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ABSTRACT

Contrastive Language-Image Pre-training (CLIP), which excels at abstracting open-
world representations across domains and modalities, has become a foundation for
a variety of vision and multimodal tasks. However, recent studies reveal that CLIP
has severe visual shortcomings, such as which can hardly distinguish orientation,
quantity, color, structure, etc. These visual shortcomings also limit the perception
capabilities of multimodal large language models (MLLMs) built on CLIP. The
main reason could be that the image-text pairs used to train CLIP are inherently
biased, due to the lack of the distinctiveness of the text and the diversity of images.
In this work, we present a simple post-training approach for CLIP models, which
largely overcomes its visual shortcomings via a self-supervised diffusion process.
We introduce DIVA, which uses the DIffusion model as a Visual Assistant for CLIP.
Specifically, DIVA leverages generative feedback from text-to-image diffusion
models to optimize CLIP representations, with only images (without corresponding
text). We demonstrate that DIVA improves CLIP’s performance on the challenging
MMVP-VLM benchmark which assesses fine-grained visual abilities to a large
extent (e.g., 3-7% ↑), and enhances the performance of MLLMs and vision models
on multimodal understanding and segmentation tasks. Extensive evaluation on
29 image classification and retrieval benchmarks confirms that our framework
preserves CLIP’s strong zero-shot capabilities. The code will be publicly available.

1 INTRODUCTION

Contrastive language-image pre-training (CLIP) (Radford et al., 2021b) has been widely applied to
various multimodal understanding and generation tasks, including open-domain image classification
(Sun et al., 2024d; Zhang et al., 2022; Zhu et al., 2023), text-to-image retrieval (Luo et al., 2023;
Baldrati et al., 2022; Sain et al., 2023), visual grounding (Wang et al., 2022; Yu et al., 2023; Wang
et al., 2024b;a), and text-to-image generation (Frans et al., 2022; Bar-Tal et al., 2022; Rombach et al.,
2022a; Crowson et al., 2022; Ramesh et al., 2022; Vinker et al., 2022). This widespread application is
due to CLIP’s excellent visual representation ability, learned from large-scale data. Thus, enhancing
CLIP’s representation and capabilities is crucial for advancing downstream tasks.

Since the introduction of CLIP (Radford et al., 2021b), numerous subsequent studies on CLIP models
have emerged in recent years. These studies have utilized training techniques such as pre-training
(Sun et al., 2023; 2024b; Fang et al., 2023; Xu et al., 2023a; Zhai et al., 2023; Shi et al., 2024) and
fine-tuning (Wei et al., 2023b; Zhang et al., 2024) CLIP models, achieving improved performance
and unlocking new abilities. However, these approaches still suffer from unavoidable limitations, as
they heavily rely on image-text data pairs and cannot work on image-only data.

As noted by recent works (Kim et al., 2023; Zeng et al., 2021; Zhang et al., 2024; Tong et al., 2024b;a),
despite its excellent zero-shot performance, CLIP suffers from certain perceptual understanding
limitations due to the contrastive learning paradigm and the noisy image-text pairs used in training.
These limitations include an inability to accurately comprehend long texts and to perceive fine-grained
differences in similar images. While some studies have attempted to address the text comprehension
issue (Zhang et al., 2024), research on improving CLIP’s fine-grained visual perception remains
underexplored. As studied in (Kim et al., 2023), the perceptual shortcomings of CLIP are closely tied
to its visual encoder’s inability to grasp fine-grained visual details, which is crucial for multimodal
models. The lack of this capability in CLIP directly affects the performance of vision and multimodal
models that use CLIP as a vision encoder (Tong et al., 2024b;a). As demonstrated in Fig. 1,
existing CLIP models mostly struggle to distinguish subtle visual differences between similar images,
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Figure 1: Left: The existing CLIP models mostly suffer from the inability to distinguish visual details.
After enhancing the visual capabilities with our DIVA, the sensitivity of CLIP to visual details has
greatly improved. Right: Our proposed DIVA consistently boosts the performance of various CLIP
models (Radford et al., 2021b; Fang et al., 2023; Xu et al., 2023a; Zhai et al., 2023) on MMVP-VLM
benchmark that evaluates the visual capabilities of vision-language models.

highlighting the fundamental limitation in fine-grained visual perception. To mitigate this visual
perception shortcoming of CLIP, lots of recent works such as (Tong et al., 2024b; Kar et al., 2025;
Zong et al., 2024) have attempted to improve multimodal large language models (MLLMs) by
incorporating extra vision-only self-supervised backbones, such as DINOv2 (Caron et al., 2021), to
enhance visual perception capability. However, these approaches still do not fundamentally address
CLIP’s visual perception limitations, and often introduce significant computational costs.

Thus, in this work, we aim to fundamentally address CLIP’s inability to distinguish fine-grained
visual details via SSL paradigm. Considering that diffusion models can naturally generate detailed
and realistic images, text-to-image generation inherently requires the diffusion models to grasp
fine-grained visual representations (Wei et al., 2023a). Motivated by this, we propose utilizing the
generative feedback from diffusion models to enhance CLIP’s visual perception capabilities, which is
solely driven by image data with manageable training cost. By conditioning diffusion models with
CLIP’s densely recapped visual features and applying reconstruction loss for CLIP’s representation
optimization, we leverage the DIffusion model as a Visual Assistant for CLIP, thus the name of
our approach, DIVA. Our results highlight that DIVA greatly enhances CLIP’s performance on
MMVP-VLM benchmark measuring visual abilities of vision-language (V-L) models, and improves
MLLMs and vision models on multimodal and vision understanding tasks. Besides, DIVA maintains
CLIP’s excellent zero-shot performance on 29 image classification and retrieval benchmarks. The
key advantage of DIVA lies in its ability to enhance CLIP’s visual perception capabilities through a
resource-efficient post-training process, using only image data in a self-supervised manner, without
the need for expensive image-text pair data collection or introducing additional visual encoders.

Our main contributions can be summarized as follows:

• Concentrating on overcoming CLIP’s visual shortcomings in perceiving fine-grained details, we
present the first work to exploit the potential of leveraging generative feedback from text-to-image
diffusion models to optimize CLIP model’s discriminative representations.

• We propose a simple self-supervised framework DIVA for CLIP’s representation optimization.
Coupled with our visual dense recap scheme, DIVA conditions diffusion models with dense visual
features from CLIP and incorporates image reconstruction loss for optimization.

• Our DIVA greatly boosts CLIP’s visual perception capability and improves its performance on
MMVP-VLM benchmark, further enhancing MLLMs and vision models on multimodal and visual
understanding tasks. Meanwhile, our results on 29 image classification and retrieval benchmarks
show that DIVA maintains CLIP’s original excellent zero-shot performance.

2 RELATED WORK

CLIP Models & MLLMs. The introduction of CLIP (Radford et al., 2021b) has significantly
advanced multimodal learning. Since its debut, a series of CLIP models have emerged (Sun et al.,
2023; Fang et al., 2023; Xu et al., 2023a; Zhai et al., 2023), enhancing performance and unlocking
new capabilities through improved pre-training techniques and model architectures. On this basis,
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CLIP has been widely adopted as a foundation model, serving as a backbone for various applications
such as image segmentation (Li et al., 2022a; Xu et al., 2022; Shan et al., 2024; Xu et al., 2023c;
Liang et al., 2023; Zhou et al., 2023), object detection (Gu et al., 2021; Li et al., 2022b; Subramanian
et al., 2022) and video understanding (Bose et al., 2023; Lin et al., 2022; Castro & Heilbron, 2022;
Xu et al., 2021; Rasheed et al., 2023; Tang et al., 2024). Its ability to align language and vision
has led to superior results on these tasks compared to traditional methods. Moreover, CLIP has
driven the development of MLLMs (Liu et al., 2024b;a; Sun et al., 2024c;a). Combining strong
visual understanding with advanced large language models facilitates more sophisticated interactions
between vision and language. Recent works have highlighted inherent visual flaws in the CLIP
models and MLLMs using CLIP as the visual encoder (Tong et al., 2024b;a). To address this, some
research has incorporated multiple vision encoders to achieve more precise and comprehensive
visual perception (Kar et al., 2024; Jiang et al., 2023; Tong et al., 2024b). However, this approach
increases computational costs and memory usage. There has been no research directly enhancing
CLIP’s visual perception capabilities to better serve MLLMs. Thus, the main focus of our work is
to fundamentally overcome CLIP’s visual perception shortcomings, directly benefiting both vision
models and multimodal MLLMs that use CLIP as a backbone.

Diffusion Models for Representation Learning. Diffusion models (Ho et al., 2020; Song et al.,
2020) have made remarkable progress in various generative tasks, such as image generation (Rombach
et al., 2022b; Saharia et al., 2022; Betker et al., 2023; Zheng et al., 2024), video generation (Singer
et al., 2022; Blattmann et al., 2023; Junhao Zhang et al., 2023; Ho et al., 2022), editing (Meng
et al., 2021; Hu et al., 2024; Mou et al., 2023), etc. Apart from research above, there are also
many works focus on employing diffusion models for representation learning. Some of works
leverage the intermediate activation of pre-trained diffusion models for different downstream tasks,
including classification (Xiang et al., 2023), semantic segmentation (Baranchuk et al., 2021), panoptic
segmentation (Xu et al., 2023b), depth estimation (Zhao et al., 2023), etc. Other works (Hudson
et al., 2024; Pan et al., 2023) train their own diffusion models coupled with meticulously devised
modules to further boosting the representation capabilities. Besides, Diffusion-TTA (Prabhudesai
et al., 2023) aims to adapt pre-trained vision encoders to samples in testing set using feedback from a
diffusion model. Additionally, some methods (Guo et al., 2024; Trabucco et al., 2023; Tian et al.,
2024; Azizi et al., 2023) utilize diffusion models to generate synthetic data, which is then adopted
to enhance the representation capabilities of corresponding models. In contrast, in our work, we
mainly focus on exploring the potential of enhancing the original discriminative representations of
CLIP models by directly utilizing generative feedback from the diffusion models. Additionally, we
aim to leverage the diffusion models to break free from the constraints of paired image-text data and
construct a self-supervised framework to improve CLIP’s visual perception capabilities.

3 ENHANCING CLIP’S REPRESENTATIONS VIA DIFFUSION FEEDBACK

In this section, we present our DIVA, an effective framework for boosting CLIP’s visual perception
capabilities with a pre-trained conditional diffusion model. We first discuss CLIP’s visual deficiencies
in perceiving details and generative diffusion models as preliminaries in Sec. 3.1.1 and Sec. 3.1.2
respectively. Then the overall architecture of DIVA is illustrated in Sec. 3.2, followed by our
well-designed visual dense recap strategy for better unleashing the power of DIVA in Sec. 3.3.

3.1 PRELIMINARIES

3.1.1 CLIP’S VISUAL DEFICIENCIES

Thanks to the excellent representations learned through pre-training on massive data, CLIP (Radford
et al., 2021b) exhibits outstanding generalization capabilities and is widely applied in the V-L
understanding domain. However, CLIP is not without its flaws. As highlighted in the study (Tong
et al., 2024b), CLIP struggles to distinguish detailed differences between two images that are
obviously distinct to human observers. This deficiency mainly stems from two aspects: 1) Training
Paradigm: The original contrastive learning strategy of CLIP aims to minimize the distance between
positive pairs and maximize the distance between negative pairs of visual class tokens and textual
semantics, resulting in visual perception bias that mainly focuses on high-level semantic information
while overlooking visual details such as orientation, quantity, color, and structure. Consequently,
CLIP sometimes encodes visually different images into similar embeddings, making it difficult to
differentiate these images’ subtle variations. 2) Data Format: The text in the image-text pairs used
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Figure 2: Overall architecture of our DIVA. Given an image x0, the CLIP model θ encodes the
visual features as main part of condition c, then the generative diffusion model ϕ predicts the added
noise ϵ taking the noisy image xt and condition c as input. We optimize the CLIP’s representation by
maximizing the image likelihood with the diffusion loss via generative feedback.

to train CLIP is limited in length. As pointed out by (Zhang et al., 2024), although the length of the
text token is restricted to 77, CLIP’s actual effective text length is less than 20. Therefore, the textual
data in these image-text pairs inherently lacks descriptions of the visual details in the corresponding
positive sample images. This fundamental limitation of the training data also leads to CLIP’s inability
to adequately perceive visual detail information.

3.1.2 GENERATIVE DIFFUSION MODELS

Generative diffusion models have proven to be highly effective in modeling high-dimensional data
and have become the de facto approach for visual generation tasks (Podell et al., 2023; Yang et al.,
2024). They possess strong capabilities in capturing intricate visual details. A diffusion model
reconstructs an image by gradually removing noise added during the forward process. Formally,
given an image sample x0 drawn from an underlying probability distribution p(x), a forward diffusion
process defines a Markov chain to gradually add random Gaussian noise ϵt ∈ N (0, I) to the original
sample x0:

xt =
√
1− βtxt−1 +

√
βtϵt, t = 1, . . . , T (1)

Here, T denotes the number of diffusion steps, and βt ∈ (0, 1) is a predefined time-dependent
variance schedule. As the T becomes large enough, xT is close to N (0, I). The transition equation
can be reformulated as follows by leveraging the additive property of Gaussian distribution:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, t = 1, . . . , T (2)

in which αt = 1 − βt and ᾱt =
∏t

i=1 αi. On this basis, the image sample x0 can be iteratively
generated from a random noise xT ∼ N (0, I) by reversing the forward diffusion process:

xt−1 =
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵϕ(xt, t)) + σtϵ, t = T, . . . , 1 (3)

ϵϕ is a denoising neural network trained to predict ϵ in the forward diffusion process and σt is the
posterior noise variance. A commonly used training objective for a diffusion model ϵϕ is:

L(ϕ) = Et,x0,ϵ

[
∥ϵ− ϵϕ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
(4)

Besides, the diffusion models can be easily extended to conditional generation by incorporating a
condition c into ϵϕ, in which c can be a class label, a text prompt, etc. Thus, the training objective
should be modified to:

L(ϕ) = Et,x0,ϵ,c

[
∥ϵ− ϵϕ(

√
ᾱtx0 +

√
1− ᾱtϵ, t, c)∥2

]
(5)

In practice, modulation layers or cross-attention layers can be employed to integrate conditions into
denoising neural network, guiding the denosing process.

3.2 OVERALL STRUCTURE OF DIVA

As illustrated in Fig. 2, DIVA mainly consists of two parts: the CLIP model to be enhanced in
terms of visual perception capabilities, and the pre-trained text-to-image diffusion model providing
generative feedback. Taking an original image as input, the CLIP model encodes the corresponding
visual features, which will be combined with the empty text’s embeddings (i.e., [BOS] & [EOS])
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from the diffusion model’s text encoder for diffusion’s condition. Given the image with added noise,
the diffusion model attempts to predict the noise added from the previous step to the current step
with the aforementioned condition. This process needs to be repeated N times because, for each
image, we will randomly select N states with a uniform distribution from the total steps (e.g., 0∼1000
steps) of the diffusion model for optimization. The corresponding loss function can be represented as
Equation 5. Keeping all parts’ weights except the CLIP visual encoder frozen, the training objective is
simply to minimize the reconstruction loss (i.e., generative guidance). In this manner, by constraining
the diffusion model to more accurately predict the added noise, the CLIP’s original semantic-rich
discriminative representations will be gradually optimized into representations with more visual
details through diffusion feedback. On this basis, results in Sec. 4.4 demonstrate that our DIVA does
not greatly damage the zero-shot performance of the original CLIP models. The pseudo code of the
specific enhancement process can be found at Algorithm 1 in Appendix.

3.3 DIFFUSION’S VISUAL CONDITION DESIGN

In our DIVA, the diffusion model’s condition design is pivotal, as it sets the upper limit for enhancing
CLIP’s visual capabilities. Since our motivation for designing DIVA is to enhance CLIP’s ability
to capture fine-grained details through a resource-efficient, purely image-driven self-supervised
framework for post-training, we do not introduce aligned textual information as the diffusion condition.
However, bridging the gap between pure visual features and text embeddings for the diffusion process
is crucial. To address this, we first pass the visual features through a vision-language projection layer
to map the high-level representations. Additionally, we incorporate the embedding of an empty text
as part of the diffusion model’s condition to further narrow this gap. In this way, our condition design
resembles an empty text shell, but the actual content inside is akin to a "visual sentence" obtained via
vision-to-text mapping. This design more seamlessly fits the diffusion model’s conditional input.

Visual Dense Recap Scheme. Apart from the aforementioned empty text’s embeddings from diffusion
model’s text encoder, we introduce a simple yet effective strategy called visual dense recap for the
designing of visual condition part. Unlike detailed re-captioning of an image’s caption in natural
language, our approach performs re-captioning at the level of visual richness by incorporating features
from local patch tokens along with the class token into the condition. When only the class token is
present, CLIP’s visual features primarily contain strong semantic information, which is insufficient
for reconstructing the original image. Consequently, the reconstruction task becomes challenging due
to the lack of adequate information, and CLIP cannot learn significantly enhanced representations. By
incorporating local patch features, the auxiliary function of the condition is significantly enhanced,
allowing the generative feedback to effectively improve CLIP’s visual perception capabilities. We
conduct ablation studies in Sec. 4.5 to demonstrate the efficacy of visual dense recap.

Visual Recap Density. Although the visual dense recap scheme appears straightforward, the density
of the recap is crucial. If the density is too high (i.e., introducing too many local tokens), the
richness of the condition information approaches its maximum, greatly reducing the difficulty of
reconstruction task. This results in CLIP’s representation requiring minimal optimization to easily
complete the reconstruction, limiting the upper bound of CLIP’s optimized capabilities. Conversely,
if the recap density is too low (i.e., retaining only class token or introducing few local tokens), CLIP’s
optimization process will struggle with the high difficulty of reconstruction, failing to adequately
learn the expected detailed visual representations. This intuitive point is confirmed in Sec. 4.5.

In fact, our DIVA can enhance different CLIP models’ fine-grained perception abilities through
a general and simple condition design principle, e.g., introducing all the local patch tokens along
with the class token as the visual condition for diffusion model. However, we empirically believe
that each baseline’s requirement for visual density is actually different, which is also supported
by our preliminary experiments. This is because different CLIP models are trained on vastly
different data, leading to significant variations in their learned representations. Therefore, their
visual density for various CLIP models needs to be specifically adjusted to maximize the learning
of corresponding detailed representations through generative feedback. Specifically, ensuring the
visual class token is always present in the condition, we introduce randomly selected local token
features with approximately 15% and 30% probabilities for OpenAI CLIP (Radford et al., 2021b)
at 224 and 336 resolutions. For the SigLIP ViT-SO-14 (Zhai et al., 2023) at 224 and 384 image
sizes, we incorporate local token features obtained through 1D average pooling with local window
sizes of 6 and 10, respectively. Except that introducing 50% randomly selected patch tokens into the
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Table 1: Performance of CLIP based models on various visual patterns of MMVP-VLM
benchmark. Our framework greatly overcomes CLIP’s original shortcomings in terms of perceiving
visual details. Symbols for visual patterns as (Tong et al., 2024b) are inherited: ☼: Orientation
and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count,
,: Positional and Relational Context, h: Color and Appearance, Ô: Structural and Physical
Characteristics, k: Texts, �: Viewpoint and Perspective.

Method Ours Image Size Params (M) ☼ Û L � , h Ô k � Average

OpenAI ViT-L-14 2242 427.6 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 ✔ 2242 427.6 13.3 20.0 40.0 6.7 20.0 53.3 46.7 20.0 13.3 25.9 (+6.6)

OpenAI ViT-L-14 3362 427.9 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
OpenAI ViT-L-14 ✔ 3362 427.9 26.7 20.0 33.3 13.3 13.3 46.7 26.7 6.7 40.0 25.2 (+5.2)

MetaCLIP ViT-L-14 2242 427.6 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-L-14 ✔ 2242 427.6 6.7 6.7 60.0 0.0 26.7 66.7 20.0 20.0 40.0 27.4 (+3.7)

MetaCLIP ViT-H-14 2242 986.1 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
MetaCLIP ViT-H-14 ✔ 2242 986.1 13.3 20.0 53.3 33.3 13.3 66.7 33.3 13.3 40.0 31.9 (+6.7)

SigLIP ViT-SO-14 2242 877.4 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 ✔ 2242 877.4 13.3 26.7 60.0 46.7 13.3 73.3 53.3 26.7 53.3 40.7 (+2.9)

SigLIP ViT-SO-14 3842 878.0 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
SigLIP ViT-SO-14 ✔ 3842 878.0 26.7 33.3 53.3 26.7 13.3 80.0 40.0 26.7 46.7 38.5 (+1.5)

DFN ViT-H-14 2242 986.1 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 ✔ 2242 986.1 20.0 20.0 80.0 40.0 46.7 66.7 46.7 20.0 53.3 43.7 (+4.4)

DFN ViT-H-14 3782 986.7 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
DFN ViT-H-14 ✔ 3782 986.7 26.7 26.7 53.3 33.3 26.7 73.3 26.7 13.3 60.0 37.8 (+3.0)

condition for DFN ViT-H-14/378, for the remaining baselines (Fang et al., 2023; Xu et al., 2023a), we
include all local token features for the condition design. Apart from DFN ViT-H-14/224 and SigLIP
ViT-SO-14/224&384 (Zhai et al., 2023) only using visual class token, all other models incorporate
local features consistent with the training stage conditions during inference, combining them with
class token to fully leverage the detailed representations captured by the enhanced CLIP.

4 EXPERIMENTAL RESULTS

To evaluate the effectiveness of our DIVA and demonstrate its potential to enhance CLIP representa-
tions, comprehensive experiments are conducted on multimodal understanding and visual perception
tasks, which will be elaborated in the followings.

4.1 IMPLEMENTATION DETAILS

DIVA is trained on 8 NVIDIA-A100 80GB GPUs with a batch size of 640. We adopt Stochastic
Gradient Descent (SGD) optimizer with a learning rate of 1e-4 and momentum of 0.9 to refine
CLIPs’ representations via generative feedback. We only optimize the CLIP models with relatively
high-quality Conceptual-3M dataset (Sharma et al., 2018) for 4600 steps (i.e., nearly 1 epoch)
during training, which can already boost CLIP’s performance in a training-efficient manner. For
all experiments, we adjust the parameters of the discriminative CLIP vision encoders and keep the
pre-trained diffusion models frozen through the training process. Besides, the specific dataset and
evaluation details about the MMVP and MMVP-VLM benchmark can be found in Appendix.

Regarding the diffusion sampling step N, our choice is made by balancing training cost and model
performance gains. Specifically, we begin with the initial state of N=1 to enhance the representation
quality of CLIP vision encoder. As N increases, the training cost rises significantly. When increasing
N from 1 to 2 (meaning that each image undergo diffusion sampling twice to provide two rounds
of generative feedback for CLIP model optimization), performance gains are observed. However,
further increasing N beyond 2 not only greatly escalate training costs but also do not yield additional
benefits for the CLIP model’s representation learning. Therefore, N=2 is selected as the optimal
sampling step to consistently improve performance across various baselines.
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Figure 3: Qualitative analysis on MMVP-VLM and MMVP benchmark. Left: The prediction
results from the OpenAI ViT-L-14 CLIP before & after incorporating DIVA. Right: The prediction
results from LLaVA-1.5-7B before & after using our DIVA. The results on both benchmarks show
that our framework can greatly enhance CLIP models’ fine-grained visual perception capability and
effectively alleviate the hallucination problem.

4.2 FINE-GRAINED VISUAL PERCEPTION EVALUATION

To validate that our DIVA can effectively mitigate the inherent visual capability deficiencies of CLIP
models, we first conduct experiment on various existing CLIP models (Radford et al., 2021b; Fang
et al., 2023; Xu et al., 2023a; Zhai et al., 2023). Despite the variations in image resolution, model size,
training data and methodology among these CLIP models, our method consistently enhances their
performances on the MMVP-VLM benchmark. As presented in Table 1, our framework achieves the
best performance improvements (i.e., ↑4-7%) on OpenAI ViT-L-14 and MetaCLIP ViT-H-14, and
even on current best-performing DFN ViT-H-14 our framework realizes a performance gain of nearly
3-5%. This fully demonstrates that DIVA is both general and effective in enhancing the fine-grained
visual perception capabilities of CLIP models. Notably, through the generative guidance provided
by our self-supervised framework that is free from image-text constraints, the perceptual abilities of
CLIP models on almost all visual patterns have the potential to be enhanced.

4.3 BACKBONE ENHANCEMENT PERFORMANCE EVALUATION

Next, with the help of our DIVA, we further evaluate the performance gains brought by the enhanced
CLIP backbones for multimodal understanding and visual perception tasks.

Table 2: Performance gains achieved by our enhanced CLIP visual backbone for MLLM (i.e.,
LLaVA-1.5-7B and LLaVA-1.5-13B) on various V-L understanding tasks. By refining the CLIP’s
representation with generative feedback, our method mitigates the visual deficiencies in MLLMs (i.e.,
LLaVA1.5) and improves original instruction following ability.

Method Ours LLM
Image
Size MMVP POPE MME MMBench LLaVA-Wildrand pop adv en cn

LLaVA1.5 Vicuna-7B 3362 24.7 87.3 86.1 84.2 1510.7 64.3 58.3 65.4
LLaVA1.5 ✔ Vicuna-7B 3362 31.3 87.9 87.0 84.6 1500.6 66.4 60.6 66.3
LLaVA1.5 Vicuna-13B 3362 30.7 87.1 86.2 84.5 1531.3 67.7 63.6 72.5
LLaVA1.5 ✔ Vicuna-13B 3362 35.3 88.1 87.4 84.8 1522.9 69.4 63.1 73.5

Enhanced Vision Backbone for MLLMs. Firstly, we adopt LLaVA-1.5 (Liu et al., 2024a) as the
baseline framework to explore the potential of improved visual encoders in MLLM. LLaVA employs
a pre-trained CLIP vision encoder and trains a projector to semantically align visual tokens with
textual tokens from large language model (LLM). To ensure fair comparisons, we train our model with
the same setting in LLaVA and evaluate model performance on various multimodal understanding
benchmarks (i.e., MMVP (Tong et al., 2024b), POPE (Li et al., 2023), MME-Perception (Fu et al.,
2023), MMBench (Liu et al., 2023), MMBench-CN (Liu et al., 2023), LLaVA-Bench-in-the-Wild
(Liu et al., 2024b)). It can be clearly seen from Table 2 that LLaVA’s performance is greatly boosted
by replacing the original CLIP vision encoder to ours. The big accuracy gains on these benchmarks
(except MME) are all thanks to the significant enhancement in CLIP’s visual perception capabilities
brought by our DIVA paradigm utilizing generative feedback.
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Table 3: Performance gains achieved by our enhanced CLIP backbone with generative guidance
on semantic segmentation task. * denotes the re-implemented results. Boosting CLIP’s ability to
perceive fine-grained visual details results in considerable benefits for visual dense prediction task.

Method Backbone Ours ADE20K-847 ADE20K-150 Pascal Context-459 Pascal Context-59

SAN* ViT-L-14/224 10.9 29.2 14.2 55.8
SAN ViT-L-14/224 ✔ 11.0 30.2 15.4 56.7
SAN* ViT-L-14/336 11.5 30.3 14.7 56.7
SAN ViT-L-14/336 ✔ 11.5 31.8 15.7 57.8

Enhanced Vision Backbone for Fine-Grained Visual Perception. We also include segmentation
task to evaluate the benefits brought by our enhanced CLIP backbones for visual dense prediction
task. We adopt the recent state-of-the-art model in the open vocabulary semantic segmentation field,
SAN (Xu et al., 2023c) with CLIP (Radford et al., 2021b) at both 224 and 336 image resolutions, as
baselines. Four commonly used benchmarks (i.e., ADE20K-847/150 (Zhou et al., 2017) and Pascal
Context-459/59 (Mottaghi et al., 2014) are employed for performance evaluation. As shown in Table
3, with the benefit of our generative tuned CLIP backbone, the baseline models achieve considerable
performance improvements on most of segmentation benchmarks and do not suffer performance
degradation on the remaining one (i.e., ADE20K-847).

4.4 GENERALIZATION CAPABILITY EVALUATION

Table 4: Summary of zero-shot image classification performance on 27 datasets for evaluating
model generalization capability. O-1 and M-1 separately represent OpenAI ViT-L-14/224 and
MetaCLIP ViT-H-14/224. DIVA greatly improves CLIP’s ability to perceive visual details, while
preserving its outstanding generalization capabilities.
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O-1 75.5 69.8 70.7 87.8 59.6 69.0 95.6 75.8 76.4 86.6 67.5 31.9 31.9 77.8 51.4 55.4 60.1 49.9 79.1 93.0 50.6 52.0 93.6 68.8 64.5 99.4 77.4 69.3
O-1 ✔ 75.5 69.7 70.8 87.7 59.5 69.1 95.5 76.3 76.1 86.8 67.5 31.8 31.8 77.9 51.8 55.1 60.2 49.4 78.9 93.0 50.2 53.8 93.7 67.0 64.5 99.3 77.8 69.3
M-1 78.5 72.1 69.6 91.8 68.1 73.6 98.3 86.7 81.3 89.1 74.1 48.2 34.7 87.2 68.5 69.8 55.6 54.9 80.7 92.5 62.3 56.1 94.2 71.0 72.6 99.4 77.6 74.4
M-1 ✔ 78.4 71.9 69.1 91.6 67.9 73.4 98.3 86.4 81.0 89.1 74.3 47.0 34.7 87.2 67.8 69.6 55.0 55.8 80.7 92.4 62.4 54.8 94.1 70.7 73.0 99.4 77.6 74.2

Table 5: Summary of zero-shot image-to-text and text-to-image retrieval performance on
Flickr30K (Young et al., 2014) and COCO (Lin et al., 2014) benchmark datasets for evaluating
model generalization capability. DIVA significantly enhances CLIP’s visual detail perception
ability while maintaining its excellent generalization capabilities.

Method Ours Image Size
Image-to-Text Retrieval Text-to-Image Retrieval

Flickr30K COCO Flickr30K COCO
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

OpenAI ViT-L-14 2242 85.1 97.3 99.0 56.4 79.4 86.6 65.2 87.3 92.0 36.5 61.0 71.1
OpenAI ViT-L-14 ✔ 2242 85.3 97.3 99.0 56.7 79.7 87.0 64.4 86.9 92.0 36.6 61.0 71.3
MetaCLIP ViT-H-14 2242 89.5 98.8 99.7 65.5 85.2 91.1 76.8 93.9 96.6 48.2 72.3 81.1
MetaCLIP ViT-H-14 ✔ 2242 89.2 98.7 99.7 65.5 85.0 91.1 77.3 93.8 96.7 48.4 72.4 81.1

After validation of DIVA’s ability to boost CLIP models’ fine-grained visual perception abilities, we
conduct a thorough assessment of CLIP model’s original generalization ability. The details about
all benchmarks can be found at Table 9 in Appendix. Specifically, OpenAI ViT-L-14 (Radford
et al., 2021b) and MetaCLIP ViT-H-14 (Xu et al., 2023a), which are widely used and shows the
greatest performance gains on MMVP-VLM benchmark, are adopted as our baselines. We present
their zero-shot accuracies on 27 image classification benchmarks in Table 4. It is evident that our
DIVA significantly enhances CLIP models’ representations of fine-grained visual details without
adversely affecting the generalization capabilities of the baselines to a large extent. Furthermore,
Table 5 illustrates the comparison of zero-shot text-to-image and image-to-text retrieval performance
before and after incorporating DIVA. The quantitative results reaffirm that optimizing CLIP models’
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representations with DIVA preserves the original great generalization ability. Given that these tasks
heavily rely on the CLIP visual backbone’s global semantic understanding, it is reasonable that our
generative guided CLIPs do not achieve much performance improvements on these tasks.

4.5 ABLATION STUDY

By taking OpenAI ViT-L-14/224 as the baseline model, we conduct comprehensive ablation studies
on MMVP-VLM regarding each pattern and average score, exploring the effect of condition designing,
introduced data scale and adopted diffusion models for DIVA.

Table 6: Ablation study on the condition design for diffusion models. G and L denote visual class
token and patch tokens. Compared to using semantic matching constraints from image-text pairs as
condition, taking visual features as condition for representation-level optimization is more effective.
Furthermore, an appropriate degree of visual dense recap scheme is also crucial for DIVA.

Visual Condition Textual Condition ☼ Û L � , h Ô k � Average

✘ ✘ 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
✘ Real Caption 6.7 13.3 26.7 20.0 6.7 53.3 33.3 13.3 20.0 21.5 (+2.2)

✘ Free-Source Phrase 6.7 13.3 20.0 20.0 6.7 53.3 26.7 13.3 26.7 20.7 (+1.4)

only G Empty Caption 20.0 20.0 20.0 20.0 13.3 46.7 26.7 20.0 13.3 22.2 (+2.9)

G + part_L Empty Caption 13.3 20.0 40.0 6.7 20.0 53.3 46.7 20.0 13.3 25.9 (+6.6)

G + all_L Empty Caption 6.7 20.0 40.0 6.7 6.7 40.0 40.0 6.7 13.3 20.0 (+0.7)

only G Real Caption 13.3 26.7 33.3 13.3 6.7 53.3 26.7 13.3 6.7 21.5 (+2.2)

G + part_L Real Caption 13.3 13.3 33.3 13.3 13.3 46.7 60.0 13.3 0.0 23.0 (+3.7)

G + all_L Real Caption 13.3 6.7 26.7 13.3 13.3 46.7 26.7 6.7 13.3 18.5 (-0.8)

Effect of Condition Design for Diffusion Models. We first probe into the influence of diffusion
models’ condition designing. As elaborated in Sec. 3.3, the condition design of diffusion models is
vital as it directly determines the upper limit of CLIP models’ enhanced representation quality. As
shown in Table 6, we consider two condition settings: 1) using pure text embeddings as condition,
which similar to Diffusion-TTA (Prabhudesai et al., 2023) (rows 3-4); 2) incorporating densely
recapped visual features and empty text’s embeddings as condition (rows 5-7). For these two settings,
the visual encoder is kept frozen for setting 1, while the text encoder stays frozen for setting 2.
Specifically, whether using real caption matched with images from CC-3M dataset or using free-
source phrases about image details, guiding CLIP through image-text matching constraints can
yield performance gains. However, since this manner does not originate from the representation
level, the achieved gain is not significant. In contrast, our condition design introduces appropriately
densified visual features, constructing a framework that only uses images to achieve self-supervised
optimization of CLIP representations and detaching from image-text form constraints. DIVA helps
CLIP achieve the best performance gains by introducing partial visual local features coupled with
class tokens as condition. Introducing too few or many local tokens results in visual density being too
low (row 5) or high (row 7), both of which reduce the achieved performance improvement. We also
explore whether incorporating text descriptions could further enhance DIVA’s potential. However,
both our empirical intuitive and quantitative results indicate that the answer is negative. The main
reason is that the introduction of text descriptions greatly reduces the difficulty of the reconstruction
task, allowing the CLIP visual backbone’s representations to easily accomplish the reconstruction
without needing to optimize towards capturing more detailed representations. Therefore, it directly
impairs the representation learning of the CLIP model’s visual backbone through generative feedback.

Table 7: Ablation study on the data scaling property of our DIVA with different data scales.
Training time is measured by # gpus×hours. DIVA demonstrates great potential with data scaling
properties, where the increase in data volume proportionally enlarges the performance gains.

Data Scale Training Time ☼ Û L � , h Ô k � Average

✘ ✘ 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
25% 16.8 6.7 13.3 20.0 13.3 6.7 46.7 53.3 13.3 13.3 20.7 (+1.4)

50% 32.8 13.3 13.3 40.0 13.3 6.7 26.7 53.3 20.0 13.3 22.2 (+2.9)

75% 49.6 6.7 26.7 40.0 13.3 6.7 53.3 53.3 6.7 6.7 23.7 (+4.4)

100% 66.4 13.3 20.0 40.0 6.7 20.0 53.3 46.7 20.0 13.3 25.9 (+6.6)
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Data Scaling Property. Then, we investigate the potential data scaling property of our DIVA. The
corresponding results are presented in Table 7. It is obvious that the CLIP model’s performance
on MMVP-VLM benchmark is consistently improved with more training samples. As the ratios of
introduced samples continue to rise, there’s no sign of diminishing gains in accuracy, suggesting that
our framework has great potential with continually scaled up training data. Noticeably, by integrating
100% training data, our method greatly boosts CLIP’s visual perception capability (i.e., approximately
↑7%) with 66.4 # gpus × hours. It means if 8 gpus are available, DIVA only need 8.3 hours training
time to realize considerable performance gains for CLIP models. Besides, this setting results in an
adaptation time of roughly 0.01 seconds per sample, proving the efficacy of our method.
Table 8: Ablation study on the adopted generative diffusion models in our DIVA. Training time is
measured by # gpus×hours. Our framework is not sensitive to the version of stable diffusion models,
consistently brings representation enhancement for CLIP models.

Method Diffusion Resolution Training Time ☼ Û L � , h Ô k � Average

✘ ✘ ✘ 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
DiT-XL/2 5122 80.8 20.0 13.3 20.0 6.7 6.7 20.0 20.0 6.7 6.7 13.3 (-6.0)

SD-1-4 5122 71.2 20.0 13.3 26.7 20.0 13.3 40.0 33.3 26.7 13.3 23.0 (+3.7)

SD-2-1-base 5122 66.4 13.3 20.0 40.0 6.7 20.0 53.3 46.7 20.0 13.3 25.9 (+6.6)

SD-xl-base-1.0 5122 90.4 20.0 20.0 26.7 26.7 6.7 46.7 33.3 6.7 26.7 23.7 (+4.4)

Effect of Diffusion Model Structures. At last, we explore the effect of incorporating various types
of diffusion models for generative guidance. Specifically, two types of diffusion models are employed
in our DIVA, including DiT (Peebles & Xie, 2023) and stable diffusion (SD) series (Rombach et al.,
2022a). It is clear in Table 8 that our method achieves the biggest performance gain on MMVP-
VLM by integrating SD-2-1-base. Furthermore, we observe that integrating DiT-XL/2 as generative
guidance exacerbates the perceptual ability of original CLIP model in capturing visual details. We
attribute this to DiT’s relatively poor representation quality compared to SD models. For the included
SD series, the quantitative results in Table 8 also demonstrate that DIVA is not sensitive to version of
SD models, which can consistently refine CLIP’s feature representations within our framework.

5 CONCLUSION

In this work, we focus on addressing the visual limitation of CLIP models that struggle with
distinguishing fine-grained image details. We present the first work to explore leveraging generative
feedback from text-to-image diffusion models to directly optimize CLIP models’ representations.
Specifically, by feeding dense visual features from CLIP as condition to the diffusion models and
introducing the reconstruction loss from diffusion process onto the CLIP model’s optimization, we
establish a self-supervised framework DIVA. Notably, this architecture is simple and clean, requiring
no additional plugins while demonstrating significant potential. Extensive evaluations demonstrate
that our DIVA not only substantially enhances CLIP models’ performance on the MMVP-VLM
benchmark that measures visual abilities of vision-language models, but also aids in improving the
performance of MLLMs and vision networks respectively on multimodal and visual understanding
tasks. Furthermore, experiments on 29 benchmarks evaluating generalization capabilities confirm that
our self-supervised DIVA maintains the CLIP models’ original excellent generalization capabilities.

6 LIMITATIONS AND FUTURE TOPICS

One potential limitation of this work is that the data scale for generative fine-tuning and the model
capacity of our DIVA could be scaled up further to push better CLIP representations and performance.
Moreover, this work mainly focuses on designing a simple but effective framework to enhance CLIP
models with generative diffusion process, which means although our DIVA demonstrates the newly
exploited potential of using generative diffusion models for better CLIP models’ representation
guidance, it can be integrated with finer-grained supervision scheme to further boost discriminative
model capabilities. Exploring additional modalities beyond image-text data, e.g., video and audio, is
also a promising direction for investigation. Furthermore, employing purely visual information when
scaling up DIVA framework to further constrain the semantic alignment of CLIP’s visual and text
encoders is a worthwhile avenue for exploration. Since this work is just a beginning in this direction,
it opens up a future research perspective to develop a more general and powerful framework based on
diffusion models that could enhance vision-language foundation models.
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APPENDIX

A DATASETS FOR GENERALIZATION CAPABILITY EVALUATION

Table 9: Datasets used to evaluate CLIP models’s generalization capability.

Dataset Classes Test size Evaluation Metric

ImageNet-1K (Deng et al., 2009) 1000 50,000 accuracy
ImageNet-V2 (Recht et al., 2019) 1000 10,000 accuracy
ImageNet-Adversarial (Hendrycks et al., 2021b) 1000 7,500 accuracy
ImageNet-R(endition) (Hendrycks et al., 2021a) 1000 30,000 accuracy
ImageNet-Sketch (Wang et al., 2019) 1000 50,899 accuracy
ObjectNet (Barbu et al., 2019) 1000 50,273 accuracy
CIFAR-10 (Krizhevsky et al., 2009) 10 10,000 accuracy
CIFAR-100 (Krizhevsky et al., 2009) 100 10,000 accuracy
MNIST (LeCun et al., 1998) 10 10,000 accuracy
Caltech101 (Fei-Fei et al., 2004) 101 9144 accuracy
SUN397 (Xiao et al., 2010) 397 108,754 accuracy
FGVC Aircraft (Maji et al., 2013) 100 3,333 accuracy
Country-211 (Radford et al., 2021a) 211 21,100 accuracy
Stanford Cars (Krause et al., 2013) 196 8,041 accuracy
Birdsnap (Berg et al., 2014) 500 2,195 accuracy
Describable Textures (Cimpoi et al., 2014) 47 1,880 accuracy
EuroSAT(Helber et al., 2019) 10 27,000 accuracy
Facial Emotion Recognition 2013 (Goodfellow et al., 2013) 8 3,574 accuracy
Oxford Flowers 102 (Nilsback & Zisserman, 2008) 102 6,149 accuracy
Food-101 (Bossard et al., 2014) 102 25,250 accuracy
GTSRB (Stallkamp et al., 2012) 43 12,630 accuracy
PatchCamelyon (Veeling et al., 2018) 2 32,768 accuracy
Oxford-IIIT Pets (Parkhi et al., 2012) 37 3,669 accuracy
Rendered SST2 (Radford et al., 2021a) 2 1,821 accuracy
RESISC45 (Cheng et al., 2017) 45 31,500 accuracy
STL-10 (Coates et al., 2011) 10 8000 accuracy
Pascal VOC 2007 Classification (Everingham et al., 2007) 20 4,952 accuracy
Flickr30K (Young et al., 2014) - 1000 recall
COCO (Lin et al., 2014) - 5000 recall

B PSEUDO CODE FOR DIVA PIPELINE

Algorithm 1 DIVA
1: Input: Image x, CLIP model weights θ, diffusion model weights ϕ, representation optimization

steps N , batch size B, learning rate η, optimized CLIP model weights θ∗.
2: for optimization step s ∈ (1, . . . , N) do
3: Compute current CLIP’s visual features fθ(x) as partial condition c
4: Sample timesteps {ti}Bi=1 and noises {ϵi}Bi=1

5: Loss L(θ, ϕ) = 1
N

∑B
i=1 ∥ϵϕ(

√
ᾱtix+

√
1− ᾱtiϵi, c, ti)− ϵi∥2

6: Update CLIP weights θ∗ ← θ − η∇θL(θ, ϕ)
7: end for
8: return optimized CLIP weights θ∗

C DATASETS FOR FINE-GRAINED VISUAL PERCEPTION EVALUATION

The MMVP-VLM dataset (Tong et al., 2024b) evaluates CLIP models’ sensitivity to fine-grained
visual patterns. It includes nine distinct visual patterns, each with 15 image-text pairs. In a zero-
shot setting, models must accurately match images to their corresponding textual descriptions. For
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each pattern, models align 15 image-text pairs from 30 images, with accuracy calculated as the
percentage of correct matches. A sample is correct only if the model accurately matches both the two
images and texts. Overall performance is the average accuracy across all nine patterns, reflecting the
model’s understanding of various visual patterns. The MMVP dataset (Tong et al., 2024b) evaluates
multimodal large language models’ visual comprehension. It comprises 300 test images, each with
associated questions and correct answers for visual question answering. Models are assessed in a zero-
shot setting, generating answers based on image content and comparing them to predefined correct
answers. Accuracy is calculated as the percentage of exact matches over the total questions. Overall
performance is the average accuracy across all test images, reflecting the model’s understanding of
various visual patterns.
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