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Abstract

Context-aware emotion recognition often relies on heterogeneous cues, but
many state-of-the-art systems still hinge on engineered signals (e.g., pose
landmarks or temporal cues), limiting applicability. Meanwhile, VLM-
based emotion recognition remains relatively under-explored in current re-
search. Our work targets this gap with a parameter-efficient, interpretable
design. To mitigate class imbalance and make view–emotion relations ex-
plicit, we first curate an LLM-assisted QA dataset. In Stage 1, the VLM
is adapted into a multi-view emotion encoder that extracts fine-grained
features from scene, body, and face using shared, parameter-efficient com-
ponents with view-specific pathways, enabling interpretable evidence dis-
entanglement from a single image. In Stage 2, the VLM remains frozen
and its scene/body/face descriptors are fused by a lightweight head. This
preserves VLM knowledge (avoiding overfitting and label coupling) while
yielding independent, well-calibrated scores that support flexible thresh-
olds, plug-and-play label sets, and strong sample efficiency. Using only
single-image inputs, our pipeline attains 37.88 mAP on EMOTIC, 88.82%
top-1 accuracy on CAER-S, and higher recall/F1 on HECO than prior
VLM-based baselines, while offering clear per-view interpretability. Code,
prompts, and data splits will be released.

1 Introduction

Understanding human emotions through visual cues is a central challenge in computer vi-
sion with significant implications for human-computer interaction, robotics, and intelligent
surveillance (e.g., Cowie et al., 2001; Ziemke, 2008). While early research predominantly
focused on isolated facial expressions (e.g., Ntizikira et al., 2025)., it is now widely rec-
ognized that humans interpret emotions holistically, integrating crucial contextual signals
from body language, gestures, and the surrounding environment (e.g., Jiang et al., 2020;
Dhall et al., 2012).
Many prior works have attempted to integrate this visual context, from leveraging multi-
modal features (e.g., Barrett et al., 2011) to employing graph-based methods for modeling
object relations (e.g., Liu et al., 2023a). Despite these advances, recognizing complex
or ambiguous emotions remains a formidable challenge. The advent of Vision-Language
Models (VLMs) offers a promising direction, leveraging their powerful semantic reasoning
capabilities (e.g., Kosti et al., 2017). However, directly fine-tuning these generative models
for emotion recognition presents significant hurdles: they often lack the structured, proba-
bilistic outputs required by downstream systems and suffer from prompt sensitivity, which
hinders their reliable deployment. This is because autoregressive models (such as VLMs or
LLMs) generate labels sequentially, conditioning each step on the previous outputs, which
is problematic for tasks that require independent per-label confidence scores.
To bridge this critical gap, we propose a two-stage framework that synergistically combines
the rich semantic understanding of VLMs with the robust, controllable nature of dedicated
classifiers. In the first stage, we instruction-tune a pre-trained VLM to specialize in emotion-
centric reasoning, guiding it to focus on the interplay between facial expressions, body
language, and the scene. This process transforms the generic VLM into an expert feature
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extractor for emotion. In the second stage, to overcome the limitations of generative outputs,
we freeze the VLM, extract its now-specialized visual-language representations, and train a
lightweight classifier that yields calibrated, probabilistic scores for each emotion category.
In summary, our main contributions are:

• We propose a two-stage framework that repurposes a generative VLM into a reli-
able feature extractor, harnessing its semantic power while ensuring controllable,
probabilistic outputs suitable for real-world applications.

• We demonstrate that targeted instruction tuning can effectively align a VLM’s
representations with nuanced emotional semantics, enhancing its ability to decipher
complex contextual cues.

• Our method achieves competitive performance using only three foundational visual
inputs, demonstrating that sophisticated feature engineering can be supplanted by
effective VLM adaptation.

2 Related Work

2.1 Context-Aware Emotion Recognition

Traditional emotion recognition primarily focuses on facial expressions, while recent stud-
ies emphasize contextual cues such as background, human-object interaction (HOI), and
human-human interaction (HHI). Early works combined body and scene features Kosti et al.
(2017); Mittal et al. (2020); Lee et al. (2019); Li et al. (2021), while later studies introduced
object-level context modeling with attention mechanisms Yang et al. (2022); Jiang et al.
(2020); Li et al. (2021) and inter-agent reasoning Mittal et al. (2020); Hoang et al. (2021).
These efforts significantly improved recognition accuracy, though often at the cost of higher
model complexity and reduced practicality.

2.2 Vision-Language Models

VLMs jointly learn from images and text, with early works such as CLIP Radford et al.
(2021) and BLIP Li et al. (2022) establishing strong multimodal representations. Recent
models (InstructBLIP, LLaVA, Qwen-VL, GPT-4V, Gemini, InternVL) further integrate
VLMs with LLMs, leveraging projectors or Q-Former modules for multimodal reasoning
and instruction following. In emotion recognition, EmotionCLIP directly maps images to
emotion-related text Zhang et al. (2023), while other approaches use captioning pipelines
or few-shot CoT reasoning with large VLMs Lei et al. (2024). These works highlight VLMs
as promising tools for context-aware emotion recognition.

2.3 Instruction Tuning for Multimodal Models

Instruction tuning enhances model generalization by aligning outputs with natural language
prompts. In NLP, FLANWei et al. (2021) demonstrated strong zero-shot performance across
tasks. Extending to multimodal settings, InstructBLIP Dai et al. (2023) applied instruction
tuning while freezing the vision encoder and LLM, outperforming BLIP-2 Li et al. (2023a)
and Flamingo Alayrac et al. (2022). These results show instruction tuning as a key enabler
of multi-task VLMs.

2.4 Handling Data Imbalance

Emotion recognition datasets are often imbalanced across classes. Sampling strategies (e.g.,
SMOTE, data augmentation, undersampling) help rebalance training sets, while loss designs
such as class-balanced loss Cui et al. (2019), focal loss Lin et al. (2017), and asymmetric
loss Ridnik et al. (2021) emphasize minority or hard-to-classify samples. Combining these
techniques with multimodal models remains a challenge for robust real-world deployment.
The advent of Vision-Language Models (VLMs) has opened a new paradigm for CAER.
Foundational models like CLIP (Radford et al., 2021) and BLIP (Li et al., 2022) achieved
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robust cross-modal semantic alignment. More recently, advanced models such as Instruct-
BLIP (Dai et al., 2023) and LLaVA (Liu et al., 2023b) have demonstrated remarkable vi-
sual reasoning and instruction-following capabilities by coupling vision encoders with Large
Language Models (LLMs) (Chiang et al., 2023). Researchers have begun applying VLMs to
emotion recognition, for instance, by leveraging zero-shot or few-shot prompting with large
models like GPT-4V (Etesam et al., 2024). Although promising, these approaches highlight
a critical limitation for practical deployment: they typically lack structured, probabilistic
outputs and exhibit significant sensitivity to minor changes in prompts (Etesam et al., 2024).
As summarized in Table 1, prior CAER approaches tend to combine increasingly complex
sets of features, from scene and face to HOI, HHI, or depth cues. In contrast, our method
shows that a lightweight feature combination—limited to scene, face, and body cues—when
guided by instruction-tuned VLMs, can already achieve state-of-the-art performance. This
observation motivates our two-stage framework described in the Section 3.

Table 1: Comparison of context-aware emotion recognition methods based on feature types
used
Method Scene / BG Face Body Pose / Gait HOI HHI Depth Map
Kosti et al. Kosti et al. (2017) ✓ ✓
Lee et al. Lee et al. (2019) ✓ ✓
Zhang et al. Zhang et al. (2019) ✓ ✓
Gao et al. Gao et al. (2021) ✓ ✓
Mittal et al. Mittal et al. (2020) ✓ ✓ ✓ ✓
Li et al. Li et al. (2021) ✓ ✓ ✓
Hoang et al. Hoang et al. (2021) ✓ ✓ ✓ ✓
Li et al. Li et al. (2023b) ✓ ✓ ✓
Mittal et al. Mittal et al. (2021) ✓ ✓ ✓ ✓
Mittel et al. Mittel & Tripathi (2023) ✓ ✓
Yang et al. Yang et al. (2022) ✓ ✓ ✓ ✓ ✓
Ours ✓ ✓ ✓

Note: HOI = Human-Object Interaction; HHI = Human-Human Interaction. Ours leverages only
scene, face, and body features, yet achieves state-of-the-art performance through
instruction-tuned VLM guidance.

3 Method

3.1 Datasets, Balancing, and Instruction Tuning (Brief)

We use EMOTIC (26 multi-label), CAER-S (7 balanced), and HECO (8 moderately imbal-
anced). For EMOTIC/HECO we apply label-aware balancing (minor-label QA augmenta-
tion; major-label downsampling), while CAER-S is unchanged. We also build a lightweight
instruction-tuning corpus (caption-guided classification, visual description, and rationale
QA) to unify supervision. Full details and distributions are in Appendix A.

3.2 Overview of Two-Stage Architecture

Our architecture consists of two stages. In the first stage, we extend InstructBLIP into a
multi-view VLM by integrating three complementary types of visual semantic extractors:
scene-aware, body-aware, and face-aware. Each extractor focuses on a specific aspect of
emotional cues, including scene context, body posture, and facial expression. These com-
ponents are instruction-tuned to align with emotion-related tasks and generate meaningful
representations. In the second stage, the trained VLM serves as a frozen emotion-aware
feature extractor. We concatenate features from all three extractors and pass them through
a classifier. This classifier outputs a confidence score for each emotion label, supporting
multi-label prediction with interpretability and downstream compatibility.
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Figure 1: Overview of Stage 1 – Person-centric Emotion VLM. The left illustrates the
overall architecture, which includes three types of visual semantic extractors—scene-aware,
body-aware, and face-aware—designed to capture emotional cues. The right shows the
shared structure of a visual semantic extractor.

3.3 Stage 1: Person-centric Emotion VLM

We extend InstructBLIP Dai et al. (2023) to extract emotion-relevant features from three
visual perspectives. The scene-aware module captures contextual cues from the background
and environment. The body-aware module focuses on posture and gesture information. The
face-aware module encodes facial expressions and local cues. Each module uses a frozen
image encoder (ViT-g/14), a shared Q-Former with distinct query tokens, and a projection
layer.
The Q-Former inherits pre-trained weights from InstructBLIP. During fine-tuning, we up-
date the Q-Former, the module-specific query tokens, and the projection layers, enabling
the model to align with emotion-centric visual information. To support the face and body-
aware visual semantic extractors, we require bounding boxes for the subject’s body and face.
If these annotations are unavailable in the dataset, we use YOLOv11 Khanam & Hussain
(2024) to estimate them.
We apply instruction tuning to the VLM to improve its understanding of emotion-related
context. This tuning involves using task-specific prompts and supervision that guide the
model to better recognize and describe emotions across different visual perspectives. More
details about the instruction tuning dataset are provided in Section A.3.
After Stage 1 training, the VLM can perform visual question answering (VQA) for emotion-
related prompts and serves as a strong feature extractor for the classification task in Stage
2.

3.4 Model Architecture

Scene/Body/Face-Aware Visual Semantic Extractor Our model employs three visual se-
mantic extractors—scene-aware, body-aware, and face-aware—to capture different emo-
tional cues. All extractors share the same backbone architecture, consisting of a frozen

4



image encoder, a Q-Former, and a projection layer. Each extractor differs in its input
region, query tokens, and projection head.
The scene-aware module processes the entire image to capture contextual information such
as environment and lighting. The body-aware and face-aware modules operate on cropped
regions, obtained using YOLOv11 Khanam & Hussain (2024) when annotations are unavail-
able. The body module captures posture and gestures, while the face module focuses on
fine-grained expressions.
To reduce training cost, the body-aware and face-aware modules share the Q-Former weights
but use distinct query tokens and projection heads to preserve modality-specific expressive-
ness.

Image Encoder We adopt the ViT-g/14 transformer Fang et al. (2023) as the backbone for
visual encoding. It is kept frozen throughout both stages to preserve general-purpose image
representations. Each extractor uses the encoder to obtain feature embeddings, ensuring
consistency across modules.

Large Language Model For instruction-tuning and downstream reasoning tasks, we use
Vicuna-7B Chiang et al. (2023), a decoder-only transformer derived from LLaMA Touvron
et al. (2023). It remains frozen during training, allowing us to focus on adapting the vision
side without overfitting the language model.

3.5 Stage 2: Method

Figure 2: Overview of Stage 2. The VLM-extracted visual features are projected, fused via
self-attention, and used for emotion classification.

In the second stage, we utilize the pretrained vision-language model (VLM) as a fixed feature
extractor to obtain high-level semantic features from three different perspectives: face-aware,
body-aware, and scene-aware representations. Each of these visual features captures distinct
but complementary information related to human emotion.
To integrate these representations into a shared semantic space, each modality-specific fea-
ture is passed through its own fully connected layer. This projection step not only aligns
the representations but also reduces their dimensionality into a more compact form suitable
for interaction.
After projection, the three modality representations are stacked together to form a short
sequence. This sequence is then processed by a self-attention module, which allows the model
to capture inter-modality relationships by dynamically attending to the most informative
features across face, body, and scene.
Finally, the output from the self-attention layer is then flattened into a single unified vector
and fed into another fully connected layer that maps it to a fixed-size emotion prediction
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vector. This output contains confidence scores for each emotion label, supporting emotion
classification via threshold-based decision making.

3.6 Loss Function

Our training procedure involves two distinct objectives across the two stages of the proposed
architecture: instruction-tuning and classification.

3.6.1 Stage 1: Instruction-Tuning Objective

In the first stage, we fine-tune the vision-language model to follow emotion-related
prompts through an instruction-tuning objective. Given a ground-truth token sequence
y = (y1, . . . , yT ) and the model-predicted probability distribution p = (p1, . . . , pT ) over the
vocabulary at each time step, we apply the standard cross-entropy loss:

LCE = −
T∑

t=1

log pt(yt). (1)

This loss encourages the model to generate accurate textual responses aligned with the
provided instructions.

3.6.2 Stage 2: Classification Objective

In the second stage, we train a classifier using the extracted features. The specific loss
function depends on the label type of the downstream dataset.

Multi-Label Classification: Asymmetric Loss For datasets with multi-label emotion an-
notations, where each sample can be associated with multiple emotion classes, we adopt
the asymmetric loss (Ridnik et al., 2021), which is designed to handle label imbalance ef-
fectively. Given a predicted probability p ∈ [0, 1] for a single class and the corresponding
ground-truth label y ∈ {0, 1}, the loss for each instance is defined as:

ASL(p, y) =
{
L+ = (1− p)γ+ log(p), if y = 1,

L− = (pm)γ− log(1− pm), if y = 0,
(2)

pm = max(p−m, 0), (3)
where γ+ and γ− are focusing parameters for positive and negative samples, respectively,
and m ∈ [0, 1] is a probability margin that controls the aggressiveness of filtering easy
negatives. The total loss over C labels is

Lasym = −
C∑
i=1

ASL(pi, yi). (4)

Multi-Class Classification: Cross-Entropy Loss For multi-class emotion datasets, we apply
the standard categorical cross-entropy loss. Let yi ∈ {0, 1} be the one-hot encoded ground-
truth label and pi the predicted probability for class i with

∑
i yi = 1:

LCE = −
C∑
i=1

yi log(pi). (5)

This formulation encourages the classifier to assign high probability to the correct single
class for each input sample.

4 Experiments

4.1 Experiment Settings

We train our model in two stages. Stage-1 (instruction tuning): we fine-tune only the
Q-Former modules in the visual semantic extractor on our QA-style emotion understand-
ing corpus, while freezing the image encoder and the LLM. Stage-2 (classifier): we freeze
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the vision-language backbone and train a lightweight classifier; model selection is based
on validation mAP for multi-label datasets and accuracy for multi-class datasets. Unless
otherwise specified, results are reported with the best validation checkpoint. Additional
implementation details and hyperparameters are provided in the Appendix.

4.2 Evaluation Metrics

We evaluate model performance using standard metrics for both multi-class and multi-label
emotion recognition. For multi-class datasets (e.g., CAER-S), we report overall classification
accuracy. For multi-label datasets (e.g., EMOTIC, HECO), we report macro-averaged pre-
cision, recall, F1-score, Hamming Loss, and mean Average Precision (mAP). Among these,
mAP serves as our primary evaluation metric, as it captures both precision and recall across
confidence thresholds.

4.3 Main Results

We evaluate our method on three benchmarks: EMOTIC, CAER-S, and HECO. Table 2
shows results on EMOTIC, where our classifier achieves the best mAP (37.88), surpassing
prior methods including Yang et al. Yang et al. (2022), which use more feature types.

Table 2: Comparison of Performance on the EMOTIC Dataset.
Method mAP ↑ Precision ↑ Recall ↑ F1 Score ↑
Classifier-Based Methods
Kosti et al. (Kosti et al., 2017) 28.33 25.02 35.07 28.83
Mittal et al. (Mittal et al., 2020) 35.48 - - -
Yang et al. (Yang et al., 2022) 37.73 - - -
Ours (Classifier) 37.88 37.50 44.04 38.35
VLM/LLM-Based Methods
Etesam et al. (Etesam et al., 2024) (GPT-4V) - 37.48 38.35 34.47
Ours (VLM)* (7B) - 33.58 40.78 33.65

* indicates fine-tuned models.

In the VLM setting, our 7B model achieves the highest recall (40.78) and competitive F1
compared to GPT-4 Vision, despite being significantly smaller. Category-wise results 3
show SOTA performance on 8 out of 26 emotion labels. On CAER-S (Table 4), our model

Table 3: Comparison of Category-wise Performance on the EMOTIC Dataset (mAP per
Category)

ccccccc
Category Kosti et al. Kosti et al. (2017) Lee et al. Lee et al. (2019) Zhang et

al. Zhang
et al.
(2019)

Mittal et al. Mittal et al. (2020) Hoang et al. Hoang et al. (2021) Yang et
al. Yang
et al.
(2022)

Ours

Affection 26.01 22.36 46.89 45.23 44.48 37.66 52.11
Anger 11.29 12.88 10.87 15.46 30.71 17.84 32.91
Annoyance 16.39 14.42 11.27 21.92 26.47 29.02 27.86
Anticipation 58.99 52.85 62.64 72.12 59.89 63.31 61.79
Aversion 9.56 3.26 5.93 17.81 12.43 15.28 11.88
Confidence 81.09 72.68 72.49 68.65 79.24 74.42 80.48
Disapproval 16.28 15.37 11.28 19.82 24.54 23.52 26.78
Disconnection 21.25 22.01 26.91 43.12 34.24 28.95 38.79
Disquietment 20.13 10.84 16.94 18.73 24.23 21.17 24.67
Doubt/Confusion 33.57 26.07 18.68 35.12 25.42 24.96 29.90
Embarrassment 3.08 1.88 1.94 14.37 4.26 10.57 3.84
Engagement 86.27 73.71 88.56 91.12 88.71 75.23 88.16
Esteem 18.58 15.38 13.33 23.62 17.99 20.29 16.33
Excitement 78.54 70.42 71.89 83.26 74.21 86.56 75.97
Fatigue 10.31 6.29 13.26 16.23 22.62 33.58 29.46
Fear 16.44 7.47 4.21 23.65 13.92 36.68 16.62
Happiness 55.21 53.73 73.26 74.71 83.02 85.25 86.85
Pain 10.00 8.16 6.52 13.21 16.68 19.27 29.52
Peace 22.94 19.55 32.85 34.27 28.91 26.24 32.72
Pleasure 48.65 34.12 57.46 65.53 55.47 67.68 54.78
Sadness 19.29 17.75 25.42 23.41 42.87 47.80 54.48
Sensitivity 8.94 6.94 5.99 8.32 15.89 24.89 18.02
Suffering 17.60 14.85 23.39 26.39 46.23 46.74 48.76
Surprise 21.96 17.46 9.02 17.37 16.27 27.03 18.09
Sympathy 15.25 14.89 17.53 34.28 15.37 25.87 21.40
Yearning 9.01 4.84 10.55 14.29 10.04 11.12 12.71
Average mAP 28.33 23.85 28.42 35.48 35.16 37.73 37.88
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achieves the best accuracy of 88.82. On HECO (Table 5), our model attains the highest
recall and F1, suggesting better generalization, while maintaining strong accuracy.

Table 4: Comparison of Performance on the CAER-S Dataset
Method Accuracy ↑
Kosti et al. Kosti et al. (2017) 74.48
Lee et al. Lee et al. (2019) 73.51
Zhang et al. Zhang et al. (2019) 77.02
Gao et al. Gao et al. (2021) 81.31
Li et al. Li et al. (2021) 74.45
Li et al. Li et al. (2023b) 84.82
Ours 88.82

Table 5: Comparison of Performance on the HECO Dataset
Method Precision ↑ Recall ↑ F1 Score ↑ Accuracy ↑
Kosti et al. Kosti et al. (2017) 10.20 13.88 9.89 38.80
Lei et al. Lei et al. (2024) Zero-shot 42.54 25.72 21.27 35.56
Lei et al. Lei et al. (2024) Few-shot 37.26 28.15 27.57 47.55
Lei et al. Lei et al. (2024) Few-shot CoT 25.19 22.38 19.53 39.80
Lei et al. Lei et al. (2024) Fine-tune 48.31 33.62 35.81 60.82
Ours 41.92 44.52 42.78 57.89

4.4 Qualitative Results

We provide qualitative predictions on EMOTIC to illustrate the complementarity between
our two stages. The Stage 1 VLM tends to produce fewer labels with higher precision,
whereas the Stage 2 classifier yields a broader yet accurate label set. Representative exam-
ples and figures are moved to Appendix B.

4.5 Ablation Study

We conduct several ablation studies to evaluate the effectiveness of various components in
our proposed system, including visual feature composition, instruction tuning strategy, loss
functions, and the overall impact of incremental enhancements to the VLM. All experiments
are conducted on the EMOTIC dataset.

4.5.1 Effect of Visual Feature Composition

We first examine how different combinations of visual modules contribute to emotion classifi-
cation. As shown in Table 6, progressively incorporating more visual cues leads to consistent
improvements in mean Average Precision (mAP), indicating that fine-grained information
from the human body and face plays a critical role in emotion understanding.

Table 6: Effect of Visual Feature Composition on the EMOTIC Dataset
Visual Feature Composition mAP
Scene only 35.51
Scene + Body 36.79
Scene + Body + Face 37.88

4.5.2 Effect of Instruction Tuning Strategy

We explore the impact of instruction tuning by incrementally adding instruction tasks.
Table 7 shows that the classification-only setting provides a strong baseline. Adding pose
and situation description further boosts performance, and incorporating emotion rationale
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understanding yields the best result, demonstrating the importance of diverse instruction
prompts in aligning VLM understanding with human emotion reasoning.

Table 7: Effect of Instruction Tuning Strategies on the EMOTIC Dataset
Instruction Tuning Strategy mAP
Classification task 36.91
+ Pose and situation description 37.34
+ Emotion rationale task 37.88

4.5.3 Effect of Data Balancing Strategy

We evaluate the effectiveness of our data balancing strategy by comparing model perfor-
mance with and without the balancing mechanism. As shown in Table 8, our strategy yields
a slight improvement in overall mAP, indicating enhanced robustness across the dataset.
To further assess its impact on minority categories, we report results for the three least
frequent emotion labels—Embarrassment, Aversion, and Fear. As shown in Table 9, data
balancing improves performance for these underrepresented classes.

Table 8: Effect of Data Balancing Strategies on the EMOTIC Dataset
Data Balancing Strategy mAP
w/o Data Balancing 37.72
w/ Data Balancing 37.88

Table 9: Performance on the Three Most Minority Labels
Category w/o Balancing w/ Balancing
Embarrassment 3.14 3.84
Aversion 10.56 11.88
Fear 13.74 16.62

5 Conclusion

We present a simple two-stage recipe for context-aware emotion recognition: an instruction-
tuned VLM to align visual cues with emotion semantics, followed by a lightweight classifier
over scene, body, and face features. Across EMOTIC, CAER-S, and HECO, this pair-
ing matches or surpasses prior work that relies on heavier feature stacks, while remaining
compute-friendly and reproducible. Our label-aware balancing and instruction-tuning cor-
pus further improve recall on minority emotions without sacrificing precision.
Limitations include reliance on VLM quality and person localization; extending to end-to-
end training, temporal cues, and robustness under occlusion and long-tail shifts are promis-
ing directions.
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A Dataset

In this chapter, we introduce the context-aware emotion recognition datasets used in this
study, along with a detailed analysis of their characteristics. We also describe the con-
struction process of our QA dataset, including strategies for addressing data imbalance and
applying instruction tuning. Finally, we present the overall dataset statistics.

A.1 Context-Aware Emotion Datasets

We provide a comprehensive overview of various context-aware emotion recognition datasets,
including both image-based and video-based datasets, as summarized in Table 10. Although
video-based datasets are listed for completeness, we focus our analysis on image-based
datasets and their label distributions.

Table 10: Overview of Context-Aware Emotion Recognition Datasets
Dataset Modality Dataset Size Agents Annotated Source Labels
EMOTIC Kosti et al. (2017) Images 23,189 images 33,783 Web 26 Categories (Multi-label)
CAER-S Lee et al. (2019) Images 70,000 images 70,000 TV Shows 7 Categories
HECO Yang et al. (2022) Images 9,385 images 19,781 Web 8 Categories
CAER Lee et al. (2019) Videos 13,201 clips 13,201 TV Shows 7 Categories
IEMOCAP Busso et al. (2008) Videos 12 hours - TV Shows 4 Categories
GroupWalk Mittal et al. (2020) Videos 45 clips 3,544 Real-world 4 Categories

A.1.1 EMOTIC

The EMOTIC dataset Kosti et al. (2017) is composed of images collected from three sources:
MSCOCO Lin et al. (2015), ADE20K Zhou et al. (2019), and additional images manually
gathered using the Google search engine. All images are annotated by qualified human
annotators. Figure 3 presents sample images and their emotion annotations.

Figure 3: Example images and annotations from the EMOTIC dataset.

Each agent in the dataset is labeled with one or more of 26 discrete emotion categories in
a multi-label format. These categories are: Engagement, Happiness, Anticipation, Excite-
ment, Confidence, Pleasure, Peace, Disconnection, Affection, Esteem, Sympathy, Yearning,
Doubt/Confusion, Fatigue, Disquietment, Surprise, Sadness, Annoyance, Sensitivity, Dis-
approval, Suffering, Anger, Pain, Fear, Aversion, and Embarrassment.
The final version of the dataset consists of 23,189 images and 33,783 annotated human
agents. It is split into training (70%), validation (10%), and testing (20%) subsets. The
training set is annotated by a single annotator per agent, while the validation and test sets
are labeled by five and three annotators, respectively, to ensure more reliable evaluation.

A.1.2 Data Distribution

A total of 65,889 emotion labels are assigned to 26,581 annotated agents in the EMOTIC
training and validation sets, resulting in an average of 2.48 labels per sample.
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As shown in Figure 4, the distribution exhibits a clear long-tail pattern. The top five
most frequent emotion categories—Engagement (24.20%), Anticipation (12.59%), Happiness
(12.00%), Excitement (9.65%), and Confidence (9.03%)—collectively make up over 67% of
all annotations. In contrast, 10 of the 26 emotion categories each comprise less than 1% of the
total labels. Among the rarest labels are Fear (0.53%), Anger (0.48%), and Embarrassment
(0.47%).
Notably, the most dominant label, Engagement, accounts for 15,947 instances (24.20%), in-
dicating a substantial imbalance in the label distribution. In addition, Engagement appears
as the sole label in 5,112 samples, further highlighting its dominance, which may lead to
biased model learning.
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Figure 4: Label distribution of the EMOTIC training set. The top 5 most frequent
emotion categories— Engagement (24.20%), Anticipation (12.59%), Happiness (12.00%),
Excitement (9.65%), and Confidence (9.03%)—account for over 67% of the annotations,
indicating a long-tail distribution and significant class imbalance.

A.1.3 CAER-S

Figure 5: Example images and annotations from the CAER-S dataset.

The CAER-S dataset consists of 70,000 static images extracted from 79 TV shows. It is a
subset of the CAER dataset Lee et al. (2019). To construct the CAER dataset, video clips
in TV shows are processed by shot boundary detector, face detector and feature clustering.
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Each resulting video clip was then annotated with one of seven emotion categories: Anger,
Disgust, Fear, Happy, Sad, Surprise, and Neutral, by a group of six annotators. Figure 5
presents sample images and their emotion annotations.
The 70,000 images are evenly distributed across the seven emotion categories, with 10,000
images per class, ensuring a well-balanced dataset. The dataset is randomly split into
training (70%), validation (10%), and testing (20%) subsets.

A.1.4 HECO

Figure 6: Example images and annotations from the HECO dataset.

The HECO dataset, introduced by Yang et al. (2022), contains 9,385 images and 19,781
annotated human agents. Images in the dataset are collected from three sources: HOI
datasets Chao et al. (2018), film clips, and web images. Figure 6 presents sample images
and their emotion annotations.
The annotation process was conducted by 3 professional psychologists and 10 graduate
students. Each agent in the image is labeled with one of 8 discrete emotion categories:
Surprise, Excitement, Happiness, Peace, Disgust, Anger, Fear, and Sadness.
To improve robustness, approximately 2% of the dataset consists of intentionally fuzzy
images, and 5% of the images contain agents affected by occlusion.

A.1.5 Data Distribution

The HECO dataset contains a total of 19,781 labeled instances across 8 discrete emotion
categories. As shown in Figure 7, the dataset exhibits a moderate class imbalance.
The most frequent emotion is Happiness, with 7,113 instances (35.96%), followed by Peace
(5,886; 29.76%). Together, these two categories account for over 65% of the entire dataset.
In contrast, low-frequency emotions such as Sadness (3.55%), Surprise (3.86%), and Anger
(4.27%) are significantly underrepresented.

A.2 QA Dataset Preparation

A.2.1 Task Formulation and Prompt Design

We formulate the problem as a classification task in the form of a vision-language QA
prompt. The model is asked to infer a set of likely emotions from a fixed list of candidates
based on the image and textual description. The base QA prompt format is:

Based on the image, please select multiple emotions that the person
likely contains from the following options: Embarrassment, Aversion,
Fear, Pain, Anger, Suffering, Disapproval, Sensitivity, Annoyance,
Sadness, Surprise, Disquietment, Fatigue, Doubt/Confusion, Yearning,
Sympathy, Esteem, Affection, Disconnection, Peace, Pleasure,
Confidence, Excitement, Anticipation, Happiness, Engagement.
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Figure 7: Label distribution of the HECO Dataset. The top 2 most frequent emotion
categories— Happiness (35.96%), and Confidence (29.76%)—account for over 65% of the
annotations, indicating a significant class imbalance.

A.2.2 Data Balancing Strategy

The long-tail nature of the label distribution poses challenges for model training, as models
tend to be biased toward dominant categories while underperforming on rare ones. To
address this issue, we explore techniques such as data augmentation, and sampling methods.
To address the severe label imbalance in emotion datasets such as EMOTIC and HECO, we
propose a label-aware data balancing strategy. This strategy improves model robustness in
recognizing minority emotion categories by combining minor-label QA augmentation with
major-label downsampling.

A.2.3 Minor-Label QA Augmentation

To increase exposure to minority emotions, we generate an additional QA sample for any
data point that includes at least one minor label. In this augmented version, only the minor
labels are included in the candidate answer list, and major labels are excluded to prevent
dominant class interference. The augmented prompt format is:

Based on the description and image, please select multiple emotions
that the person likely contains from the following options:
Embarrassment, Aversion, Fear, Pain, Anger, Suffering, Disapproval,
Sensitivity, Annoyance, Sadness, Surprise, Disquietment, Fatigue,
Doubt/Confusion, Yearning, Sympathy, Esteem, Affection, Disconnection,
Peace.

A.2.4 Major-Label Down Sampling

To further alleviate imbalance, we down-sample training samples that contain only major
emotion labels. We define the major labels based on their high frequency in each dataset:

[nosep, leftmargin=2em]EMOTIC: Engagement, Happiness, Anticipation, Excite-
ment, Confidence HECO: Happiness, Peace
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We apply the following dataset-specific sampling ratios:
[nosep, leftmargin=2em]For EMOTIC, samples containing only major labels are
down-sampled at a rate of 0.2. For HECO, the down-sampling rate is 0.5.
Additionally, in EMOTIC, samples that only have the single label Engagement
(comprising over 20% of training samples) are down-sampled at a rate of 0.8, re-
ducing this dominant subset.

A.3 Instruction Tuning Dataset Generation

To enable the Q-Former and LLM to handle diverse instruction-following tasks across dif-
ferent formats, we construct an instruction-tuning dataset that simulates various types of
reasoning required for visual emotion understanding. Compared to multi-task learning, in-
struction tuning offers a unified training paradigm that encourages better generalization
across emotion-related tasks.
Given the high cost of manual annotation, we adopt an automatic data generation
pipeline, leveraging state-of-the-art vision-language models (VLMs) to synthesize high-
quality question-answer (QA) pairs.

Figure 8: Overview of our instruction-tuning dataset generation pipeline.

Figure 8 illustrates our instruction-tuning data generation pipeline. The resulting dataset
comprises various types of instruction-following samples, including person-centric captions,
pose and situation descriptions, and rationale-based explanations. Each QA pair is explicitly
grounded on a target individual, indicated by a red bounding box in the image.

Caption-Guided Emotion Classification We use the Osprey-7B Yuan et al. (2024) to gen-
erate concise, person-centric captions focused on the target agent’s appearance and actions.
Osprey-7B supports input masks that allow it to describe specific regions in an image, which
enables us to create emotionally relevant captions conditioned on the target person. These
captions are then used as context for emotion inference tasks.

Visual Description We employ Qwen2-VL-7B Bai et al. (2023) in an in-context few-shot
learning setting to produce pose and situation descriptions. These QA pairs provide con-
textual cues that go beyond facial expression, incorporating body posture, surrounding
elements, and interactions with other people. The red bounding box guides the model to
describe only the specified agent.

Emotion Rationale We employ Gemini 2.0 Flash Team (2025) to generate reasoning-style
QA pairs, where the model explains the emotional state of the target person using a chain-of-
thought rationale. These QA pairs guide the VLM to learn interpretable reasoning processes
by incorporating visual cues, interpersonal context, and emotional expressions, ultimately
enhancing its ability to understand and predict emotions more effectively.
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Prompt templates for all tasks can be found in the Appendix. And dataset examples can
be found in Figure 12

A.4 Dataset Statistics after Processing

A.4.1 Label Distribution Before and After Balancing

Since CAER-S is a balanced dataset, we only apply balancing strategies to the EMOTIC
and HECO datasets. The label counts are computed based on their occurrence in the
classification task answers.

EMOTIC Dataset As shown in Figure 9, the dominant label Engagement slightly decreases
in frequency after preprocessing due to downsampling. In contrast, many minority labels,
such as Fear, Embarrassment, and Aversion, exhibit noticeable increases, demonstrating the
effectiveness of our augmentation strategies.
Overall, the label distribution becomes more balanced, with the top label’s proportion re-
duced from 24.20% to 14.49%. However, due to the severe original imbalance, long-tail
issues still persist and will be further mitigated using loss-based techniques in training.
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Figure 9: Label distribution of the EMOTIC dataset before and after preprocessing.

HECO Dataset The HECO dataset is a multi-class dataset, where each sample is associated
with a single emotion label, making it less susceptible to extreme label imbalance compared
to multi-label datasets. After applying our preprocessing pipeline, the distribution becomes
notably more uniform, as shown in Figure 10.

A.4.2 Instruction-Tuning Task Composition

We analyze the composition of our instruction-tuning dataset using the EMOTIC dataset
as an example. To prevent classification performance from being overshadowed by other
task types, we limit the number of non-classification tasks. This allows the Q-former to
learn generalized features while still supporting strong classification performance. Figure 11
illustrates the distribution of task types in the final instruction-tuning dataset.
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Figure 10: Label distribution of the HECO dataset before and after preprocessing.

Caption-Guided
Emotion Classification
63.3%

Emotion Classification
10.2%

Emotion Rationale
10.2%

Pose Description
10.2%

Situation Description
6.1%

Figure 11: Distribution of task types in the instruction-tuning dataset constructed from
the EMOTIC dataset.

B Additional Qualitative Examples

Figure 13. In the figure, the target agent is highlighted with a red bounding box. We show
the model predictions from both the Stage 1 VLM model and the Stage 2 classifier.
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Figure 12: The sample of our generated visual emotion instruction tuning dataset
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Figure 13: Qualitative Result on the EMOTIC dataset.

The VLM tends to predict fewer emotion labels, but with higher precision. In contrast,
our classifier outputs a broader set of emotion labels without sacrificing accuracy. Notably,
predictions with higher confidence scores tend to be more accurate.
We also demonstrate the generalization ability of our VLM: users can ask emotion-related
questions, and the model is capable of providing reasoned responses along with precise
emotion labels.
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C More Ablation Study

C.1 Effect of Self-Attention Mechanism

To evaluate the contribution of the self-attention layer in our classifier architecture, we
conduct an ablation study by removing the self-attention block and directly concatenating
the features before classification. As shown in Table 11, removing the self-attention results
in a noticeable performance drop. This demonstrates that the self-attention mechanism
plays a crucial role in capturing the inter-modality relationships among the face, body, and
scene features.

Table 11: Effect of Self-Attention Mechanism on the EMOTIC Dataset
Architecture mAP
w/o Self-Attention 37.11
w/ Self-Attention 37.88

C.2 Effect of Loss Function

We compare two loss functions for multi-label classification: binary cross entropy and asym-
metric loss. As shown in Table 12, asymmetric loss significantly outperforms binary cross
entropy, highlighting its suitability for imbalanced emotion label distributions.

Table 12: Effect of Different Loss Functions on the EMOTIC Dataset
Loss Function mAP
Binary Cross Entropy 33.94
Asymmetric Loss 37.88

C.3 Effect of Incremental VLM Enhancements

Lastly, we present the performance impact of incrementally enhancing our VLM-based ar-
chitecture, as detailed in Table 13. Starting from a baseline using only scene information and
simple classification prompts, we observe that the introduction of caption-guided prompts
and body-level features gradually improves the F1 score. Instruction tuning and data bal-
ancing strategies significantly increase recall. The final integration of the face module and
advanced instruction tuning further boosts precision and reduces Hamming loss.

Table 13: Performance Impact of Incremental VLM Enhancements on the EMOTIC Dataset
Configuration Precision ↑ Recall ↑ F1 Score ↑ Hamming Loss ↓
Category classification (Scene only) 32.83 33.08 29.50 17.59
+ Caption-guided prompt 35.88 34.30 31.43 16.54
+ Person module 30.70 35.01 31.88 16.54
+ Data balancing and instruction tuning 33.58 40.78 33.65 18.66
+ Face module 48.72 18.82 22.97 13.57
+ Final instruction tuning 43.41 18.92 21.58 13.21
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D Dataset Construction

D.1 Pose Description Task

We design a prompt with in-context examples to generate pose descriptions focused on the
target agent, as shown in Listing 1. Subsequently, we apply the instruction template in
Listing 2 to construct corresponding question-answer pairs.

You are an expert assistant for generating structured pose descriptions from images. Your task
is to analyze an image with a target person inside a red bounding box and describe their
pose in a concise, structured manner.

**Guidelines:**
- Only describe the person inside the red bounding box and do not mention ”red bounding box”

or ”red rectangle” in the description.
- Keep the description brief (one to two sentences).
- Mention the head position, body posture, leg position, arm position and hand gestures (if

visible).
- Do not mention emotions and face expressions.
- Use consistent and clear wording.

### **Examples:**

#### **Example 1**
**Input:**
- Image with a red bounding box.

**Output:**
”A man stands upright, facing forward with arms crossed over his chest. He maintains direct

eye contact.”

#### **Example 2**
**Input:**
- Image with a red bounding box.

**Output:**
”A woman jogs forward with her head slightly turned to the left. Her hands are open and

relaxed.”

### Question
**Input:**
- Image with a red bounding box.

**Output:**

Listing 1: Prompt Template for Generating Pose Description
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- How would you describe the pose of the person in the image?
- How would you describe the body posture of the person in the image?
- Can you describe the stance and gestures of the person located?
- Describe the physical stance and posture of the person.
- What is the body language of the individual?
- Can you explain how the person is holding their body?
- What are the notable aspects of the person’s movement and posture?
- What details can you provide about the orientation and posture of the person?
- What kind of physical expression is visible in the person’s pose?
- How does the person’s pose reflect their activity?
- What are the defining characteristics of the person’s pose?
- What is the overall posture of the person?
- What do the person’s posture and gestures suggest about their action?
- How would you characterize the person’s body dynamics?
- What kind of motion, if any, is suggested by the person’s stance?

Listing 2: Pose Instruction Template

D.2 Situation Description Task

We design a prompt with in-context examples to generate situation descriptions from the
target agent’s perspective, as shown in Listing 3. Subsequently, we apply the instruction
template in Listing 4 to construct corresponding question-answer pairs.

You are an AI model trained to analyze images and provide a detailed background and
situation description for the person in the region (inside the red bounding box). Your task is
to describe:

1. The background: General environmental context (e.g., street, park, office).
2. The situation: The activity or event happening in the scene, but only including information

relevant to the target person.
Do not describe the target person’s appearance, clothing, posture, or facial expressions.

## Examples
### Example 1
Input:
(Image of a young man in a red bounding box sitting at a desk in an office with coworkers in

the background.)

Output:
The scene takes place in a modern office environment with multiple desks and employees

working on their computers. The atmosphere suggests a professional setting where people
are engaged in various tasks. The person in the region appears to be focused on work,
possibly handling documents or writing emails as part of a typical office routine.

### Example 2
Input:
(Image of a woman in a red bounding box jogging in a park with trees and other joggers.)

Output:
The setting is a public park with lush greenery, a paved jogging path, and a few other people

exercising. The environment suggests a peaceful and refreshing outdoor space, commonly
used for fitness activities. The person in the region is actively participating in exercise,
moving along the path in sync with other joggers, likely as part of a workout or daily
routine.

<image>
Now, this is the image you need to analyze.
Please generate a description following the format of the examples above. Ensure that the

description includes details about the background and situation while staying relevant to the
individual in the region (red box).

Listing 3: Prompt Template for Generating Situation Description
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- What is the setting of the scene?
- Describe the environment surrounding the person.
- What is happening in the background?
- What is happening in the image, and what does it suggest about the context or event?
- Describe the situation involving the person. What might they be experiencing or doing?
- What kind of event or moment is being captured?
- What situation is depicted in the image?
- What is the context of the scene?
- What is the background of the image?
- What is the environment like?
- Describe the situation in the image.

Listing 4: Situation Instruction Template

D.3 Rationale Task

We design a prompt with in-context examples to generate emotion rationale focusing on the
target agent and ground-truth labels, as shown in Listing 5. Subsequently, we apply the
instruction template in Listing 6 to construct corresponding question-answer pairs.

You are given an image with a specific region (red box) containing a person. Your task is to
generate a detailed question-answer pair that helps a Vision Language Model (VLM) learn
how to associate emotions with various contextual cues.

Task:
1. Generate one high-quality QA pair per image to encourage deep reasoning.
2. Ensure the answer is structured, insightful, and logically analyzes the image and visual cues

before answering.
3. The answer should be concise, limited to 5 sentences.
4. If some contextual cues are unclear, focus on the available ones.
5. Output should be in a structured JSON format for easy parsing.

The question should always follow this format:
”Given the following emotions: {’, ’.join(labels)}, which emotions are being expressed by the

person in the region? Please analyze the image, pose, people interaction, and face before
answering.”

Output Example:
[
{
”question”: ”Given the following emotions: ..., which emotions are being expressed by the
person in the region? Please analyze the image, pose, people interaction, and face before
answering.”,

”answer”: ”The person in the image is looking at a dog, which is a common activity that can
evoke feelings of happiness and joy. He is smiling, which indicates a positive emotional state.
The background shows a sunny day, which can also contribute to a cheerful mood.
Therefore, the emotions expressed by the person in the region are likely to be happiness.”

}
]

The ground truth emotions for the person in the region are {’, ’.join(gt_labels)}. Do not
provide answer outside the ground truth.

Listing 5: Prompt Template for Generating Emotion Rationale

- Why is the person feeling this way?
- What is the emotion expressed by the person?
- What is the emotion of the person?
- What is the emotion of the person in the image?
- Describe the emotion of the person in the image.
- What does the person feel?
- What emotion is the person expressing?
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- Describe details about the emotion of the person.
- What emotion is conveyed through the person’s pose or expression?
- What elements in the image suggest the person’s emotion?
- What body language or facial features indicate the person’s feelings?
- Describe the emotional cues shown by the person.
- How is the person likely feeling in this situation?
- What emotion can be inferred from the person’s expression?
- How does the person’s body language reflect their feelings?
- What feeling does the person seem to be experiencing?
- How does the person’s expression convey their emotion?
- What emotion is the person likely experiencing?
- Describe the emotional state of the person.

Listing 6: Rationale Instruction Template

E More Qualitative Results

We present additional qualitative results to further demonstrate the effectiveness of our
approach. Figure 14 shows the results on the EMOTIC dataset, while Figure 15 shows the
results on the HECO dataset.
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Figure 14: More Qualitative Results on the EMOTIC Dataset.
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Figure 15: More Qualitative Results on the HECO Dataset.
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