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Abstract

Knowledge editing aims to update outdated or incorrect
knowledge in large language models (LLMs). However, cur-
rent knowledge editing methods have limited scalability for
lifelong editing1. This study explores the fundamental rea-
son why knowledge editing fails in lifelong editing. We begin
with the closed-form solution derived from linear associative
memory, which underpins state-of-the-art knowledge editing
methods. We extend the solution from single editing to life-
long editing, and through rigorous mathematical derivation,
identify an interference term in the final solution, suggest-
ing that editing knowledge may impact irrelevant knowledge.
Further analysis of the interference term reveals a close re-
lationship with superposition between knowledge representa-
tions. When knowledge superposition does not exist in lan-
guage models, the interference term vanishes, allowing for
lossless knowledge editing. Experiments across numerous
language models reveal that knowledge superposition is uni-
versal, exhibiting high kurtosis, zero mean, and heavy-tailed
distributions with clear scaling laws. Ultimately, by combin-
ing theory and experiments, we demonstrate that knowl-
edge superposition is the fundamental reason for the fail-
ure of lifelong editing. Moreover, this is the first study to
investigate knowledge editing from the perspective of super-
position and provides a comprehensive observation of super-
position across numerous real-world language models.

Introduction
In large language models (LLMs), outdated or incorrect
knowledge may persist (Radford et al. 2019; Wang and
Komatsuzaki 2022; Biderman et al. 2023; Touvron et al.
2023). However, retraining these models to update knowl-
edge incurs prohibitively high costs. To address this prob-
lem, knowledge editing (De Cao et al. 2021; Mitchell et al.
2021) is introduced to edit specific knowledge by directly
updating the internal parameters of language models.

Despite achieving significant progress in single editing,
where knowledge is edited only once, knowledge editing
should be continuous in fact. However, current methods
struggle with scalability for lifelong editing (Huang et al.
2023), where continuous editing and performance monitor-
ing are required throughout the language models’ lifecy-
cle. For example, using the representative editing methods

1Lifelong editing means lifelong knowledge editing.
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Figure 1: Illustration of our work. (a) Current knowledge
editing methods use a unified closed-form solution, which
means adding Λ(C−1ke)

T to parameters matrix W to
achieve knowledge updating. (b) Extend the closed-form so-
lution to lifelong editing, where Wn represents parameters
matrix after the n-th edit. (c) Interference term accumulating
sufficiently will cause language models to forget knowledge.
(d) Superposition term, where p(·, ·) denotes the degree of
superposition between two knowledge representations. (e)
Superposition term actually determines interference term.

ROME (Meng et al. 2022a) or MEMIT (Meng et al. 2022b)
for lifelong editing results in severe performance degrada-
tion after dozens or hundreds of editing steps, rendering the
edited models unusable (Hu et al. 2024). However, the un-
derlying reason has been rarely explored.

In this paper, we explore the fundamental reason why
knowledge editing fails in lifelong editing. We start from
the closed-form solution for knowledge editing derived by
(Meng et al. 2022a) through linear associative memory,
which is the foundation of the state-of-the-art knowledge
editing methods (Figure 1a), including ROME (Meng et al.
2022a), MEMIT (Meng et al. 2022b), PMET (Li et al. 2023),
WilKE (Hu et al. 2024) and so on. Specifically, we extend
the closed-form solution from single editing to lifelong edit-
ing (Figure 1b). Our rigorous mathematical derivation re-
veals that the extended solution introduces an interference
term (Figure 1c), which, when accumulated sufficiently,
leads language models to forgetting the knowledge, includ-
ing original knowledge and previously edited knowledge.

Further analysis of the interference term reveals a close
relationship with superposition: if superposition does not ex-
ist in language models, the superposition term (Figure 1d)
is zero, causing the interference term to vanish (Figure 1e),



(a) Non-Superposition. (b) Superposition.

Figure 2: A neural network with only three neurons, cor-
responding to three dimensions, (a) can directly represent
three features orthogonally, but (b) to represent six features
(or more features), it will using superposition to noisily en-
code them nearly orthogonally.

allowing for lossless lifelong editing. Superposition (El-
hage et al. 2022b) refers to the situation where neural net-
works attempt to represent more features than the avail-
able dimensions. For example, if a simple neural network
with three neurons (corresponding to a three-dimensional
space) attempts to represent three features, each neuron can
be assigned to one feature, forming an orthogonal basis in
three-dimensional space (Figure 2a). But if the same net-
work tries to represent six features (or more features), it
will use superposition strategy, noisily encoding these fea-
tures, where the directions corresponding to each feature
will not be fully orthogonal (Figure 2b). Specifically, we
find that the magnitude of interference term depends on
the orthogonality of knowledge representations (Figure 1e).
If these knowledge representations are perfectly orthogonal
(non-superposition), the interference term is zero, enabling
perfectly lossless knowledge editing, where only the target
knowledge is updated without affecting unrelated knowl-
edge. However, if they are not orthogonal (superposition),
the interference will accumulate linearly and eventually
tend toward infinity, leading to language models’ failure.
In other words, whether superposition exists in language
models is equivalent to whether lossless knowledge edit-
ing can be achieved, which will determine whether life-
long editing can be achieved.

However, to what extent does superposition hold true
in real-world language models? Our experiments reveal
that knowledge superposition2 is universal across all lan-
guage model families, characterized by high kurtosis,
zero mean, heavy-tailed distributions, with a clear scal-
ing law.

Specifically, we conduct experiments on language model
families including GPT-2 (Radford et al. 2019), Llama-2
(Touvron et al. 2023), Pythia (Biderman et al. 2023), GPT-
J (Wang and Komatsuzaki 2022), Llama-3 (Meta 2024a),
and Llama-3.1 (Meta 2024b), to capture the real situation
of knowledge superposition. Firstly, we observe that knowl-
edge superposition exists across all layers of all language

2Knowledge superposition refers to the superposition of knowl-
edge representations in language models.

models we examined (Figure 3), indicating that superposi-
tion is widespread in real-world language models. Secondly,
the knowledge superposition exhibits a high kurtosis, zero-
mean heavy-tailed distribution (Figure 4). This means that
the distribution consistently has a very high peak near zero,
which corresponds to the positions where all knowledge
representations are perfectly orthogonal, suggesting mod-
els attempt to store different knowledge orthogonally but re-
sort to stores them nearly orthogonally due to capacity con-
straints, i.e., through superposition. Thirdly, we observe a
clear scaling law (Figure 5): as the size of language mod-
els increases, they attempt to represent knowledge in a more
orthogonal manner, thereby reducing noise between knowl-
edge representations, which explains why larger language
models can more effectively handle knowledge-intensive
question-answering scenarios. Finally, to provide further di-
rect evidence of superposition, we calculate the angular dis-
tribution between these knowledge representations in high-
dimensional space, which also shows a high kurtosis, heavy-
tailed distribution, but centered around 90 degrees (Fig-
ure 6).

Overall, our contributions are as follows:

• We extend the closed-form solution for knowledge edit-
ing from single editing to lifelong editing. Our rigorous
derivation reveals an interference term in the final solu-
tion, indicating that editing can affect both original and
previously edited knowledge.

• We conduct further analysis of the interference term,
which actually reflects knowledge superposition. The
magnitude of this interference is determined by the
superposition of knowledge representations, with non-
superposition enabling lossless knowledge editing.

• We investigate the phenomenon of knowledge super-
position across multiple language model families and
find it universal, exhibiting high kurtosis, zero mean,
heavy-tailed distributions, with a clear scaling law. To
our knowledge, this is the first observation of widespread
knowledge superposition.

Related Work
Knowledge Editing
In general, knowledge editing aims to modify the knowl-
edge of a language model so that its outputs reflect the re-
vised state when confronted with relevant inputs (De Cao
et al. 2021). Yao et al. (2023) survey knowledge editing
methods and classify them into two main categories: pre-
serving model parameters and modifying model parameters.
Preserving model parameters includes memory-based meth-
ods (Mitchell et al. 2022; Zhong et al. 2023; Hartvigsen et al.
2024), which stores all edit examples explicitly in memory,
and additional parameter methods (Dong et al. 2022; Huang
et al. 2023), which use extra trainable parameters within lan-
guage models. However, these methods usually have poor
generalization, and the required additional content also in-
creases significantly with the number of editing. In contrast,
modifying model parameters methods directly update the
model parameters for editing, thereby avoiding these issues.



Such methods are also divided into two categories: meta-
learning and locate-then-edit methods. Meta-learning meth-
ods (De Cao et al. 2021; Mitchell et al. 2021; Tan, Zhang,
and Fu 2023), which use a hyper network to learn and ap-
ply gradients for fine-tuning, typically require a lengthy hy-
per network training process before each edit, making them
less effective for lifelong editing. Locate-then-edit meth-
ods first identify and then update the parameters associated
with specific knowledge. For instance, KnowledgeNeuron
(Dai et al. 2021) uses knowledge attribution to locate neu-
rons and updates parameters to achieve knowledge editing;
ROME (Meng et al. 2022a) employs causal mediation analy-
sis to identify the center of causal effects, namely MLP, and
performs rank-one editing on MLP; MEMIT (Meng et al.
2022b) extends ROME by allocating residuals to multiple
layers and enabling batch editing; PMET (Li et al. 2023) fur-
ther refines residual allocation based on MEMIT; and WilKE
(Hu et al. 2024) dynamically selects editing layers based on
ROME to avoid toxicity flash.

This paper focuses on methods that modify model param-
eters, among which the state-of-the-art methods are ROME
and its derivatives, MEMIT, PMET, and WilKE. Therefore,
we concentrate on the same closed-form solution (Figure 1a)
of them and extend it from single to lifelong editing. From
a theoretical perspective, we identify the fundamental rea-
son for the failure of knowledge editing methods in lifelong
editing, namely superposition.

Superposition
Superposition refers to a strategy used by neural networks to
express features that far exceed their dimensions, typically
assigning approximately orthogonal directions in the repre-
sentation space to these features (Figure 2b). However, this
superposition phenomenon has only been observed in toy
models so far (Elhage et al. 2022b). Some studies hypoth-
esize that this superposition phenomenon also exists in lan-
guage models and propose sparse autoencoder (SAE) (Cun-
ningham et al. 2023) and its various variants (Rajamanoha-
ran et al. 2024; Gao et al. 2024) to attempt to disentangle
superposition from the activation space of language models
(Bricken et al. 2023; Templeton et al. 2024). Additionally,
Gurnee et al. (2023) claim to observe superposition in the
wild, their study was limited to a few neurons in a specific
layer of a single model, focusing on neuron superposition.
This differs from the superposition concept in Elhage et al.
(2022b) and our study.

In this paper, we identify a widespread phenomenon of
knowledge superposition across multiple language model
families and explore its characteristics. Furthermore, this
is the first study of knowledge superposition in knowledge
editing, explaining the reason for failures in lifelong editing
from the perspective of superposition. Notably, unlike previ-
ous studies, we find that superposition occurs in the whiten-
ing space rather than the activation space (Figure 6).

Preliminary
Geva et al. (2020) discover that MLPs are the key compo-
nents for memory storage in Transformers, and Meng et al.

(2022a) identify through causal tracing that MLPs are cru-
cial for storing factual knowledge. The MLPs in the Feed-
Forward Network (FFN) of a Transformer consist of two
layers, represented as follows (bias terms are omitted)

FFN(xxx) = Wproj σ(Wfc xxx), (1)

where Wfc ∈ Rdm×d and Wproj ∈ Rd×dm are the param-
eter matrices of the FFN, dm is the dimensionality of the
hidden layer in the FFN, σ is the activation function, and
xxx ∈ Rd is the input of the FFN.

Meng et al. (2022a) model MLPs as linear associative
memory (Kohonen 1972; Anderson 1972), viewing Wproj

as a linear associative store. This perspective observes that
any linear operation W can be represented as a key-value
store with a set of vector keys K = [k1|k2| · · · ] and corre-
sponding vector values V = [v1|v2| · · · ]. To optimally insert
a new key-value pair (ke, ve) into the store for knowledge
updates, one can solve a constrained least-squares problem,
leading to a closed-form solution

minimize ∥ŴK − V ∥ such that Ŵke = ve

by setting Ŵ = W + Λ(C−1ke)
T ,

(2)

where C = KKT is a constant that actually represents the
covariance matrix, and Λ = (ve −Wke)/(C

−1ke)
T ke. The

detailed proof can be found in the original paper (Meng et al.
2022a), and a more thorough derivation is provided in Ap-
pendix A.

Expanding to Lifelong Editing
For convenience, let the initial Wproj be W0. Following the
first update using (ke1 , ve1), we obtain W1. Subsequently,
after the n-th edit with (ken , ven), we derive Wn. Extend-
ing the closed-form solution from Equation 2 to the lifelong
editing scenario, we obtain

Wn =

{
W0, n = 0

Wn−1 + Λn(C
−1ken)

T , n ≥ 1
(3)

where C = KKT , and

Λn =
ven −Wn−1ken
(C−1ken)

T ken
, n ≥ 1. (4)

Expanding Wn, we obtain

Wn = W0 +

n∑
i=1

Λi(C
−1kei)

T . (5)

For convenience, we let

K∗ =

[
K∗

o K∗
e

]
, (6)

where K∗
o = [k1|k2| · · · ] represents the keys corre-

sponding to the model’s original knowledge, and K∗
e =

[ke1 |ke2 | · · · |ken ] represents the keys for the edited knowl-
edge.

We then calculate V ∗ after W0 has been updated to Wn,
which is given by



V ∗ = WnK
∗

= (W0 +

n∑
i=1

Λi(C
−1kei)

T )K∗

= W0K
∗ +

(
n∑

i=1

Λi(C
−1kei)

T

)
K∗

= W0K
∗ +

n∑
i=1

Λi(C
−1kei)

TK∗. (7)

For convenience, we can represent V ∗ using a block ma-
trix notation

V ∗ =

[
V ∗
o V ∗

e

]
, (8)

where V ∗
o and V ∗

e represent the updated value matrices cor-
responding to the original knowledge and the edited knowl-
edge, respectively. We then analyze these two components
separately.

Interference Term of Original Knowledge ∆o

Ideally, the value vectors corresponding to the original
knowledge after editing, namely V ∗

o , are same as Vo =
[v1|v2| · · · ], because we want to ensure that editing does not
affect unrelated original knowledge. Thus, we define ∆o as

∆o = V ∗
o − Vo

=

[
n∑

i=1

Λi(C
−1kei)

T k1|
n∑

i=1

Λi(C
−1kei)

T k2| · · ·

]
.

(9)

For convenience, we study ∆o[:, j], which represents the
j-th column vector of ∆o. This can be viewed as the interfer-
ence term introduced to the j-th piece of original knowledge
after n edits,

∆o[:, j] =

n∑
i=1

Λi(C
−1kei)

T kj

=

n∑
i=1

vei −Wi−1kei
(C−1kei)

T kei
(C−1kei)

T kj

=

n∑
i=1

(C−1kei)
T kj

(C−1kei)
T kei

(vei −Wi−1kei). (10)

Next, let δ(vei) = vei −Wi−1kei ∈ Rd represent the dif-
ference vector between the optimized value and the current
value when editing the i-th piece of knowledge, and define

the coefficient p(kei , kj) =
(C−1kei

)T kj

(C−1kei
)T kei

∈ R. Then, we
obtain

∆o[:, j] =

n∑
i=1

p(kei , kj)δ(vei). (11)

Ideally, we want ∆o[:, j] = 000 to achieve lossless knowl-
edge editing, ensuring that the original knowledge of the

model remains unaffected. However, since δ(vei) = vei −
Wi−1kei ̸= 000 (as this is the premise; if δ(vei) = 000,
then there is no need for editing), we can only hope that
p(kei , kj) = 0. This would eliminate the interference on the
j-th original knowledge.

Interference Term of Edited Knowledge ∆e

Ideally, the value vectors corresponding to the edited knowl-
edge after editing, V ∗

e , are same as Ve = [ve1 |ve2 | · · · |ven ],
because we want to avoid affecting the already edited knowl-
edge during further editing. Thus, we define ∆e as
∆e = V ∗

e − Ve

=

[
n∑

i=2

Λi(C
−1kei)

T ke1 | · · · |Λn(C
−1ken)

T ken−1
|000

]
.

(12)
Unlike the case with original knowledge, as editing pro-

gresses, earlier edits experience more interference, while
later edits are less affected. This is consistent with Jang et al.
(2021). For convenience, we study ∆e[:, j], which represents
the j-th column vector of ∆e. This can be seen as the impact
introduced to the j-th edited knowledge after n edits,

∆e[:, j] =

{∑n
i=j+1 Λi(C

−1kei)
T kej , j < n

000, j = n
(13)

In a similar manner, we can express it as

∆e[:, j] =

{∑n
i=j+1

(C−1kei
)T kej

(C−1kei
)T kei

(vei −Wi−1kei), j < n

000, j = n
(14)

Next, let δ(vei) = vei − Wi−1kei ∈ Rd represent the
difference vector between the optimized value and the cur-
rent value when editing the i-th piece of knowledge. Define

the coefficient p(kei , kej ) =
(C−1kei

)T kej

(C−1kei
)T kei

∈ R. Then, we
obtain

∆e[:, j] =

{∑n
i=j+1 p(kei , kej )δ(vei), j < n

000, j = n
(15)

Ideally, we want ∆e[:, j] = 000 to achieve lossless knowl-
edge editing, ensuring that previously edited knowledge is
not affected. However, since δ(vei) = vei −Wi−1kei ̸= 000,
we can only hope that p(kei , kej ) = 0. This would eliminate
the interference on the j-th edited knowledge.

How to Understand p(·, ·)
In summary, we find that for both the original knowledge
and the edited knowledge, there is a similar coefficient p(·, ·)
in interference term, which directly determines whether
lossless knowledge editing can be achieved.

To study this coefficient more generally, we do not limit
to specific keys (which correspond to specific knowledge ac-
tivations) but consider any keys (or any knowledge activa-
tions) ki and kj . We further investigate

p(ki, kj) =
(C−1ki)

T kj
(C−1ki)T ki

∈ R. (16)



Since C = KKT is a symmetric matrix, C−1 is also sym-
metric. Therefore, we can rewrite it as

p(ki, kj) =
kTi C

−1kj
kTi C

−1ki
=

(C− 1
2 ki)

T (C− 1
2 kj)

(C− 1
2 ki)T (C− 1

2 ki)
. (17)

Here, C = KKT is the covariance matrix, and both ki
and kj are column vectors of K. Therefore, C− 1

2 ki and
C− 1

2 kj are the representations of ki and kj in the whiten-
ing space (Koivunen and Kostinski 1999; Kawahara et al.
2007) after the whitening transformation C− 1

2 (proof in Ap-
pendix B). The coefficient p(·, ·) can be understood as the
dot product of ki and kj in the whitening space, normalized.
When p(·, ·) = 0, it indicates that the knowledge activations
ki and kj are orthogonal in the whitening space.

Definition 1 (Matrix Whitening) For a matrix X , its co-
variance matrix Cov(X) = XXT is not necessarily the
identity matrix. Matrix whitening involves finding a trans-
formation matrix P such that the covariance matrix of Y =
PX , denoted as Cov(Y ), becomes the identity matrix.

Returning to the problem, if we aim to achieve perfectly
lossless knowledge editing, this is equivalent to requiring
both ∆o and ∆e to be zero matrices. This in turn means
we expect p(·, ·) to be zero, which is equivalent to ex-
pecting that knowledge activations are orthogonal in the
whitening space. Consequently, this implies that we expect
the language model to store different pieces of knowledge
in orthogonal directions in the whitening space, and thus
that knowledge superposition does not exist in the whiten-
ing space. Conversely, if such superposition exists, then
the representations are not orthogonal and we cannot
achieve perfectly lossless knowledge editing.

Knowledge in Superposition
In this section, we focus on the phenomenon of knowl-
edge superposition in real-world language models, com-
bining previous theoretical derivations to demonstrate
that knowledge superposition is the fundamental reason
for the failure in lifelong editing.

Specifically, we calculate the degree of superposition be-
tween pieces of knowledge by computing the matrix P for
m pieces of knowledge, where

P [i, j] = p(ki, kj), 1 ≤ i, j ≤ m. (18)

As p(·, ·) approaches 0, knowledge representations become
more orthogonal in the whitening space, and the degree
of superposition becomes weaker. Conversely, as p(·, ·) ap-
proaches 1, knowledge representations become more similar
in the whitening space, and the degree of superposition be-
comes stronger.

In practice, we choose m = 128 to compute the superpo-
sition between 128 × 128 pairs of knowledge and resulting
in a 128 × 128 matrix P . Empirical evidence shows that
m = 128 is sufficient because, at this point, the kurtosis of
the superposition distribution has converged (details in Ap-
pendix C). This indicates that the data size is adequate for
describing the distribution of superposition.

The specific experimental setup is described as follows:

(a) GPT2-Small (b) GPT2-Medium

(c) GPT2-Large (d) GPT-J-6B

Figure 3: Superposition at layer 0 across different language
models visualized using P matrices, ordered by model size.
Each point in these 128x128 P matrices corresponds to the
p(·, ·) value between two pieces of knowledge.

Models In this study, we employ a variety of models in-
cluding GPT2 family (Radford et al. 2019) —GPT2-Small,
GPT2-Medium, and GPT2-Large, Pythia family (Bider-
man et al. 2023) —Pythia-1B, Pythia-2.8B, and Pythia-
6.9B, Llama2 family (Touvron et al. 2023) -Llama2-7B and
Llama2-13B. Additionally, we use the classic GPT-J (Wang
and Komatsuzaki 2022), the latest Llama3-8B (Meta 2024a)
and Llama3.1-8B (Meta 2024b).
Datasets For the extraction of knowledge representations,
we utilized the CounterFact dataset (Meng et al. 2022a). It
is important to note that while CounterFact is commonly
used for counterfactual knowledge editing, our experimen-
tal setup does not involve this aspect. Instead, we focus on
subject-related knowledge rather than counterfactual objects
(details in Appendix G).

Universal in Language Models
Ideally, the matrix P we obtain should be such that all posi-
tions except the diagonal are zero, indicating that no super-
position exists and allowing for lossless knowledge editing.
However, in all layers of all the language models we studied,
the P matrices we obtained consistently show noisy non-
zero entries at positions other than the diagonal, indicating
the presence of superposition at these points. As shown in
Figure 3, we present the heatmaps of P matrices for GPT2-
Small, GPT2-Medium, GPT2-Large, and the GPT-J at layer
0, ordered by model size. Additional heatmaps of P matrices
for all layers of all models are provided in Appendix D.

It is evident that as the model size increases, the P ma-
trices become progressively ”cleaner.” This indicates that as
language models gain more storage capacity to store knowl-
edge, they tend to store this knowledge with weaker super-



position, thereby reducing the interference between pieces
of knowledge caused by superposition.

Additionally, we observe that even as model size in-
creases, fixed interference points remain at positions off the
diagonal, even in models with different architectures and
trained on different corpora. We hypothesize that the knowl-
edge pairs corresponding to these points may actually be
closely related, despite having different expressions, leading
to this phenomenon. This point has been validated through
detailed case studies. We find that the knowledge pairs cor-
responding to these points are indeed closely related. For
instance, in the first layer (layer 0) of these four language
models, the p(·, ·) values for ”Vladimir Mayakovsky” and
”Vladimir Bukovsky” (both of whom are native Russian
speakers) are above 0.95, and even 1.00 in GPT-J, indicating
that the operations performed by the MLP in the first layer
for these two pieces of knowledge are similar or even iden-
tical. This also implies that if we attempt to edit the knowl-
edge of subject ”Vladimir Mayakovsky” in this layer, it will
have a consistent impact on ”Vladimir Bukovsky,” suggest-
ing that they are bound together. For example, if we attempt
to edit ”Vladimir Mayakovsky” to have French as his na-
tive language, the edited model will also output French as
”Vladimir Bukovsky’s” native language. Similar examples
include ”Windows 8.1” and ”Mac OS X 10.1,” which gen-
erally have very high p(·, ·) values (1.00 in the first layer of
GPT-J), even though they are produced by entirely differ-
ent manufacturers, which is fascinating! The case study is
detailed in Appendix F.

Furthermore, choosing different editing layers may lead
to certain changes, as described by Hu et al. (2024). How-
ever, other layers also contain other knowledge in superpo-
sition, as shown in Figure 5.

Heavy-Tailed Distribution in Language Models

To gain a more intuitive understanding of the distribution
characteristics of knowledge superposition, we remove the
diagonal elements from the P matrices across all layers of
all the language models we studied and then plot the ker-
nel density estimation (KDE) of the remaining elements. In
Figure 4, we present the kernel density estimation of the su-
perposition distribution at layer 0 for GPT2-Small, GPT2-
Medium, GPT2-Large, and the GPT-J, ordered by model
size. Additional kernel density estimations for all layers of
all models are provided in Appendix E.

It can be observed that the superposition distribution ex-
hibits characteristics of a heavy-tailed distribution with high
kurtosis and zero mean. As the model size increases, the
kurtosis of distribution becomes larger and the distribution
becomes more concentrated around 0. This indicates that
smaller models, constrained by capacity, exhibit more su-
perposition, attempting to store knowledge representations
in a relatively orthogonal manner. In contrast, larger models
have greater capacity to store knowledge, allowing them to
store it in a more orthogonal manner compared to smaller
models, resulting in a kernel density estimation more con-
centrated around 0.

(a) GPT2-Small (b) GPT2-Medium

(c) GPT2-Large (d) GPT-J-6B

Figure 4: KDE of p(·, ·) values in P matrics at layer 0 across
different language models, ordered by model size. In P ma-
trices, p(·, ·) values are concentrated around 0, with high
kurtosis, which increases as model size grows.

Scaling Law for Superposition
We have already seen that the degree of knowledge super-
position varies with model size. In this section, we formally
study the scaling law of superposition by experimenting with
different-sized models from the same language model fam-
ily. These models have consistent architecture and training
corpora, differing only in size. As shown in Figure 5, we
examine the kurtosis across all layers of a total of 8 lan-
guage models from the GPT2, Pythia, and Llama-2 families.
Higher kurtosis reflects weaker superposition.

We can observe a clear scaling law: as model size in-
creases, kurtosis tends to rise, indicating that the degree of
superposition between pieces of knowledge decreases with
larger models. This also explains why larger language mod-
els exhibit a higher degree of intelligence. A plausible expla-
nation is that as model size grows, the knowledge from the
corpus can be stored with weaker superposition, allowing
for effective handling of more complex or knowledge-dense
scenarios. since the sparser the features, the stronger the su-
perposition (Elhage et al. 2022b), which also means they can
only effectively handle scenarios where knowledge features
are sparser.

Additionally, we find that the degree of superposition
varies across different layers in the same language model.
Earlier layers exhibit higher kurtosis and thus lower degree
of superposition, while later layers exhibit lower kurtosis
and higher degree of superposition. This is reasonable, as
early layers in a language model focus on shallow syntac-
tic features, which are dense and result in weaker superpo-
sition. In contrast, later layers focus on deep semantic fea-
tures, which are sparse and result in stronger superposition.
This aligns with Elhage et al. (2022b).



(a) GPT2 Family (b) Pythia Family (c) Llama2 Family

Figure 5: The scaling law of knowledge superposition. Higher kurtosis means less superposition.

(a) Llama3-8B (whitening) (b) Llama3.1-8B (whitening)

(c) Llama3-8B (activation) (d) Llama3.1-8B (activation)

Figure 6: Angular distribution of knowledge representations
in whitening space and activation space in last layer.

Furthermore, we find that different architectures have
varying impacts on knowledge superposition. As shown in
Figure 5, by observing the vertical axis, it is evident that
the Pythia and GPT2 architectures seem to encourage more
orthogonal representations of knowledge, achieving higher
kurtosis with a smaller number of parameters, indicating
weaker superposition. In contrast, the Llama2 architecture
seems to encourage greater knowledge superposition, with
even larger parameter sizes corresponding to relatively lower
kurtosis, indicating stronger superposition. This is consistent
with Elhage et al. (2022a), which suggests that some archi-
tectures may encourage sparsity.

Superposition in Whitening Space
In this section, we provide further direct evidence of super-
position by calculating the angular distribution of knowl-
edge representations, demonstrating its presence in the
whitening space. Specifically, we calculate the angles be-

tween 128x128 pairs of knowledge representations in the
whitening space on Llama3-8B and Llama-3.1-8B. For com-
parison, we also calculate the angles in the activation space
(i.e., directly from MLP’s hidden activations).

In the whitening space (Figure 6ab), the angles are pri-
marily concentrated around 90 degrees, indicating that lan-
guage models attempt to represent knowledge orthogonally,
though limited model capacity results in a long tail. How-
ever, in the activation space (Figure 6cd), the relationships
between these knowledge representations are indiscernible,
showing no orthogonal tendencies.

Importantly, superposition in the whitening space is de-
rived through rigorous mathematical reasoning, whereas su-
perposition in the activation space is based on a heuristic
perspective (Elhage et al. 2022b). However, this heuristic
perspective has been used as a fundamental assumption in
many works that address superposition (Cunningham et al.
2023; Bricken et al. 2023; (Templeton et al. 2024)).

Conclusion

In this research, we focus on the failure of lifelong knowl-
edge editing and explore its fundamental reason. Our rig-
orous mathematical derivation indicates that continuous
knowledge editing can interfere with both original and pre-
viously edited knowledge in language models. Further anal-
ysis shows that the degree of interference is determined by
the extent of knowledge superposition. Subsequently, we ex-
plore the presence and properties of superposition in real-
world language models. Our experiments reveal that knowl-
edge superposition is universal across language models,
characterized by a high-kurtosis, zero-mean, heavy-tailed
distribution, with a clear scaling law. In conclusion, our find-
ings indicate that knowledge superposition is the fundamen-
tal reason for the failure in lifelong editing. Nevertheless,
the scaling law of superposition still suggests future direc-
tions for knowledge editing, including: on the model side, at-
tempting knowledge editing in larger language models with
sparser architectures; and on the algorithm side, attempting
to decompose knowledge within language models and per-
forming edits based on this decomposition.
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