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Abstract

As a bio-inspired vision sensor, spike camera records light intensity by accumulat-
ing photons and firing a spike once a preset threshold is reached. For high-light
regions, the accumulated photons may reach the threshold multiple times within
a readout interval, while only one spike can be stored and read out, resulting in
incorrect intensity representation and a limited dynamic range. Multi-level (ML)
spike camera enhances the dynamic range by introducing a spike-firing counter
(SFC) to count spikes within each readout interval for each pixel, and uses different
spike symbols to represent the arrival of different amounts of photons. However,
when the light intensity becomes even higher, each pixel requires an SFC with
a higher bit depth, causing great cost to the manufacturing process. To address
these issues, we propose time-encoding (TE) spike camera, which transforms the
counting of spikes to recording of the time at which a specific number of spikes (i.e.,
an overflow) is reached. To encode time information with as few bits as possible, in-
stead of directly utilising a timer, we leverage a periodic timing signal with a higher
frequency than the readout signal. Then the recording of overflow moment can be
transformed into recording the number of accumulated timing signal cycles until
the overflow occurs. Additionally, we propose an image reconstruction scheme for
TE spike camera, which leverages the multi-scale gradient features of spike data.
This scheme includes a similarity-based pyramid alignment module to align spike
streams across the temporal domain and a light intensity-based refinement module,
which utilises the guidance of light intensity to fuse spatial features of the spike
data. Experimental results demonstrate that TE spike camera effectively improves
the dynamic range of spike camera. The source codes and datasets are available
at https://github.com/zkzhu123/TESC.

1 Introduction

In applications such as autonomous driving and unmanned aerial vehicles, high-speed and high-
dynamic-range (HDR) scenes [26} 28] frequently occur. Some specialised sensors designed for
these scenarios have a bit depth exceeding 20 to accommodate dynamic ranges of 120dB or even
higher. How to achieve effective imaging in high-speed and HDR scenes has become a key challenge.
Conventional digital cameras usually require static scenes to achieve high-quality imaging results,
as object motion during the exposure time leads to motion blur. Consequently, the applicability of
conventional cameras in high-speed scenes is limited.
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As a recently invented retinal-based camera, spike camera [19; [60; |65 [7]] records light intensity
by continuously accumulating photons and firing a spike when reaching a preset threshold. With
a readout frequency up to 40k Hz, spike camera demonstrates significant advantages in capturing
high-speed scenes. However, its support for HDR is still insufficient, as it can only indicate whether
a spike is fired at a readout interval, i.e., whether a certain amount of photons have arrived within
the interval. In HDR scenes [22; [12} 25; 545 53], those high-light regions may trigger multiple
spikes within a readout interval, while spike camera can only store and read out a single spike per
readout interval. This prevents spike camera from accurately recording the light intensity in high-light
regions.

To address these challenges, Zhu et al. [67] propose multi-level (ML) spike camera, which incorpo-
rates a spike-firing counter (SFC) to count the number of spikes. At the readout moment, ML spike
selects a spike symbol as output based on the spike count. By mapping different brightness levels to
distinct spike symbols, ML spike camera achieves a more precise encoding of light intensity.

However, in ultra-HDR scenes, the spike count can become excessively large, making counting and
representation costly and inefficient. To this end, we propose time-encoding (TE) spike camera.
Similar to ML spike camera, TE spike camera incorporates an SFC to count spikes. TE spike camera
sets a maximum spike count (overflow) per readout interval. Once the overflow occurs, TE spike
camera stops spike counting and instead uses the time required to reach the maximum spike count to
represent the light intensity. To achieve the goal of encoding time information with as few bits as
possible, instead of directly utilising a timer, we exploit two periodic clock signals that inherently
exist in the spike camera: the readout signal and the higher-frequency timing signal. Since the total
number of timing signal cycles within each readout interval can be predetermined based on the
frequency ratio between the two signals, the recording of the overflow moment can be transformed
into recording the number of accumulated timing signal cycles until the overflow occurs.

Reconstructing high-quality images from TE spike streams is one of the key tasks for TE spike camera.
To fully exploit the temporal-spatial information of TE spike streams and mitigate adverse effects, such
as photon shot noise and quantisation noise, we propose an encoder to extract texture and gradient
features from the spike streams across different receptive fields. We propose a similarity-based
pyramid alignment module to align the spike streams among temporal domains in a coarse-to-fine
manner. Moreover, a light intensity-based refinement module is proposed to utilise the light intensity
to guide the fusion of spatial features in the spike streams. Experimental results demonstrate that TE
spike camera effectively enhances the dynamic range of spike camera, and the proposed reconstruction
method outperforms other methods, achieving superior results.

2 Related Work

HDR Imaging. For conventional digital cameras, the most straightforward approach to increasing
dynamic range is to enhance the full well capacity of pixels [44;34;!41]. Multiple conversion gain
techniques [39542; 18] extend dynamic range by applying high conversion gain for low-light regions
and low conversion gain for high-light regions. Multi-exposure imaging [14: 56; |49]] captures the
same scene with different exposure durations and then merges these samples to construct an HDR
image. The time-to-saturation technique [32} 205 27 estimates the intensity of saturated pixels by
recording the time at which pixel saturation occurs, thus extending the effective dynamic range. Other
technologies such as single-photon avalanche diodes (SPADs) [37; 136} 38]] and linear—logarithmic
pixels [30; 23; 43| have also been employed to improve the dynamic range of image sensors.

HDR Reconstruction for Neuromorphic camera. Neuromorphic camera can be mainly divided into
event camera [S75 1455 4; |15 1485 133]] and spike camera [595 161515151635 1151505 [10; 185 1645 165 95 1465 147]).
Zhang et al. [58] design an encoder-decoder network, which combines spiking neural networks
(SNNs) and convolutional neural networks (CNNGs), effectively generating clear visual images, even
for occluded or obscured targets. Zou et al. [68] focus on the reconstruction of high-speed HDR
videos based on event streams. They introduce convolutional recurrent neural networks and employ
temporal consistency loss to ensure accurate and consistent reconstruction of high-speed events in
HDR video sequences. Han et al. [16]] introduce the NeurImg-HDR framework, which uses HDR
intensity images from neuromorphic cameras to guide traditional RGB images in the luminance
domain, enhancing HDR output. Expanding upon this, Han et al. [15] develop NeurImg-HDR+,
which extends their method to support HDR video generation and high-resolution reconstruction.
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Figure 1: Mechanisms of light intensity representation with neuromorphic camera. (a) Neuromorphic
camera uses the ratio of accumulated photons to time, i.e. the photon arrival rate, to represent light
intensity. Two commonly adopted strategies are: (1) fixing the integration time and recording the
amount of accumulated photons, and (2) fixing the amount of accumulated photons and measuring
the time required to reach that amount. (b) Each spike represents a fixed amount of photons, this
mechanism uses the spike interval to represent intensity. (c) This mechanism uses multi-level spike
symbols to represent different amounts of photons. (d) This mechanism represents intensity by
recording the time required for photon accumulation to reach a specific photon amount.

Comparison with Event camera and SPAD. Unlike spike camera, which continuously records
light intensity, event camera only records the changes of light intensity, so it is difficult for event
camera to perceive static objects. Cao et al. [3] focus on low- and moderate-brightness regimes (e.g.,
room light, outdoor sunset), where random fluctuations in the photon arrival process are the dominant
source of noise. However, in high-brightness environments (e.g., outdoor daylight), leakage noise
events become more prevalent, which are not modelled in their work. Therefore, the performance
of such approaches in HDR scenarios remains uncertain. He et al. [17] propose an artificial micro-
saccade-enhanced event camera that actively senses static scenes using a rotating wedge prism in
front of the event camera. While effective in enabling the perception of static objects, this mechanism
may face challenges during the initial driving phase, where both static and fast-moving objects are
present. Moreover, the additional mechanical components and the resulting complex data structure
may introduce higher energy consumption and increased computational burden.

SPAD sensors estimate the total number of incident photons during an interval by counting the
number of arrived photons within the exposure time. Sharma et al. [40] and Liu et al. [29] implicitly
rely on the assumption that the number of arrived photons during the exposure time does not exceed
the maximum countable capacity of the SPAD. However, when the incident photon count surpasses
a certain threshold under high-illuminance conditions, conventional SPADs encounter difficulties
in accurate photon counting. This limitation leads to image white-out, where bright regions are
saturated. Moreover, the avalanche multiplication process in SPADs not only amplifies the signal but
also inherently amplifies the noise, leading to excessive noise levels that can severely compromise
the overall imaging quality, particularly under high-noise conditions.

3 Motivation

Two Approaches for Intensity Representation. Neuromorphic camera uses the ratio of accumulated
photons to time, i.e. the photon arrival rate, to represent light intensity. As illustrated in Fig. [T[a),
two common approaches are typically adopted. The first approach accumulates the arrived photons
N, over a fixed time interval T, yielding a photon arrival rate of % The second approach records
the time duration 7} required for the accumulated photons to reach a fixed amount Ny, resulting in a
photon arrival rate of %9

Intensity Representation via Primitive Spikes. A primitive mechanism involves accumulating
photons and comparing them with a predefined threshold #. Once the threshold is reached, a spike is
fired, setting up a spike flag, and the accumulated photons are immediately released. The spike flag is
periodically read out as output. In this mechanism, as shown in Fig. |1|(b), each spike corresponds to a



fixed amount of photons, i.e. Ny is fixed. This mechanism is a simple version of the second approach,
where the time between spikes, that is, the spike interval, reflects the time required to accumulate
Ny photons. Consequently, the spike interval inversely correlates with light intensity and becomes
shorter as the intensity increases. Denote a readout interval as 7;.. In theory, the spike interval can be
any integer multiple of 7;.. However, in high-speed HDR scenes, the light intensity within a spike
interval may vary significantly, and an excessively long spike interval can lead to degraded image
quality. Assuming that the maximum acceptable spike interval is N;T., the intensity /7 that can be
represented by this mechanism is given by:

N,
b e Nt n< N (1

h= {nT

Intensity Representation via Multi-Level Spikes. However, when the light intensity becomes
very high, specifically when the intensity [ > %’, multiple spikes would be fired within a readout
interval. In this case, the primitive mechanism fails. To address this, a multi-level spike mechanism
is introduced. This mechanism not only generates spikes but also counts them. At the readout
moment, the spikes that have been fired but have not yet been read out will be encoded and output as
a spike symbol with an amplitude value. As illustrated in Fig. [I| (c), the height of each spike symbol
corresponds to the number of spikes fired within the readout interval. This mechanism combines
elements of both the first and second approaches: it uses the spike count per readout interval to
represent high-intensity regions, while relying on spike intervals to represent low-intensity regions.
Assuming that the bit depth of the counter is B, the intensity I5 that can be represented by this
mechanism is given by:

bNy

nT,

Iy={—>n,be N",n < Ny, b <27} @)

Intensity Representation via Time-Encoding Spikes. However, in ultra-HDR scenes, the number
of fired spikes can become excessively large, requiring a spike counter with a high bit depth. This
poses a significant challenge for maintaining compact pixel sizes. To overcome this, a time-encoding
mechanism is introduced. Specifically, by defining a maximum spike count P;,,x within a readout
interval, once the spike count reaches Py, the representation of light intensity shifts from spike
count to the time T, required to reach Py .x. Ty is then encoded and output, providing an alternative
representation of intensity through time information. The intensity I3 that can be represented by this
mechanism is given by:

b,
—9, no overflow,
I =4 "k 3)
Prnax No . Tr , overflow
T, Tar ’

where n,b € NT, n < N,, b < Ppax, and 0 < Tyy < T

4 Time-Encoding Spike Camera

4.1 Working Mechanism

The working mechanism of time-encoding (TE) spike camera is shown in Fig. 2]

Spike Generation. Each pixel of TE spike camera independently captures the incoming photons and
converts them into electric charges for accumulation. These charges are continuously accumulated by
the integrator. Once the accumulated electric charge, denoted as A(t), reaches a predefined threshold
6, the system generates a spike to represent a spike-firing and releases the accumulated electric charges
under the enable operation of a periodic timing signal S}, restarting a new "integrate-and-fire" cycle.

Spike Counting and Time Encoding. TE spike camera introduces a spike-firing counter (SFC) to
count the number of fired spikes. To record the time required for the spike counting to reach Py«
(i.e., overflow), a straightforward approach is to introduce a timer. However, encoding the timer value
would consume a significant number of bits. As shown in Eq. [3] the key to time encoding lies in
obtaining the ratio between T, and 7,.. 7). is controlled by the readout signal .S,.. Since multiple
integrate-and-fire cycles may occur within a single readout interval, the frequency of .S}, is set to
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Figure 2: Working mechanism of time-encoding (TE) spike camera. Each pixel of TE spike camera
continuously accumulates photons and fires a spike when a preset threshold is reached. Based on the
overflow flag, TE spike camera decodes the light intensity with spike number or time information.

be significantly higher than that of .S,.. Therefore, the problem of computing the ratio between T
and 7, can be transformed into calculating the ratio between the number of S}, clock cycles until
the overflow occurs, and the total number of S}, cycles within a single readout interval. To this end,
we introduce a clock cycle counter (CCC) to count the number of .Sy, cycles. Since both Sy, and S,
are periodic signals, the total number of S}, cycles within a readout interval can be determined in
advance, and we denote this number as a. During a readout interval, if the spike count exceeds the
maximum value that the SFC can store, an overflow occurs, setting up the overflow flag and making
both the SFC and the CCC stop counting. If no overflow occurs, the SFC count spikes throughout the
entire readout interval.

In the practical implementation, to facilitate manufacturing, all pixels can share a single CCC, and
each pixel maintains a dedicated local register to store the number of .S}, cycles provided by the CCC.

Readout. If the overflow flag is “0”, the value stored in the SFC is read out along with the overflow
flag, otherwise, the value in the CCC is read out with the overflow flag. Afterwards, the SFC, CCC
and overflow flag are reset to prepare for the next process.

4.2 Decoding of Spike Data

Suppose the output is a d + 1-bit binary number. If the overflow flag is “0”, the remaining d-bit (i.e.,
the lower d bits) binary data can be directly decoded into a decimal number, representing the total
number of spikes fired during the readout interval. Then the intensity can be estimated with Eq. 2] If
the overflow flag is “1”, the remaining d-bit data instead represents the time information. First, the
d-bit binary data is converted to a decimal number m, which represents the number of clock cycles of
Sy, until the overflow occurs. Since the total number of clock cycles of S}, within a readout interval is

«a, the %2 in Eq. can be approximated as .

4.3 Dynamic Range

According to Eq. , the minimum representable light intensity IJi" = NN"T . The maximum repre-
sentable light intensity is jointly determined by the bit depths of the SFC and the CCC. Suppose the
bit depths of the SFC and CCC are B; and Bs, respectively and we define an overflow as occurring
when the overflow flag of the SFC becomes “1”, i.e. Pnax = 281 Then the maximum light intensity

can be expressed as I3 = 2?%%(232 — 1). In this case, the dynamic range of TE spike camera
is Drp = 20log,o(IF®/I1in) = 20log,o(28 - (282 — 1)Ny). From Eq. [2} we can obtain the
dynamic range of ML spike camera D7, = 201og;,((2% — 1) N;). When we set B; + By > B,
we can obtain Drg > Dy
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Figure 3: Architecture of the proposed reconstruction model. The MSFEG module extracts multi-
scale features as well as gradient information to facilitate the following alignment process. The
SPA module aligns the spike streams among temporal domains in a coarse-to-fine manner. The LIR
module utilises the guidance from light intensity to fuse the spatial features of the spike streams.
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5.1 Overall Architecture

The overall architecture of the proposed reconstruction method is shown in F1g B} For the given TE
spike stream S € R *WXT \e segment S into five spike sub-streams {S;}?__, to reconstruct the
scene at time tg, where ¢ represents the time index. Each sub-stream S; is centered at moment ¢; with
a window radius wy,, defined as:

Si(p) = {S(p,t) 1", - )

Here, t is designated as the key moment, while {ti}ie{_Q,_Lu} represent reference moments. We
utilise an encoder to extract multi-scale features as well as gradient information {F;}?__, from these
five spike sub-streams. To facilitate effective fusion, we design a similarity-based pyramid alignment
module to align the spike streams among temporal domains in a coarse-to-fine manner. Moreover, a
light intensity-based refinement module is proposed to utilise the guidance from light intensity to
fuse the spatial features of the spike streams.

5.2 Multi-Scale Feature Extraction with Gradient

As shown in Fig. |z|(a), we employ convolution kernels of sizes 1, 3, 5 and 7 for feature extraction,
facilitating the capture of motion at varying scales through different receptive fields. The spike stream
generated by TE spike camera comprises multiple spike symbols, where higher values correspond
to stronger light intensity, thereby embedding rich gradient information. This gradient information
is crucial for precise motion alignment. To leverage it effectively, we apply horizontal and vertical
Sobel operators, along with a Laplacian operator, to extract essential features from the spike stream.
More information about gradient extraction can be found in our supplementary.

5.3 Similarity-based Pyramid Alignment

To facilitate the effective fusion of reference features and the key feature, we employ a pyramid
structure to achieve coarse-to-fine feature alignment. Specifically, we propose a similarity-based
pyramid alignment (SPA) module. As illustrated in Fig. [3] (b), we use convolution layers to



downsample the extracted features and construct a three-level pyramid. The key feature at £, moment
at the [-th pyramid layer is denoted as F];ey and the reference feature at t; moment at the [-th pyramid
layer is represented as F™. First, Fgey and F'* are concatenated and then passed through two

convolution layers to generate the offset O; 3 and mask M; 3. Subsequently, ng is aligned to Fgey
by deformable convolutions (DCNs) [55 166]:

Fis(p) = Zwi FE5(p + pi + Oi3(p, pi)) - Mis(p, pi), )
i=0

where 13‘1 3 denotes the aligned feature at the third pyramid layer. The coordinate p = (z,y) denotes
the center location, n refers to the number of sampling locations, w; represents the i-th weight, and
p; denotes the i-th fixed offset.

To mitigate motion blur and potential artefacts in occluded regions, we propose a motion bias predictor
(MBP) module to evaluate the bias between F; 3 and Fgey. The bias is then added to F; 3 to obtain
the refined feature F; 3.

The offset O; 3 and mask M; 3 are propagated and fused across different pyramid levels through
upsampling, as illustrated in Fig. [3|(b). Similarly, the aligned feature f‘zd is also propagated and
fused between pyramid levels via upsampling. However, the feature information of f‘i, 3 may not
be reliable. Additionally, downsampling during pyramid construction can lead to information loss,
making the upsampled f‘;‘f’g potentially uncorrelated with Flg“’y. To mitigate this issue, we design a
similarity predictor (SP) module, which takes the upsampled f‘gg and F5? as inputs and outputs a
similarity feature s. This similarity feature is then used to guide the fusion of the DCNs-aligned Fi,g
and the upsampled feature f‘?fg. A bias is also estimated to facilitate the fusion. The aligned reference
features are concatenated with the key feature and passed through a fusion module for preliminary
integration and obtain F. More details about the SPA module can be found in our supplementary.

5.4 Light Intensity-based Refinement

After performing motion alignment at different time instances, we further refine the preliminary
integration result F using spatial domain information. Inspired by [2l], considering that the texture
details in regions with stronger illumination are generally more reliable, we propose a light intensity-
based refinement (LIR) module, as shown in Fig. E] (c).

In fact, the values at different moments and locations in the spike stream are linear with the light
intensity. By averaging the spike stream along the temporal direction, we obtain a rough estimation
of the light intensity at the key moment. This estimation is then concatenated with the spike stream to
generate an intensity-based feature I for refinement through a two-layer convolution network.

To capture long-range spatial correlations while maintaining computational efficiency, we apply a
multi-head self-attention network to extract the spatial domain information of F. Fis reshaped
into tokens X € R¥W*C¢ and X is further split into k heads:{X1, Xy, ..., X3 }. For each head, three
fully connected layers are applied to project X; into query Q; € RHW* T key K; € RHW* T
and value V; € REWX % . Then, we use the intensity-based feature I to guide the computation of
self-attention. In detail, I is reshaped into Y € R”W>*Cand split into k heads: {Y1,Y2, ..., Yi}.
Then the self-attention of each head can be calculated as:

Ki Q,

att = (Y; o V;)softmax(
Yi

) (6)

where o means element-wise multiplication and v; € R! is a learnable scaling factor. Subsequently,
k heads are concatenated to pass a fully connected layer and then plus a positional encoding P €
RHWXC o produce the output tokens X, € REW>C X is then reshaped and the output feature
F, € REXWXC i obtained. Finally, we use one convolution layer to adjust the channel number of
F, and derive the final output F; € RE*Wx1,



Table 1: Comparison of quantitative results on the synthesized HDM-HDR-2014 dataset (# means
only one parsing branch is utilized).

ML Reconstruction PSNR-p T SSIM-p 1+ HDR-VDPT  HDR-VQMJ|  TE Reconstruction PSNR-p 1 SSIM-p + HDR-VDP1  HDR-VQMJ

TFI_ML 15.50 0.161 3.056 0.943 TFI_TE 17.37 0.235 3.367 0.933
TFP_ML 16.13 0.250 3.778 0.970 TFP_TE 17.74 0.317 3.412 0.970
Spk2ImgNet_ML 26.69 0.779 7.209 0.459 Spk2ImgNet_TE 29.64 0.830 7.892 0.357
BSF_ML 26.94 0.782 7.338 0.457 BSF_TE 29.64 0.826 7.825 0.370
MambaSpike # 25.76 0.755 7.081 0.545 MambaSpike_TE 28.94 0.828 7.802 0.400
MambaSpike 27.30 0.788 7.405 0.443 Ours 30.86 0.853 8.055 0.325

Table 2: Comparison of quantitative results on the synthesized Kalantaril3 dataset (# means only
one parsing branch is utilized).

ML Reconstruction PSNR-zz +  SSIM-p + HDR-VDPY HDR-VQM| TE Reconstruction PSNR-z 1 SSIM-z 4 HDR-VDP1 HDR-VQM]

TFI_ML 2455 0.539 3777 1.222 TFI_TE 27.52 0740 3.882 1.228
TFP_ML 2238 0.699 3232 1.288 TFI_TE 23.88 0.737 3321 1.288
Spk2ImgNet_ML 26.76 0.863 8.512 0.361 Spk2ImgNet_TE 30.29 0937 9.587 0.138
BSF_ML 28.28 0.872 8.619 0345 BSF_TE 31.74 0937 9.586 0.132
MambaSpike 25.87 0.854 8.557 0.343 MambaSpike TE  29.06 0.929 9516 0.151
MambaSpike 27.85 0.874 8.689 0325 Ours 33.65 0.943 9.606 0.139

6 Experiments

6.1 Spike Simulator

Based on ML spike camera and TE spike camera we propose, we design two corresponding spike
simulators to generate spike streams from video sequences. We convert them to grayscale to represent
the light intensity in the external environment. The photoelectric conversion rate 7 is set to 0.7.
Additionally, Poisson noise is added to simulate the shot noise during the photon arrival process. For
ML spike camera, we utilise an SFC with a bit depth of 8. For TE spike camera, we utilise an SFC
with a bit depth of 4 and a CCC with a bit depth of 4. Suppose a pixel value at the moment ¢ is I(¢),
the threshold of ML spike camera is set to max(I)/27, and the threshold of TE spike camera is set to
max(7)/(2* x (2* — 1)). More explanations of our settings can be found in our supplementary.

6.2 Dataset

We use part of HDM-HDR-2014 dataset [13] for training and the other part of HDM-HDR-2014
dataset, along with Kalantaril3 dataset [22] for testing. Since Kalantaril3 dataset does not have
ground truth, we use the result of HDRFlow [52] (one of the SOTA HDR reconstruction methods) as
the ground truth. More dataset settings can be found in our supplementary.

6.3 Implementation Details

During the training process, we randomly crop the spike streams to a spatial size of 96 x 96 and apply
random horizontal and vertical flips for data augmentation. The network is trained for 60 epochs
with a batch size of 4. We use the Adam [24] optimizer with parameter 5; = 0.9 and 52 = 0.999.
The initial learning rate is set to 1le — 4 and is halved every 10 epochs. To guide the training, we
employ the £, loss function to compute the difference between the estimated I (to) and the ground
truth I, (to):

L = |[L(to)/n — Ty (to)l]1- (N

6.4 Comparison with ML Spike Camera

In our experiments, we use PSNR-u, SSIM-u, HDR-VDP-3 [31] and HDR-VQM [335]] as evaluation
metrics, where ; means the HDR images are tone-mapped with p law [21]], and we apply o = 5000
in our experiments.

To demonstrate the advantages of TE spike camera for image reconstruction, we adapt several
reconstruction methods for ML spike camera in [67] to TE spike camera. These methods include two
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Figure 4: Visual comparisons of different reconstruction methods on the synthesized HDM-HDR-
2014 dataset.

o r . _ s | ey 3 -
TFI_TE TFP_TE Spk2ImgNet_TE BSF_TE MambaSpike TE Ground Truth
Figure 5: Visual comparisons of different reconstruction methods on the synthesized Kalantaril3

dataset.

training-free approaches: TFI_ML and TFP_ML, and three deep learning methods: Spk2ImgNet ML,
BSF_ML and MambaSpike.

The spike streams are segmented into slices as input. Following the configuration in MambaSpike
(67, each slice for the training-free methods consists of 9 continuous frames, while each slice for
the deep learning methods contains 61 continuous frames. The average value for each sequence is
computed, and the overall average across all testing sequences is used as the final experimental result.

Adapted from TFI_ML and TFP_ML, TFI_TE and TFP_TE utilise a spike interval and spike-firing
rate in a temporary window to predict light intensity, respectively. For three deep-learning methods,
Spk2ImgNet_ML, BSF_ML and MambaSpike, we modify the input from ML spike streams to TE
spike streams, resulting in the modified versions: Spk2ImgNet_TE, BSF_TE, and MambaSpike_TE.
For fair comparisons, We retrain all three deep-learning methods on our training set. Unlike ML
spike camera, which reads only the major part of the SFC at the readout moment, TE spike camera
reads all the data from the SFC. As a result, there is no need to predict the remaining part of the SFC,
thereby eliminating the need for multiple parsings of the spike stream. Consequently, we utilise one
spike parsing in MambaSpike_TE.



Table 3: Ablation studies of the proposed method.

Case MSFE Gradient DCNs SP MBP LIR PSNR-p 1 SSIM-p 1

1 v 25.68 0.680
2 v v 26.35 0.697
3 v v v 29.54 0.818
4 v v v v 30.04 0.828
5 v v v v v 30.32 0.824
6 v v v v v v 30.86 0.853

As shown in Tab. [T} reconstruction methods based on TE spike camera significantly outperform those
methods based on ML spike camera. Furthermore, the proposed method achieves the best overall
performance in all the metrics. The visualised reconstruction results in Fig. [d]clearly demonstrate the
advantages of TE spike camera-based methods, particularly in terms of texture detail preservation
and motion alignment.

Testing results on the synthesized Kalantaril3 dataset are presented in Fig.[5]and Tab. 2] Methods
based on the TE spike camera exhibit a significant performance improvement over their ML coun-
terparts, with the proposed method achieving the best results. This demonstrates that the proposed
method exhibits strong generalization ability.

More visualised reconstruction results, analysis of noise influence and complexity analysis can be
found in our supplementary.

6.5 Ablation Studies

We investigate the effects of the proposed multi-scale feature extraction with gradient (MSFEG)
module, similarity-based pyramid alignment (SPA) module, and light intensity-based refinement
(LIR) module. We use the synthesized HDM-HDR-2014 dataset for the ablation studies. The results
are presented in Tab. 3] For the MSFEG module, Cases (1-2) highlight the effectiveness of the
gradient features. For the SPA module, Cases (3-5) demonstrate the effectiveness of the deformable
convolutions (DCNs5), similarity predictor (SP) module, and Motion Bias Predictor (MBP) module,
respectively. Finally, Case (6) illustrates the effectiveness of the LIR module.

7 Limitations

Current validation is limited to simulations, and additional challenges are anticipated in real-world
applications.

8 Conclusion

We propose time-encoding (TE) spike camera, a novel advancement over multi-level (ML) spike
camera. TE spike camera incorporates an additional clock cycle counter (CCC) to record the time of
spike counting. When the spike count reaches a certain value, TE spike camera stops counting and
retrieves the time required for the counting from the CCC. By computing the ratio of this time to
the readout interval, the overflow moment can be represented. Furthermore, we propose an image
reconstruction scheme for TE spike camera, we focus on the gradient features of spike data, and
propose a similarity-based pyramid alignment module to align the spike streams among temporal
domains. Moreover, a light intensity-based refinement module is proposed to utilise the guidance
from light intensity to fuse the spatial features. Experimental results demonstrate that TE spike
camera effectively enhances the dynamic range of spike camera.
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A Supplementary

A.1 Module Design
A.1.1 Multi-Scale Feature Extraction with Gradient

The horizontal Sobel operator G, vertical Sobel operator G, and the Laplacian operator L applied
in our methods are:

+1 0 -1
G.=|+2 0 —-2],
+1 0 —1]
[+1 +2 +1]
G,=10 0 0], ()
-1 -2 —1]
[0 +1 07
L=|+1 —4 +1
L0 +1 0]

We assign the weights of these operators to 3 x 3 convolution kernels, and these weights remain fixed
throughout the training process.

A.1.2 Similarity-based Pyramid Alignment

When [ = 1, 2, the operation in the [_th layer of the similarity-based pyramid alignment module can
be expressed as:

Fii(p) = sz‘ Fei(p+p + Ouilp,p') - Miu(p,p'),
i=0

si. = SP(Cat(F | F¥)),
Fi, = Conv(Cat(F;,s:, 0 FF ),

i

b;; = MBP(Cat(F',, F}®))

il

Fiy=F% +b,,

27

€))

where Cat means concatenation and o means element-wise multiplication.

The fusion module consists of a two-layer convolution.

A.1.3 Motion Bias Predictor and Similarity Predictor

For the motion bias predictor (MBP) and similarity predictor (SP), to ensure the inference speed of
the model, we adopt a two-layer convolution and a ReLLU activation for realization. Even with this
lightweight design, a significant performance improvement can be observed. For different scenarios
and requirements, more complex models can be employed as replacements.

A.2 Experiments

A.2.1 Spike Simulator

According to Eq. 2} when the bit depth of the ML spike camera is 8, the threshold should be set to
28 — 1. However, to reduce output bandwidth, Zhu et al. [67] introduced a dual-buffer mechanism in
the design of the ML spike camera, in which only the bit index of the most significant bit (MSB) of
the SFC is output at each readout moment. As a result, Eq. [2]is modified to:

bN,
I={—7nbeN"n<N,b< 2V} (10)
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Therefore, the threshold is set to 27. Since the output mode of the ML spike camera is not the focus
of this paper, we adopt Eq. 2] for clarity and ease of understanding. In the experiments, to ensure a
fair comparison, we use Eq. @] consistent with [67]].

A.2.2 Dataset Settings

For HDM-HDR-2014 dataset and Kalantaril3 dataset, we first extract the .hdr or .exr files from
each sequence and convert the images to grayscale to simulate external light intensity. To facilitate
subsequent data processing and neural network input, we identify the maximum pixel value within
each sequence and normalise all the images in each sequence accordingly.

Following the settings of [67], we partition HDM-HDR-2014 dataset into sub-sequences, each
containing a continuous scene, with a maximum length of 400 frames and no repeated frames
between sub-sequences. This results in a total of 57 sub-sequences. We utilize 30 sub-sequences for
training and reserve the remaining 27 sub-sequences for testing. To maintain the independence of
the training and testing sets, sub-sequences derived from the same original sequence are assigned
exclusively to either the training or testing set.

For the training set, we resize the original images from 1920 x 1080 to 240 x 135 to facilitate fast
training. For the testing set, we crop the original images to a resolution of 512 x 384.

A.2.3 uLaw

Following the settings of [21]], iz law is defined as:

log(1 + pH
T(Hy) = og(1 + uHy)
log(1+ p)
where Hy is the generated HDR image after normalized to [0, 1], and 7 is the tone-mapping operator

and p is the amount of compression. In our experiments, we set x to 5000 to maintain consistency
with standard settings.

Y

A.2.4 Comparison with Event-RGB Hybrid Method

We compare the proposed method with the one of the SOTA Event-RGB hybrid method HDRev [55].
We retrained it on our own training dataset. Since HDRev generates color images, we converted
them to grayscale for a fair comparison. The results on the synthesized HDM-HDR-2014 dataset are
shown Tab.[d] The proposed method achieves the best result.

Table 4: Comparison with Event-RGB hybrid method on the synthesized HDM-HDR-2014 dataset.

Metric HDRev(event only) HDRev(RGB only) HDRev Ours
PSNR-u T 13.40 14.35 22.47 30.86
SSIM-p 1 0.545 0.546 0.777 0.853

The results on the synthesized Kalantaril3 dataset are shown in Tab.[5] The proposed method achieves
the best result for PSNR-x metric and HDRev achieves the best result for SSIM-x metric.

Table 5: Comparison with Event-RGB hybrid method on the synthesized Kalantaril3 dataset.

Metric HDRev(event only) HDRev(RGB only) HDRev Ours
PSNR-u 1 15.08 12.63 28.05 33.65
SSIM-p 1 0.773 0.684 0.972 0.943

A.2.5 Analysis of Noise Influence

In our previous experimental design, we modelled the Poisson shot noise as follows: We multiplied
each pixel’s normalised intensity value (ranging from O to 1) by 60,000 to obtain the average photon
count per pixel during each readout interval. Then, we used the ‘numpy.random.poisson‘ function to
simulate the randomness of photon arrivals according to Poisson statistics.
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We also modelled the quantization noise: the residual photons at the readout moment were preserved,
and the time to accumulate a certain number of spikes was rounded down to the nearest integer.

Furthermore, we simulated the dark current noise. We assumed that the number of electrons induced
by dark current follows a Gaussian distribution with a mean of 400 and a standard deviation of 50. If
the normalised intensity at time ¢ is I, the total number of generated electrons is computed as:

0.7 x P(60000 x I) + N (1 = 400, o = 50) (12)

where 0.7 represents the photoelectric conversion rate. The results on HDM-HDR-2014 dataset are
shown in Tab.

Table 6: Noise influence on the synthesized HDM-HDR-2014 dataset.

Metric Spk2ImgNet_TE BSF_TE Ours
PSNR-p T 28.43 28.57 28.63
SSIM-p 0.810 0.798 0.810

The results on Kalantaril3 dataset are shown in Tab. [7]

Table 7: Noise influence on the synthesized Kalantaril3 dataset.

Metric Spk2ImgNet_TE BSF_TE Ours
PSNR-p T 29.78 31.95 33.36
SSIM-p 0.929 0.931 0.936

Additionally, we referred to [62]], which recorded the actual dark current behaviour of spike camera.
The results showed that the time intervals between dark current-induced spikes roughly follow a
Gaussian distribution with a mean of 140 and a standard deviation of 50. Based on this observation,
the total number of generated electrons is computed as:

60000
N (i = 140, 0 = 50)

0.7 x P(60000 x I) + (13)

: 60000
To ensure a reasonable electron count caused by dark current, we clip the N{p=110,0=50)

(0,15000).The results on HDM-HDR-2014 dataset are shown in Tab.

to the range

Table 8: Noise influence on the synthesized HDM-HDR-2014 dataset.

Metric Spk2ImgNet_TE BSF_TE Ours
PSNR- 25.73 25.81 25.82
SSIM-p 0.725 0.751 0.752

The results on Kalantaril3 dataset are shown in Tab.

The introduction of dark current noise inevitably degrades the reconstruction quality to some extent.
Nevertheless, our reconstruction method still achieves the best performance, particularly on Kalan-
taril3 dataset. We sincerely appreciate your comment, which has helped make our system design
more comprehensive and reasonable.

A.2.6 Complexity Analysis

We calculate the parameter size, FLOPs, and testing time for five deep-learning-based methods:
Spk2ImgNet_TE, BSF_TE, MambaSpike_TE and Ours. All tests are conducted on an Ubuntu 20.04
system with an Intel Core 17 CPU and an RTX 3090 GPU. The testing time is measured by the time
required to infer a single image using each method. The results are shown in Tab. Although our
method has a relatively large parameter size and FLOPs, it achieves high processing speed due to its
efficient high-speed parallel design.
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Table 9: Noise influence on the synthesized Kalantaril3 dataset.

Metric Spk2ImgNet_TE BSF_TE Ours
PSNR-p T 27.81 29.95 31.16
SSIM-p 0.897 0.900 0.904

Table 10: Comparisons of parameter size, FLOPs and testing time.

Method Parameter FLOPs Testing Time
Spk2ImgNet_TE 3.760M 1.955T 0.418s
BSF_TE 2.071M 0.887T 0.231s
MambaSpike_TE 4.418M 1.919T 0.004s
Ours 6.479M 3.711T 0.005s

A.2.7 Experimental Results

Further visualizations of the experimental results are shown in Fig. [6 Fig. [7] Fig. 8] Fig. [0l and Fig.
[1al

TFI_ML TFP_ML Spk2ImgNet ML BSF_ML MambaSpike Ours

TFI_TE TFP_TE Spk2ImgNet_TE BSF_TE MambaSpike_TE Ground Truth

Figure 6: Visual comparisons of different reconstruction methods (part 1).
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TFI_TE TFP_TE Spk2ImgNet_TE BSF_TE MambaSpike_TE Ground Truth

Figure 7: Visual comparisons of different reconstruction methods (part 2).

-

TFI_ML TFP_ML Spk2ImgNet ML BSF_ML MambaSpike Ours
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_

TFI_TE TFP_TE Spk2ImgNet_TE BSF_TE MambaSpike_TE Ground Truth

Figure 8: Visual comparisons of different reconstruction methods (part 3).
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TFI_ML TFP_ML Spk2ImgNet ML BSF_ML MambaSpike Ours

TFI_TE TFP_TE Spk2ImgNet_TE BSF_TE MambaSpike TE Ground Truth

Figure 9: Visual comparisons of different reconstruction methods (part 4).

TFI_ML TFP_ML Spk2ImgNet_ ML BSF_ML MambaSpike Ours

TFI_TE TFP_TE Spk2ImgNet_TE BSF_TE MambaSpike_TE Ground Truth

Figure 10: Visual comparisons of different reconstruction methods (part 5).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Abstract, we point out that we target HDR imaging for spike camera. In the
Introduction part, we claim the paper’s contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We make some descriptions in the Limitation part in Supplementary.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide detailed formulas.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions about how to reproduce our results in the
section of Experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will release our code after publication.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide these details in our experimental part.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We apply a random seed for our method.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide this information in the Experiments part.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conduct the research conforming with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have assured that.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer:
Justification: We will release our code and dataset after publication.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects..
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

26



Justification: LLM is only used for text polishing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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