 66.90 69.10 74.75

consistency 85.78 58.00 86.48 60.17 64.92 71.07

∆ w.r.t ViRFT 7.60 12.12 -0.67 9.25 10.35 7.73
∆ w.r.t QWEN2.5-VL-7B 10.29 12.25 6.09 8.99 16.60 10.85
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Prompt: 
"This is an image containing a 
Flower. Please identify the 
species of the flower based 

on the image"

Reasoning: "The flower in the image has a distinctive appearance with a large, flat, rounded 
head composed of numerous small, delicate petals that are arranged in a circular pattern. The 
color is a soft, pastel purple, which is characteristic of globe thistle (Scabiosa), which is known 
for its large, flat heads and delicate, spiky petals. The globe thistle fits the description of the 

flower in the image well.” Final Answer: globe thistle

Pass@k Options: A.”pincushion flower", B. ”sweet william", C. ”globe-thistle” 
Differential Reasoning: The flower in the image has a cluster of small, delicate petals that are 

arranged in a circular pattern around a central core, which is characteristic of pincushion flowers 
(Scabiosa). The petals are light purple with a slightly ruffled appearance, and the overall structure 
matches the description of a pincushion flower. Sweet william typically has larger, more rounded 

petals, globe-thistle has spikier leaves and a different flower structure. Therefore, the most likely 
flower in the image is a pincushion flower.

Final Answer: pincushion flower

ViRFT

OursPrompt: 
"This is an image containing 
a Flower. Please identify the 
species of the flower based 

on the image"

Reasoning: "The flower in the image has a distinctive appearance with a large, flat, rounded 
head composed of numerous small, delicate petals that are arranged in a circular pattern. The 
color is a soft, pastel purple, which is characteristic of globe thistle (Scabiosa), which is known 
for its large, flat heads and delicate, spiky petals. The globe thistle fits the description of the 

flower in the image well.” Final Answer: globe thistle

top-k as Options: A.”pincushion flower", B. ”sweet william", C. ”globe-thistle” 
Differential Reasoning: The flower in the image has a cluster of small, delicate petals that are 

arranged in a circular pattern around a central core, which is characteristic of pincushion flowers 
(Scabiosa). The petals are light purple with a slightly ruffled appearance, and the overall 

structure matches the description of a pincushion flower. Sweet william typically has larger, more 
rounded petals, globe-thistle has spikier leaves and a different flower structure. Therefore, the 

most likely flower in the image is a pincushion flower.
Final Answer: pincushion flower

ViRFT

Ours

Figure 4: Qualitative comparison on fine-grained flower recognition (top: ViRFT; bottom: Ours).
Top: ViRFT predicts “global thistle,” which is incorrect and reflects a coarse judgment. Bottom:
Our method enumerates close candidates and uses attribute-grounded, differential reasoning such
as capitulum/head shape, floret density and arrangement, bract patterning to select the correct fine-
grained label with a justification aligned to the final choice.

4.2.3 FEW-SHOT CLASSIFICATION

DiVE-k also shows improvement under few-shot classification setting across datasets. As shown in
Table 3, our method achieves an average HM classification accuracy of 74.75%, an improvement of
7.73% compared to ViRFT and 10.85% compared to QWEN2.5-VL-7B model, demonstrating the
effectiveness of our method even under data efficient training.

4.2.4 VISUALIZATION

In Figure 4, we visualize and compare DiVE-k to ViRFT and defer additional visualizations to Ap-
pendix A.2. We find that ViRFT directly latches onto high-level “thistle-like” cues and commits to
an incorrect category (“global thistle”), without checking the discriminative attributes that separate
near-neighbors. In contrast, DiVE-k first proposes a small top-k shortlist and then rules candidates
in/out through explicit, attribute-level comparisons, such as head geometry, the density/arrangement
of florets, and the presence/shape of bracts, before committing to a final option. This process yields
the correct species-level label together with a rationale that stays consistent with the answer reducing
overgeneralization and improving interpretability.

4.3 ABLATION STUDIES

4.3.1 THE EFFICACY OF TOP-K FOR MCQ OPTION GENERATION.

Table 4: Quantitative comparison of classi-
fication accuracy on CUB dataset when op-
tions are sampled in different ways.

Base Novel HM

QWEN2.5-VL-7B 68.5 58.7 63.2
Random MCQ 72.5 57.5 64.1
Text Emb MCQ 76.0 59.3 66.8
top-k MCQ 80.5 65.5 72.2

Our ablation into the MCQ option generation reveals
that the option construction strategy is critical for
model’s performance. As detailed in Table 3, ran-
domly selecting categories proved suboptimal, yield-
ing only marginal gains and failing to instill robust
reasoning capabilities. While employing a text em-
bedding model from gemini embeddings (Lee et al.,
2025) to generate semantically similar options of-
fered some improvement, our proposed top-k as op-
tions proves significantly more effective. By sam-
pling options directly from the same base model’s top-k generations achieved a substantial clas-
sification accuracy gain of 12% on base classes and 6.9% on novel classes compared to base model.
This demonstrates that leveraging the base model’s own knowledge distribution to generate options
is the optimal strategy for training, leading to superior generalization on both base and novel sets.
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Figure 5: Change in classification accuracy for different values of K on different dataset. Our
approach consistently outperforms the baselines for nearly all K.

4.3.2 ROLE OF TOP-K GENERATIONS DURING INFERENCE

We analyze the impact of the hyperparameter K, during K rollout for top-k generation, on classifi-
cation accuracy, with results presented in Figure 5. The plots show the HM of accuracy across base
and novel split for different values of K during inference. Our method consistently surpasses both
the baselines at nearly all K, often by a large margin. As K increases, accuracy generally rises and
then saturates around K ∼ 10–15, yielding near-maximal performance at K = 15–20 for Flowers
(∼93%), CUB (∼72.5%), Car (∼73%), and Aircraft (∼70%), indicating diminishing returns beyond
K = 10–15. However, for Pet dataset it peaks at small K (93.8% at K = 2) and gradually declines
for larger K, suggesting more options during MCQ leads to more mistakes for this specific dataset.
Overall, these results show that our approach achieves improved performance even for small K and
thus can get benefit while avoiding extra computation.

4.3.3 ROLES OF VISION AND TEXT COMPONENTS

Table 5: Ablation on effect of training dif-
ferent part of the model on classification ac-
curacy for CUB dataset; Full model training
yields the best performance.

Base Novel HM

QWEN2.5-VL-7B 68.50 58.67 63.21
Vision only training 74.00 57.83 64.92
Text only training 74.33 60.33 66.60
Full model training 80.50 65.50 72.23

To investigate the individual contributions of the
model’s vision and text components to its reason-
ing capabilities, we conduct an ablation to determine
whether performance gains stem primarily from up-
dating the vision features, refining the language
model’s ability to generate a correct chain of reason-
ing tokens, or a combination of both. the results of
which are presented in Table 5.

Our findings reveal distinct roles for each modal-
ity. When we fine-tuned only the vision components
(freeze text decoder), the model’s performance improved significantly on the base dataset (68.5→74)
but failed to generalize to the novel dataset, where performance slightly degraded (58.67→57.83).
This suggests that adapting visual features alone is insufficient for robust reasoning on new, unseen
data. Conversely, training only the text components (freeze vision tower) improved performance
on both the base (68.50→74.33) and novel (58.67→60.33) sets. This indicates that enhancing the
language model’s ability to generate logical reasoning is critical for generalization. However, the
best performance was achieved through full model training, which yielded substantial gains on both
base (68.50→80.50) and novel (58.67→65.50) sets. This demonstrates that while language model
adaptation is key, a combination of both vision and text modules is necessary to unlock the model’s
full reasoning capability.

4.3.4 ACCURACY ANALYSIS OF THE TWO STEPS IN DIVE-K

As DiVE-k framework operates in two stages, the second stage can only succeed if the correct
answer appears in the top-k rollouts from the first stage. Therefore, understanding the bottleneck
between these two steps is crucial for diagnosing model performance.

Table 6 reports the top-k accuracy (Step 1) of both the base QWEN2.5-VL model and the DiVE-
k–trained model. We find that the base model already achieves strong top-k recall across most
datasets, indicating that the correct answer is typically recoverable via sampling. DiVE-k training
further improves this recall, yielding more consistent retrieval of the correct candidates. This im-
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provement is particularly beneficial because Step 2 can only operate correctly when Step 1 supplies
the correct option.

Table 6: Top-k accuracy (step 1) across five datasets
Flowers CUB Pets Cars Aircraft Avg

Method B N B N B N B N B N B N

QWEN2.5-VL 96.84 92.62 83.33 74.66 98.40 98.89 86.67 90.84 89.02 90.15 90.9 89.4
DiVE-k (ours) 98.99 92.62 89.66 77.50 98.94 99.16 89.74 90.57 92.96 90.21 94.1 90.0
∆ 2.15 0.00 6.33 2.84 0.54 0.27 3.07 -0.27 3.94 0.06 3.2 0.6

Table 7 presents the Step 2 MCQ accuracy (differential reasoning). We observe an average improve-
ment of 4.3% on base and 1.6% on novel categories. Since Step 2 operates over the candidates
generated in Step 1, high top-k recall directly strengthens the effectiveness of differential reason-
ing. Improvements in candidate quality and reasoning accuracy reinforce each other, resulting in a
compounding effect on the final classification performance.

Across most datasets, Step 1 accuracy is already high (often above 90%), which shifts the primary
performance bottleneck to the differential reasoning stage. DiVE-k explicitly targets this challenge
and achieves clear gains in MCQ accuracy. For the CUB dataset, however, top-k accuracy remains
comparatively lower, leaving additional room for improvement in Step 1. This highlights that the
two stages contribute differently depending on dataset difficulty. Some benchmarks are limited by
candidate generation, while others are limited by reasoning over those candidates.

Table 7: MCQ accuracy (Step 2) across five datasets
Flowers CUB Pets Cars Aircraft Avg

Method B N B N B N B N B N B N

QWEN2.5-VL 93.65 94.90 82.20 78.62 86.99 94.85 73.03 84.32 71.10 75.42 81.4 85.6
DiVE-k (ours) 98.40 95.98 89.78 84.52 90.05 95.00 76.90 84.10 73.25 76.59 85.7 87.2
∆ 4.75 1.08 7.58 5.90 3.06 0.15 3.87 -0.22 2.15 1.17 4.3 1.6

5 LIMITATIONS AND FUTURE WORK

While DiVE-k framework effectively leverages the model’s intrinsic knowledge acquired during
pre-training to improve its downstream accuracy, our two-step inference process incurs additional
computational cost due to the requirement of two forward passes. The success of our approach
is demonstrated on QWEN2.5-VL, which exhibits high initial Pass@k accuracy. However, the
method’s efficacy is contingent on this baseline performance; base LVLMs with lower intrinsic ac-
curacy may not realize comparable gains. A potential direction to mitigate this dependency, which
we leave for future work, is to incorporate a Pass@k accuracy as reward signal directly into the
training objective. Another promising avenue for future research involves the verification of gener-
ated reasoning traces for factual correctness and their grounding in the input image.

6 CONCLUSION

In conclusion, we introduced DiVE-k, a novel framework that addresses the limitations of Large Vi-
sion Language Models in fine-grained image recognition. By utilizing top-k generations as training
primitive, our method requires the model to perform differential reasoning among visually simi-
lar categories using a multiple-choice question format. Extensive experiments across five standard
datasets demonstrate that DiVE-k significantly outperforms existing approaches in base-to-novel
generalization, mixed domain, and few-shot settings. Our ablation studies further reveal that the
efficacy of this approach hinges on mining options from the base model’s own distribution, which
is critical for effective RL training. Moreover, we show that the joint fine-tuning of both vision and
text components is essential for unlocking the model’s full reasoning potential and that increasing
the value of k offers diminishing return during inference. Overall, our work highlights the effec-
tiveness of leveraging a model’s inherent knowledge distribution to refine its reasoning capabilities,
establishing a new direction for improving visual discrimination in LVLMs.
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7 REPRODUCIBILITY STATEMENT

We aim to ensure full reproducibility of our work by providing detailed descriptions of our method-
ology, training and inference pipeline, and evaluation protocol in the method, results and appendix
section. All hyperparameters, implementation details, and generation settings (e.g., temperature,
sampling strategies, and reward design) are listed in the Appendix, along with the exact prompt tem-
plates used for all experiments. Experiments are conducted on both open-source and closed-source
models; for open-source models, we provide precise checkpoint versions. We plan to publicly re-
lease our codebase, experimental configurations, and trained model checkpoints upon acceptance to
support reproducibility.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 TRAINING DETAILS

Sampling parameters. In the first step of our pipeline, we generate K responses using top-p nucleus
sampling. We provide the details about the parameters using during this sampling in Table 8.

Table 8: Generation Arguments
Parameter Value
max new tokens 1024
temperature 1.0
top p 0.95
do sample True
num return sequences 20
repetition penalty 1.1

ViRFT model training. During our evaluation of ViRFT method, we find a crucial issue in their
implementation. The string match logic used during both training (for reward computation) and
evaluation (for answer correctness) is shown in Listing A.1.1. We find that the second part of the
or statement (student answer in ground truth) leads to a shortcut specifically for fine-grained image
classification. For example, even if the model responds “gull” this reward function (and evaluation)
will consider it as correct even though it doesn’t give a correct answer. (it could be any of “california
gull”, “Heermann Gull”, “ivory gull” etc.). This leads to a huge drop in accuracy when evaluated
using our LLM evaluation as demonstrated in Table 9 for CUB and Stanford Cars dataset. We fix
this issue by remove this shortcut and keeping only the “ground truth in student answer” during
training for reward computation. After fixing this error we observe expected results shown in 9.

Table 9: Table to demonstrate the shortcut issue in original ViRFT code. ViRFT refers to the accu-
racy using the original code, ViRFT! refers to our modified code used for training

Method CUB Stanford cars
Base Novel Base Novel

QWEN2.5-VL-7B 63.33 48.17 58.87 72.9
ViRFT 39.33 27.83 13.79 23.09
ViRFT! 65.44 51.00 60.34 73.63

String matching code in ViRFT� �
1 # reward computation code
2 if ground_truth in student_answer or student_answer in ground_truth:
3 reward = 1.0
4

5 # evaluation code
6 if image_cate in answer_content or answer_content in image_cate:
7 right_count += 1
8 else:
9 print(’no’)� 


A.1.2 EVALUATION DETAILS

Here we provide the details of the different prompt used at different stage of our method. In Fig-
ure 7 we have provided the complete prompt used in first step of our proposed method. Here,
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Prompt: 
"This is an image containing 
a aircraft. Please identify 
the model of the aircraft 

based on the image"

Reasoning: "The aircraft in the image is a regional jet with a T-tail configuration, which is 
characteristic of the British Aerospace (BAe) 146 series. The specific model can be identified 

by its size and design, which matches the BAe 146-300. The livery and registration also 
support this identification.” Final Answer: BAE 146-300

top-k as options : A."bae 146-200” B. ”bae 146-300" 
Differential Reasoning: The aircraft in the image appears to be a BAE 146, which is identifiable 
by its T-tail configuration and the number of engines. The specific model can be deduced from the 
registration number and the design features. The registration number LZ-HBC suggests that this 

aircraft is registered in Bulgaria, and the design features match those of the BAE 146-200 series. 
The BAE 146-300 has a different tail design and engine placement, which does not match the 

aircraft in the image.
Final Answer: bae 146-200

ViRFT

Ours

Prompt: 
"This is an image containing 
a bird. Please identify the 

species of the bird based on 
the image"

Reasoning: "The bird in the image appears to be a small, brownish-gray bird with a slender 
body and a short, pointed beak. It has a light-colored underbelly and darker wings with white 
streaks. The bird's posture and the setting suggest it could be a flycatcher or a similar small 

passerine bird. the bird resembles characteristics of a Great Crested Flycatcher, which is 
known for its similar appearance and habitat preferences.”

Final Answer: Great Crested Flycatcher

top-k as options: A."olive-sided flycatcher", B. ”great crested flycatcher", C. ”least 
flycatcher", D. "yellow-bellied flycatcher", E. ”acadian flycatcher"” 

Differential Reasoning: The bird in the image has a small size, a slender body, and a short, 
pointed beak, which are characteristic features of flycatchers. The coloration, with a light 

underside and darker upperparts, is consistent with the least flycatcher (Empidonax minimus). The 
olive-sided flycatcher (Contopus cooperi) typically has a more olive-colored back and a longer tail, 
the great crested flycatcher (Myiarchus crinitus) has a larger size and a more robust build, the 
yellow-bellied flycatcher (Empidonax flaviventris) has a yellow belly, and the acadian flycatcher 

(Empidonax virescens) has a more olive-green back and a shorter tail
Final Answer: least flycatcher

ViRFT

Ours

Prompt: 
"This is an image containing 
a car. Please identify the 
model of the car based on 

the image"

Reasoning: ""The image shows a white pickup truck with a rectangular front grille, which is 
characteristic of Ford trucks. The design and shape of the vehicle, including the headlights and 
overall body style, align with the Ford F-150 model. The specific model year and configuration 

(Regular Cab) can be inferred from the design elements”. 
Final Answer: "2012 Ford F-150 Regular Cab"

top-k as Options : A."2007 ford f-150 regular cab", B. ”2012 ford f-150 regular cab", 
Differential Reasoning: " The image shows a white pickup truck with a classic design, which is 
characteristic of the Ford F-150 models produced around the early 2000s. The specific model 

appears to be a regular cab version, which was common for the F-150 during this period. Given 
the design elements such as the grille shape, headlight design, and overall body style, it aligns 

closely with the 2007 Ford F-150 Regular Cab model. The other option, 2012 Ford F-150 Regular 
Cab has more modern design features that do not match the vehicle in the image.”

Final Answer: "2007 ford f-150 regular cab"

ViRFT

Ours

Figure 6: Qualitative comparison across three domains—aircraft, birds, and cars. In each pair,
ViRFT commits to a plausible but incorrect class with generic rationale such as “BAe 146-300”,
“Great Crested Flycatcher”, “2012 Ford F-150”. Our method first enumerates top-k candidates and
then applies attribute-grounded differential reasoning such as T-tail/registration cues for BAe 146-
200; Empidonax traits for Least Flycatcher; grille/headlight era cues for a 2007 F-150, yielding the
correct fine-grained label and a justification aligned with the final choice.

{category list} refers to the list of all the category list for the given dataset. During training, we
only use base categories in the prompt.

In Figure 8, we provide the prompt used for second step of multiple choice question.
Here {options} refers to the options obtained from the first step of our pipeline. In Fig-
ure 9, we provide the prompt used during the evaluation. {groundtruth} refers to the
groundtruth category name and {prediction} refers to the model’s predicted answer. We
use "google/gemini-2.5-flash-lite-preview-06-17" as LLM for evaluation from
openrouter (OpenRouter, 2024) API.
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<image> This is an image containing a bird. Output the most likely species name in the
image. The species name of the bird strictly belongs to below category list {category list}.

Output the thinking process in <think> </think> and final answer in <answer>
</answer> tags.

The output answer format should be as follows: <think> ... </think> <answer>
species name </answer>.

Please strictly follow the format.

Figure 7: Prompt for first step of our pipeline to generate K rollouts

This is an image containing a bird. Please find the most likely bird in the image from the
below options. {options}.

Please output the letter corresponding to the correct category name. Output the thinking
process in <think> </think> and final answer in <answer> </answer> tags.

The output answer format should be as follows: <think> ... </think> <answer>option
letter</answer>

Please strictly follow the format.

Figure 8: Prompt for Multiple Choice Question (MCQ) answering

A.2 QUALITATIVE COMPARISON

We provide additional qualitative comparisons in Figure 6. We note that explicit candidate enumer-
ation followed by differential, attribute-level reasoning improves fine-grained recognition. In each
case, the top rows (ViRFT) select look-alike but wrong categories—over-generalizing to BAe 146-
300, misidentifying a flycatcher species, and over-estimating the truck’s model year—supported by
broad, non-discriminative explanations. The bottom rows (Ours) surface a short top-k list and then
contrast salient cues (e.g., tail/engine/registration details for BAe 146-200; size/underparts/Empi-
donax patterns for Least Flycatcher; grille and headlight silhouette for a 2007 F-150) before com-
mitting to a final answer. This two-step structure reduces over-generalization and aligns the selected
label with evidence visible in the image.

Table 10: Comparison of classification accuracy using Gemma3-12B base model on CUB and Flow-
ers datasets.

CUB Flowers

Method Base Novel HM Base Novel HM

Gemma3-12B 38.67 32.00 35.03 71.26 86.52 78.16
Gemma3-12B* 46.00 37.17 41.12 69.54 86.67 77.17
DiVE-k (Ours) 58.50 40.83 48.10 84.63 87.38 85.99
∆ w.r.t Gemma3 20.17 8.83 13.07 13.37 0.86 7.83

A.3 ADDITIONAL BACKBONE RESULTS

To assess the model-agnostic nature of our approach, we also report results with replacing the
QWEN2.5-VL backbone with Gemma3-12B and repeat the evaluation on CUB and Flowers. As
shown in Table 10, DiVE-k consistently yields substantial improvements over the Gemma3-12B
baseline across all splits.Overall, DiVE-k consistently improves the harmonic mean (HM) perfor-
mance on both datasets, achieving gains of +13.07 and +7.83 points over the base Gemma3-12B
model. These results demonstrate that our framework generalizes beyond a specific foundation
model and delivers consistent performance gains across different architectures and datasets.
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You are evaluating fine-grained image classification results.
Given:

- Groundtruth category: {groundtruth}
- LLM prediction: {prediction}
Check if the groundtruth matches the prediction. The strings need not match exactly but

they must refer to the same specific fine-grained category, not just broad class.
Respond with:

1. ”True” or ”False” if groundtruth matches the prediction in <answer></answer> tag.
i.e <answer>answer here (True/False)</answer>
2. Brief explanation in <explanation></explanation> tag. i.e
<explanation>Explanation here</explanation>

Figure 9: Prompt for evaluating fine-grained image classification results.

A.4 COMPUTATION COST COMPARISON

Table 11: Per-sample inference time com-
parison between one-step and two-step
pipelines.

One Step Two Steps

Flowers 2.50 s 16.02 s
CUB 2.77 s 14.58 s
Pet 2.23 s 8.25 s
Average 2.50 s 12.95 s

Since DiVE-k uses a two-step inference pipeline, it in-
curs additional computational overhead due to two for-
ward passes. To quantify this overhead, we measure the
per-sample inference time averaged over 500 samples
on A6000 GPUs (48GB). As shown in Table 11, the av-
erage per-sample inference time increases from 2.50s
in the one-step setting to 12.95s in the two-step setting.
However, these improvements are not merely a byprod-
uct of increased computation. Even under an identical
compute budget, using K=1, which reduces our method
to a single forward pass with greedy decoding, directly comparable to prior one-step baselines,
DiVE-k still outperforms existing methods on 4 out of 5 datasets (Figure 5). This demonstrates that
the gains arise from our formulation itself rather than additional compute alone. When more com-
putation is permitted, performance further scales with K, providing a controllable trade-off between
inference cost and accuracy that can be adapted to different application constraints.

A.5 LARGE LANGUAGE MODELS (LLMS) USAGE DETAIL.

We utilized LLMs as a writing aid. Their application was strictly limited to proofreading for errors
and polishing the prose for clarity and style. LLMs were not used for any substantive tasks, in-
cluding but not limited to research, information retrieval, discovery, or the ideation of concepts and
conclusions presented herein. All intellectual content is the original work of the authors.
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