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ABSTRACT

Why can deep learning predictors trained on Whole Slide Images fail to general-
ize? It is a common theme in Computational Pathology to see a high performing
model developed in a research setting experience a large drop in performance
when it is deployed to a new clinical environment. One of the major reasons for
this is the batch effect that is introduced during the creation of Whole Slide Images
resulting in a domain shift. Computational Pathology pipelines try to reduce this
effect via stain normalization techniques. However, in this paper, we provide em-
pirical evidence that stain normalization methods do not result in any significant
reduction of the batch effect. This is done via clustering analysis of the dataset
as well as training weakly-supervised models to predict source sites. This study
aims to open up avenues for further research for effective handling of batch ef-
fects for improving trustworthiness and generalization of predictive modelling in
the Computational Pathology domain.

1 INTRODUCTION

Computational Pathology (CPath) is an emerging field which aims to leverage the ever increasing
amount of health data to solve complex and clinically relevant problems through the application of
machine learning (Abels et al.,2019). Areas of interest include, but are not limited to, predicting di-
agnostic abnormalities associated with cancer,nuclei instance segmentation and classification (Gra-
ham et al., 2021), cellular composition (Dawood et al.| [2021]), gene mutations and expression lev-
els (Coudray et al.|[2018; | Dawood et al.,|2022), as well as survival prediction of patients (Chen et al.,
2022a; | Mackenzie et al., 2022). In the recent years, there has been a growing popularity for the use
of deep learning methods in CPath which utilise digitised slide tissue images also known as Whole
Slide Images (WSIs) (Yao et al.,[2020; [Chen et al.| 2022b; [Lu et al.}2022)). Such models have been
very successful with many studies reporting a multitude of very high performance metrics on a wide
range of datasets (Sokolova et al.,|2006). Nevertheless, when some of these models are applied in a
clinical setting they can fail to generalize (Foote et al.|[2022).

In this work we argue that this is partially a consequence of reliance on stain normalization methods
in the WSI pre-processing pipeline which are not able to truly remove the variability present in
images sourced from different hospitals or laboratories. This variability occurs in the creation of
these WSIs. As cells are transparent, it is necessary to stain tissue samples before they are digitised
or observed under a microscope to effectively interpret them visually. The staining reagent and
process as well as the scanner used can vary across source sites which often results in inconsistent
staining characteristics across WSIs. This site-specific signature results in a batch effect which can
be exploited by a deep learning model to produce inflated accuracy values but poor generalization in
cases where the stain characteristics are different. Stain normalization approaches aim to remove this
variability by reducing colour and intensity variations present in these images by normalizing them
to a standard or base image. However, as stain normalization usually works in a low-dimensional
space, we hypothesise that it fails to remove any higher order site-specific signatures which can still
lead to exploitation of the batch effect and generalization failure under domain shift. This means
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Figure 1: The left of the figure shows a visualisation of four WSIs originating from different source
sites to highlight the staining variations found across source sites. For each WSI we show an example
non-stain normalized patch and also a corresponding Macenko stain-normalized version to visualise
how stain normalization appears to remove staining variation. The right of the figure, ROC cures
are displayed for predicting tissue source site of WSIs using both non-stain normalized and stain-
normalized images. The ROC curves are generated using an SVM that utilizes a pre-computed
Maximum Mean Discrepancy kernel computed with ShuffleNet features (Keller et al.| [2023D).

that stain normalized images look normalized to the human eye when in reality hidden factors such
as those that result from different laboratory protocols are still present. These factors can skew the
learning process acting as confounding variables which could lead to an overestimation of a model’s
true performance on a given task and subsequently be the cause of the poor generalisation in clinical
deployment.

The technical contribution of this paper is the demonstration of empirical evidence of the presence of
these hidden factors in a dataset regardless of what stain normalization technique is applied to it. This
is achieved through a carefully designed experiment using different stain normalization schemes
as well as two fundamentally different types of predictors. This aspect of the design of CPath
pipelines is often ignored and, to the best of our knowledge, has not been previously explored with
a carefully controlled experiment. The findings in this paper have significant bearing on improving
trustworthiness and generalization of machine learning applications in the rapidly emerging area of
CPath.

2 MATERIALS AND METHODS

2.1 EXPERIMENT DESIGN STRATEGY

To illustrate that stain normalization methods are unable to effectively remove center specific batch
effects, we designed a simple experiment in which we predict the laboratory of origin (centre) of
a WSI both before and after stain normalization. We first predict the centre of origin of a WSI by
modelling this task as a weakly-supervised binary classification problem with the target label being
the centre of origin. We then develop a separate weakly-supervised predictor to predict the centre
of origin with stain normalized WSIs as input. The fundamental principle behind this experiment is
that if stain normalization is an effective strategy to remove any identifiable signatures of the centre
of origin or the underlying batch effect, we should get substantial decrease in accuracy of predicting
the center after stain normalization. For this purpose, we use multi-centric breast cancer WSIs from
the Cancer Genome Atlas (TCGA) 2012). To show that the results of our analysis are not
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specific to a certain type of stain normalization, we utilize two different yet commonly used stain
normalization schemes (Reinhard (Reinhard et al.,2001) and Macenko (Macenko et al.,[2009)). In
order to marginalize the effect of the choice of the weakly supervised method being used for the
prediction of the centre of origin, we use two fundamentally different types of predictors (CLAM
(Lu et al.L[2021) and MMD-Kernels (Keller et al.,2023a)). Below each component of the experiment
design is explained in further detail.

2.2 DATASET

1,113 publicly available WSIs of Formalin-Fixed paraffin-Embedded (FFPE) Hematoxylin and
Eosin (H&E) stained tissue sections of 1084 breast carcinoma patients were collected from The
Cancer Genome Atlas (TCGA-BRCA) (Hoadley et al.l 2018} 13 et al 2012)). For some patients
multiple WSIs were available and thus only the ones with best visual quality were used. Addition-
ally, WSIs with missing baseline resolution information were ignored. After filtering 1,051 WSIs
remain which are used for analysis. These WSIs were belonging to 49 sources sites.

2.3  PRE-PROCESSING OF WSISs

Quality of WSIs can be negatively affected by artefacts (tissue folds, pen-marking, etc) initiating
from histology laboratories. To ensure that any models do not exploit these tissue artefacts the tissue
regions of WSIs are segmented using a tissue segmentation method. The tissue segmentation means
that only information tissue regions remain and artefacts are removed. Since, an entire WSI at full
resolution can be very large (100,000 x 100, 000 pixels) and cannot be fitted into a GPU memory
each WSI is tiled into patches of size 512 x 512 at a spatial resolution of 0.50 microns-per-pixel
(MPP). Tiles that capture less than 40% of informative tissue area (mean pixel intensity greater than
200) are filtered out.

2.4 TISSUE STAINING AND STAIN NORMALIZATION METHODS

Histology images are acquired by staining a tissue specimen with a dye that shows variable affinities
to different tissue components. In case of routine Hematoxylin and Eosin (H&E) staining, nuclei
are stained with Hematoxylin and are highlighted in bluish color, while cytoplasm and extracellular
matrix are stained with Eosin and can be seen in pinkish color (Fischer et al., [2008). However,
due to variations in staining protocols, characteristics of the dye, duration for which the dyes are
applied, tissue type and thickness, scanner characteristics and a number of other factors can impact
the stain characteristics of the tissue resulting in center-specific confounding factors which are not
at all related to any underlying pathology. These constitute a batch effect that can leave a centre-
specific signature in the tissue image and affect the generalization performance of any machine
learning method.

One way of addressing such variations is stain normalization using methods such as the ones pro-
posed by Reinhard (Reinhard et al., 2001) and Macenko (Macenko et al., 2009). These stain
normalization methods map the color style of source image to target images (Khan et al., [2014)
while preserving cellular and morphometric information contained in the images.

2.5 SOURCE SITE PREDICTION

We hypothesise that majority of stain normalization methods try to make the images look similar
but even after stain-normalization the histology laboratory from which tissue specimen is originat-
ing can still be predicted. More specifically, we argue that the use of stain normalization methods
are not likely to make CPath algorithms generalize in case of domain-shift as these methods can
not completely eliminate stain-specific information of the source site. To illustrate this, we used
stain-normalized and non stain-normalized images and tried to predict the tissue source site as target
variable. The hypothesis is that, if stain-normalization is removing the tissue site specific informa-
tion then the tissue source site should be significantly less predictable from the stain-normalized
images compared to non-stain-normalized images.

We demonstrated the predictability of tissue source site from stain-normalized and non-stain nor-
malized images using a multiple instance learning method and also a kernel based method. As
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a multiple instance learning method, we used Clustering-constrained Attention Multiple Instance
Learning (CLAM) which is a weakly-supervised method that has shown promising performance
in several computational pathology tasks (Lu et al., [2021). CLAM considers each WSI as a bag
of patches and then used attention-based pooling function for obtaining slide-level representation
from patch-level representation. As a second predictive model, we used a recently published sup-
port vector machine (SVM) based classification method that constructs a whole slide level kernel
matrix using Maximum Mean Discrepancy (MMD) over ShuffleNet derived feature representations
of patches in WSIs (Keller et al.,|2023a). In recent work, this method has been shown to have strong
predictive power for TP53 mutation prediction and survival analysis from WSIs. Note that the two
methods have fundamentally different principles of operation so that any subsequent findings can be
understood in a broad context independent of the specific nature of the predictive model being used.
As it is not the goal of this work to present these specific predictors, the interested reader is referred
to their original publications for further details.

We evaluated the performance of both these methods in predicting tissue source site using both
stain-normalized and non-stain normalized data. The experiments were performed using stratified
five fold cross validation. For each source site we train a separate model using one-vs-rest approach,
in which all tissue images of patients originating from a given source site L are labelled as 1, while
the rest are labelled as 0. We then train the predictive model for predicting the source site of each
WSI. In order to make meaningful comparisons, we restricted our analysis to prediction of 8 sources
sites each of which has 50 or more images each.

The hyper-parameters were selected by utilising a validation set (30% of each train split fold). Av-
erage Area under the Receiver Operating Characteristic curve (AUC-ROC) across the 5 folds along
with its standard deviation was used as the performance metric.

2.6  SIMILARITY KERNEL AND CLUSTERING ANALYSIS

In order to further understand the implication of stain normalization at a dataset level, we performed
hierarchical clustering over the WSI MMD kernel matrix for the whole dataset. The matrix shows
the degree of pairwise similarity between WSIs. We show the kernel matrices both before and
after stain normalization together with clustering. If the stain normalization had been effective at
removing any information about the center, we would expect that any clustering done after stain
normalization will not be possible to group WSIs from the same center into the same cluster. This
serves as an additional un-supervised analysis of whether clustering is able to remove center-specific
information or not.

3 RESULTS AND DISCUSSION

3.1 EFFECT OF STAIN NORMALIZATION

Figure 1 shows the visual results of applying stain normalization to a patch belonging to 4 example
WSIs each originating from a different centre. From the figure it can be clearly seen that patches
belonging to different centers look the same after normalization hence to the human eye it would
seem that we have removed the batch effect. However looking at the ROC curves we can see that
both before and after stain normalization MMD kernels can near perfectly distinguish the WSI ori-
gin. This supports our hypothesis that stain-normalization methods are not removing the source site
information. Even if after stain normalization the WSIs look the same the underlying footprint is
still there. If stain normalization methods have truly removed source site information, then we will
be seeing AUC-ROC of 0.5 (random) but this is not the case. From this analysis we can say that, the
analyzed stain-normalization methods are less likely to make models robust against domain-shift.

3.2 PREDICTIVE POWER OVER ORIGINAL DATA

Tables 1-2 show the results of prediction of the source center from original WSIs, i.e., without any
stain normalization using two different predictive pipelines (CLAM in Table-1 and MMD Kernel in
Table-2). These results show that it is possible to predict the source of a given WSI with very high
predictive power as measured using AUC-ROC for both methods. This shows that, as expected,
there is a significant signature in a WSI specific to the laboratory of origin.
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Figure 2: The visualisation of the kernels obtained by computing the MMD kernel on whole TCGA
Breast cancer cohort. a) Show the pairwise similarity of WSI using non-stain normalized data, while
b) and c) show the kernel matrices for Reinhard and Macenko stain normalized WSIs respectively.
Each kernel also has an associated dendrogram as well as a visualisation of some of the patches from
each of its clusters.

3.3 PREDICTIVE POWER OVER STAIN NORMALIZED DATA

Tables 1-2 show the results of prediction of the source center from stain normalized WSIs, i.e., with
stain normalization using two different predictive pipelines (CLAM in Table-1 and MMD Kernel
in Table-2) and two different stain normalization methods (Reinhard and Macenko stain normaliza-
tion). These results show that it is possible to predict the source of a given WSI with very high
predictive power as measured using AUC-ROC using both predictive pipelines even after stain nor-
malization. There is effectively very little change in predictive power as a consequence of stain
normalization. This shows that stain normalization alone is not able to remove the site-specific
information contained in a WSI and the batch effect still exists even after stain adjustment.

3.4 CLUSTERING ANALYSIS

The hierarchically-clustered heatmaps along with their respective dendrograms for the kernels are
shown in Figure 2] From this figure one can see that both non-normalized and stain normalized
WSISs, have a large proportion of brightly coloured regions in their heatmaps indicating that there
are many slides that share similar characteristics. The dataset has been split into 4 main clusters as
can be seen on the dendrograms where slides within the same cluster seem to regularly originate
from the same laboratory, for example the orange cluster contains many slides from laboratory E2
(Roswell Park). This indicates to us that some hidden site identification markers are likely to still be
present even after normalization.

3.5 CODE AND DATA AVAILABILITY

The code and data used in this paper are publicly at :https://github.com/pkeller00/Src-Site-Pred.
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Table 1: Comparison of performance of CLAM trained for source site prediction for various stain
normalization protocols. Here + indicates WSIs that originated from the chosen site and — indicates
WSIs from one of the remaining source sites.

Source (+.) Unnormalized Reinhard Macenko
Site ” AUC-ROC £ std AUC-ROC +std AUC-ROC = std
University of

Pittsburgh (BH) (142,903) 0.84 + 0.04 0.82 +0.06 0.86 4+ 0.03
Walter Reed (A2) (100,945) 0.82 +0.10 0.73 +0.07 0.87 & 0.07
Roswell Park (E2) (90,955) 0.96 + 0.01 0.92 +0.02 0.96 4+ 0.01
Indivumed (A8) (74,971) 1.00 4+ 0.00 0.99 4+ 0.00 1.00 4+ 0.00
Greater Poland

Cancer Center (DS) (78,967) 0.97 +0.03 0.94 4+ 0.04 0.97 +0.02
Mayo (AR) (69,976) 0.98 + 0.02 0.95 + 0.04 0.97 +0.03
Asterand (E9) (62,983) 0.98 + 0.02 0.98 4+ 0.01 0.96 4+ 0.04
Duke (B6) (50,995) 0.97 +0.03 0.92 +0.04 0.94 4+ 0.06
Average AUC-ROC 0.94 + 0.08 0.94 £+ 0.06 0.91 £0.09

Table 2: Comparison of performance of an SVM with a precomputed MMD kernel trained for source
site prediction for various stain normalization protocols. Here + indicates WSIs that originated from
the chosen site and — indicates WSIs from one of the remaining source sites.

Source Unnormalized Reinhard Macenko

Site () AUC-ROC +std AUC-ROC +std AUC-ROC =+ std
University of

Pittabargs, (BHD) (142,903) 095 + 0.02 0.93 + 0.02 0.95 + 0.01
Walter Reed (A2)  (100.945)  0.954 0.03 0.88 + 0.04 0.96 + 0.02
Roswell Park (E2)  (90.955) 0.98 + 0.01 0.98 + 0.02 0.99 + 0.01
Indivumed (A8) (74.971) 1.0 = 0.00 1.0 £ 0.00 1.0 £ 0.00
Greater Poland

Canser Conter (pg) (18.967) 0.99 + 0.00 0.99 + 0.01 0.99 =+ 0.00
Mayo (AR) (69.976) 0.99 + 0.00 0.98 + 0.01 0.99 + 0.01
Asterand (E9) (62.983) 0.98 + 0.01 0.98 + 0.01 0.98 + 0.02
Duke (B6) (50.995) 0.98 + 0.02 0.97 + 0.01 0.98 + 0.01
Average AUC-ROC 0.98 + 0.02 0.96 + 0.04 0.98 + 0.02

4 CONCLUSIONS AND FUTURE WORK

We conclude that tissue source sites leave identifiable markers that can be picked by machine learn-
ing models. We show that this may be one of the reasons why many models often result in poor
generalization when used outside a research setting thus we urge computational pathologists to keep
this in mind when designing models and datasets. In the future we would like to verify our results
on a larger database as well as explore what exactly are the most prominent factors that make a
source site so easily distinguishable and how we can develop strategies to counter such confounding
factors. On top of this we would like to see if there is a performance change when a model takes
into account these source site signatures during training.
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