
Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Jinyang Li * 1 Nan Huo * 1 Yan Gao 2 Jiayi Shi 3 Yingxiu Zhao 4 Ge Qu 1 Bowen Qin 5 Yurong Wu 2

Xiaodong Li 6 Chenhao Ma 3 Jian-Guang Lou 2 Reynold Cheng 1

Abstract

Conversational Tabular Data Analysis, a collab-
oration between humans and machines, enables
real-time data exploration for informed decision-
making. The challenges and costs of collecting
realistic conversational logs for tabular data anal-
ysis hinder comprehensive quantitative evaluation
of Large Language Models (LLMs) in this task.
To mitigate this issue, we introduce COTA, a
new benchmark to evaluate LLMs on conversa-
tional data analysis. COTA contains 1013 conver-
sations, covering 4 practical scenarios: NORMAL,
ACTION, PRIVATE, and PRIVATE ACTION. No-
tably, COTA is constructed by a multi-agent en-
vironment, DECISION COMPANY. This environ-
ment ensures efficiency and scalability of generat-
ing new conversational data. Our comprehensive
study, conducted by data analysis experts, demon-
strates that DECISION COMPANY is capable of
producing diverse and high-quality data, laying
the groundwork for efficient data annotation. We
evaluate popular and advanced LLMs in COTA,
which highlights the challenges of conversational
tabular data analysis. Furthermore, we propose
Adaptive Conversation Reflection (ACR), a self-
generated reflection strategy that guides LLMs
to learn from successful histories. Experiments
demonstrate that ACR can evolve LLMs into ef-
fective conversational tabular data analysis agents,
achieving a relative performance improvement of
up to 35.14%. Code can be found at https:
//tapilot-crossing.github.io/

*Equal contribution 1School of Computing and Data Science,
The University of Hong Kong 2Microsoft 3The Chinese University
of Hong Kong, Shenzhen 4Alibaba Group 5Beijing Academy of
Artificial Intelligence 6Xiamen University. Correspondence to:
Reynold Cheng <ckcheng@cs.hku.hk>, Chenhao Ma <machen-
hao@cuhk.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
The exponential growth of big data calls for accessible data
analysis techniques that cater to a wide range of applications,
such as healthcare, games, and entertainment (Khanbabaei
et al., 2018; Han et al., 2011; Fayyad et al., 1996). Recently,
the development of LLM agents (Liu et al., 2024b; Xu et al.,
2024; Zeng et al., 2024; Xu et al., 2023; Deng et al., 2024;
Si et al., 2023) has attracted a lot of attention. They are
capable of understanding natural language queries, as well
as generating codes for data manipulation and visualization,
through reasoning (Huang & Chang, 2023; Wei et al., 2022;
Wang et al., 2024a) and tool calls (Li et al., 2023b; Huang
et al., 2024b; Qin et al., 2024). Among the vast types of
data available, tabular data stands out as one of the most
prevalent and interpretable formats organized by rows and
columns (Hu et al., 2024; Wu et al., 2024; Liu et al., 2024a).

Tabular data analysis agents (Li et al., 2024b; Zha et al.,
2023; Zhang et al., 2023a) provide automatic workflow
based on user queries. However, the dynamic and uncertain
nature of real-world analysis hinders effective human-agent
conversation (De Vries et al., 2020; Yan et al., 2023; Wang
et al., 2024b), thus users may need to adjust their analysis
strategies based on intermediate results (Yan et al., 2023;
Yao et al., 2020). For example, in Figure 1, the notable
opponents could refer to a variety of interpretations, such
as the opponents with the highest wins, or the most frequent
opponents. Towards this end, a comprehensive benchmark is
indispensable for gauging their capability in conversational
user engagement within data analysis scenarios.

In this paper, we introduce COnversational Tabular data
Analysis (COTA), a new benchmark for evaluating LLM
agents in conversational tabular data analysis tasks. COTA
is designed to simulate real-world data analysis scenarios,
where users converse with LLM agents to generate codes for
data exploration and decision making. It includes 1013 user-
machine conversations with 1162 user intents, spanning four
practical scenarios, as shown in Figure 1: 1) Normal mode
refers to the scenario where all questions and user require-
ments are explicit, agents can answer questions by referring
only to table contents and dialog histories. This would eval-
uate fundamental capabilities of agents in handling data
analysis tasks; 2) Action mode represents that agents must

1

https://tapilot-crossing.github.io/
https://tapilot-crossing.github.io/

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: notable
opponents they struggle against? Opponents who
have won at least 3 matches are notable opponents.
Return me a list of their names.

from decision_company import read_csv_file,
count_unique_values, check_elements_in_list,
reset_index, convert_to_np_array, convert_np_to_list

Find the opponents who have won against the top 10
players
opponents_won=count_unique_values(grass_matches[c
heck_elements_in_list(grass_matches['Winner'],
top_10_player_names) == False]['Winner'])

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: notable
opponents they struggle against? Return me a list of
their names.

Under_Specific

… More Importantly, can you make sure what kind of
opponents are notable?

Opponents who have won at least 3 matches are notable
opponents.

Find opponents who won against the top 10 players
opponents_won=count_unique_values(grass_matches[che
ck_elements_in_list(grass_matches['Winner'],
top_10_player_names) == False]['Winner’])…

Clarification

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: notable
opponents they struggle against? Opponents who
have won at least 3 matches are notable opponents.
Return me a list of their names.

Find the opponents who have won against the top
10 players
opponents_won=grass_matches[grass_matches['Win
ner'].isin(top_10_player_names)
==False]['Winner'].value_counts()

Filter the opponents who have won at least 3
matches against the top 10 players
notable_opponents =
opponents_won[opponents_won >= 3]
… … … …

Normal

Are there any patterns or trends in the top 10
player’s performance on grass courts, such as: notable
opponents they struggle against? Return me a list of
their names.

To answer these questions, we‘ll analyze the dataset to
find notable opponents the top 10 players struggle
against, identify areas of improvement for each player,
and discuss other factors that may impact their
performance on grass courts. More Importantly, can
you make sure what kind of opponents are notable?

Under_Specific

Clarification

Action (Clarification) Private Private Action (Clarification)

Are there any patterns or trends in the
top 10 player’s performance on grass
courts, such as: notable opponents they
struggle against? Opponents who have
won at least 3 matches are notable
opponents. Return me a list of their
names.

Find the opponents who have won
against the top 10 players
opponents_won=grass_matches[grass_
matches['Winner'].isin(top_10_player_n
ames) ==False]['Winner'].value_counts()

Filter the opponents who have won at
least 3 matches against the top 10
players
notable_opponents =
opponents_won[opponents_won >= 3]
… … … …

Normal

Are there any patterns or trends in
the top 10 player’s performance on
grass courts, such as: notable
opponents they struggle against?
Return me a list of their names.

To answer these questions, we‘ll
analyze the dataset to find notable
opponents the top 10 players
struggle against, identify areas of
improvement for each player, and
discuss other factors that may
impact their performance on grass
courts. More Importantly, can you
make sure what kind of opponents
are notable?

Under_Specific

Clarification
Action (Clarification)

Are there any patterns or trends in the
top 10 player’s performance on grass
courts, such as: notable opponents they
struggle against? Opponents who have
won at least 3 matches are notable
opponents. Return me a list of their
names.

from decision_company import
read_csv_file, count_unique_values,
check_elements_in_list, reset_index,
convert_to_np_array, convert_np_to_list

Find the opponents who have won
against the top 10 players
opponents_won=count_unique_values(g
rass_matches[check_elements_in_list(gr
ass_matches['Winner'],
top_10_player_names) ==
False]['Winner'])

Private

Are there any patterns or trends in the
top 10 player’s performance on grass
courts, such as: notable opponents they
struggle against? Return me a list of their
names.

Under_Specific

… More Importantly, can you make sure
what kind of opponents are notable?

Opponents who have won at least 3
matches are notable opponents.

Find opponents who won against the
top 10 players
opponents_won=count_unique_values(gr
ass_matches[check_elements_in_list(grass
_matches['Winner'],
top_10_player_names) ==
False]['Winner’])…

Clarification

Private Action (Clarification)

Figure 1. An overview of the four conversation modes in COTA, illustrated by relevant aspects of the associated codes or actions.

infer diverse user intents first to deliver satisfactory results.
For example, they need to interpret ambiguous terms such
as notable opponents by asking questions and gener-
ate appropriate responses based on user clarification. This
tests their ability to respond to complex and dynamic user
queries during conversations; 3) Private mode is designed
to examine the true semantic parsing capability of agents
when encountering unseen packages provided by users (Zan
et al., 2022); and 4) Private Action mode unifies the chal-
lenges of Private and Action modes, more closely reflecting
real-world data analysis. Answer types can be summarized
into two categories: 1) Code Generation, which can test
whether the agent can correctly interpret the user query and
generate the corresponding code for data analysis, and 2)
Multiple-Choice questions, which can evaluate the ability
of agents to understand the returned results being executed
codes and provide users with appropriate insights.

Constructing high-quality conversational data analysis
datasets poses significant challenges. First, obtaining re-
alistic human–machine conversational logs for data analysis
can be difficult due to proprietary restrictions and privacy
concerns (Sun et al., 2022; Choi et al., 2019). Second, the
conventional approach of using crowdsourcing for dataset
construction, particularly for complex, high-quality conver-
sational tasks, demands substantial human expertise, mak-
ing it both time-consuming and costly (Yu et al., 2019a; Li
et al., 2023a; Guo et al., 2021; Li et al., 2024d; Zhang et al.,
2023c). Furthermore, such methods are prone to data leak-
age risks. To address these challenges, we introduce a novel
multi-agent sandbox, DECISION COMPANY, enabling the
efficient creation of COTA through human–sandbox collab-
oration under stringent execution-based evaluation script
comprising test cases. In this simulated sandbox, 4 GPT-4
agents interact with each other under continuous human
expert supervision to simulate realistic data analysis tasks
while maintaining high data quality. The reliability and
potential biases of such human-sandbox collaborative ap-

proach are rigorously evaluated through 10 real data analysis
experts outside annotations. The result shows that DECI-
SION COMPANY can scale and maintain data quality.

We evaluate the popular advanced LLMs and LLM agents
on COTA. The results underscore the challenges of con-
versational data analysis and fuel the need for more ad-
vanced LLM agents that can handle diverse user intents and
feedback. To further evolve the LLMs towards effective
conversational data analysis agents, we propose Adaptive
Conversation Reflection (ACR), which guides LLM agents
to learn from successful history via self-generated pseudo
logic reflection. Our experiments demonstrate that ACR
can significantly enhance the performance of LLMs, in
which Claude-3.5-Sonnet can gain relative improvement
of 35.14% compared to its model base, offering an insight
into how to improve LLM agents in conversational tabular
data analysis.

2. Preliminaries
Task Formulation. Conversational tabular data analy-
sis with LLM agents involves a sequence of user-agent
turns, [(u1, a1), (u2, a2), . . . , (un, an)], where each turn
(u, a) consists of a user query u and an agent response
a. Queries can be instructions or feedback, while responses
can be code snippets or selected answers. Dialogs start with
u1 and end with an. Given the current user query ut, all
previous user-agent history H from turn 1 to t− 1, and sam-
pled table contents T , the agent should act, such as asking
for clarification, and generate an answer at = fθ(ut, H, T),
where fθ refers to the agent built based on LLMs with model
weights θ. This setup allows COTA to evaluate conversa-
tional agent performance in a static and systematic manner.

Action Types. We identify 6 common actions during
conversations, each serving as a specific evaluation mode
in COTA. The actions in COTA include Update_Code,
which addresses user requests for bug fixes or refinements;

2

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Fast_Fail, which alerts users to insufficient data or fac-
tual errors; and Clarification, where agents seek ad-
ditional information for under-specified queries. To reduce
user impatience and long dialogue issues, Best_Guess
allows agents to make assumptions based on data, domain
knowledge, and commonsense, though it risks incorrect
guesses. The Plot_QA action helps users understand plot-
derived insights, while Insight_Mining involves sum-
marizing executed results to aid in decision-making, evolv-
ing agents into comprehensive data analysis tools. Detailed
examples and interpretations are in Appendix J, and evalua-
tion methods for each mode are in Appendix L.

3. The COTA Construction
3.1. Sandbox Construction

The construction of COTA is mainly based on the AI Agent
Sandbox, DECISION COMPANY, as depicted in Figure 2.

Data Acquisition & Preprocessing. The first step
in the construction of COTA is the acquisition and pre-
processing of data. We collect open-source tables from
Kaggle, a popular data science platform. These tables
cover 18 analysis topics under 5 common domains, namely
ATP Tennis, Credit Card, Fast Food, Laptop
Price, and Melbourne Housing, as detailed in Ap-
pendix B.3. Given any of the tables, Administrator Agent
will generate column meanings and value illustrations.

Client Persona Generation. The construction of COTA
proceeds to the generation of client personas. These per-
sonas with specific tasks and topics related to the data are
created by the Administrator Agent. Each persona is defined
by a Name, Location, Job, and Background with a
diverse range of interests and backgrounds.

Simulation of Analysis Scenarios. Then, the Ad-
ministrator Agent "interviews" each Client Agent to ob-
tain their Scenario description, including Scenario
Name and the Goal. In preliminary trials, we observe
that Client Agents often proposed very uniform topics,
which limited the diversity of the dialogue. To address
this, each Client Agent is instructed to propose 3 scenar-
ios, from which human annotators selected most appro-
priate one scenario based on its diversity and coherence
with the tabular data. For instance, in B.3 of Figure 2,
the scenario Court Condition Impact was chosen
because Player Performance Analysis was less
diverse since multiple Clients tend to generate it as the top
choice, and Sponsor Attraction required extensive
information beyond the table contents, leading to many
unanswerable questions.

Plan Discussion. In this process, the Data Scientist Agent
engages with the Client Agent to convert the requirements

of client into a series of specific data analysis questions with
well-defined conditions. Each question is provided by an
expected result type, such as dataframes, lists, or various
plot types, which helps reduce question ambiguity and ease
the pressure on evaluation metrics (Yin et al., 2023; He et al.,
2024; Zhang et al., 2023b). The dialogue between the agents
further refines the questions with specific conditions. For
example, as depicted in Figure 2 B.4, the client Garcia’s
question could be further elaborated on the basis of his
following responses, making all questions more answerable.
In particular, Agent Garcia, fully cognizant of his persona
created in B.2, adds the condition grass, reflecting his
London location. This implies that the role-playing aspect
of the agent can be instrumental in generating a wider range
of questions that are both diverse and reasonable (Li et al.,
2024a; Park et al., 2023).

Conversation Log Generation. Following the plan discus-
sion, the conversation simulation phase begins. Here, the
AI Chatbot Agent takes the lead, executing the data analysis
plan agreed on during the previous stage. The AI Chatbot
Agent converses with the Data Scientist Agent to answer a
series of questions defined in the plan by generating codes
and analyzing returned results.

3.2. Human-Sandbox Annotation

While the DECISION COMPANY can generate a wealth of
data analysis conversations in a zero-shot prompting manner,
human supervision is indispensable to ensure the quality of
the data set annotation (Lu et al., 2023; Zhuo et al., 2025).
Therefore we engaged two groups of experts: 1) 6 annotators
who are also authors, each with over 10 years of experience
in data analysis. 2) a team of 3 more experienced expert
data scientists for final data collection decision.

Annotation Phase. Each annotator begins by Simulation
of Analysis Scenarios in DECISION COMPANY to select
scenarios and continue process until arriving Conversation
Log Generation for annotation. An illustrative starting
prompt is provided in Figure 17, Appendix Q. Beginning
with this prompt, the AI Chatbot generates code in
response to various analysis questions. Each annotator
then executes the generated code, verifies its outputs for
correctness, fixes any bugs, and confirms that the results
align with the anticipated output types, ensuring that
the code accurately addresses the posed questions. This
finalized code is referenced as the ground-truth code for
subsequent benchmarking. Additionally, the annotator
generate evaluation scripts (eval.py) consisting of a
series test cases for testing model-generated code. After
running these tests, the annotator executes the code and
feed the results back to the AI Chatbot, which generates
free-form text analysis statements (e.g., "The credit
card application rate of people with
4-year employment is 73.5% higher than

3

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Tabular Data Resource

How do the top 10 players perform against each other in
head-to-head matchups on grass courts in the recent years?
Provide a matrix table for this head-to-head win-loss record.

AI Agent Sandbox Interaction Log Annotation

Absolutely! Let’s create a new dataframe to count head-to-head
matches first, but what do you mean by <recent years>?

Sorry, please return me the results of these players in the
last five years.

Filter the dataset to only include grass court matches
grass_matches=atp_matches[(atp_matches[‘Surface’])=
=‘Grass’&(atp_matches[‘Player_1’].isin(top_10_playe
r_names)|recent_matches[‘Player_2’].isin(top_10_pay
er_names))]
… …

Clarification

B.1

Carlos Garcia
Group
TOURNAMENT ORGANIZERS

Location
London, UK

Background:

TOURNAMENT DIRECTOR

Carlos has extensive experience in organizing and
managing tennis tournaments, working closely with
sponsors, players, and officials to ensure smooth
operations and successful events.

NAME: Player Performance Analysis
SCENARIO: There is … identify potential top
players and their performance trends

NAME: Sponsor Attraction
SCENARIO: There is … showcase the
popularity and success of previous events.

NAME: Court Condition Impact
SCENARIO: … if there is a correlation between
court conditions and player performance.

I have some questions:
1. Are there any specific surfaces you would like
to focus?
… …

Thanks, here’s my answers:
1. … please pay more attention to grass since the
upcoming tournament in London will be on grass.
… …

Tournament: …
Date: …
Series: …
Court: …
Surface: …
Round: …
… … …

B.2 B.3 B.4

Figure 2. The construction pipeline of COTA by the AI Agent Sandbox DECISION COMPANY. denotes human intervention

those with no employment"). Each annotator
reviews and corrects these statements, converting them into
multiple-choice question formats for more reliable and
objective evaluation. All corrected code and free-form text
analysis are stored as static user-AI conversation history,
for reference when annotating the following turns. Each
conversation is presented as series of clean, noise-free turns.
Annotators then inject meaningful action types, shown in
Section 2, drawing on established dialogue research and
their practical experience in data analysis. For private
library code annotations, each annotator will follow three
steps to annotate: 1) summarizing packages from original
code; 2) refactoring and converting them to user customized
functions with light human supervision; 3) regenerating
codes via customized functions with human calibration.
Further details are provided in Appendix Q.

Validation Phase. Once the conversation annotations are
complete, annotators swap their annotated data for cross-
validation. The validation process involves three key steps:
(1) adding more test cases to the evaluation scripts to check
the code; (2) assuming the role of a "red team" to inten-
tionally introduce errors into the code, then confirming the
evaluation scripts correctly flag these errors; and (3) crit-
ically judging the suitability of the chosen scenarios and
action types. Annotators resolve any identified errors or
disagreements through discussion. If they cannot reach con-
sensus, the expert team steps in to refine or, if necessary,
eliminate the disputed items.

4. Data Statistics & Metrics
4.1. Dataset Statistics
Figure 1 provides key statistics for our dataset, while Table
2 offers a comparison between COTA and other datasets
related to data analysis. To ensure a fair comparison

Table 1. Data characteristics

STATISTIC NUMBER

Total conversations 1013
clear conversations 280
action conversations 478
private lib. conversations 206
private act. conversations 49
of private lib functions 137

Answer Types
of code generation answers 590
of multi-choice answers 423

Quality & Cost
inter-agreement 92.78
AVG # of turns 14.15

regarding question and code length, we utilize tiktoken
to compute the number of tokens for each dataset. As shown
in Table 2, COTA includes comprehensive evaluation
settings across private library, multi-turn, and multi-modal
conversations. Besides, the complexity of this dataset,
reflected by the long questions and their associated code
snippets, is amplified by the inclusion of multi-intent
queries. These queries, encapsulating multiple intents
within a single question, require a versatile array of
computational strategies for effective handling. For
example, the query, "Please provide histogram
plots and mean for employment status of
credit card applicants." demands both data
visualization and statistical evaluation. Finally, COTA con-
tains 1013 data analysis conversations. The inter-agreement
of 92.78 for initial cross-validation promises the high
quality of the dataset.

4

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Table 2. Comparison of COTA and other data analysis datasets. The first 5 datasets are single-turn data analysis sets featuring both SQL
and Python codes. The following 3 benchmarks are multi-turn or conversational data analysis datasets. COTA represents a challenging
dataset in data analysis with more comprehensive settings. represents that the end code is Python. means the target code is SQL.

Dataset # Q | # Intents # Toks. / Q # Toks. / Code Code Type Analysis Multi-Turn Private Lib Multi-modal Evaluation

HumanEval (Chen et al., 2021) 164 | 164 60.9 24.4 Test Cases

MBPP (Austin et al., 2021) 974 | 974 14.5 24.2 Test Cases

Spider (Yu et al., 2018) 1034 | 1034 12.4 18.3 Acc + EM

BIRD (Li et al., 2023a) 1534 | 1534 14.5 49.6 Acc + VES

DS-1000 (Lai et al., 2023) 1000 | 1000 282.4 42.1 Test Cases + SFC

SparC (Yu et al., 2019b) 1203 | 1203 9.4 26.3 Acc

CoSQL (Yu et al., 2019a) 1008 | 1008 13.1 31.4 Acc

ARCADE (Yin et al., 2023) 1066 | 1066 19.2 48.2 Acc + Fuzzy

COTA 1013 | 1162 207.5 164.7 Acc + AccR

Table 3. Acceptance ratio of human evaluation on general metrics of the dataset quality, the higher the better. The table reports the
percentage of samples considered qualified or being accepted for each metric.

Annotation
Conversation Eval Scripts

Conversation
Coherence

Scenarios Diversity
and Reasonableness

Conversation
Topic Coherence

Ethics and Bias
Representation

Conversation
Naturalness

Evaluation
Scripts Quality

Evaluation
Scripts Scalability

w/o human 0.19 0.46 0.17 0.41 0.67 - -
w/ human 0.97 0.96 0.93 1.00 0.95 0.98 0.94

4.2. Evaluation Metrics

Accuracy (Acc). Acc is a metric that evaluates the ability
of agents in generating codes that execute correctly or an-
swer multiple-choice questions accurately. It is defined as
the proportion of instances whose predicted outputs match
the ground-truth output, examined by evaluation scripts. For
a given dataset with N instances, where Ci is the expected
outcome (either execution result or correct answer) and Ĉi is
the predicted outputs for the ith instance, Acc is calculated
as follows:

Acc =
1

N

N∑
i=1

I(Ci = Ĉi), (1)

where I is an indicator function that returns 1 if Ci = Ĉi,
and 0 otherwise.

Accuracy with Private Library Recall (AccR). Recog-
nizing the importance of accurately leveraging specific user-
defined libraries in code generation, we extend Acc to in-
clude a recall-based adjustment for instances involving pri-
vate libraries. This ensures that AccR not only evaluates the
direct accuracy of code execution and question answering
but also the inclusion and correct usage of private library
functions. AccR can be computed as follows:

AccR =
1

N

N∑
i=1

I(Ci = Ĉi) ·R(Ci, Ĉi), (2)

R(Ci, Ĉi) =
|F(Ci) ∩ F(Ĉi)|

|F(Ci)| , (3)

Insight Mining (39.2%)

Update Code (6.9%)

Best Guess (7.1%)

Clarification (15.2%)

Plot QA (14.1%)

Fast Fail (17.5%)

Figure 3. Distribution of ACTION Mode in COTA. It contains 6
common types in conversational data analysis tasks.

where R(Ci, Ĉi) quantifies the recall rate of relevant library
functions in the predicted code. F(Ci) and F(Ĉi) denote
the set of private library functions in the reference codes
and the set actually utilized by agents in the predicted codes,
respectively. The final score would be weighted sum of Acc
and AccR. We conduct an in-depth analysis of the impact
of AccR on Private mode evaluation in Appendix M.

5. Dataset Quality Evaluation
To ensure the data quality of COTA and the reliability of
our proposed human-sandbox data generation, we conduct
a comprehensive human evaluation focusing on both gen-

5

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

eral and action-specific aspects by selecting 500 samples
randomly which is approximately 50% of the full dataset.
To do this, we invite 10 experts with extensive data analysis
experience outside authors to review the dataset. Details of
evaluation instructions can be found in Appendix O.

General Metrics. Following (Hu et al., 2024), we conduct
human evaluation on more NL metrics about reasonableness
and coherence across turns of conversations. The results
are shown in Table 3, where w/o human refers to the data
which is fully annotated by LLM agents. And w/ human
means the data in the COTA, which is annotated by human-
sandbox collaboration. From the table, it shows, after human
involvement, the acceptance ratio rises to approximately
0.95, indicating that the involvement of human annotators
who are professionals in data analysis is sufficient to ensure
the quality of the auto-generated dataset, thus demonstrating
the balance of trade-off in DECSION COMPANY between
efficiency and quality of complex data annotation workflow.

Action-wise Metrics. Human evaluation is also conducted
with a focus on the actions. Figure 4 illustrates the con-
sensus among experts that all actions in COTA are both
necessary and commonly observed in real-world data anal-
ysis scenarios. All instructions and details can be found in
Appendix O.

Action Commonness Answer Correctness Contextual Reasonableness
80%

85%

90%

95%

100%

A
cc

ep
t R

at
io

Update Code Best Guess Clarification Plot QA Fast Fail Insight Mining

Figure 4. Results of human evaluation on action-wise metrics of
the dataset quality.

6. Evolving LLMs Towards Conversational
Data Analysis Agents

In this section, we discuss our approach of equipping LLMs
as data analysis agents with tools and reasoning. We then
introduce our self-generated reflection strategy, ACR, to
enhance their performance in conversational settings.

6.1. Toolkit

Our tool sets include an executor, a user simulator, and a
chart-to-table converter. The executor provides an environ-
ment for models to observe real-time feedback on their inter-
mediate code results (Xie et al., 2023; Wang et al., 2024b).
The user simulator (Wang et al., 2024b; Yan et al., 2023),

powered by GPT-4-Turbo, tests the models’ ability to gener-
ate codes after clarifying details when facing under-specific
questions. The chart-to-table (Liu et al., 2023a) converter
mitigates the prevalent issue of LLMs’ inability to compre-
hend plots by converting them into tables. Descriptions of
these tool sets can be found in Appendix H.1.

6.2. Reasoning

Reasoning is a critical process for transitioning LLMs into
data analysis agents (Huang & Chang, 2023). In COTA,
we incorporate two primary reasoning methods for code
generation and multiple-choice answers. The first is the
Chain-of-Thought (COT) prompting technique (Wei et al.,
2022), which enhances the complex reasoning abilities of
LLMs by dividing the reasoning path into multiple steps.
The second method is CodeAct, which enables models to
make decisions by generating reasoning traces and codes in
an interleaved manner (Yao et al., 2023; Wang et al., 2024a).

6.3. Adaptive Conversation Reflection (ACR)

Successful conversations are important since they encapsu-
late the logic necessary to meet user requirements and en-
sure correct steps of analysis or code generation. Motivated
by this, we propose the Adaptive Conversation Reflection
(ACR) approach to enable data analysis agents to learn from
successful user-code histories through a two-step process.

Pseudo Code Logic Generation. First, given the last pre-
vious history (ut−1;at−1), when t > 1, we prompt the data
analysis agent to reflect and generate its underlying logic
mt−1 = fθ(ut−1;at−1), where fθ refers to agent based
on LLMs with parameter θ. Also, (x; y) represents two
elements x and y are concatenated in the prompt. In our
work, we consider the pseudocode to be m, as it serves as
an intermediate logic between natural language queries and
codes.

Re-Org One-Shot Reasoning. Second, we re-organize
them into a self-generated one-shot example with the or-
der: pt−1 = (ut−1; {mt−1;at−1}), which represents the
scenario where the input ut−1 is given, the agent should
generate a logic mt−1 first, then generate answers at−1.
Finally, the data analysis agent can learn from pt−1 to first
generate logic mt = fθ(pt−1;ut) and generate an answer
at = fθ(ut;mt) in the current turn t. When t = 1, we keep
the same reasoning method of the original agent. Appendix
G provides a detailed example for further illustration.

7. Experiments
7.1. Setup

Models. Our experiments primarily involve popular
LLMs that are capable of generating code and following

6

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Table 4. Overall results of LLMs in base, agent, and inter-agent modes on the COTA dataset. Pri-Act refers to private library + action
evaluation mode. Agent refers to agents using COT in code type and CodeAct in choice type. Agent-R involves textual reflection.
Multi-Agent uses multiple LLM agents to collaborate. And Inter-Agent refers to our proposed method incorporating ACR.

Model Conversation Mode Answer Type OverallNormal Action Private Pri-Act Code Choice

Mistral-7B 5.9 16.4 1.5 1.9 4.8 16.7 9.1
Mistral-8× 7B 17.2 23.6 3.7 1.9 11.6 23.9 16.1
CodeLlama-34B 28.2 19.7 2.6 0 16.1 19.8 17.4
GPT-4-Turbo 30.8 18.5 6.4 3.7 18.9 18.5 18.8
Claude-3-Opus 22.6 28.7 2.6 5.6 14.5 29.0 19.8
GPT-4-32k 31.1 25.5 7.5 0 19.7 25.6 21.9
Llama-3.3-70B 33.6 32.4 6.7 3.7 21.4 32.7 25.5
Claude-3.5-Sonnet 37.9 36.3 10.5 9.3 25.6 36.6 29.6
+ Agent 37.3 43.1 10.1 7.4 25.6 43.5 32.1
+ Agent-R 36.2 48.5 13.5 9.3 26.8 49.0 34.9
+ Multi-Agent 43.5 45.2 16.1 11.1 31.2 45.5 36.4
+ Inter-Agent 42.9 52.8 18.0 14.8 32.4 53.3 40.0

complex human instructions since this is a basic requirement
in data analysis. Therefore, we investigate performance of
4 families of models, covering Mistral (Jiang et al., 2023),
LLama (Roziere et al., 2023; Dubey et al., 2024), Claude,
and GPT (Achiam et al., 2023) models.

Implementation. The implementations could be divided
into 5 settings: 1) Model-Base refers to the LLM itself
without reasoning and tool calls. 2) Agent mode involves
multiple tool usage and reasoning. (COT + CodeAct) 3)
Agent-R mode involves textual reflection for Agent. 4)
Multi-Agent mode is implemented through the coor-
dinated collaboration of multiple specialized agents, each
responsible for a distinct set of functions inspired by (Liu
et al., 2023d; Hong et al.). 3) Inter-Agent mode incor-
porates ACR as described in Section 6.3 beyond the AGENT.
Further details can be found in Appendix I.

7.2. Experimental Results

Table 4 illustrates the comprehensive performance of popu-
lar LLMs and developed agent modes based on Claude-3.5-
Sonnect on the COTA. From the results, we can deduce the
following: 1) COTA is a challenging benchmark in which
the SOTA method only achieves a score of 40.0%, leaving
a large room for improvement. 2) Despite the performance
of GPT-4-Turbo being nearly on par with GPT-4-32K in
code generation, its overall performance still falls short of
GPT-4-32K. This indicates that beyond code writing, under-
standing results, and analysis are equally important. Fortu-
nately, the comprehensive settings of COTA can assist users
in selecting models for data analysis tasks. 3) We observe
that CodeLlama frequently defines functions automatically

Code-LLama-34B GPT-4-Turbo Claude-3-Opus GPT-4-32k Claude-3.5-Sonnet0

5

10

15

20

25

30

35

40

O
ve

ra
ll

Pe
rf

or
m

an
ce

 (%
)

Model Base
Agent
Inter-Agent

Figure 5. Visualization of the performance of Code-Llama-34B,
GPT-4-Turbo, Claude-3-opus, GPT-4-32k, and Claude-3.5-Sonnet,
all with base, agent, and inter_agent versions.

and applies these in the following code, thereby improving
readability and logic. This is particularly beneficial in tasks
related to data-analysis code generation. Such tasks often
require the composition of API functions, which demands a
profound understanding of the context and the ability to ex-
tract common patterns into reusable functions. By defining
and reusing symbolic functions, CodeLlama can streamline
complex contexts, making them more logical, which is an
advantage for resolving complex tasks (Gu et al., 2023). 4)
Claude-3.5-Sonnet and Llama-3.3-70B perform better than
GPT-4 on base mode proving that our benchmark is not
overfitting to the GPT family of models.

LLM Agent Performance. We also implement different
agent modes for several mainstream LLMs. As shown in
Figure 5, most models with Agent version outperform their

7

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Table 5. Definitions and Examples of main error types.

Error Type Definition Example

Key Error
(23%)

Refers to the instance
where the model imag-
ines a reasonable but non-
existent column name to
retrieve the data table.

Question: We want to find clients who have stable employment.
We can consider stable employment as those with employment
duration of 4 years or more.
Gold: high_credit_long_duration[high_credit_long_duration
[‘employment’] == ‘x>=4’]
Error: high_credit_long_duration[high_credit_long_duration
[‘employment_duration’] == ‘x>=4’]

Lazy
Assumption
(39%)

Refers to the instance
where the model tends to
assume some middle re-
sults have already been
prepared.

Question: Now, I need to know the potential impact of the up-
dated odds on the later rounds of the tournament.
Error: # Assuming ‘updated_odds_df’ is already created and
contains the updated odds
updated_odds_df = pickle.load(‘updated_odds_df.pkl’)

Bad Instruction
Following
(49%)

Refers to the instance
where the model can not
follow instructions well,
leading to the failure of
answering questions.

Question: Please answer the multi-choice question; you
will need to generate Python code which can assist yourself to
answer the question in this step.
Error: ‘D. None of above’
Explanation: There is no specific test or condition to check

2024/2/16 13:20 CodePen Demo

file:///Users/jinyangli/Downloads/Radar with multiple series _ Chart Gallery_files/index.html 1/1

Model Base Agent Inter_Agent

Figure 6. Visualization of the performance of GPT-4-32k across
various categories in ACTION Mode. The comparison includes
base, agent, and inter_agent versions.

base version, highlighting the crucial role of tools and rea-
soning in enhancing the performance of LLMs under com-
plex tasks (Liu et al., 2024b; Xie et al., 2023). Also, all mod-
els exhibit obvious improvements in the Inter-Agent
mode with ACR. This indicates that the underlying logic of
successful conversation histories is instrumental in guiding
LLMs to become more proficient data analysis agents in
conversational settings.

Fine-Grained Results on ACTION Modes. Figure 6 pro-
vides a comparative evaluation of GPT-4 model across
various ACTION modes detailed in Section 2. The con-
versational data analysis agent, Inter-Agent, obvi-
ously outperforms in most areas, especially in managing

Fast_Fail queries and executing Update_Code ac-
tions. However, it falls short in the Best_Guess action
when compared to the Agent. We note that ACR tends
to make agents overly tractable in re-org one-shot example
pt−1 and current generated logics mt. If pt−1 and mt do
not contain instructions on making assumptions, agents tend
to select None of Above. This observation suggests that
excessive reliance on historical data may hinder the inher-
ent ability of models to conjecture based on instant user
behaviors. Therefore, striking a trade-off between user-code
history exploration and real-time user conversation, espe-
cially in under-specific questions, is crucial for improving
LLM agents’ performance in conversational settings.

Error Analysis. We conducted an error analysis by sam-
pling 200 error cases from each of 8 LLMs to gain insights
into conversational data analysis as shown in Table 5. The er-
rors were categorized into three main types: (1) Key Error
(23%), where the model incorrectly matches column names
in the provided data table or references nonexistent values;
(2) Lazy Assumption (39%), where the model assumes
that intermediate results or states are already available or
saved on disk without verification; and (3) Poor Instruction
Following (49%), where the model fails to strictly follow
instructions, resulting in incorrect answers. Furthermore,
Figure 7 demonstrates that ACR effectively reduces errors
in each category. The special common errors in private li-
brary mode are: (1) LLMs fail to retrieve useful packages,
and usually retrieve excessive packages instead (67%); and
(2) some LLMs show conservative usage of private libraries
to minimize errors, which violate the user intent (39%). A
more detailed error analysis can be found in Section N.

8

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Code-LLama-34B GPT-4-Turbo Claude-3-Opus GPT-4-32k Claude-3.5-Sonnet0

10

20

30

40
R

at
io

 o
f E

rr
or

 T
yp

es
 (%

) Key Error
Lazy Assumption
Bad Instruction Following
Key Error (Inter-Agent)
Lazy Assumption (Inter-Agent)
Bad Instruction Following (Inter-Agent)

Figure 7. The visualization of different error types across different models and settings.

8. Related Work
Large Language Models for Data Analysis. The use
of LLMs for data analysis has been a topic of interest in
recent years. LLMs powered by In-Context Learning (Yang
et al., 2023; Dai et al., 2023; Dong et al., 2024) have been
employed in various data analysis tasks, such as SQL query
generation (Pourreza & Rafiei, 2024; Gao et al., 2024; Lei
et al., 2024; Zhang et al., 2024; Gu et al., 2024; Wang et al.,
2025; Qu et al., 2024; Li et al., 2024c), pandas or python
code generation (Jain et al., 2024; Chen et al., 2024; 2023a;
Li et al., 2024b; Zha et al., 2023; Zhang et al., 2023a; Zheng
et al., 2024b), and data visualization (Chen et al., 2023b;
Huang et al., 2024a). However, most of these works focus
on single-turn setting, where the user query is explicit and
does not require any conversation or clarification. Recently,
there has been a growing interest in conversational data
analysis, where the user intents may need to be clarified or
refined through conversations (De Vries et al., 2020; Yan
et al., 2023; Wang et al., 2024b).

Data Analysis Benchmarks. The development of bench-
marks for data analysis tasks has been a crucial factor in
driving the progress of LLMs in data science. Existing
benchmarks can be broadly categorized into single-turn
and multi-turn benchmarks. Single-turn benchmarks, such
as HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021), Spider (Yu et al., 2018), BIRD (Li et al., 2023a),
Text2Analysis (He et al., 2024), DABench (Hu et al., 2024)
and DS-1000 (Lai et al., 2023), focus on generating code
snippets or closed-form insight summaries for data anal-
ysis given a single user query. To explore conversational
nature of real-world data analysis scenarios, where the user
intent may need to be clarified or refined through conversa-
tional communication, several multi-turn benchmarks have
been proposed, including CoSQL (Yu et al., 2019a), and
ARCADE (Yin et al., 2023). However, these benchmarks
are primarily focused on code generation and do not cover
other aspects of data analysis, such as data visualization and
understanding based on intermediate results. Our work ex-
tends the existing literature by introducing a new benchmark
for evaluating LLM agents in conversational data analysis.

Multi-Agent Environments for Data Generation. LLMs
have proven to be effective in constructing multi-agent en-
vironments for automatic data generation. For instance, Lu
et al. (2023) and Ding et al. (2023) simulate dialogs for QA
and text generation tasks. Also Li et al. (2023b) generates
data about API calls using multi-agent environments. This is
because LLM agents can simulate believable human actions
when placed in an environment with dynamically updating
knowledge and memory (Park et al., 2023). Inspired by
this, we created DECISION COMPANY to generate conversa-
tion log data for data analysis with more behaviors. Unlike
prior dataset-generation studies, we pioneer a benchmark
for assessing conversational data-analysis agents.

9. Annotation Cost
Similar to BIGCODEBENCH (Zhuo et al., 2025) and SPI-
DER 2.0 (Lei et al., 2025), our annotators are recognized
via authorship rather than direct payment. Working exclu-
sively in a privacy-preserving, controlled interface, they
logged a total of 3,677 minutes, incurring $71.39 in LLM
usage, and annotator cost of $1,392.66 with $0.37875 per
minute for professional data-analysis experts (Kazemitabaar
et al., 2024; Liu et al., 2023b), yielding an overall bench-
mark development cost of $1,464.03, or roughly $1.45 per
COTA instance, which is over four times cheaper than BIRD-
SQL (Li et al., 2023a) ($6.13) and TABLEBENCH (Wu et al.,
2024) ($6.00) despite COTA’s higher complexity.

10. Conclusion
We introduce COTA, a new benchmark for evaluating LLM
agents in conversational data analysis tasks. COTA is con-
structed via a scalable and expert-recognized high-quality
multi-agent environment, DECISION COMPANY, and covers
a wide range of practical scenarios. We evaluate data analy-
sis agents based on popular LLMs on COTA, highlighting
the challenges of conversational tabular data analysis. We
also propose ACR, an effective reflection strategy for con-
versational data analysis agent evolution. Our experiments
demonstrate that ACR can significantly enhance the perfor-
mance of LLM agents, paving the way for future research.

9

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Acknowledgement
Reynold Cheng, Jinyang Li, Nan Huo, and Ge Qu are
supported by the Hong Kong Jockey Club Charities Trust
(Project 260920140), the University of Hong Kong (Project
2409100399), the HKU Outstanding Research Student Su-
pervisor Award 2022-23, and the HKU Faculty Exchange
Award 2024 (Faculty of Engineering). Bowen Qin was sup-
ported by National Science and Technology Major Project
(Project 2022ZD0116306). Chenhao Ma was partially sup-
ported by NSFC under Grant 62302421, Basic and Applied
Basic Research Fund in Guangdong Province under Grant
2023A1515011280, 2025A1515010439, Ant Group through
CCF-Ant Research Fund, Shenzhen Research Institute of
Big Data under grant SIF20240004, and the Guangdong
Provincial Key Laboratory of Big Data Computing, The
Chinese University of Hong Kong, Shenzhen.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, X., Aksitov, R., Alon, U., Ren, J., Xiao, K., Yin, P.,
Prakash, S., Sutton, C., Wang, X., and Zhou, D. Univer-
sal self-consistency for large language model generation.
arXiv preprint arXiv:2311.17311, 2023a.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. In The Twelfth
International Conference on Learning Representations,
2024.

Chen, Z., Zhang, C., Wang, Q., Troidl, J., Warchol, S.,
Beyer, J., Gehlenborg, N., and Pfister, H. Beyond gener-
ating code: Evaluating gpt on a data visualization course.
arXiv preprint arXiv:2306.02914, 2023b.

Choi, J. I., Ahmadvand, A., and Agichtein, E. Offline
and online satisfaction prediction in open-domain con-
versational systems. In Proceedings of the 28th ACM
International Conference on Information and Knowledge
Management, pp. 1281–1290, 2019.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and
Wei, F. Why can GPT learn in-context? language mod-
els secretly perform gradient descent as meta-optimizers.
In Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.),
Findings of the Association for Computational Linguis-
tics: ACL 2023, pp. 4005–4019, Toronto, Canada, July
2023. Association for Computational Linguistics.

De Vries, H., Bahdanau, D., and Manning, C. Towards
ecologically valid research on language user interfaces.
arXiv preprint arXiv:2007.14435, 2020.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a general-
ist agent for the web. Advances in Neural Information
Processing Systems, 36, 2024.

Ding, N., Chen, Y., Xu, B., Qin, Y., Hu, S., Liu, Z., Sun, M.,
and Zhou, B. Enhancing chat language models by scaling
high-quality instructional conversations. In Bouamor, H.,
Pino, J., and Bali, K. (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-10,
2023, pp. 3029–3051. Association for Computational
Linguistics, 2023.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia,
H., Xu, J., Wu, Z., Chang, B., Sun, X., Li, L., and Sui,
Z. A survey on in-context learning. In Proceedings of
the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 1107–1128, Miami, Florida,
USA, November 2024. Association for Computational
Linguistics.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. From
data mining to knowledge discovery in databases. AI
Mag., 17(3):37–54, 1996.

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B.,
and Zhou, J. Text-to-sql empowered by large language
models: A benchmark evaluation. Proc. VLDB Endow.,
17(5), 2024.

Gu, Y., Deng, X., and Su, Y. Don’t generate, discriminate:
A proposal for grounding language models to real-world
environments. In Rogers, A., Boyd-Graber, J. L., and

10

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada, July
9-14, 2023, pp. 4928–4949. Association for Computa-
tional Linguistics, 2023.

Gu, Y., Shu, Y., Yu, H., Liu, X., Dong, Y., Tang, J., Srini-
vasa, J., Latapie, H., and Su, Y. Middleware for LLMs:
Tools are instrumental for language agents in complex
environments. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp.
7646–7663, Miami, Florida, USA, 2024. Association for
Computational Linguistics.

Guo, J., Si, Z., Wang, Y., Liu, Q., Fan, M., Lou, J., Yang,
Z., and Liu, T. Chase: A large-scale and pragmatic chi-
nese dataset for cross-database context-dependent text-to-
sql. In Zong, C., Xia, F., Li, W., and Navigli, R. (eds.),
Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pp. 2316–2331. Association for
Computational Linguistics, 2021.

Han, J., Kamber, M., and Pei, J. Data Mining: Concepts
and Techniques, 3rd edition. Morgan Kaufmann, 2011.
ISBN 978-0123814791.

He, X., Zhou, M., Xu, X., Ma, X., Ding, R., Du, L., Gao,
Y., Jia, R., Chen, X., Han, S., Yuan, Z., and Zhang, D.
Text2analysis: A benchmark of table question answering
with advanced data analysis and unclear queries. In Thirty-
Eighth AAAI Conference on Artificial Intelligence, AAAI
2024, pp. 18206–18215. AAAI Press, 2024.

Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y., Wang,
J., Zhang, C., Wang, Z., Yau, S. K. S., Lin, Z., et al.
Metagpt: Meta programming for a multi-agent collabora-
tive framework. In The Twelfth International Conference
on Learning Representations.

Hu, X., Zhao, Z., Wei, S., Chai, Z., Ma, Q., Wang, G., Wang,
X., Su, J., Xu, J., Zhu, M., Cheng, Y., Yuan, J., Li, J.,
Kuang, K., Yang, Y., Yang, H., and Wu, F. Infiagent-
dabench: Evaluating agents on data analysis tasks. In
Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024.

Huang, J. and Chang, K. C. Towards reasoning in large
language models: A survey. In Rogers, A., Boyd-Graber,
J. L., and Okazaki, N. (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 1049–1065. Association for
Computational Linguistics, 2023.

Huang, K.-H., Zhou, M., Chan, H. P., Fung, Y., Wang, Z.,
Zhang, L., Chang, S.-F., and Ji, H. Do LVLMs understand
charts? analyzing and correcting factual errors in chart
captioning. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pp. 730–749, Bangkok,
Thailand, 2024a. Association for Computational Linguis-
tics.

Huang, Q., Vora, J., Liang, P., and Leskovec, J. Bench-
marking large language models as ai research agents. In
NeurIPS 2023 Foundation Models for Decision Making
Workshop, 2023.

Huang, Y., Shi, J., Li, Y., Fan, C., Wu, S., Zhang, Q., Liu,
Y., Zhou, P., Wan, Y., Gong, N. Z., and Sun, L. Metatool
benchmark for large language models: Deciding whether
to use tools and which to use. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024, 2024b.

Jain, N., Zhang, T., Chiang, W., Gonzalez, J. E., Sen, K.,
and Stoica, I. Llm-assisted code cleaning for training
accurate code generators. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. R. Swe-bench: Can language
models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations,
2023.

Kazemitabaar, M., Williams, J., Drosos, I., Grossman, T.,
Henley, A. Z., Negreanu, C., and Sarkar, A. Improving
steering and verification in ai-assisted data analysis with
interactive task decomposition. In Proceedings of the
37th Annual ACM Symposium on User Interface Software
and Technology, pp. 1–19, 2024.

Khanbabaei, M., Sobhani, F. M., Alborzi, M., and Radfar,
R. Developing an integrated framework for using data
mining techniques and ontology concepts for process
improvement. J. Syst. Softw., 137:78–95, 2018.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer,
L., Yih, W., Fried, D., Wang, S. I., and Yu, T. DS-1000: A
natural and reliable benchmark for data science code gen-
eration. In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), International Con-
ference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pp. 18319–18345.
PMLR, 2023.

11

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Lei, F., Liu, Q., Huang, Y., He, S., Zhao, J., and Liu, K.
S3Eval: A synthetic, scalable, systematic evaluation suite
for large language model. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), Mexico City, Mexico,
2024. Association for Computational Linguistics.

Lei, F., Chen, J., Ye, Y., Cao, R., Shin, D., Su, H., Suo, Z.,
Gao, H., Hu, W., Yin, P., Zhong, V., Xiong, C., Sun, R.,
Liu, Q., Wang, S., and Yu, T. Spider 2.0: Evaluating lan-
guage models on real-world enterprise text-to-sql work-
flows. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April
24-28, 2025, 2025.

Li, G., Hammoud, H., Itani, H., Khizbullin, D., and Ghanem,
B. Camel: Communicative agents for" mind" exploration
of large language model society. Advances in Neural
Information Processing Systems, 36, 2024a.

Li, H., Su, J., Chen, Y., Li, Q., and ZHANG, Z.-X. Sheet-
copilot: Bringing software productivity to the next level
through large language models. Advances in Neural In-
formation Processing Systems, 36, 2024b.

Li, H., Zhang, J., Liu, H., Fan, J., Zhang, X., Zhu, J., Wei,
R., Pan, H., Li, C., and Chen, H. Codes: Towards building
open-source language models for text-to-sql. Proc. ACM
Manag. Data, 2(3), 2024c.

Li, J., Hui, B., QU, G., Yang, J., Li, B., Li, B., Wang, B.,
Qin, B., Geng, R., Huo, N., Zhou, X., Ma, C., Li, G.,
Chang, K., Huang, F., Cheng, R., and Li, Y. Can LLM
already serve as a database interface? a BIg bench for
large-scale database grounded text-to-SQLs. In Thirty-
seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023a.

Li, M., Zhao, Y., Yu, B., Song, F., Li, H., Yu, H., Li, Z.,
Huang, F., and Li, Y. Api-bank: A comprehensive bench-
mark for tool-augmented llms. In Bouamor, H., Pino,
J., and Bali, K. (eds.), Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023, pp.
3102–3116. Association for Computational Linguistics,
2023b.

Li, R., Patel, T., and Du, X. Prd: Peer rank and discussion
improve large language model based evaluations. arXiv
preprint arXiv:2307.02762, 2023c.

Li, Y., Hui, B., Xia, X., Yang, J., Yang, M., Zhang, L., Si,
S., Chen, L.-H., Liu, J., Liu, T., Huang, F., and Li, Y.
One-shot learning as instruction data prospector for large
language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), Bangkok, Thailand, 2024d.
Association for Computational Linguistics.

Liu, F., Eisenschlos, J. M., Piccinno, F., Krichene, S., Pang,
C., Lee, K., Joshi, M., Chen, W., Collier, N., and Al-
tun, Y. Deplot: One-shot visual language reasoning by
plot-to-table translation. In Rogers, A., Boyd-Graber,
J. L., and Okazaki, N. (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 10381–10399. Association
for Computational Linguistics, 2023a.

Liu, M. X., Sarkar, A., Negreanu, C., Zorn, B., Williams,
J., Toronto, N., and Gordon, A. D. “what it wants me
to say”: Bridging the abstraction gap between end-user
programmers and code-generating large language models.
In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1–31, 2023b.

Liu, T., Xu, C., and McAuley, J. Repobench: Benchmarking
repository-level code auto-completion systems. In The
Twelfth International Conference on Learning Represen-
tations, 2023c.

Liu, X., Wu, Z., Wu, X., Lu, P., Chang, K.-W., and Feng, Y.
Are llms capable of data-based statistical and causal rea-
soning? benchmarking advanced quantitative reasoning
with data. Findings of the Association for Computational
Linguistics: ACL 2024, 2024a.

Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., Gu,
Y., Ding, H., Men, K., Yang, K., Zhang, S., Deng, X.,
Zeng, A., Du, Z., Zhang, C., Shen, S., Zhang, T., Su, Y.,
Sun, H., Huang, M., Dong, Y., and Tang, J. Agentbench:
Evaluating llms as agents. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024, 2024b.

Liu, Z., Yao, W., Zhang, J., Xue, L., Heinecke, S., Murthy,
R., Feng, Y., Chen, Z., Niebles, J. C., Arpit, D., et al.
Bolaa: Benchmarking and orchestrating llm-augmented
autonomous agents. arXiv preprint arXiv:2308.05960,
2023d.

Lu, B.-R., Haduong, N., Lee, C.-H., Wu, Z., Cheng, H.,
Koester, P., Utke, J., Yu, T., Smith, N. A., and Osten-
dorf, M. Dialgen: collaborative human-lm generated
dialogues for improved understanding of human-human
conversations. arXiv preprint arXiv:2307.07047, 2023.

Mialon, G., Fourrier, C., Wolf, T., LeCun, Y., and Scialom,
T. Gaia: a benchmark for general ai assistants. In The
Twelfth International Conference on Learning Represen-
tations, 2023.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive

12

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

simulacra of human behavior. In Follmer, S., Han, J.,
Steimle, J., and Riche, N. H. (eds.), Proceedings of the
36th Annual ACM Symposium on User Interface Software
and Technology, UIST 2023, San Francisco, CA, USA, 29
October 2023- 1 November 2023, pp. 2:1–2:22. ACM,
2023.

Pourreza, M. and Rafiei, D. Din-sql: Decomposed in-
context learning of text-to-sql with self-correction. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Qin, Y., Hu, S., Lin, Y., Chen, W., Ding, N., Cui, G., Zeng,
Z., Zhou, X., Huang, Y., Xiao, C., Han, C., Fung, Y. R.,
Su, Y., Wang, H., Qian, C., Tian, R., Zhu, K., Liang, S.,
Shen, X., Xu, B., Zhang, Z., Ye, Y., Li, B., Tang, Z., Yi,
J., Zhu, Y., Dai, Z., Yan, L., Cong, X., Lu, Y., Zhao, W.,
Huang, Y., Yan, J., Han, X., Sun, X., Li, D., Phang, J.,
Yang, C., Wu, T., Ji, H., Li, G., Liu, Z., and Sun, M. Tool
learning with foundation models. ACM Comput. Surv.,
57(4), 2024. ISSN 0360-0300.

Qu, G., Li, J., Li, B., Qin, B., Huo, N., Ma, C., and Cheng, R.
Before generation, align it! a novel and effective strategy
for mitigating hallucinations in text-to-SQL generation.
In Findings of the Association for Computational Linguis-
tics ACL 2024, Bangkok, Thailand and virtual meeting,
2024. Association for Computational Linguistics.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Si, S., Ma, W., Gao, H., Wu, Y., Lin, T.-E., Dai, Y., Li, H.,
Yan, R., Huang, F., and Li, Y. SpokenWOZ: A large-scale
speech-text benchmark for spoken task-oriented dialogue
agents. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track,
2023.

Sun, H., Xu, G., Deng, J., Cheng, J., Zheng, C., Zhou,
H., Peng, N., Zhu, X., and Huang, M. On the safety of
conversational models: Taxonomy, dataset, and bench-
mark. In Findings of the Association for Computational
Linguistics: ACL 2022, pp. 3906–3923, 2022.

Tian, R., Ye, Y., Qin, Y., Cong, X., Lin, Y., Pan, Y., Wu,
Y., Haotian, H., Weichuan, L., Liu, Z., and Sun, M. De-
bugBench: Evaluating debugging capability of large lan-
guage models. In Findings of the Association for Com-
putational Linguistics: ACL 2024, Bangkok, Thailand,
2024. Association for Computational Linguistics.

Wang, B., Ren, C., Yang, J., Liang, X., Bai, J., Chai, L.,
Yan, Z., Zhang, Q.-W., Yin, D., Sun, X., and Li, Z. MAC-
SQL: A multi-agent collaborative framework for text-to-
SQL. In Proceedings of the 31st International Conference

on Computational Linguistics, Abu Dhabi, UAE, 2025.
Association for Computational Linguistics.

Wang, X., Chen, Y., Yuan, L., Zhang, Y., Li, Y., Peng, H.,
and Ji, H. Executable code actions elicit better llm agents.
In ICML, 2024a.

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H.,
and Ji, H. MINT: Evaluating LLMs in multi-turn inter-
action with tools and language feedback. In The Twelfth
International Conference on Learning Representations,
2024b.

Wang, Y., Le, H., Gotmare, A., Bui, N., Li, J., and Hoi,
S. CodeT5+: Open code large language models for code
understanding and generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, Singapore, 2023. Association for Computa-
tional Linguistics.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Wu, X., Yang, J., Chai, L., Zhang, G., Liu, J., Du, X., Liang,
D., Shu, D., Cheng, X., Sun, T., et al. Tablebench: A
comprehensive and complex benchmark for table ques-
tion answering. arXiv preprint arXiv:2408.09174, 2024.

Xie, T., Zhou, F., Cheng, Z., Shi, P., Weng, L., Liu, Y., Hua,
T. J., Zhao, J., Liu, Q., Liu, C., et al. Openagents: An
open platform for language agents in the wild. arXiv
preprint arXiv:2310.10634, 2023.

Xu, B., Liu, X., Shen, H., Han, Z., Li, Y., Yue, M., Peng,
Z., Liu, Y., Yao, Z., and Xu, D. Gentopia.ai: A collabo-
rative platform for tool-augmented llms. In Feng, Y. and
Lefever, E. (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2023 - System Demonstrations, Singapore, De-
cember 6-10, 2023, pp. 237–245. Association for Com-
putational Linguistics, 2023.

Xu, Y., Su, H., Xing, C., Mi, B., Liu, Q., Shi, W., Hui, B.,
Zhou, F., Liu, Y., Xie, T., Cheng, Z., Zhao, S., Kong, L.,
Wang, B., Xiong, C., and Yu, T. Lemur: Harmonizing
natural language and code for language agents. In The
Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024,
2024.

Yan, H., Srivastava, S., Tai, Y., Wang, S. I., Yih, W., and Yao,
Z. Learning to simulate natural language feedback for
interactive semantic parsing. In Rogers, A., Boyd-Graber,
J. L., and Okazaki, N. (eds.), Proceedings of the 61st

13

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 3149–3170. Association for
Computational Linguistics, 2023.

Yang, J., Hui, B., Yang, M., Li, B., Huang, F., and Li,
Y. Iterative forward tuning boosts in-context learning
in language models. arXiv preprint arXiv:2305.13016,
2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. React: Synergizing reasoning and
acting in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Yao, Z., Tang, Y., Yih, W., Sun, H., and Su, Y. An imitation
game for learning semantic parsers from user interaction.
In Webber, B., Cohn, T., He, Y., and Liu, Y. (eds.), Pro-
ceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pp. 6883–6902. Association for
Computational Linguistics, 2020.

Yin, P., Li, W., Xiao, K., Rao, A., Wen, Y., Shi, K., How-
land, J., Bailey, P., Catasta, M., Michalewski, H., Polozov,
O., and Sutton, C. Natural language to code generation
in interactive data science notebooks. In Rogers, A.,
Boyd-Graber, J. L., and Okazaki, N. (eds.), Proceedings
of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pp. 126–173.
Association for Computational Linguistics, 2023.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z.,
Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z., and Radev,
D. R. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-
to-sql task. In Riloff, E., Chiang, D., Hockenmaier, J.,
and Tsujii, J. (eds.), Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018, pp.
3911–3921. Association for Computational Linguistics,
2018.

Yu, T., Zhang, R., Er, H., Li, S., Xue, E., Pang, B., Lin,
X. V., Tan, Y. C., Shi, T., Li, Z., Jiang, Y., Yasunaga, M.,
Shim, S., Chen, T., Fabbri, A. R., Li, Z., Chen, L., Zhang,
Y., Dixit, S., Zhang, V., Xiong, C., Socher, R., Lasecki,
W. S., and Radev, D. R. Cosql: A conversational text-
to-sql challenge towards cross-domain natural language
interfaces to databases. In Inui, K., Jiang, J., Ng, V., and
Wan, X. (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong Kong,

China, November 3-7, 2019, pp. 1962–1979. Association
for Computational Linguistics, 2019a.

Yu, T., Zhang, R., Yasunaga, M., Tan, Y. C., Lin, X. V., Li,
S., Er, H., Li, I., Pang, B., Chen, T., Ji, E., Dixit, S., Proc-
tor, D., Shim, S., Kraft, J., Zhang, V., Xiong, C., Socher,
R., and Radev, D. R. Sparc: Cross-domain semantic
parsing in context. In Korhonen, A., Traum, D. R., and
Màrquez, L. (eds.), Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pp. 4511–4523. Association for Computational
Linguistics, 2019b.

Zan, D., Chen, B., Lin, Z., Guan, B., Wang, Y., and Lou, J.
When language model meets private library. In Goldberg,
Y., Kozareva, Z., and Zhang, Y. (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11, 2022,
pp. 277–288. Association for Computational Linguistics,
2022.

Zeng, A., Liu, M., Lu, R., Wang, B., Liu, X., Dong, Y.,
and Tang, J. AgentTuning: Enabling generalized agent
abilities for LLMs. In Findings of the Association for
Computational Linguistics: ACL 2024, pp. 3053–3077,
Bangkok, Thailand, 2024. Association for Computational
Linguistics.

Zha, L., Zhou, J., Li, L., Wang, R., Huang, Q., Yang, S.,
Yuan, J., Su, C., Li, X., Su, A., et al. Tablegpt: Towards
unifying tables, nature language and commands into one
gpt. arXiv preprint arXiv:2307.08674, 2023.

Zhang, W., Shen, Y., Lu, W., and Zhuang, Y. Data-copilot:
Bridging billions of data and humans with autonomous
workflow. arXiv preprint arXiv:2306.07209, 2023a.

Zhang, Y., Henkel, J., Floratou, A., Cahoon, J., Deep, S.,
and Patel, J. M. Reactable: Enhancing react for table
question answering. Proc. VLDB Endow., 17(8):1981–
1994, 2024.

Zhang, Z., Li, X., Gao, Y., and Lou, J. CRT-QA: A dataset
of complex reasoning question answering over tabular
data. In Bouamor, H., Pino, J., and Bali, K. (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Singa-
pore, December 6-10, 2023, pp. 2131–2153. Association
for Computational Linguistics, 2023b.

Zhang, Z., Li, X., Gao, Y., and Lou, J.-G. CRT-QA: A
dataset of complex reasoning question answering over
tabular data. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2131–2153, Sin-
gapore, December 2023c. Association for Computational
Linguistics.

14

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36,
2024a.

Zheng, T., Zhang, G., Shen, T., Liu, X., Lin, B. Y., Fu, J.,
Chen, W., and Yue, X. OpenCodeInterpreter: Integrating
code generation with execution and refinement. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, pp. 12834–12859, Bangkok, Thailand, 2024b.
Association for Computational Linguistics.

Zhuo, T. Y., Vu, M. C., Chim, J., Hu, H., Yu, W., Widyasari,
R., Yusuf, I. N. B., Zhan, H., He, J., Paul, I., Brunner,
S., Gong, C., Hoang, J., Zebaze, A. R., Hong, X., Li, W.,
Kaddour, J., Xu, M., Zhang, Z., Yadav, P., and et al. Big-
codebench: Benchmarking code generation with diverse
function calls and complex instructions. In The Thirteenth
International Conference on Learning Representations,
ICLR 2025, Singapore, April 24-28, 2025, 2025.

15

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Table 6. Comparison of COTA to popular LLM Agent-related datasets. COTA represents a challenging dataset in data analysis with more
comprehensive settings.

Q eval public available multi-modal private lib multi-turn conversation trajectory data creation output type

GAIA (Mialon et al., 2023) 466 from-scratch Text

ResearchAgent (Huang et al., 2023) 15 semi Multi-Types

SWE-bench (Jimenez et al., 2023) 2290 from-scratch Patch

AgentBench (Liu et al., 2024b) 1091 semi Multi-Types

RepoBench (Liu et al., 2023c) 1669 semi Code

DebugBench (Tian et al., 2024) 4253 from-scratch Code

COTA 1013 from-scratch Code/Choice

A. Background Knowledge
Requirements of client. It naturally refers to specific data analysis tasks or questions that users want to accomplish,
expressed in natural language.

Result Type. It typically refers to the format or nature of the output produced from analyzing data. Common result types
include: "dataframes, lists, or various plot types."

User intent. It represents the underlying analytical goal or purpose behind a user’s query.

B. Data Resource
B.1. COTA

Our COTA data is available under the lisense CC BY-SA 4.0.1

B.2. Kaggle Tabular Data

The tabular data that we used to create COTA are following open-source licenses: 1) Public Domain: Public Domain Mark
2) CC-BY: Creative Commons Attribution 4.0 International.

B.3. Data Distribution

The Figure 8(a) visualizes our covered topics and domains.

C. Comparison with Agent-related Benchmarks
Besides the benchmark comparisons in Table 2, we list more popular LLM Agent-related benchmarks comparisons in
Table 6. Each column means: (1) #Q: This column represents the unique identifier or number assigned to each benchmark
or dataset. (2) eval public available: This column specifies whether the evaluation metrics of the benchmark or dataset
is publicly available for use. (3) multi-modal: This column shows whether the benchmark supports multi-modal data,
meaning it can handle multiple types of input data (e.g., text, images) simultaneously. (4) private lib: This column indicates
whether the benchmark or dataset includes a private library. (5) Multi-Turn: This column specifies whether the benchmark
supports multi-turn conversations, which are conversations that involve multiple exchanges or steps. (6) conversation
trajectory: This column indicates whether the benchmark involves conversation trajectories, which track the sequence and
flow of conversations over time. (7) data creation: This column describes the method of data creation for the benchmark.
"From-scratch" means the data was created anew specifically for the benchmark, while "semi" indicates that the data was
created using a mix of new and existing data. (8) output type: This column specifies the type of output produced by the
benchmark or dataset. Examples include "Text," "Multi-Types," "Patch," "Code," and "Code/Choice," indicating the nature
of the outputs generated during evaluations.

1https://creativecommons.org/licenses/by-sa/4.0/deed.en

16

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

D. Model Descriptions
In this section, we provide an overview of the various models used in our research. These models include both widely
recognized and state-of-the-art LLMs that have been instrumental in advancing NLP tasks.

(1) Mistral-7B-instruct-v01: Mistral-7B is a powerful LLM designed to handle diverse NLP tasks. It is known for its
efficiency in terms of parameter size while maintaining high performance. The 7 billion parameters enable it to process and
generate human-like text effectively.

(2) Claude-3.5-Sonnet: Claude-3.5-Sonnet is an advanced version of the Claude series of LLMs. This iteration brings
improvements in both accuracy and processing speed, making it a suitable choice for complex language understanding and
generation tasks.

(3) Mistral-8 × 7B-instruct-v01: Mistral-8 × 7B represents a collection of 8 models, each with 7 billion parameters. This
ensemble approach allows for enhanced performance through model averaging and provides robustness in generating more
accurate results across different tasks.

(4) CodeLlama-34B-Instruct-hf: CodeLlama-34B is a specialized model focused on code-related tasks. With 34 billion
parameters, it excels in code generation, code completion, and understanding programming languages, making it a valuable
tool for software development and code-related research.

(5) GPT-4-Turbo (gpt-4-0125-preview): GPT-4-Turbo is a highly optimized version of the GPT-4 model. It offers faster
inference times and improved efficiency while maintaining the high-quality output that GPT-4 is known for. This model is
particularly useful for applications requiring quick responses without compromising on quality.

(6) Claude-3-Opus: Claude-3-Opus is the latest in the Claude series, bringing substantial improvements in language
understanding and generation. It integrates advanced techniques to enhance its contextual comprehension and generation
capabilities, making it a top choice for sophisticated NLP tasks.

(7) Llama-3.3-70B-instruct: Llama-3.3-70B is a LLM with 70 billion parameters. This model is designed to tackle the
most challenging NLP tasks, providing unparalleled performance in terms of accuracy and coherence in text generation.

(8) GPT-4-32k: GPT-4-32k is a variant of the GPT-4 model with an extended context window of 32,000 tokens. This
extended context window allows it to handle long-form content more effectively, making it ideal for applications requiring
extensive context retention and understanding.

D.1. Model Shortcoming Analysis

Long-Context Challenges. The challenge of handling long-contexts is considerable in COTA, especially for models
with shorter maximum input lengths. Models such as Codellama-34B, which has a maximum input length of 16k, are
particularly affected. For example, it is essential for LLMs to access all private function descriptions and codes for effective
code generation with retrieved functions. The statistics shows that the average number of prompt tokens for PRIVATE is
15.7k, and notably, 20.9% of their prompts surpass the 16k length.

Instruction Following. Our experiments reveal that Claude-3.5-Sonnet requires minimal effort in prompt design due to
its exceptional ability to follow human instructions. To be specific, only 3.2% of their results deviate from the provided
instructions. However, other models exhibit a higher proportion of unexpected result types. For instance, extracting
generated codes or answers from an LLM proves to be extremely challenging since it often embeds the answer in the middle
of outputs rather than at the end as defined. We also observe that GPT-4-Turbo tends to generate longer codes in any setting.
While this characteristic enhances its performance in code generation, it also results in 58.6% of the code generated during
CodeAct reasoning being non-executable, thereby leading to incorrect answers. Furthermore, CodeLlama-34B-Instruct
exhibits a lack of robustness when faced with longer or more complex prompts. With the addition of COT, the performance
of CodeLlama significantly drops from 26.5% with simpler instructions to 19.5% in NORMAL code generation.

E. Dynamic History Combination
E.1. History Relational Database (H-RDB)

From all the User-AI conversation data shown in Figure 8(a), we split the User-AI conversation into several single-turn user
queries and AI answers stored in a relational database, indexed by the conversational order as shown in figure 8(b). This

17

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Domains

Credit Card

Fast Food

Laptop

ATP Tennis

Housing

Debt

Consolid
ation

Im
prov

ing

Digital

Bankin
g

Serv
ice

s

AutoExpo
Financing

Showcase

H
ol

id
ay

Se
as

on
Pr

om
ot

io
ns

H
ea

lt
h

A
w

ar
en

es
s

Ev
en

t

Local
Food

Festival

Plant-Based

Product

Developm
ent

He
al
th

an
d

Fi
tn
es
s

Ex
po

Pr
es
en
ta
tio

n

Budget-friendlyLaptop
Launch

Company-wi
de

Laptop

Upgrade

Gam
ing

Lap
top

Expansio
n

Po
rta

bl
e

Pr
of
es
sio

na
l

La
pt
op

La
un
ch

To
ur

na
m

en
t

Pe
rf

or
m

an
ce

An
al

ys
is

Court
Condition
Impact

Upd
ating

Odd
s

for

Play
er

Withd
rawa

l

Affordable

Housing

Initiative

Sustainable
Residential

Development

Declining
SuburbInvestigation

(a) Visualization of 18 topics and 5 data sources of COTA. (b) The screenshot of History Relational Database (H-RDB).

Figure 8. Visualization of 18 topics and 5 data sources and constructed H-RDB of COTA.

storage is subject to dynamic combinations for different scenarios.

E.2. History Retrieval Queries

When retrieving the stored history information, we use sqlite32 python package. The search query is provided in sqlite3
format, for example: SELECT {Prompt} FROM {table} WHERE 1=1 AND Domain = ? AND ...

Code-LLama-34B GPT-4-Turbo Claude-3-Opus GPT-4-32k Claude-3.5-Sonnet0

5

10

15

20

25

30

O
ve

ra
ll

Pe
rf

or
m

an
ce

 (%
)

CoTA-Alpha
CoTA-Beta
CoTA-Gamma

Figure 9. Visualization of the performance of CoTA-Alpha, Beta and Gamma.

2https://docs.python.org/3/library/sqlite3.html

18

https://docs.python.org/3/library/sqlite3.html

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Great, …. I will generate the code
to identify categorical variables in
the credit_customers dataset and
suggest encoding methods for
converting them to numerical
variables.

// Import necessary libraries
IMPORT pandas library AS pd

// Load the dataset from a CSV file
LOAD DATA FROM "credit_customers.csv"
INTO credit_customers

// Identify categorical variables in the dataset
SET categorical_columns TO COLUMNS IN
credit_customers OF TYPE 'object' …

Last Successful History

import pandas as pd

Load the dataset
credit_customers = pd.read_csv("...")

Identify categorical variables
categorical_columns =
credit_customers.select_dtypes(include=['
object']).columns …

Pseudo Code Logic

Re-Org One Shot:

Great, …I will generate the code to
identify categorical variables in the
credit_customers dataset and
suggest encoding methods for
converting them to numerical
variables.

// Import necessary libraries
IMPORT pandas library AS pd

// Load the dataset from a CSV file
LOAD DATA FROM "credit_customers.csv"
INTO credit_customers

// Identify categorical variables in the dataset
SET categorical_columns TO COLUMNS IN
credit_customers OF TYPE 'object' …

import pandas as pd

Load the dataset
credit_customers = pd.read_csv("...")

Identify categorical variables
categorical_columns =
credit_customers.select_dtypes(inclu
de=['object']).columns …

Alright, … Could you write some
code to figure out if we need to
normalize the credit_customers
dataset? Just check if the value is
over 1, and if it is, we should
normalize it and generate the top 5
rows of normalized dataframe. …

… // Fit and transform the numerical columns
with StandardScaler
FOR EACH column IN numerical_columns
 IF MAX VALUE OF column IN
credit_customers IS GREATER THAN 1
 FIT scaler TO column IN credit_customers
 TRANSFORM column IN credit_customers
USING scaler AND UPDATE credit_customers
 ENDIF…

…
Fit and transform the numerical
columns with StandardScaler
for col in numerical_columns:
 if credit_customers[col].max() > 1:
 credit_customers[col] =
scaler.fit_transform(credit_customers[
[col]])
…

ut-1 at-1;() mt-1

atCurrent Question

ut-1 at-1;(}pt-1 = {mt-1 ;)

ut-1 mtGenerate Logic: Generate Ans:

Figure 10. This is an overview of our proposed method, ACR. The areas highlighted in purple represent results generated by the agents.

F. Dialog Types
COTA can be categorized into Statement- (longer) and Colloquial- (shorter) dialogs. The statement-dialogs are more
formal, resulting in more complex user instructions and code generations, which are commonly found in computational
notebooks (Yin et al., 2023). On the other hand, colloquial dialogs involve shorter and simpler user questions, but exhibit
more colloquial and conversational characteristics. This category of dialogs is primarily constructed through the process of
prompting GPT-4 to segment and reinterpret the existing statement-dialogs.

G. ACR Implementation
Figure 10 presents the detailed steps of ACR.

H. AGENT Implementation
H.1. Toolkit

Executor. To get the execution results of code generated by LLMs, we adopt Python Executor exec() which is
implemented in Python 3, within a isolated Python environment. The output of the code execution, whether it be any return
values, print statements, or error messages, is then captured by the Executor. This output is subsequently returned to the
LMs, providing them with feedback on the results of their code generation to make a better next-step action or decision.

User Simulator. In addressing the clarification action type, LLMs are permitted to request clarification when they feel
ambigous about conditions from user queires. Therefore, we employ GPT-4 Turbo (with fixed version) to emulate the
question-answering behavior of users, considering that GPT-4 has been demonstrated to provide feedback of equivalent
quality to human responses (Wang et al., 2024b).

3https://docs.python.org/3/library/functions.html#exec

19

https://docs.python.org/3/library/functions.html#exec

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Chart-to-Table. We employ deplot (Liu et al., 2023a) to convert images into a table. Given the table, then LLMs can
reason and answer the questions.

H.2. Reasoning

COT. To evaluate the pure code generalization capability of data analysis, we restrict LLMs from executing code during
generation. Therefore, we employ a zero-shot COT for the reasoning of the Agent mode. The key prompt to implement
such COT is:
... write a step-by-step outline and then write the code:

CodeAct. To evaluate analytical capabilities beyond mere code generation, we employ CodeAct for multiple-choice
questions. Specifically, we set the MAX STEP for CodeAct reasoning to 5, with the Executor serving as the primary tool.
Data analysis agents are tasked to generate, analyze, and draw conclusions about their results. If the result contains bugs, the
corresponding message is returned to the agent for rectification, although this process may consume additional reasoning
steps. We also manually provide a one-shot example to guide agents on how to CodeAct in COTA. To prevent data leakage,
we cross-reference examples across different tabular data. For instance, an example curated from ATP_Tennis could be
used to guide LLMs in the Laptop Pricing dataset.

H.3. Multi-Agent Implementation.

As a valuable and interesting agent type, Multi-Agent is recognized to have the potential to enhance performance in many
reasoning tasks including BOLAA (Liu et al., 2023d) and MetaGPT (Hong et al.). However, MetaGPT was designed
specifically for software development requirements without mechanisms for handling structured data and conversation
histories, making it less applicable to our problem setting. Therefore we implemented the Multi-Agent reasoning type as
introduced in (Liu et al., 2023d), which is a more general framework and can be implemented more flexibly in different
settings. To be specific, except central CONTROLLER, we also create TOOL AGENT, CODE AGENT, DECISION-MAKING
AGENT, and PRIVATE-LIB AGENT. Our results in Table 4 clearly indicate that the Multi-Agent configuration obviously
outperforms the original Agent setting and model base setting, underscoring its potential. Notably, it achieves performance
on par with our Inter-Agent configuration, particularly showing improvement in Multi-Choice tasks due to the important
role played by the DECISION-MAKING AGENT. This supports one of our motivations: beyond code generation, providing
insightful analysis for users based on results is crucial in data analysis tasks. However, we note that the Multi-Agent
requires higher costs in our dataset and more sophisticated prompt design for each agent. Moreover, its performance
begins to decay with increasing turns since each agent must be provided with not only conversations with users but also
conversations between agents. This results in a prompt token consumption that is approximately 5.3 times higher than that
of the Inter-Agent. Therefore, this observation reinforces the necessity of our design of ACR in the Inter-Agent. It is not
only effective but also efficient, so it’s more suitable in conversational settings.

I. Implementation Details
I.1. General Implementation

The temperature parameter is set to 0.0 for Claude, GPT-4, and GPT-4-Turbo and top_p to 1.0.

J. Action Description
In this section, we categorize and formalize the action types in COTA, identifying five distinct sub-categories that correspond
to different types of user queries.

J.1. Update_Code

The Update_Code action refers to instances where the user requests corrections for bugs or refinements to the conditions
of previous queries.

J.2. Fast_Fail

Fast_Fail is an action that alerts users when the current data contents or resources are insufficient to meet their requests,
or when user queries contain factual errors.

20

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

CORRECTION:

User: Agent:

Agent Action:

Woops, it reports the error: ['Original Odd_1', 'Original
Odd_2'] not in index.

UNDER_SPEICIFC:

User: Agent: Clarification

Best_Guess

VISUALIZATION:

User: Agent: Plot_QA

User: Agent: Insight_Mining

ANALYSIS:

UNANSERABLE:

User: Agent: Fast_Fail

Update_Code

Sure, it seems we didn’t define [‘Original Odd_1’,
‘Original Odd_2’], let me refine the code: … …

.. Are there any significant differences in digital service
preferences between …

.. Sorry, we don’t have the digital service
preferences data, please input it or refine… …

Do the top-performing gaming laptops have the
desired screen size and screen resolution?

…, What is the desired screen size and screen
resolution …

Which brands are indicated to have the highest
number of laptops with powerful CPUs and at least
8GB of RAM …?

B. Dell
C. Lenovo

Could the suburb be a viable long-term investment
opportunity according to the scatter plot ?

Recognize that scatter plots show relationships
between two variables... Therefore, yes, it’s…

Do the top-performing gaming laptops have the
desired screen size and screen resolution?

The desired screen sizes and resolutions would
be: “15.6\”“ or "17.3\"" and 4k

First, filter and count the data to only include
laptops at least 8GB of RAM. … Based on the
analysis, Dell and Lenovo stands out.

Figure 11. This figure provides an overview of action types in COTA, illustrated by examples. We emphasize the keywords specific to
each category, and demonstrate the relevant sections of the associated queries, as well as the agent actions. The number of symbols
represents the relative difficulty of each action. Please note that all free-text examples presented in this figure are only used for illustration
purpose. In COTA, each answer format is limited to either code generation or multiple-choice questions.

J.3. Clarification

Clarification is a common action in response to under-specified questions, which are frequent in data-analysis queries.
In this action, agents make the conditions of the question more specific and clear by seeking additional information from
users.

J.4. Best_Guess

While Clarification is an effective action to reduce the uncertainty, it can lead to issues such as user impatience due
to unsteadily asking, and long dialog histories that result in attention distraction and long-context problems. Therefore,
the Best_Guess action can address these issues by making appropriate assumptions based on data contents, domain
knowledge, and commonsense knowledge for under-specific questions. However, there is also a risk that incorrect guesses
can lead to hallucinations.

J.5. Plot_QA

In real data analysis settings, agents are also expected to answer user questions about insights derived from plots. The
Plot_QA action can assist users in better understanding the contents of plots for decision making.

21

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

J.6. Insight_Mining

Beyond generating codes for users to retrieve expected results, code agents are also tasked with summarizing executed
results from the environment to assist users in making informed decisions. This process, known as Insight_Mining,
plays an important role in data analysis since it contributes to the evolution of code agents into comprehensive data analysis
agents.

K. Evaluation Metric Details
We introduce evaluation metric details in Section K.1, and implementations for each result type. And the distribution of
result typs is presented in Figure 12(b)

K.1. Evaluation Metrics

Accuracy (Acc). Acc is a common metric that evaluates ability of agents to generate code that executes correctly or to
accurately answer multi-choice questions. It is defined as the proportion of instances where the predicted outputs match
the expected reference output, across all evaluated tasks. For a given dataset with N instances, where Ci is the expected
outcome (either execution result or correct answer) and Ĉi is the predicted outputs for the ith instance, Acc is calculated as
follows:

Acc =
1

N

N∑
i=1

I(Ci = Ĉi), (4)

where I is an indicator function that returns 1 if Ci = Ĉi, and 0 otherwise.

Acc with Private Lib Recall (AccR). Recognizing the importance of accurately leveraging specific user-defined libraries
in code generation, we extend Acc to include a recall-based adjustment for instances involving private libraries. This ensures
that AccR not only evaluates the direct accuracy of code execution and question answering but also evaluates the inclusion
and correct usage of private library functions. AccR can be computed as follows:

AccR =
1

N

N∑
i=1

I(Ci = Ĉi) ·R(Ci, Ĉi), (5)

R(Ci, Ĉi) =
|F(Ci) ∩ F(Ĉi)|

|F(Ci)| , (6)

where R(Ci, Ĉi) quantifies the recall rate of relevant library functions in the predicted code. F(Ci) and F(Ĉi) denote
the set of private library functions in the reference codes and the set actually utilized by agents in the predicted codes,
respectively. The final score would be weighted sum of Acc and AccR.

K.2. DataFrame Comparison

The function compares two dataframes (df_1 and df_2) by checking their indices, column presence, and column data.
It uses np.allclose() for numeric data and direct comparison for non-numeric data. If a column in df_1 is absent
in the original dataframe, it searches for a matching column in df_2. The function returns True if df_1 and df_2 are
equivalent, otherwise False. Please note, the column names will not be computed since different LLMs may have their
only preference names. For example, the win_ratio generated by GPT-4 could be called winning ratio by Claude.

K.3. Visualization Comparison

We note that it is hard to compare the closed-form results for visualization-based code generation since parameters of plots
may be varied significant across models. For instance, GPT-4 generated plots may be the same with CodeLlama while
their title names may be different, which leads to false negatives. Therefore we utilize PIL package to compute similarity
between plots. To be specific, the function compare_plots takes two image file paths as inputs (ai_output and
reference_output), resizes them to 800x600 pixels using the LANCZOS method, and saves them. The images are
then read in grayscale mode to avoid the difference brought by colors. The function computes and returns the Structural
Similarity Index (SSIM), a measure of image similarity, between the two images. This function can be used to compare an

22

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

AI model’s output with a reference output. Finally, the code generated will be considered as correct if the similarity is larger
than 0.6.

K.4. Multi-Intent Evaluation

In this work, we evaluate the code generation performance on intent manner, which means if one user query contains
multiple intents, then the total scores of this query will be the number of intents. We evaluate each intent separately and sum
up the scores of all intents as the denominator when calculate the performance of each model in percentage.

K.5. Private Function Recall

We notice that some LLMs tend to import as many as possible private functions while not using all of them. Thus, to extract
all indeed used private functions in the customized function library, we utilize AST package. After extracting the used
private functions, we calculate the recall coefficient according to Equation 6.

K.6. Code Similarity Equivalance (CSE)

In the context of COTA, the complexity of code generation tasks—many of which yield a score of zero—presents huge
challenges in evaluating performance through Acc or AccR only. This is particularly evident when distinguishing between
codes that differ by merely a single line of error or output, both of which would result in an Acc or AccR of zero, despite
their obvious differences in code generation capabilities. To overcome this limitation, we propose the introduction of Code
Similarity Equivalence (CSE), a nuanced evaluation metric designed to assess the similarity between generated codes
and reference codes. Given that these codes originate based on identical user instructions, a high degree of similarity is
expected. Our approach leverages a hybrid combination of models to reduce the bias, incorporating CodeT5+ and OpenAI
Ada (text-embedding-ada-002) models, which are affordable and available for most institutes. This combination
has demonstrated a strong correlation with human evaluative preferences, offering a more refined and accurate measure of
code generation performance.

Details. We introduce here about how to conduct more nuanced evaluation of Acc or AccR with CSE. 1) We collect 180
instances of code generation including both NORMAL and PRIVATE. To evaluate the quality of these codes, we enlist experts
who are proficient in data science and Python as evaluation committee.
2) They evaluate code generated by several models, including GPT-4-32k, GPT-4-Turbo, CodeLlama-Instruct-34B, Claude-
3.5-Sonnet. Each evaluator is provided with comprehensive user code histories, tabular contents, the current query, access to
the decision_company private library. Please note that evaluations are conducted only based on their expertise and
experience, without any predefined guidelines and discussion, to avoid bias.
3) We ask for a relative ranking of generated codes among models over absolute scoring to avoid potential variability in
scoring preferences among the evaluators.
4) In cases of parts of divergent rankings, the evaluators engage in discussions regarding the specific code samples until a
consensus was reached. This step ensures a more reliable and agreed-upon evaluation outcome.
5) The evaluation committee then examine various open-source and readily available embedding models to measure code
similarity, aiming to closely match their ranking preferences. Our exploration identifies that the score system consisting
of CodeT5+ (Wang et al., 2023) and Ada (text-embedding-ada-002) most closely aligned with human evaluative
preferences.

Introduction of a Mixed Evaluation Metric (AccSE & AccSER). To accurately reflect the nuanced capabilities of code
generation models, we propose a composite metric that integrates Code Similarity Evaluation (CSE) with Accuracy (Acc),
termed Accuracy for Similarity Evaluation (AccSE). This metric is concisely defined as:

AccSE =

1.0, if C = Ĉ,

0.5, if S1 > 0.85 ∧ S2 > 0.9,

0.25, if (S1 > 0.85 ∧ S2 ≤ 0.9)

∨(S1 ≤ 0.85 ∧ S2 > 0.9),

0, otherwise.

(7)

Where:

23

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

• C and Ĉ represent the reference and generated code execution outcomes, respectively.

• S1 denotes the CSE score based on CodeT5+.

• S2 denotes the CSE score based on Ada.

This formulation succinctly captures the evaluation criteria for AccSE, with symbols S1 and S2 representing the CSE scores
based on CodeT5+ and Ada, respectively. The logical operators ∧ and ∨ are used for "and" and "or" conditions, respectively,
to further compact the notation. AccSER is computed in the similar way just times recall score for each value as Eq. 6.

We hold this for future evaluation system of COTA when we conduct more extensive cases with involved with more expert
volunteers.

Rationale Against GPT-4-Based and Multi-Agent Evaluation Methods. While existing research suggests that GPT-4-
based soft evaluation could enhance the assessment of complex generative tasks, such approaches are deemed unsuitable for
COTA due to several critical reasons:

1) Bias Concerns: The prototype annotations and questions in our study originate from a GPT-4-based agent environment.
Employing GPT-4 for evaluation purposes could inadvertently introduce a self-enhancement bias (Zheng et al., 2024a),
compromising fairness across model evaluations.

2) Cost Concerns: Although multi-agent evaluation frameworks, incorporating diverse families of LLMs, is to mitigate bias
(Li et al., 2023c), the economical and computational overhead is obvious. Specifically, evaluations in such settings require at
least twice the token consumption than that used in generation alone, rendering it impractically expensive in COTA.

Given these considerations, our research proposes an alternative evaluation methodology that is both cost-effective and
reliable for evaluating the accuracy of complex data science code generation at this time. We demonstrate that CodeT5+, a
remarkably efficient code embedding model, can obviously distinguish between varying performance levels and accurately
identify correct code logic. Crucially, this model offers a pragmatic balance between evaluation thoroughness and resource
efficiency.

K.7. Other Value Types

For other result types, such as dictionry, set, list, we directly compute the exectued results and determine whether they are
equal or not.

K.8. Case-by-Case Evaluation

While we categorize instances according to result types and provide evaluation codes for each type, some scenarios requires
a case-by-case evaluation script. For instance, in most dataframe or matrix comparisons, we employ np.close() and
string match for result comparison. However, in some cases, such as using a dataframe or matrix to display a classifier’s
Confusion Matrix, the predicted code is deemed correct if its f1-score surpasses that of the referenced code, even if their
f1-scores are not similar. For the evaluation script of COTA, we manually review and adjust the scripts to accommodate
each case.

K.9. Evaluation Script Caching

Each example will be provided by a specific evaluation script to ensure the precision of our assessments (Lai et al., 2023).
To manage the extensive effort required to design scripts for each example, we introduce a cache-based evaluation binding
approach. Initially, we classify mainstream result types, which are collected through steps introduced in Section 3.1, and
develop highly specialized scripts for each type, such as dataframes and dictionaries. When new data is generated, an
evaluation script is automatically assigned based on the result type. Annotators then review the assigned script to ensure its
accuracy; if necessary, they adapt and generate a new script tailored to the specific case. This method allows us to streamline
the evaluation process, making it more efficient with minimal human intervention. The details of the evaluation script in
each result type can be found in Section K.

24

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

L. ACTION Evaluation Mode
L.1. Correction

Update_Code. This could be evaluated within a static setting where the bug feedback is embedded into user-code history.
Agents are requried to update the previous code via user feedback.

L.2. Unawserable

Fast_Fail. In DECISION COMPANY, we keep the original unanswerable questions and categorize them as multi-choice
questions. This is done to evaluate if agents can identify these questions based on their analysis of table contents and
commonsense knowledge. To prevent any biased setting, such as specially designed prompts that might mislead agents into
determining a question as unanswerable, we sample an equal number of under-specified problems and answerable questions.
We then reformulate their choices, enabling the model to decide whether a question is answerable with clarification or
assumption, or to directly classify it as unanswerable.

L.3. Under_Specific

Clarification. To evaluate the performance of agents on clarification action, we employ a dynamic setting that incorporates
a User Simulator. This simulator mimics user feedback based on the ground truth code or answer. Initially, conversational
data analysis agents are expected to pose questions for clarification, simulator will answer it according to the ground truth
answers. Subsequently, these agents are tasked with generating the final code, understanding both the original history and
the history of clarifications. This setup provides a robust assessment of the agents’ ability to converse with human, clarify
ambiguities, and generate accurate code.

Best_Guess. We aim to evaluate the ability of conversational data analysis agents to make accurate assumptions when
faced with ambiguous questions, without resorting to constant clarification, which could potentially frustrate users. We
believe that the best guess of an agent should not impact the final decision and this evaluation metric should be somehow
flexible. For instance, in a credit card application scenario, the term young people could refer to individuals aged 20-40
or 25-45, making it challenging to be evaluated by fixed metrics. Therefore, we opt to use multiple-choice questions to
assess the agents’ assumption-making capabilities. We posit that an assumption is appropriate only if it does not influence
the final decision-making process.

L.4. Visualization

Plot_QA. We evaluate the analysis capability of agents around plot in COTA. The end format of answer would be multiple
choices.

L.5. Analysis

Insight_Mining. We evaluate the analysis capability of agents generally in COTA. We opt to use multi-choice questions
to evaluate it.

M. Private Mode Analysis
Overall Results. Table 4 and Figure 12(a) indicates that the PRIVATE setting presents a considerable obstacle, with
the best performing Claude-3.5-Sonnet Inter-Agent only achieving 18%. This demonstrates that understanding and
implementing user-specific functions is a critical and urgent skill for LLM agents in real-world data analysis tasks (Zan
et al., 2022).

The Critical Role of Function Relative Recall. Notably, CodeLlama outperforms GPT-4-Turbo in Acc within the
PRIVATE setting. However, its performance declines significantly relative to GPT-4-Turbo upon the consideration of private
library relative recall in the generated codes, as measured by the AccR metric. This observation suggests that CodeLlama
tends to reply less on user-defined private functions, aiming to reduce risk of code errors. Therefore, AccR metric can
spotlight the balance required between proficient code generation and the meticulous integration of user-specified private
libraries to foster safer and more satisfying code production.

25

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Normal Private Private w/ Recall
Code Generation Modes

0

5

10

15

20

25

30

Sc
or

es

GPT-4-32k
GPT-4-Turbo
CodeLlama
Claude-2.1

(a) Visualization of the performance of LLMs on NORMAL,
PRIVATE, PRIVATE W/ RECALL. The Scores of first two
modes are Acc. The last score is AccR.

pd.df (25.0%)

matrix (1.0%)
bool (0.3%)

function (2.0%)
multi choice (26.4%)

string (1.3%)
array (0.5%)

plot (8.8%)

class (0.1%)
series (5.1%)

index (1.0%)
list (6.0%)

model (0.8%)
unanswerable (9.3%)dictionary (1.5%)

value (8.7%)
tuple (2.2%)

(b) Visualization of the results types distribution of COTA.

Figure 12. Visualization of the performance of LLMs with PRIVATE mode and results types distribution.

N. Detailed Error Analysis
In this study, the error patterns exhibited by tested LLMs are critically examined to provide insight into the predominant
challenges faced during their operation. A detailed discussion is provided in Table 5. We analyze 200 randomly sampled
instances, categorizing errors into three main types as follows: (1) Key Error (23%) occurs when the model incorrectly
assumes the existence of a column name in the provided data table which does not exist. This error reflects a fundamental
misinterpretation of the table information and hallucination where the model uses non-existent fields for data retrieval.
An example is the model’s incorrect use of ‘high_credit_long_duration[‘employment_duration’]’ instead of the
correct attribute ‘[‘employment’]’. This error type suggests that the model may overly rely on its trained patterns rather than
accurately assessing the real structure of the data, leading to ‘hallucinated’ column references. (2) Lazy Assumption (39%)
refers to instances where the model tends to assume that intermediate results or states are already available or saved on disk.
This often leads to erroneous or incomplete code execution paths, such as the premature use of ‘updated_odds_df’
without ensuring its prior creation and calculation. This type of error may arise because models often seek shortcuts in
their processing, opting to retrieve and manipulate existing objects rather than generating solutions from scratch. This
tendency can reduce the reliability and flexibility of the model, as it may fail under conditions where dependencies are not
pre-established. (3) Bad Instruction Following (49%) describes the model’s failure to adhere strictly to given instructions,
resulting in an inability to properly answer the posed questions. This is exemplified by the response of the model with
‘D. None of above’ when asked to generate Python code to help solve a question, showing a lack of direct engagement
with the query requirements. This type of error often becomes more pronounced in later conversation turns, suggesting a
compounding of misunderstandings or a degradation of context over the course of a session. These error types are critical
in understanding the limitations of the current model, guiding future improvements in LLM agents’ evolving abilities.
Understanding these patterns helps in pinpointing specific areas where training data, model architecture, or conversation
protocols need enhancement to improve overall performance and reliability.

Error Type Analysis Across Different LLMs and Conversation Settings. Figure 7 showcases the distribution of error
types across various LLMs and settings. This figure provides a comparative insight into the frequency of three primary
error types: Key Error, Lazy Assumption, and Bad Instruction Following, both in Model-Base and Inter-Agent setting.
Key Error rates vary significantly across models. For instance, Code-LLama-34B exhibits a notably higher rate of Key
Errors compared to other models, which might suggest a less effective understanding or integration of database schema
information in this model. Lazy Assumption errors are consistently high across all models, indicating a common model
behavior where assumptions are made about the state of computations or data availability. This could reflect an inherent
model optimization to minimize computational expense by reusing existing data states or structures, which, while efficient,
can lead to inaccuracies when those states are not correctly initialized or updated. Bad Instruction Following shows a
general high trend across models, particularly noticeable in settings involving Inter-Agent conversations. This suggests that
as models engage in more complex dialogues or tasks requiring cooperative problem solving, their ability to follow detailed
instructions without deviation diminishes. This could be due to accumulating contextual misunderstandings or the increasing
complexity of managing multiple instruction streams. Inter-Agent Variations are particularly interesting; while Key Errors

26

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

and Lazy Assumptions increase slightly, Bad Instruction Following errors show a marked increase. This may be due to the
added complexity of coordinating and maintaining consistent task strategies between agents, highlighting a critical area for
further research and model training refinement. These insights are crucial for understanding specific weaknesses in current
LLM implementations and point towards necessary areas for improvement in model training protocols and architecture
adjustments. Enhanced training methods focusing on schema understanding and multi-agent coordination could mitigate
some of these prevalent errors.

Private Library Mode Common Errors. Given the private-lib based code generation such as (Zan et al., 2022; Li et al.,
2023b) usually follows a Retrieval-Augmented Generation (RAG) workflow. The common types of errors can be divided
into the following categories:

• Retrieval Phase Errors: LLM-based models prioritize high recall over precision, retrieving excessive packages. Even
the best inter-agent performance only achieves a 0.73 F1 score.

• Generation Phase Errors: Error patterns vary significantly by models. CodeLlama shows conservative usage of
private libraries to minimize errors. Instead, GPT-4-Turbo demonstrates higher private library utilization but increased
error rates. We introduced this in Appendix N.

Also, the general error types depicted above in Section N also exist. Therefore, developing a more advanced RAG system
would be helpful.

O. Dataset Quality Evaluation Details
O.1. Human Evaluation

To evaluate the quality of the dataset annotation, we also conduct a thorough human evaluation. We select 500 samples
and invite 10 experts with extensive data analysis experience to review the dataset. The evaluation metrics listed below are
carried out using a binary scoring system, with scores of 0 or 1 (Reject or Accept). We divide the measurement metrics into
two levels: General Metrics and Action-wise Metrics, which are elaborated below.

General Metrics. To ensure the overall quality of the dataset, we apply a set of comprehensive general metrics. These
metrics are designed to evaluate the ability of dataset to capture meaningful, diverse, and coherent multi-turn conversations
in the data analysis domain. Here is a brief introduction:

• Conversation Coherence: Evaluate whether the dataset contains logically consistent conversations including generated
codes that flow naturally across multiple turns and lead to expected answers. If yes, score 1; if no, score 0.

• Scenarios Diversity and Reasonableness Assess whether the dataset contains a wide range of scenarios without
duplication, tasks, and user intents. And whether they are reasonable and can be fully supported by the given tabular
data. This metric is satisfied if both sub-metrics are satisfied. If yes, score 1; if no, score 0.

• Conversation Topic Coherence: Measure the overall relevance of the conversation to the given topic, ensuring that
the conversation stays on track and go off the data analysis questions. This metric is satisfied if both sub-metrics are
satisfied:

– Conversation Goal Relevance: Evaluate whether each conversation turn contributes meaningfully to achieving the
final goal. Turns must remain focused on the final conversation goal. If yes, score 1; if no, score 0.

– Table Relevance: Measure whether at least 40% of the conversation turns involve conversation with the provided
tabular data for specific conditions. This ensures the conversation is sufficiently relevant to the dataset being
analyzed. If yes, score 1; if no, score 0.

• Ethics and Bias Representation: Assess whether the dataset avoids biased, harmful, or unethical content. If yes, score
1; if no, score 0.

• Conversation Naturalness: Measure whether the conversation in the dataset reflect natural, conversational language,
avoiding overly robotic or AI-like responses. Conversations should resemble real human conversations in tone and flow.
If yes, score 1; if no, score 0.

27

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

• Evaluation Scripts Quality: This metric is satisfied if all sub-metrics are satisfied.

– Tool Reliability: Measure whether tools usage logs such as the logs of user simulator tool are reasonable and
trustworthy, and whether the Python executor tool utilizes common, reliable packages to ensure consistent and
accurate results. If yes, score 1; if no, score 0.

– Evaluation Script Flexibility and Comprehensiveness:
1. Flexibility: Ensure that the evaluation scripts are not overly rigid and can accept multiple valid, reasonable

outputs as correct, allowing for variations in agent responses. If yes, score 1; if no, score 0.
2. Comprehensiveness: Measure whether the scripts are robust enough to handle a wide range of scenarios,

including corner cases, ensuring they effectively evaluate all possible outcomes. If yes, score 1; if no, score 0.
3. For multi-choice questions, the provided options should be valuable and challenging enough, where can’t be

easily figured out from merely question and options. If yes, score 1; if no, score 0.

• Evaluation Script Scalability: Measure how easily the evaluation scripts can be extended or adapted to accommodate
new data. This metric evaluates whether the framework allows for seamless integration of new evaluation scripts
without requiring significant modifications, ensuring efficient scalability as the dataset grows. If yes, score 1; if no,
score 0.

Action-wise Metrics. In addition to the general metrics, we apply specific metrics to evaluate the detailed actions captured
in the dataset. These action types include Update_Code, Fast_Fail, Clarification, Best_Guess, Plot_QA,
and Insight_Mining.

Each action type is evaluated using core metrics to ensure its relevance, accuracy, and contextual consistency within the
dataset. These metrics guarantee that the dataset reflects realistic and valid scenarios in the data analysis domain. Here is an
overview:

• Action Commonness in Data Analysis: Evaluate whether the action cases are commonly seen in real-world data
analysis tasks. This ensures that the dataset captures authentic, practical scenarios that analysts frequently encounter. If
yes, score 1; if no, score 0.

• Correctness of Reference Answers: Assess whether the ground-truth or reference answers provided in the dataset are
accurate. The dataset should provide correct, verifiable solutions to the user query represented in each action. If yes,
score 1; if no, score 0.

• Contextual Reasonableness: Measure whether the context surrounding the action is comprehensive and logical. This
ensures that the action occurs within a reasonable, coherent dialogue flow, taking into account all relevant factors from
previous turns. If yes, score 1; if no, score 0.

Dataset Quality Statistics. We compare the quality of the 500 sampled annotated data before and after human calibration,
where the pre-calibration data was fully annotated by large language models (LLMs). As shown in Table 3, there is an
obvious improvement in dataset quality following human calibration performed by annotators. The low acceptance ratio
of the data prior to calibration underscores the necessity of this process. After calibration, the acceptance ratio rises to
approximately 0.95, indicating that the involvement of annotators who are experienced in data analysis is sufficient to ensure
the quality of the dataset, thus demonstrating the trade-off between efficiency and quality of our annotation workflow.

Specifically, the metrics for Scenario Diversity and Reasonableness improved from 0.46 to 0.96, reflecting enhanced
coverage and variety of scenarios as shown in Section 3.1. Moreover, Conversation Topic Coherence increased from 0.17 to
0.93, indicating better alignment with the conversation topics. The Ethics and Bias Representation metric achieved a perfect
score of 1.00, confirming the adherence of the dataset to ethical standards, while Conversation Naturalness improved from
0.67 to 0.95, suggesting more natural, human-like dialogues. Additionally, our Evaluation Scripts Quality and Evaluation
Scripts Scalability scoring 0.98 and 0.94, respectively, prove an efficient solution to be against with data leakage problems.
Overall, these results highlight the effectiveness of human calibration in enhancing both the conversation quality and the
robustness of DESCISION COMPANY and high quality of COTA.

Human evaluation is also conducted with a focus on the actions. Figure 4 illustrates the consensus that all actions in COTA
are both necessary and commonly observed in real-world data analysis scenarios. Furthermore, our simulated scenarios
successfully capture and reflect key characteristics of these real-world conversational data analysis conversations.

28

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Table 7. Package Diversity of Our Dataset

Category pandas matplot Machine Learning (sklearn, scipy, seaborn) numpy

Percentage (%) 56.47% 7.90% 16.78% 12.64%

O.2. Dataset Diversity

We acknowledge the importance of data diversity and believe our benchmark, COTA, effectively demonstrates it across
multiple dimensions. We measure data diversity through several aspects:

• Domain / Topic Diversity, shown in Figure 8(a).

• Result Type Diversity, covering a wide range of query types requiring different code techniques, as displayed in Figure
12(b).

• Action Diversity, presented in Figure 3, where we demonstrate the comprehensive coverage of various action types in
conversational data analysis. To our knowledge, we are the first to offer such extensive action type diversity in this
domain.

Table 8. Average Unique 3-grams

Metric CoTA (1013) DS-1000
Average unique 3-grams in reference_answer
(including codes & multi-choice answers) 46.64 11.63

Average unique 3-grams in current_query 84.54 115.31
Average unique 3-grams in prompt_with_context (history) 1033.40 115.31

Table 9. Total Unique 3-grams Counts

Metric CoTA (1013) DS-1000

Total unique 3-grams in reference_answer 47,245 11,633
Total unique 3-grams in current_query 85,643 115,305
Total unique 3-grams in prompt_with_context (history) 1,046,832 115,305

Additionally, we evaluate data diversity through two more specific metrics:

• Package Diversity: Table 7 shows the distribution of query topics that cover various Python packages commonly used
in data analysis, such as pandas, matplotlib, and machine learning libraries (sklearn, scipy, seaborn), with pandas
dominating at 56.47%, followed by machine learning packages (16.78%) and numpy (12.64%).

• Query Diversity: Following the methodology in (Li et al., 2023a), we compute n-grams (n = 3) to reflect the diversity
of each query. We compare COTA against DS-1000 (Lai et al., 2023), a popular data analysis benchmark, to show the
diversity of queries in our dataset.

– Average Unique 3-grams: Table 8 illustrates that COTA provides a much higher diversity in reference answers,
averaging 46.64 unique 3-grams compared to 11.63 of DS-1000. For current queries, COTA maintains a
comparable level of diversity, but when context is considered (prompt_with_context), COTA vastly outperforms
DS-1000, demonstrating its ability to handle complex, context-driven conversations with an average of 1033.40
unique 3-grams.

29

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

– Total Unique 3-grams Count: It show the diversity of the whole dataset. Table 9 further supports the diversity of
COTA, with the total number of unique 3-grams in reference answers reaching 47,245, significantly surpassing
11,633 of DS-1000. The total unique 3-grams in current queries stand at 85,643, and in prompt_with_context,
COTA achieves an outstanding 1,046,832 unique 3-grams, compared to 115,305 of DS-1000. This further
highlights the rich contextual conversations captured by COTA.

Overall, these metrics, along with the diversity in domains, result types, and actions, underscore extensive coverage of
real-world data analysis tasks in COTA. It surpasses existing benchmarks in capturing the full range of complexity and
diversity needed for robust evaluation of conversational data analysis.

P. Ethical Statement
The application of LLMs for automatic data generation requires a rigorous examination of ethical implications. The primary
concern is the potential for LLMs to generate contents that could be considered harmful or biased. To mitigate these
risks, human annotators already filter and fix all problematic cases in Section 3.2. Also, LLMs may disseminate private
or sensitive information. Therefore, we employ anonymization techniques wherein personal identifiers are systematically
altered. For example, the name strings are replaced randomly, and any information of personas are switched as well. And
the geographical locations of John Smith will be replaced with locations of Carlos Garcia to prevent any linkage
to real-world individuals or entities. These procedures are conducted in Section 3. Moreover, we are committed to ensuring
that the outputs generated by our LLM, referred to as COTA, are free from political or sexual biases. To this end, each
output, including conclusions and generated responses, is rigorously reviewed by the authors. In a nutshell, our ethical
framework is built on a foundation of transparency, accountability, and a proactive stance towards mitigating any ethical
concerns associated with the use of LLMs. The measures we have implemented reflect our commitment to upholding the
highest standards of ethical research practice with LLMs

Q. DECISION COMPANY Prompt
The process begins with the generation of client personas, as shown in Figure 13, where the Administrator agent is prompted
to create meaningful personas. Following this, we simulate diverse analysis scenarios using In-Context Learning (ICL),
which is depicted in Figure 14, allowing us to explore a wide range of potential outcomes. A critical aspect of the system is
the discussion of analysis plans, where the conversation between the Data Scientist agent and the Client agent, illustrated
in Figure 15, results in the generation of a series of analysis plans. To further support the process, conversation logs are
annotated to capture the essence of conversations, with Figures 16 and 17 showing the perspectives of the Data Scientist
Agent and the AI Chatbot Agent, respectively. Lastly, the evolution of our private library is detailed in Figure 18, which
demonstrates the framework for prompting GPT-4 to generate code automatically, while human intervention plays a key role
in minimizing bias and correcting errors.

R. Implementation Prompt
R.1. CODE GENERATION

The Figure 19 describes how we prompt LLM model to generate code to answer user queries. And Figure 20 describes
how we prompt LLM in Agent to generate code to answer user queries following with chain-of-thought (Wei et al., 2022).
Finally, Figure 21 describes how we prompt LLM in Inter-Agent to generate code to answer user queries with our
proposed ACR. And Figure 25 describes how we prompt LLM in Model-Base version to ask for clarification.

R.2. MULTI-CHOICE

The Figure 22 describes how we prompt LLM to answer user queries. And Figure 23 describes how we prompt LLM in
Agent to answer user queries following with CodeAct (Wang et al., 2024a). Finally, Figure 24 describes how we prompt
LLM w/ Inter-Agent to answer user queries with our proposed ACR.

30

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

In Decision Dynamics, a company specializing in data-driven decision-making support, CEO
Patrick Reynold leads a team of experts dedicated to assisting clients and organizations in
making informed choices for any domains based on comprehensive data analysis.

You are an administrator at Decision Dynamics, Sarah Johnson, responsible for receiving client
inquiries and managing business budge to make sure profits. Your role involves collaborating
with data scientists to calculate the costs of each case and determining whether to accept or
decline orders. Additionally, you oversee the cost control of dialogue turns generated while
resolving cases. Today, you need to find out target clients for tabular data about fastfood with
the following columns: ['restaurant', 'item', 'calories', 'cal_fat', 'total_fat', 'sat_fat', 'trans_fat',
'cholesterol', 'sodium', 'total_carb', 'fiber', 'sugar', 'protein', 'vit_a', 'vit_c', 'calcium', 'salad'].

-- Please search out 3 groups of clients whose busniess needs this data. Fill them in the JSON
file: {'Goal': [Relation to this tabular data], 'Group': [Group name]}. Each JSON should be split
by ' || ', and no numbers are needed. Make sure 3 Group have 3 different business needs:

Agent Output:
{'Goal': 'Recommend restaurants based on users' nutritional needs', 'Group': 'Health and Wellness
Mobile App Developers'} || {'Goal': 'Evaluate and improve restaurant menu offerings', 'Group':
'Restaurant Owners and Managers'} || {'Goal': 'Compare fast food options for healthier choices',
'Group': 'Health and Fitness Bloggers'} || {'Goal': 'Create healthier fast food alternatives', 'Group':
'Food Product Development Companies'

}

In Decision Dynamics, a company specializing in data-driven decision-making support, CEO Patrick
Reynold leads a team of experts dedicated to assisting clients and organizations in making informed
choices for any domains based on comprehensive data analysis.

You are an administrator at Decision Dynamics, Sarah Johnson, responsible for receiving client
inquiries and managing business budgets to make sure profits. Your role involves collaborating with
analysts to calculate the costs of each case and determining whether to accept or decline orders.
Additionally, you oversee the cost control of dialogue turns generated while resolving cases. Today,
you receive tabular data about Fastfood . Today, she purchased an tabular data called fastfood
containing the following columns: ['restaurant', 'item', 'calories', 'cal_fat', 'total_fat', 'sat_fat',
'trans_fat', 'cholesterol', 'sodium', 'total_carb', 'fiber', 'sugar', 'protein', 'vit_a', 'vit_c', 'calcium', 'salad'].

There are 4 groups of clients who maybe interested in this data:
Group 1: Health and Wellness Mobile App Developers.
Group 2: Restaurant Owners and Managers.
Group 3: Health and Fitness Bloggers.
Group 4: Food Product Development Companies.

-- Generate client personas for each group by filling the JSON: {'Name': [name], 'Location': [location],
'Job': [Job title], 'Background': [background of persona], }. Each JSON should be split by ' || ', and no
numbers are needed. Note job title should not be related to analyst, researchers, etc:

Agent Output:
{'Name': 'Emma Thompson', 'Location': 'San Francisco, CA', 'Job': 'Mobile App Developer', 'Background':
'Emma has a degree in computer science and specializes in developing health and wellness apps. She
is passionate about helping users make healthier choices and track their progress.'} || {'Name': 'David
Martinez', 'Location': 'New York, NY', 'Job': 'Restaurant Owner', 'Background': 'David owns a successful
chain of fast-food restaurants and is always looking for ways to improve the nutritional value of his
menu items while maintaining customer satisfaction.'} || {'Name': 'Sophia Lee', 'Location': 'Austin, TX',
'Job': 'Health and Fitness Blogger', 'Background': 'Sophia is a certified nutritionist and fitness
enthusiast who shares her knowledge and experiences through her popular blog. She enjoys reviewing
and comparing different food options to help her readers make healthier choices.'} || {'Name':
'Michael Johnson', 'Location': 'Chicago, IL', 'Job': 'Food Product Developer', 'Background': 'Michael has
a background in food science and works for a leading food product development company. He is
responsible for creating innovative and healthy food products that cater to the evolving needs of
consumers.'}

Find Target Group:

Find Client Personas:

Figure 13. The prompt of Client Persona Generation

31

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

You are a client named Emma Thompson, living in San Francisco, CA. You work as a/an Mobile App
Developer. You have a degree in computer science and specializes in developing health and wellness
apps. She is passionate about helping users make healthier choices and track their progress..

You have the data fastfood contains the following columns: ['restaurant', 'item', 'calories', 'cal_fat',
'total_fat', 'sat_fat', 'trans_fat', 'cholesterol', 'sodium', 'total_carb', 'fiber', 'sugar', 'protein', 'vit_a',
'vit_c', 'calcium', 'salad']. Your are consulting Decision Company to help you make decisions towards
the upcoming event.

-- Introduce your 3 events by filling Json file: {'Scenario': [the scenarios where you are experiencing by
starting 'There …'], 'Scenario Name': [summarize the name of Scenario], 'Decision Making': [what kind
of goals you want to make]}. The scenario is one-step related to your work background. Each Json
should be split by ' || ', and no numbers are needed:

Agent Output:
{
"Scenario": "There is an upcoming health and wellness conference in San Francisco, and you have been
invited to showcase your latest mobile app. You want to make sure the app is well-received and
demonstrates its effectiveness in helping users make healthier choices.",
"Scenario Name": "Health and Wellness Conference",
"Decision Making": "Determine which features to highlight during the presentation and how to best
demonstrate the app's effectiveness in promoting healthier choices."
} || {
"Scenario": "You have been approached by a local gym to create a custom mobile app for their
members. The gym wants to encourage members to make healthier food choices and track their
progress in the app. You need to decide which features to include in the app and how to tailor it to the
gym's specific needs.",
"Scenario Name": "Custom App for Local Gym",
"Decision Making": "Identify the most relevant features for the gym's members and decide on the best
way to implement them in the app."
} || {
"Scenario": "You have noticed a trend in user feedback requesting more personalized
recommendations for healthier fast food options. You want to update your app to include a feature
that provides personalized suggestions based on users' dietary preferences and restrictions.",
"Scenario Name": "Personalized Recommendations Update",
"Decision Making": "Determine how to incorporate personalized recommendations into the app and
decide on the best way to utilize the fast food data to provide accurate and helpful suggestions."
}

Analysis Scenario:

Figure 14. The prompt of analysis scenario generation

32

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

Thank you for providing a clear outline of your requirements, Emma. I have a few questions to ensure that I fully understand your needs and can provide the
most accurate analysis possible.

Data Scientist. Alex Morgan

Client B. Emma Brown

Thank you for your questions, Alex. Here are my answers:

1.In the ATP_tennis dataset, do you have any specific players you would like me to focus on, or should I analyze all the players in the dataset?
2.Are there any particular time periods or specific tournaments you would like me to focus on when analyzing the historical data?
3.When analyzing performance on different surfaces, do you want me to focus on any specific surfaces, or should I consider all available surfaces in the dataset?
4.For the visualizations and summaries, do you have any preferences for the types of charts or graphs you would like to see?

I hope this information helps you provide the most accurate analysis possible. If you have any further questions or need clarification, please don't hesitate to ask.

1. I would like you to analyze all the players in the dataset, but if possible, please provide a separate analysis for the players from our academy.
2. Please focus on the last three years of data and prioritize the analysis of major tournaments such as Grand Slams, Masters 1000, and ATP Finals.
3. When analyzing performance on different surfaces, please consider all available surfaces in the dataset, but pay special attention to grass since the upcoming
tournament in London will be played on grass.
4. For the visualizations and summaries, I would like to see a mix of bar charts, line charts, and pie charts, as well as heatmaps for player matchups. Please use
your expertise to choose the most appropriate visualization for each type of analysis. (pertain to 1, 2, 3)

1. Who are the top 10 ranked players in the dataset from the last five years? Result Type: List of player names along with their rankings.
2. What is the win rate of each of the top 10 players on grass courts in the last five years? Result Type: Data table with player names, number of matches
played, number of matches won, and win rate percentage.
3. How do the top 10 players perform against each other in head-to-head matchups on grass courts in the last five years? Result Type: Matrix table displaying
head-to-head win-loss records between each pair of the top 10 players.
… … …

Analysis Plan

Figure 15. The example of plan discussion. The final output should be a plan of analysis involving questions and their or result types.

33

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

You are a male data scientist with an impressive array of skills including data analysis, statistics, machine learning, and
proficiency in Pandas.

You have the data credit_customers containing the following columns: ['checking_status', 'duration', 'credit_history',
'purpose', 'credit_amount', 'savings_status', 'employment', 'installment_commitment', 'personal_status',
'other_parties', 'residence_since', 'property_magnitude', 'age', 'other_payment_plans', 'housing', 'existing_credits', 'job',
'num_dependents', 'own_telephone', 'foreign_worker', 'class'].
You observed the first 3 lines of the data by running:

import pandas as pd

Load the dataset
credit_customers = pd.read_csv("credit_customers.csv")
credit_customers.head(3)

Data Scientist View:

There are questions that you want to solve:
1.Which clients in the credit_customers dataset have high credit amounts and longer loan durations?
Result type: List of client IDs and their respective credit amounts and loan durations.
2.Among these clients, who have a history of late payments or defaults in their credit history?
Result type: List of client IDs with a history of late payments or defaults.
3.Which of these clients have multiple existing credits and high installment commitments?
Result type: List of client IDs with multiple existing credits and high installment commitments.
4.How many clients in the filtered dataset are aged between 25 and 55?
Result type: Count of clients aged between 25 and 55.
5.Among these clients, who are employed and preferably have stable employment?
Result type: List of client IDs with stable employment.
6.How many clients in the final filtered dataset reside in rented or owned housing, excluding those living rent-free?
Result type: Count of clients residing in rented or owned housing.
7.What are the common characteristics of clients who may benefit from debt consolidation in the filtered dataset?
Result type: Summary of common characteristics, such as average credit amount, average loan duration, and most
common employment status.
8.Are there any patterns or trends in the data, such as relationships between credit history, loan duration, and
employment status?
Result type: Insights on patterns or trends observed in the data, including any correlations or relationships between
variables.
9.Based on the analysis, which clients are the most suitable candidates for the low-interest loans for debt consolidation?
Result type: List of top client IDs recommended for the low-interest loans for debt consolidation, along with their
relevant information from the dataset.

Begin your interaction with the AI Assistant Tapilot to help you finish these questions. Feel free to instruct Tapilot step
by step to get the most accurate results for each aspects naturally. Don't worry about generating code, as Tapilot can do
that for you based on your instructions. You have to tell Tapilot with result types for each question.

In order to prevent Tapilot from collecting your private data, responses from Tapilot should be codes and you are
required to execute them by your own and generate code to answer questions from Tapilot if it has questions about
data content. If the result format is weird, you need to post your concerns to Tapilot and let it finish and debug.
[You (data scientist)]:

Figure 16. The prompt of Data Science Agent in conversation log generation.

34

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

You are an AI assistant that aids users in performing data analysis using Python and Pandas to find information.

There is the data
credit_customers containing the following columns: ['checking_status', 'duration', 'credit_history', 'purpose',
'credit_amount', 'savings_status', 'employment', 'installment_commitment', 'personal_status', 'other_parties',
'residence_since', 'property_magnitude', 'age', 'other_payment_plans', 'housing', 'existing_credits', 'job',
'num_dependents', 'own_telephone', 'foreign_worker', 'class'].
You observed the first 3 lines of the data by running:
import pandas as pd

Load the dataset
credit_customers = pd.read_csv("credit_customers.csv")
credit_customers.head(3)

Chatbot View:

To perform a more reliable analysis for users, you are required to ask necessary questions about data when you want to
assume conditions.

Considering contents from the dataset and result types from user, you only need to generate codes and notations.

Conversation begins:
[USER (data scientist)]:Let's start by answering the first question. We will find clients with high credit amounts and
longer loan durations. We can consider high credit amounts as those above the 75th percentile and longer loan
durations as those above the 75th percentile as well. Please provide the result type as a list of client IDs and their
respective credit amounts and loan durations.
[YOU (AI assistant)]:

Figure 17. The prompt of the AI Chatbot Agent in conversation log generation.

}

1. In my prototype code snippet, find all functions, such as including pandas, seaborn or numpy:
{Prototype Code Snippet}
Output:
{A List of Functions}
2. Then Convert all these functions into customized functions via new names. Each function should contain doc string, please:
{A List of Functions}
Output:
{New Customized Private Functions w/ Human Calibration}
3. Finally, rewrite my prototype code, via the customized functions:
{Prototype Code Snippet}
Output:
{Code Snippet Via Private Libraries and Human Calibration}

Three-Step Prompting

Figure 18. The prompt of conversion from prototype code towards the code with private libraries.

35

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

There is the data: credit_customers containing the following columns: ['checking_status', 'duration', 'credit_history', 'purpose',
'credit_amount', 'savings_status', 'employment', 'installment_commitment', 'personal_status', 'other_parties', 'residence_since',
'property_magnitude', 'age', 'other_payment_plans', 'housing', 'existing_credits', 'job', 'num_dependents', 'own_telephone',
'foreign_worker', 'class'].
--- The description for each column this data is:
{Column_description}

Considering contents from the dataset and requirements from user. Please note DO NOT CHANGE FILE AND VARIABLE NAMES
THAT I HAVE SET!
Interactions begin:
--- Interaction History: ---
{Interaction_history}

--- New Query: ---
{New_query}

[YOU (AI assistant)]:

Model Base prompt for code generation

Figure 19. The prompt of LLM in Model-Base version in CODE GENERATION mode.

}

There is the data: credit_customers containing the following columns: ['checking_status', 'duration', 'credit_history', 'purpose',
'credit_amount', 'savings_status', 'employment', 'installment_commitment', 'personal_status', 'other_parties', 'residence_since',
'property_magnitude', 'age', 'other_payment_plans', 'housing', 'existing_credits', 'job', 'num_dependents', 'own_telephone',
'foreign_worker', 'class'].
--- The description for each column this data is:
{Column_description}

Considering contents from the dataset and requirements from user. Please note DO NOT CHANGE FILE AND VARIABLE NAMES
THAT I HAVE SET!
Interactions begin:
--- Interaction History: ---
{Interaction_history}

--- New Query: ---
{New_query}

[YOU (AI assistant)]: I need first to write a step-by-step outline and then write the code:

Agent prompt for code generation

Figure 20. The prompt of LLM with data analysis agent in CODE GENERATION mode. The COT prompt text is in red color.

36

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

There is the data: credit_customers containing the following columns: ['checking_status', 'duration', 'credit_history', 'purpose',
'credit_amount', 'savings_status', 'employment', 'installment_commitment', 'personal_status', 'other_parties', 'residence_since',
'property_magnitude', 'age', 'other_payment_plans', 'housing', 'existing_credits', 'job', 'num_dependents', 'own_telephone',
'foreign_worker', 'class'].
--- The description for each column this data is:
{Column_description}

Considering contents from the dataset and requirements from user. Please note DO NOT CHANGE FILE AND VARIABLE NAMES
THAT I HAVE SET!
Interactions begin:

--- Interaction History: ---
{Interaction_history}

As a data science professor, your mission is to guide your students in creating Python code to tackle data science problems in
"New Query", by analyzing the given dialogue History and pseudocode and Python code generated in the successful example
below. Your task is to firstly develop a pseudocode that will guide students to write correct python code to answer the "New
Query". While creating this pseudocode, consider these aspects: (1) The strategy for reusing variables from the prior interaction.
Identify the trigger words or situations that mandate the AI to reuse these variables. (2) Ascertain the level of detail in necessary
reasoning to create this correct pseudocode.

################### Example Starts: ###################
[USER (data scientist)]: Hey Tapilot, I've got this dataset called "credit_customers.csv" and I need to preprocess it for a machine
learning model. Can you help me load it using pandas?

[YOU (AI assistant)]:
Step 1: pseudocode:
<pseudocode>
// Import the pandas package
IMPORT pandas as pd

// Define a function to load a CSV file
FUNCTION load_csv(file_path):

// Use pandas to read the CSV file
DATAFRAME <- pd.read_csv(file_path)
// Return the loaded data
RETURN DATAFRAME

// Define a function to check for missing values in the dataset
FUNCTION check_missing_values(dataframe):

// Use the isnull() and sum() methods to count missing values per column
MISSING_VALUES <- dataframe.isnull().sum()
// Return the series with missing value counts
RETURN MISSING_VALUES

// Main program execution starts here
// Set the path to the dataset file
FILE_PATH <- "credit_customers.csv"

// Call the function to load the dataset
credit_customers <- load_csv(FILE_PATH)

// Call the function to check for missing values
missing_values <- check_missing_values(credit_customers)

// Display the missing values to the user
DISPLAY missing_values
</pseudocode>

Step 2: Python code:
'''
import pandas as pd
import pickle
… …
'''
################### Example Ends ###################

--- New Query: ---
{New_query}

[YOU (AI assistant)]:
Step 1: pseudocode:
<pseudocode>

Inter-Agent prompt for code generation

Figure 21. The prompt of LLM with conversational data analysis agent in CODE GENERATION mode. The ACR prompt text are in green
color, which are generated by LLM itself by learning from successful history.

37

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

There is the data: ATP_tennis containing the following columns: ['Tournament', 'Date', 'Series', 'Court', 'Surface', 'Round', 'Best of',
'Player_1', 'Player_2', 'Winner', 'Rank_1', 'Rank_2', 'Pts_1', 'Pts_2', 'Odd_1', 'Odd_2', 'score'].
--- The description for each column this data is:
{Column_description}

Considering contents from the dataset and requirements from user. Please note DO NOT CHANGE FILE AND VARIABLE NAMES
THAT I HAVE SET!
Interactions begin:
{Interaction_history}

[USER (data scientist)]: We are interested in exploring the existence of any notable trends or shifts in how court surfaces
influence player performance within the ATP tennis dataset across different years. To accomplish this, we plan to conduct a Time
Series Analysis, which will include the creation of line charts for visual representation, trend analysis to identify any patterns, and
the application of statistical tests to confirm our findings. Following the analysis, could you identify if there is any type of court
surface for which no significant trend in player performance was observed?
A. Hard
B. Grass
C. Clay
D. Carpet
E. None of above

Please generate the python code (with pandas version 2.0.3 and matplotlib version 3.7.4) between <code>...</code> to answer
the first question and based on the answer choose the most appropriate option and directly provide the choice between
<choice>...</choice>.

[YOU (AI assistant)]:
<choice>

Model Base prompt for multi-choices

Figure 22. The prompt of LLM in Model-Base version in MULTI-CHOICE mode.

38

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

Solve a question answering task with interleaving Thought, Code, Action, Results steps. Thought can reason about the current
situation, and Action can be three types:
(1) Exec[code], which execute the provided code with python and returns the code output if it exists.
(2) Terminate[answer], which returns the answer and finishes the task.
Here is an examples.
------------------------------ Example Start: ------------------------------
{Example}
------------------------------ Example End ------------------------------

The database table atp_tennis is shown as follows:
Tournament | Date | Series | Court | Surface | Round | Best of | Player_1 | Player_2 | Winner | Rank_1 | Rank_2 | Pts_1 | Pts_2
| Odd_1 | Odd_2 | score
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Mayer F. | Giraldo S. | Mayer F. | 28 | 57 | 1215
|778|1.36|3.0|6-46-4
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Benneteau J. | Nieminen J. | Nieminen J. | 35 |
41|1075|927|2.2|1.61|3-66-21-6
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Nishikori K. | Matosevic M. | Nishikori K. | 19 |
49|1830|845|1.25|3.75|7-56-2
... ...

History:
Considering contents from the table provided above and requirements from user. Please note DO NOT CHANGE FILE AND
VARIABLE NAMES THAT I HAVE SET!
Interactions begin:
{Interaction_history}

[USER (data scientist)]: We are interested in exploring the existence of any notable trends or shifts in how court surfaces
influence player performance within the ATP tennis dataset across different years. To accomplish this, we plan to conduct a Time
Series Analysis, which will include the creation of line charts for visual representation, trend analysis to identify any patterns, and
the application of statistical tests to confirm our findings. Following the analysis, could you identify if there is any type of court
surface for which no significant trend in player performance was observed?
A. Hard
B. Grass
C. Clay
D. Carpet
E. None of above

NOTE: Please generate ONLY one turn this time and wait for User to give Result based on your generated code segment, Do NOT
generate the whole code in a single turn! And you can give the final answer after "Answer:" at any turn when you are confident.

[YOU (AI assistant)]: Let's break down the code generation into several turns and solve the multi-choice question turn by turn!
################### The Answer Starts Here: ###################
Turn 1:
5 turns left to provide final answer. Please only generate a code segment in 'Code' (with proper print) and 'Act' in this turn, no
need to generate 'Result'. Do NOT generate the whole code in a single turn!
Thought 1: First import all packages needed and load the dataset.
Code 1:
'''
import pandas as pd

atp_tennis = pd.read_csv(‘atp_tennis.csv’)
print(atp_tennis)
'''
Act 1: Exec[Code 1]
Result 1:
Tournament | Date | Series | Court | Surface | Round | Best of | Player_1 | Player_2 | Winner | Rank_1 | Rank_2 | Pts_1 | Pts_2
| Odd_1 | Odd_2 | score
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Mayer F. | Giraldo S. | Mayer F. | 28 | 57 | 1215
|778|1.36|3.0|6-46-4
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Benneteau J. | Nieminen J. | Nieminen J. | 35 |
41|1075|927|2.2|1.61|3-66-21-6
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Nishikori K. | Matosevic M. | Nishikori K. | 19 |
49|1830|845|1.25|3.75|7-56-2

Turn 2:
4 turns left to provide final answer. Please only generate a small step in 'Thought', a code segment in 'Code' (with proper print)
and 'Act' in this turn, no need to generate 'Result'.
Thought 2:

Agent prompt for multi-choices

Figure 23. The prompt of LLM with data analysis agent in MULTI-CHOICE mode.

39

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

Solve a question answering task with interleaving Thought, Code, Action, Results steps. Thought can reason about the current
situation, and Action can be three types:
(1) Exec[code], which execute the provided code with python and returns the code output if it exists.
(2) Terminate[answer], which returns the answer and finishes the task.
Here is an examples.
------------------------------ Example Start: ------------------------------
{Example}
------------------------------ Example End ------------------------------

The database table atp_tennis is shown as follows:
Tournament | Date | Series | Court | Surface | Round | Best of | Player_1 | Player_2 | Winner | Rank_1 | Rank_2 | Pts_1 | Pts_2
| Odd_1 | Odd_2 | score
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Mayer F. | Giraldo S. | Mayer F. | 28 | 57 | 1215
|778|1.36|3.0|6-46-4
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Benneteau J. | Nieminen J. | Nieminen J. | 35 |
41|1075|927|2.2|1.61|3-66-21-6
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Nishikori K. | Matosevic M. | Nishikori K. | 19 |
49|1830|845|1.25|3.75|7-56-2
... ...

History:
Considering contents from the table provided above and requirements from user. Please note DO NOT CHANGE FILE AND
VARIABLE NAMES THAT I HAVE SET!
Interactions begin:
{Interaction_history}

[USER (data scientist)]: We are interested in exploring the existence of any notable trends or shifts in how court surfaces
influence player performance within the ATP tennis dataset across different years. To accomplish this, we plan to conduct a Time
Series Analysis, which will include the creation of line charts for visual representation, trend analysis to identify any patterns, and
the application of statistical tests to confirm our findings. Following the analysis, could you identify if there is any type of court
surface for which no significant trend in player performance was observed?
A. Hard
B. Grass
C. Clay
D. Carpet
E. None of above

Please firstly analysis the given pseudocode and follow my example between "Example Start" and "Example End" above to
answer question with interleaving Thought, Code, Action, Result turns.
---Pseudocode Starts---
{Pseudocode}
---Pseudocode Ends---

NOTE: Please generate ONLY one turn this time and wait for User to give Result based on your generated code segment, DON'T
generate the whole code in a single turn! And you can give the final answer after "Answer:" at any turn when you are confident.

[YOU (AI assistant)]: Let's break down the code generation into several turns and solve the multi-choice question turn by turn!
################### The Answer Starts Here: ###################
Turn 1:
5 turns left to provide final answer. Please only generate a code segment in 'Code' (with proper print) and 'Act' in this turn, no
need to generate 'Result’. Do NOT generate the whole code in a single turn!
Thought 1: First import all packages needed and load the dataset.
Code 1:
'''
import pandas as pd

atp_tennis = pd.read_csv(‘atp_tennis.csv’)
print(atp_tennis)
'''
Act 1: Exec[Code 1]
Result 1:
Tournament | Date | Series | Court | Surface | Round | Best of | Player_1 | Player_2 | Winner | Rank_1 | Rank_2 | Pts_1 | Pts_2
| Odd_1 | Odd_2 | score
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Mayer F. | Giraldo S. | Mayer F. | 28 | 57 | 1215
|778|1.36|3.0|6-46-4
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Benneteau J. | Nieminen J. | Nieminen J. | 35 |
41|1075|927|2.2|1.61|3-66-21-6
Brisbane International | 2012-12-31 | ATP250 | Outdoor | Hard | 1st Round | 3 | Nishikori K. | Matosevic M. | Nishikori K. | 19 |
49|1830|845|1.25|3.75|7-56-2

Turn 2:
4 turns left to provide final answer. Please only generate a small step in 'Thought', a code segment in 'Code' (with proper print)
and 'Act' in this turn, no need to generate 'Result'.
Thought 2:

Inter-Agent prompt for multi-choices

Figure 24. The prompt of LLM with conversational data analysis agent in MULTI-CHOICE mode. The ACR prompt text are in green
color. And the pseudocode is generated by LLM itself by learning from successful history

40

Are Large Language Models Ready for Multi-Turn Tabular Data Analysis?

}

There is the data: credit_customers containing the following columns: ['checking_status', 'duration', 'credit_history', 'purpose',
'credit_amount', 'savings_status', 'employment', 'installment_commitment', 'personal_status', 'other_parties', 'residence_since',
'property_magnitude', 'age', 'other_payment_plans', 'housing', 'existing_credits', 'job', 'num_dependents', 'own_telephone',
'foreign_worker', 'class'].
--- The description for each column this data is:
{Column_description}

Considering contents from the dataset and requirements from user. Please note DO NOT CHANGE FILE AND VARIABLE NAMES
THAT I HAVE SET!
Interactions begin:

--- Interaction History: ---
{Interaction_history}

--- New Query: ---
[USER (data scientist)]: Please filter the dataset to include only main course items such as sandwiches, wraps, and salads, and
exclude side dishes and desserts. Then, provide the filtered dataset containing only main course items. Please load the
'fastfood.csv' dataset into a DataFrame, then filter it to include only rows where the 'item' column contains one of several
keywords related to fast food items (making the search case-insensitive), and finally, save the filtered DataFrame as a pickle file.
My template of code snippet is:
---BEGIN CODE TEMPLATE---
import pandas as pd
import numpy as np
import pickle

atp_tennis = pd.read_csv(‘atp_tennis.csv')

YOUR SOLUTION BEGIN:
<code1>
[COMPLETE YOUR CODE]
</code1>
YOUR SOLUTION END

print(federer_match_ids)
pickle.dump(federer_match_ids,open("./pred_result/federer_match_ids.pkl","wb"))
---END CODE TEMPLATE---

Please note that you have to generate the WHOLE python code instead of code segments based on the code snippet using
Pandas library 2.0.3 version and Matplotlib library 3.7.4 version. You must keep all comments in code snippet unchanged.

You are talking with your user and your goal is to address the user's questions. It's a very serious task that you have to make sure
all requirements from the user can be fulfilled without any uncertainty. Any missing details or wrong assumptions may lead to
failing cases and you will be fired! Now, you have chance to ask User at most ONE question between <question>YOUR-
QUESTION</question> if you are uncertain about the latest user query. Otherwise, if you are very certain, you can directly answer
user query.

Clarification Mode in code generation

Ask for clarification:

The keywords related to fast food items that will be used to filter the dataset are 'sandwich', 'wrap', 'salad',
'burger', 'burrito', and 'taco'. Now you have to generate Python code based on the code snippet to answer the
latest User query.

Could you please specify the keywords related to fast food items that you want to filter by?

User Simulator:

Answer here:

… …

Figure 25. The prompt of LLM in Model-Base version in CLARIFICATION mode.

41

