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Fig. 1: Illustration of the high-level idea and generalization ability of DyWA. Given a target object’s 6D pose and single-view
object point cloud, our non-prehensile manipulation policy aims to rearrange the object without grasping. Left: Our key insight
is to enhance action learning by jointly predicting future states while adapting to dynamics from historical trajectories. (For
clarity, rendered images are used for visualization, while the actual visual input consists of partial point clouds.) Right: After
being trained in simulation, our policy achieves zero-shot sim-to-real transfer and generalizes across diverse dynamic properties,
including variations in object geometry, object physical property (e.g., slipperiness and non-uniform mass distribution), and
surface friction.

Abstract— Nonprehensile manipulation is crucial for handling
objects that are too thin, large, or otherwise ungraspable in
unstructured environments. While conventional planning-based
approaches struggle with complex contact modeling, learning-
based methods have recently emerged as a promising alternative.
However, existing learning-based approaches face two major
limitations: they heavily rely on multi-view cameras and precise
pose tracking, and they fail to generalize across varying physical
conditions, such as changes in object mass and table friction.
To address these challenges, we propose the Dynamics-Adaptive
World Action Model (DyWA), a novel framework that enhances
action learning by jointly predicting future states while adapting
to dynamics variations based on historical trajectories. By unify-
ing the modeling of geometry, state, physics, and robot actions,
DyWA enables more robust policy learning under partial observ-
ability. Compared to baselines, our method improves the success
rate by 31.5% using only single-view point cloud observations in
the simulation. Furthermore, DyWA achieves an average success
rate of 68% in real-world experiments, demonstrating its ability
to generalize across diverse object geometries, adapt to varying
table friction, and robustness in challenging scenarios such as
half-filled water bottles and slippery surfaces.

I. INTRODUCTION

Non-prehensile manipulation—such as pushing, sliding,
toppling, and flipping—greatly extends the capabilities of
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robotic manipulators beyond traditional pick-and-place op-
erations. These dexterous actions enable robots to handle
tasks where grasping is infeasible or inefficient due to object
geometry, clutter, or workspace constraints. Over the years,
significant progress has been made in this area, particularly
through planning-based approaches [10, 13, 11, 16]. While
effective, these methods typically rely on prior knowledge
of object properties, such as mass, friction coefficients, or
even complete CAD models, which limits their practicality
in real-world applications. Recently, learning-based methods
[17] have emerged as a promising alternative, improving
generalization across diverse unseen objects. In this paradigm,
policies are trained in simulation and then deployed zero-shot
in the real world. For instance, HACMan [18] leverages vision-
based reinforcement learning (RL) on object surface point
clouds to determine contact locations and motion directions for
executing action primitives. Similarly, CORN [4] employs a
teacher-student distillation framework, where a teacher policy
is first trained using RL with privileged state knowledge and
then distilled into a vision-based student policy.

However, these methods face two key limitations that hinder
robust real-world deployment. First, as noted by [5], they rely
heavily on multi-view cameras for accurate object geometry
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and on precise pose tracking modules for state estimation.
In practical settings, nevertheless, multi-view setups may be
unavailable, and tracking modules are often imperfect, lead-
ing to unreliable state information. Second, these approaches
struggle to generalize across diverse physical conditions, such
as variations in object mass and table friction, as their models
primarily focus on geometry while overlooking the underlying
dynamics.

In contrast, we argue that a generalizable non-prehensile
manipulation policy in a realistic robotic setting should not
only accommodate diverse object geometries but also adapt
to varying physical properties, all while relying solely on a
single-camera setup without the need for additional tracking
modules.

To achieve this objective, we first experiment with the
popular teacher-student policy distillation framework under
this challenging setting. Our experiments reveal that while the
RL teacher policy, when given oracle information, achieves
high performance across diverse dynamic conditions, the dis-
tilled student policy, relying on partial observations, suffers
from a significant performance drop. We then identify three
key factors contributing to this issue. First, severe partial
observability from single-view setting harms action learning
by omitting critical geometric cues. Second, the Markovian
student model inherently learns only an averaged behavior
across diverse physical variations, resulting in suboptimal per-
formance. Third, conventional distillation methods supervise
only latent features and final actions, which is insufficient
to capture the underlying dynamics necessary for effectively
learning contact-rich action.

To address the first two issues, we introduce a Dynamics
Adaptation Module, inspired by RMA [6], which encodes
historical observation-action pairs to model dynamic prop-
erties, incorporating both sufficient geometric and physical
knowledge. For the third issue, we extend conventional action
learning by enforcing the joint prediction of actions and their
corresponding future states. This reformulation transforms the
conventional action model into a world action model, intro-
ducing additional supervisory signals beyond those provided
by the teacher. This synergistic learning paradigm improves
imitation loss optimization and significantly enhances overall
success rates. Finally, to guide the world action model with
the dynamics embedding adequately, we bridge the two parts
using Feature-wise Linear Modulation (FiLM) conditioning.
In short, we propose a novel policy learning framework
that jointly predicting future states while adapting dynamics
from historical trajectories. We term our approach DyWA
(Dynamics-Adaptive World Action Model).

We conduct extensive experiments in both simulation and
the real world to evaluate the effectiveness and generalization
of our policy, comparing it against baseline methods. To
address the lack of a unified benchmark for non-prehensile
manipulation, we build a comprehensive benchmark based on
CORN, varying camera views (one or three) and the presence
of a ground-truth pose tracker. Our method demonstrates
the superiority of its model design across different settings,

with a 31.5% improvement in success rate than baselines.
Furthermore, comprehensive ablation studies validate the syn-
ergistic benefits of dynamics adaptation and world modeling
when jointly learning actions. Finally, real-world experiments
show that DyWA generalizes across object geometries at a
68% success rate and adapts to physical variations like table
friction. It also achieves robustness in handling non-uniform
mass distributions (e.g., half-filled water bottles) and slippery
objects. Additionally, we showcase its applications combined
with VLM, which assists human or grasping models with thin
or wide objects.

In summary, this work makes the following contributions:
• We propose DyWA, a novel policy learning approach

by jointly predicting future states, with adaptation of
dynamics modeling from historical trajectories.

• We improve generalizable non-prehensile manipulation,
reducing dependence on multi-camera setups and pose
tracking modules while ensuring robustness across vary-
ing physical conditions.

• We provide a comprehensive simulation benchmark for
generalizable non-prehensile manipulation. Our approach
surpasses all baseline methods, and we showcase its
effectiveness through several real-world applications.

II. METHOD

A. Task Formulation

Following HACMan and CORN, we focus on the task of
6D object rearrangement via non-prehensile manipulation. The
robot’s objective is to execute a sequence of non-prehensile
actions (i.e., pushing, flipping) to move an object on the table
to a target 6D pose. We define the goal pose G as a 6DoF
transformation relative to the object’s initial pose, assuming
both are stable on the table. The task state St at timestep
t is represented by the relative transformation between the
object’s current pose and the goal pose. The observation space
includes a point cloud Pt captured by a depth sensor, robot’s
joint positions and velocities Jt, and the end-effector pose Et

computed via forward kinematics.

B. World Action Model

a) Observation and Goal Encoding.: Our model takes
Observation and Goal Description as input, encoding dif-
ferent modalities using individual encoders. For the partial
point cloud observation, we process it using a simplified
PointNet++ [14] to obtain fP

t , striking a balance between
efficiency and capacity. The architectural details are provided
in the supplementary material. For robot proprioception, we
separately encode joint positions and velocities (fJ

t ) and the
end-effector pose (fE

t ) using shallow MLPs. For the Goal
Description, instead of relying on the unknown task state St,
we construct a visual goal representation by transforming the
initial point cloud P0 to the goal pose, yielding PG = GP0.
This goal point cloud is then encoded using the same network
as the observation point cloud encoder, ensuring consistency
in feature extraction.
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Fig. 2: Our World Action Model processes the embeddings of the current observation (partial point cloud, end-effector pose,
and joint state) and the goal point cloud (transformed from the initial partial observation) to predict the robot action and
next state. Additionally, an adaptation module encodes historical observations and actions, decoding them into the dynamics
embedding that conditions the model via FiLM. A pre-trained RL teacher policy (right) supervises both the action and adaptation
embedding using privileged full point cloud and physics parameter embeddings.

b) State-based World Modeling.: We enforce the end-to-
end model that jointly makes action decisions and predicts
their outcomes, creating a synergistic learning process that,
in turn, improves action learning. Specifically, the observation
and goal embeddings are processed through MLPs to produce
both the action At and the next task state St+1, with su-
pervision signals separately derived from the teacher policy
and simulation outcomes. Our object-centric world model
represents the environment using task state St+1 instead of
high-dimensional visual signals, enabling the policy to focus
on task-relevant dynamics. To represent rotations, we adopt
the 9D representation [7, 9], and define the world model loss
as:

Lworld = ∥Tt+1 − T̂t+1∥2 + |Rt+1 − R̂t+1| (1)

where Tt+1 ∈ R3 and Rt+1 ∈ SO(3) are the predicted
translation and rotation, while T̂t+1 ∈ R3 and R̂t+1 ∈ SO(3)
denote the ground-truth transformation obtained from simula-
tion outcomes after action execution. Additionally, we employ
an imitation loss, defined as the L2 loss between the predicted
action and the teacher action:

Limitation = ∥As
t −At

t∥2 (2)

C. Dynamics Adaptation

To enhance the world model’s ability to adapt to diverse
dynamics, we extract abstract representations of environmental
variations from historical trajectories. Our approach distills
teacher knowledge regarding full point cloud and physical pa-
rameter into an adaptation embedding, which is subsequently
decoded into the dynamics embedding. This embedding then
conditions the world action model through a learnable feature-
wise linear modulation mechanism.

a) Adaptation Embedding.: we design an adaptation
module that processes sequential observation-action pairs
to compensate for missing geometry and physics knowl-
edge in the current partial observation. Specifically, at each

timestep, we concatenate the observation embeddings fO
t =

{fP
t , fJ

t , f
E
t } with the previous action embedding fA

t−1, where
the action embedding is obtained via a shallow MLP. We
construct an input sequence of L past observation-action tuples
which is then processed by a 1D CNN-based adaptation
module, for extracting a compact adaptation embedding:

zt = Embed({concat(fO
t−i−1, f

A
t−i−2)}Li=1) (3)

To ensure meaningful representation learning, we supervise the
adaptation embedding using the concatenation of the full point
cloud embedding and physics embedding from the teacher
encoder.

Ladapt = ∥zGeo,Phy
t − concat(fGeo

t , fPhy
t )∥2 (4)

b) Dynamics Conditioning.: Once the adaptation embed-
ding is obtained, we decode it into the dynamics embedding,
which serves as a conditioning input for the world action
model via Feature-wise Linear Modulation (FiLM). FiLM [12]
dynamically modulates the intermediate feature representa-
tions of the world action model by applying learned scaling
and shifting transformations, allowing the model to adapt to
varying dynamics. Each FiLM block consists of two shallow
MLPs which take the dynamics embedding as input and output
the modulation parameters γ and β for each latent feature f :

FiLM(f |γ, β) = γf + β (5)

We integrate FiLM blocks densely in the early layers of the
world action model while leaving the final layers uncon-
ditioned. The technique that has proven highly effective in
integrating language guidance into vision encoders [3, 1]. In
our case, this mechanism allows the dynamics embedding to
selectively influence feature representations, enabling adaptive
adjustments to the model’s behavior based on the underlying
dynamics.



Methods Action Type Known State (3 view) Unknown State (3 view) Unknown State (1 view)

Seen Unseen Seen Unseen Seen Unseen

HACMan [18] Primitive 3.8(42.2) 5.7(39.4) 3.0(23.6) 4.1(26.5) 2.1(19.2)

CORN [4] Closed-loop 86.8 79.9 46.0 47.8 29.0 29.8
CORN (PN++) Closed-loop 87.3 84.3 76.1 75.7 50.7 49.4
Ours Closed-loop 87.9 85.0 85.8 82.3 82.2 75.0

TABLE I: Quantitative results measured by success rate in the simulation benchmark. For HACMan, we also reports its
performance given 3 DoF planar goal(i.e.[∆x,∆y,∆θ]) in parentheses. Note that the third track with unknown state and single
view camera is the most realistic and challenging track for fully comparison of each methods.

D. Action Space with Variable Impedance

To enable adaptive force interaction between the robot
and object, we employ variable impedance control as the
low-level action execution mechanism. This allows the robot
to dynamically regulate the interaction force based on task
demands. Specifically, the action space of our policy consists
of the subgoal residual of the end effector, ∆Tee ∈ SE(3),
along with joint-space impedance parameters. The joint-space
impedance is parameterized by positional gains (P ∈ R7)
and damping factors (ρ ∈ R7), where the velocity gains are
computed as D = ρ

√
P . To execute the commanded end-

effector motion, we first solve for the desired joint position
using inverse kinematics with the damped least squares method
[2]:

qd = qt + IK(∆Tee) (6)

Then, the desired joint position qd and impedance parameters
K,D are applied to a joint-space impedance controller to
generate impedance-aware control commands for the robot.
We utilize the widely adopted Polymetis API [8] for imple-
mentation.

E. Training Protocol

The overall learning objective is formulated as the sum of
the imitation loss, world model loss, and adaptation loss:

L = Limitation + Lworld + Ladapt (7)

We begin by training the teacher policy for 200K iterations
in simulation using PPO. Subsequently, we employ DAgger
to train the student policy under teacher supervision for
500K iterations. To enhance robustness and generalization, we
introduce domain randomization during training by varying
the object’s mass, scale, and friction, as well as the restitution
properties of the object, table, and robot gripper. The object
scale is adjusted such that its largest diameter remains within a
predefined range. To further improve sim-to-real transfer, we
inject small perturbations into the torque commands, object
point cloud, and goal pose when training the student policy.

III. EXPERIMENTS

A. Benchmarking Tabletop Non-prehensile Rearrangement in
Simulation

We evaluate our method alongside several baselines within
a unified simulation environment to enable a fair comparison
of their performance. Although prior works [4, 18] have

Methods W.M. D.A. FiLM Seen Unseen

DAgger ✘ ✘ ✘ 59.9 57.5
World Model ! ✘ ✘ 61.6 59.4
RMA [6] ✘ ! ✘ 65.6 57.9
Ours w/o W.M. ✘ ! ! 70.0 63.7
Ours w/o FiLM ! ! ✘ 73.3 59.4
Ours ! ! ! 82.2 75.0

TABLE II: Ablation study on the most challenging evaluation
track, i.e., unknown state with single-view observation. W.M.
means World Model and D.A. means Dynamics Adaptation.

Fig. 3: Loss curves during the distillation process. We
adopt DAgger which starts with teacher action for execution
and gradually adds the weights of student action so that the
initial loss declines rapidly. Left: Comparison of imitation loss
between using only Dynamics Adaptation and incorporating
the World Model. Right: Comparison of World Model loss
between using only the World Model and integrating Dynam-
ics Adaptation.

developed their own simulation environments for training and
validating non-prehensile manipulation policies, there remains
a lack of a standardized benchmark for evaluating both existing
and future approaches. To bridge this gap, we establish a
comprehensive benchmark based on the CORN setting. Specif-
ically, we adopt the IsaacGym simulation environment and
utilize 323-object asset from DexGraspNet [15] for training.
Additionally, we enrich the task setting by introducing an
unseen object test set, consisting of 10 geometrically diverse
objects, each scaled to five different sizes, resulting in a total
of 50 evaluation objects. Furthermore, we introduce two addi-
tional perception dimensions: (i) single-view vs. multi-view
(three-camera) observations and (ii) whether known object
poses for constructing the task state St. Both the training
and testing environments are fully randomized w.r.t.dynamics
properties including mass, friction, and restitution.



Methods Normal Slippery Non-uniform Mass Avg.
Mug Bulldozer Card Book Dinosaur Chips Can Switch YCB-Bottle Half-full Bottle Coffee jar

CORN w tracking 1/5 3/5 4/5 4/5 2/5 0/5 2/5 0/5 0/5 2/5 18/50 (36%)
Ours 3/5 4/5 4/5 4/5 3/5 2/5 4/5 3/5 4/5 3/5 34/50 (68%)

TABLE III: Quantitative results in the real world.

Methods µ1 µ2 µ3 µ4

S.R. ↑ Avg. Time ↓ S.R. ↑ Avg. Time ↓ S.R. ↑ Avg. Time ↓ S.R. ↑ Avg. Time ↓

Ours w/o D.A. 3/5 65 s 3/5 81 s 4/5 96 s 3/5 124 s
Ours 4/5 45 s 4/5 50 s 4/5 49 s 4/5 51 s

TABLE IV: Experiments on different surface frition, with progressive friction levels, µ1<µ2<µ3<µ4.

a) Task Setup.: At the beginning of each episode, we
randomly place the object in a stable pose on the table. The
robot arm is then initialized at a joint configuration uniformly
sampled within predefined joint bounds, positioned slightly
above the workspace to prevent unintended collisions with
the table or object. Next, we sample a random 6D stable
goal pose on the table, ensuring it is at least 0.1m away
from the initial pose to prevent immediate success upon
initialization. To guarantee valid initial and goal poses for
each object, we precompute a set of stable poses, as detailed
in the supplementary. An episode is considered successful if
the object’s final pose is within 0.05m and 0.1 radians of the
target pose.

b) Baselines.: We evaluate our approach against two
state-of-the-art baselines: HACMan and CORN, which rep-
resent primitive-based and closed-loop methods, respectively.
Since HACMan was originally implemented in the MuJoCo
simulator, we re-implemented it within our benchmark for
a fair comparison. CORN shares the same simulation en-
vironment as our method, allowing us to train and evalu-
ate it directly with minimal modifications. To ensure a fair
comparison, we further enhanced CORN by replacing its
shallow MLP-based point cloud encoder with the same vision
backbone as ours. Additionally, for settings where the current
object pose is unknown, we provided all methods with the
same goal point cloud representation to maintain consistency.

c) Results.: As shown in Table I, our method consistently
outperforms all baselines across all three evaluation tracks.
In particular, we achieve a significant performance gain over
previous approaches, with at least a 31.5% improvement in
success rate. Notably, the performance gap is most pronounced
in challenging scenarios involving unknown states and single-
view observations, where our method’s dynamics modeling
capability plays a crucial role. Compared to HACMan, our
approach benefits from its closed-loop execution and variable
impedance control, enabling more robust dexterous manipu-
lation. While HACMan relies on pre-defined motion primi-
tives, its adaptability to complex geometries and variations in
physics are limited. Moveover, our method surpasses CORN
due to our adaptation mechanism refines the world model
based on historical trajectories, allowing the policy to adjust

effectively to variations in object properties such as mass,
friction, and scale. These results highlight the effectiveness of
our strong generalization capabilities in diverse rearrangement
tasks.

B. Ablation Study

We conduct ablation studies on the most challenging eval-
uation track, i.e., unknown state with single-view observation.
Our goal is to systematically analyze the contribution of each
key module to the overall performance.

a) Synergy between Next State Prediction and Action
Learning.: To analyze the optimization process, we visualize
the loss curve during training and compare the approach that
uses only dynamics adaptation (i.e., RMA) with that adding
World Modeling. Our results show that during the distillation,
simultaneous learning of the next state improves action cov-
erage, confirming the synergy between world modeling and
action learning. Additionally, we discuss the integration of the
world model in the RL teacher policy, which is elaborated in
the supplementary material.

b) Indivisibility of Dynamics Adaptation and World Mod-
eling.: We investigate the individual and combined effects of
dynamics adaptation and world modeling. Our results (Table
II) show that using only the world model or dynamics adapta-
tion, i.e.RMA, provides only marginal improvements over the
naive DAgger baseline, with success rates increasing by just
1.7% and 5.7%, respectively. However, when both modules
are used together, the performance jumps significantly from
59.9% to 73.3%. This improvement can be attributed to the
complementary nature of these components. Without dynamics
adaptation, the world model lacks sufficient information to
reason about the dynamic effects of interaction. Conversely,
using only dynamics adaptation also provides limited benefits
due to the absence of a sufficiently structured learning target.
These findings highlight the indivisibility of world modeling
and dynamics adaptation, demonstrating that their combination
is a non-trivial yet highly effective design choice.

C. Real-World Experiments

a) Real-World Setup: Our experimental setup is illus-
trated in the supplementary. We use a Franka robot arm for
action execution and a RealSense D435 camera positioned



Fig. 4: Qualatative Results in the real world. The goal pose is shown transparently.

Fig. 5: Our policy helps grasping a thin card and broad cracker
box.

at a side view to capture RGB-D images. We evaluate our
approach on 10 unseen real-world objects, including both
slippery objects and those with non-uniform mass distribution
such as a half-filled bottle. Before each episode, we first
place the object at the target goal pose and record its point
cloud. Then, we reposition the object in a random stable pose
and allow our policy to execute the manipulation task. Upon
completion, we use Iterative Closest Point (ICP) to measure
the pose error between the final object position and the
recorded target pose. For symmetric objects where direct ICP
alignment is ambiguous, we relax the success criteria along
the symmetric axes and compute errors only in translation and
relevant rotational components.

b) Generalization across Diverse Objects.: We evaluate
our model’s generalization ability by comparing it with CORN,
which relies on an external tracking module for object pose es-
timation in real-world experiments. As shown in Figure 4 and
Table III, our method achieves accurate manipulation across
diverse objects without external pose tracking, significantly
outperforming CORN with an average success rate of 68%
versus 36%. CORN struggles with precise execution due to
occlusions in single-view partial point clouds and inaccura-
cies in real-world pose estimation. Additionally, our model
demonstrates robust performance on slippery objects and those
with non-uniform mass, where CORN fails. We validate the

generalization ability of our model and compare our method
against CORN, which depends on an external tracking module
to estimate object poses in real-world experiments.

c) Robustness to Surface Friction Variations.: To as-
sess the effectiveness of dynamics adaptation, we conduct
experiments on surfaces with varying friction coefficients. We
select four tablecloths (Figure 1) with progressive friction
levels, i.e.µ1, µ2, µ3, µ4 and use the bulldozer toy as the test
object. Additionally, we report the average execution time
for successful episodes. As shown in Table IV, the model
without dynamics adaptation exhibits significant performance
degradation when interacting with surfaces of different friction
levels, leading to erratic execution times. In contrast, our
policy with dynamics adaptation maintains consistent success
rates while ensuring stable execution times across all surface
conditions. This highlights the robustness of our approach in
handling diverse real-world contact dynamics.

D. Applications

By leveraging a VLM-specified goal pose and applying
our non-prehensile manipulation as a pre-grasping step, we
can reorient these objects into grasp-friendly configurations,
significantly improving grasp success rate.

IV. CONCLUSION, LIMITATIONS, AND FUTURE WORKS

In this work, we present a novel policy learning approach
that jointly predicts future states while adapting dynamics from
historical trajectories. Our model enhances generalizable non-
prehensile manipulation by reducing reliance on multi-camera
setups and pose tracking modules while maintaining robust-
ness across diverse physical conditions. Extensive simulation
and real-world experiments validate the effectiveness of our
approach. However, our method also has certain limitations
since it relies solely on point clouds as the visual input
modality. It struggles with symmetric objects due to geometric
ambiguity, and faces challenges with transparent and specular
objects, where raw depth is imcomplete. A promising direction
is to incorporate additional appearance information to provide
richer visual cues.
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