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Abstract
Fast adversarial training (FAT) aims to enhance
the robustness of models against adversarial at-
tacks with reduced training time, however, FAT
often suffers from compromised robustness due
to insufficient exploration of adversarial space. In
this paper, we develop a loss function to improve
robustness in FAT without requiring stronger inner
maximization. Specifically, we derive a quadratic
upper bound (QUB) on the adversarial training
(AT) loss function and propose to utilize the
bound with existing FAT methods. Our experi-
mental results show that applying QUB loss to the
existing methods yields significant improvement
of robustness. Furthermore, using various metrics,
we demonstrate that this improvement is likely to
result from the smoothened loss landscape of the
resulting models.

1. Introduction
Deep neural networks have shown remarkable performance
in various tasks like image classification and speech recog-
nition, bringing innovation in real-world applications. How-
ever, these models have been found to be vulnerable to
adversarial attacks (Goodfellow et al., 2015). These attacks
involve adding small perturbations to the data to mislead the
model into making incorrect predictions, severely compro-
mising its reliability.

Adversarial training (AT) (Madry et al., 2018) is the most
common defense method to address this issue. It generates
adversarial examples by perturbing the input data during the
training process and trains the model with these examples
to improve robustness. Accordingly, the robustness of the
model obtained by AT depends heavily on the quality of
generated adversarial examples. A well-known approach,
projected gradient descent (PGD) (Madry et al., 2018), is a
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gradient-based iterative method that updates perturbations
in the direction that maximizes the loss to explore stronger
attacks. There are several other approaches that generate
adversarial examples by introducing more sophisticated loss
functions (Zhang et al., 2019; Wang et al., 2019). While
these approaches can effectively enhance the robustness,
they often require time-consuming and computationally ex-
pensive training due mainly to the need for generating high-
quality examples and performing iterative optimization.

To address this issue, the concept of fast adversarial train-
ing (FAT) has emerged (Shafahi et al., 2019). FAT utilizes
single-step attacks instead of multi-step attacks, enabling
faster and more cost-efficient training, and hence, allows for
only a coarse-grained exploration of the adversarial space.
As a result, FAT often suffers from catastrophic overfitting
(Wong et al., 2020), where the model becomes excessively
robust to the adversarial examples encountered during train-
ing while compromising robustness against unseen attacks.

Various FAT methods have since been proposed to over-
come catastrophic overfitting and improve performance (An-
driushchenko & Flammarion, 2020; Kim et al., 2021; Srira-
manan et al., 2020; 2021; Jia et al., 2022a). By analyzing
the causes of the problem and approaching it from new
perspectives, these methods have demonstrated improved
robustness, even with reduced training time.

In this paper, we propose a simple loss function designed to
enhance robustness without significantly affecting the short
training time of FAT. We derive a quadratic upper bound
(QUB) on the AT loss function by relying on the fact that the
cross-entropy loss function is convex with respect to logits.
The bound can indeed be viewed as a combination of the
terms for accounting for robust accuracy as well as standard
accuracy. We propose to utilize the bound for adversarial
training instead of the original AT loss function. Experi-
mental results show that our QUB can further enhance the
robustness of existing AT methods without significantly in-
creasing training time. We also analyze various metrics and
demonstrate that employing QUB has the effect of smooth-
ing the loss landscape with respect to perturbations, which
contributes to enhanced robustness.

The contributions of this paper can be summarized as fol-
lows:
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• Proposal of QUB Loss: We derive a quadratic upper
bound (QUB) on the adversarial training loss func-
tion by using the convexity of cross-entropy loss with
respect to logits.

• FAT Method with QUB Loss: We develop an FAT
method with QUB loss that can improve model robust-
ness by simply replacing the loss function.

• Experimental Performance Validation: We do not
only demonstrate improved robustness on various
dataset but also analyze the impact of our QUB loss on
the loss landscape using various metrics.

2. Related Work
2.1. Adversarial Attack

Adversarial Attack refers to the method of adding small
perturbations to the input data that intentionally degrade the
model’s performance. In this paper, we focus on attacks
in image classification. In the following, fθ(·) refers to an
artificial neural network with parameter θ, and L denotes
the loss function. The adversarial attack aims to find a
perturbation, denoted as δ, that maximizes the so-called AT
loss function as follows:

max
∥δ∥p≤ϵ

L(fθ(x+ δ), y), (1)

where Lp norm constraint ensures that the perturbed input
x+δ lies within the ϵ-ball B(x, ϵ) centered at the input x. In
many studies, the L∞-norm is typically adopted, as it allows
for the widest range of attacks (or perturbations) for the
same value of ϵ. Since this optimization problem (1) is non-
convex, finding the exact optimal solution is very difficult.
Therefore, gradient-based methods have been proposed to
approximate the solution.

The fast gradient sign method (FGSM) (Goodfellow et al.,
2015) is a simple gradient-based attack that adjusts x in the
direction of the gradient of the loss as follows:

xadv = x+ ϵ · sign(∇xL(fθ(x), y)). (2)

FGSM generates adversarial examples with a single gradient
calculation, allowing attacks to be performed in a short time.
However, it has the limitation of adding perturbations by
a fixed amount ϵ, thus failing to sufficiently explore all
potential attack points within the ϵ-ball.

Projected gradient descent (PGD) (Madry et al., 2018) is
an iterative gradient-based method that generates stronger
attacks, providing a direct approach to solve problem (1). In
the t-th iteration, the adversarial example xt, representing
the perturbed image after t iterations, is updated as follows:

xt+1 = ΠB(xt,ϵ)(xt + α · sign(∇xL(fθ(xt), y))), (3)

where ΠB(xt,ϵ)(·) denotes the projection onto the ϵ-ball
around xt. In this method, the image is iteratively updated
with a small step size α. If the resulting perturbation ex-
ceeds the ϵ-bound, it is projected back onto the ϵ-ball to
ensure that the constraints are satisfied. PGD obviously gen-
erates more powerful attacks than FGSM due to its iterative
updates, which potentially makes it to converge to the point
where the loss is maximized.

2.2. Adversarial Training

To enhance robustness against adversarial attacks, adversar-
ial training was proposed, where adversarial examples are
generated and used to train the model (Madry et al., 2018).
The min-max optimization problem of adversarial training
is written as follows:

min
θ

max
∥δ∥p≤ϵ

L(fθ(x+ δ), y), (4)

where the inner maximization seeks perturbations that maxi-
mize the loss, and the outer minimization updates the model
parameters to minimize this worst-case loss. This approach
aims to train the model to make accurate predictions even
when it encounters perturbed inputs. By doing so, the model
can achieve robustness not only in clean image classifica-
tion but also in the presence of intentional attacks. Later,
TRADES (Zhang et al., 2019), which aims to align the
model’s output distributions before and after the attack,
demonstrated superior robustness performance.

2.3. Fast Adversarial Training

In adversarial training, perturbations must be generated for
all training data to train the model. However, multi-step
update processes, such as PGD, require substantial computa-
tional resources and can lead to excessively longer training
times. To address this issue, fast adversarial training (FAT)
methods have been developed, which generate perturbations
in a single step for faster training, such as FGSM in (2).

However, as demonstrated in (Madry et al., 2018), the mod-
els trained with FGSM exhibit a lack of robustness to PGD
attacks. This is attributed to FGSM’s reliance on a single-
step update, which proves inadequate for identifying effec-
tive attack points. Free-AT (Shafahi et al., 2019) aims to
replicate the iterative nature of PGD by generating adver-
sarial examples through a single backward pass, efficiently
combining the robustness of iterative attacks with reduced
computational overhead. FGSM-RS (Wong et al., 2020)
simplifies Free-AT’s approach by incorporating random
starts, which enables to explore a more diverse perturbation
space. N-FGSM (de Jorge Aranda et al., 2022) strengthens
single-step adversarial training by using stronger noise and
removing gradient clipping, which prevents catastrophic
overfitting.
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Furthermore, many of the aforementioned FAT methods can
suffer from catastrophic overfitting, which is a phenomenon
that the model’s robustness dramatically decreases against
PGD attacks during training. This occurs when the model
becomes excessively sensitive to adversarial attacks or over-
fits to specific types of perturbation (Kurakin et al., 2017;
Tramèr et al., 2018; Lin et al., 2024b). As a result, the
model may successfully defend against the attack types it
was trained on but loses defense capability against more
advanced attacks generated in different ways. Several im-
proved FAT methods have been proposed to resolve this
issue, and we discuss those methods in the following.

Regulating Attack Intensity with Step Size Adjustment

FGSM-CKPT (Kim et al., 2021) avoids direct updates with
large step sizes in the adversarial direction, and instead in-
troduces checkpoints to generate better attacks with varying
step sizes. ATAS (Huang et al., 2023) identifies fixed step
sizes as a cause of catastrophic overfitting and addresses
this by introducing an adaptive step size, which adjusts the
perturbation size based on the loss variation.

Enhancing the Initial Points of Attacks

The robustness of the trained model depends heavily on the
initial point of attack, and consequently, several papers have
explored improved initialization techniques. FGSM-SDI
(Jia et al., 2022b) uses a generator to create perturbations
in conjunction with the model, enabling the learning of
adversarial attacks tailored to each sample. FGSM-PGI
(Jia et al., 2022a) and FGSM-PGK (Jia et al., 2024b) are
representative of prior-guided initialization methods, where
perturbations from previous epochs are stored and used as
initial points for attacks in the next epoch, achieving better
performance with only a single step. FGSM-UAP (Pan
et al., 2024) proposes a method using a small number of
Universal Adversarial Perturbations (UAPs), saving memory
while performing strong attacks without storing individual
perturbations for whole images.

Integrating Regularizers into Loss Functions

There are many studies that seek to enhance the stability
and robustness of adversarial training through regularizers
in the loss function.

FGSM-GA (Andriushchenko & Flammarion, 2020) im-
proves robustness by maximizing the cosine similarity,
cos(∇xf(x),∇xf(x + η)), where η is a random pertur-
bation, promoting consistent gradient alignment between
clean and adversarial examples. Guided Adversarial Train-
ing (GAT) (Sriramanan et al., 2020) introduces a relaxation
term in the basic loss function to find better gradient direc-
tions, improving attack efficiency and overall performance.
NuAT (Sriramanan et al., 2021) used a nuclear-norm reg-
ularizer to optimize by leveraging joint statistics within a

mini-batch, rather than processing each data sample inde-
pendently. A regularizer was designed to align the pertur-
bation direction of FGSM with the loss gradient direction,
compensating for the drawbacks of FGSM while achieving
performance close to PGD-based training. FAT-CS (Zhao
et al., 2023) proposed a regularizer to stabilize the loss
convergence process, addressing the issue of catastrophic
overfitting, which is often accompanied by sudden changes
in loss. FGSM-LAW (Jia et al., 2024a) introduced Lips-
chitz regularization and auto weight averaging methods to
comprehensively improve the model’s robustness. Layer-
Aware Adversarial Weight Perturbation (LAP) (Lin et al.,
2024c) analyzed the varying degree of distortion across lay-
ers and applied adaptive weight perturbations to different
layers to enhance robustness. ELLE (Rocamora et al., 2024)
refines local linearity regularization, with ELLE reducing
computational overhead by linking regularization to loss
curvature.

Other Approaches

Sub-AT (Li et al., 2022) enhances adversarial training by
extracting subspaces in the latent space. Dropout schedul-
ing (Vivek & Babu, 2020) prevents gradient masking, while
ZeroGrad (Golgooni et al., 2023) removes weak perturba-
tions to improve learning. DOM (Lin et al., 2024a) miti-
gates over-memorization by adjusting high-confidence pre-
dictions. SLAT (Park & Lee, 2021) normalizes feature
gradients by applying perturbations in the latent space.

Many of the previous works (using the original AT loss
function) have focused on the generation of sophisticated
adversarial examples or on the design of regularizers for
boosting robustness. Our approach differs from those AT
methods in that we derive an upper bound on the AT loss
function and use the bound to explore robust models. Fur-
thermore, our method can be readily applied to the existing
methods that rely on the AT loss function in (4).

3. Quadratic Upper Bound for AT
In this section, we derive a quadratic upper bound on the
loss function L(fθ(x + δ), y) in (4) which is commonly
used in adversarial training. In the following, the function
L(fθ(x + δ), y) is denoted as LAT and called the AT loss
function. Conceivably, if there is an upper bound on the AT
loss function which provides a good approximation with-
out losing too much of the characteristics of LAT, then the
adversarial training problem in (4) or its variants might be
approximately solved using the upper bound. Our bound
indeed captures the key characteristics of LAT (will be dis-
cussed later), and hence can be used for adversarial training.
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3.1. Deriving the Bound

The AT loss function is nothing but the cross-entropy loss
function with perturbed input, and we begin with the def-
inition of the cross-entropy loss function. Consider the
classification problem with C classes. Let zi denote the
logit corresponding to the i-th class, where i ∈ [1, ..., C].
The cross-entropy loss function is written as

L(z, y) = −
C∑
i=1

yi log(ŷi), ŷi =
ezi∑C
j=1 e

zj
, (5)

where yi is the i-th element of the one-hot encoded vector
y, and ŷ represents the softmax probabilities of the model’s
output. This function is known to be convex with respect to
the logit vector z = [zi, i = 1, ..., C] (See Appendix A).

Let us introduce the notation f which overrides the logit
vector z. We also use fθ to indicate that fθ represents the
logit vector produced by the neural network parameterized
by θ. Similarly, f(x) or fθ(x) indicates the logit when the
input is x. The cross-entropy loss function can then be writ-
ten as L(f(x), y). However, for convenience, we simplify
the notation as L(f(x)), omitting the explicit dependence
on y. With this notation, the AT loss function is written
as L(f(x + δ)). The following lemma provides an upper
bound on the AT loss function.

Lemma 1. The AT loss function is upper-bounded as fol-
lows:

L(f(x+ δ)) ≤ L(f(x)) + (f(x+ δ)− f(x))T∇fL(f(x))

+
∥H∥2

2
∥f(x+ δ)− f(x)∥22,

(6)

where ∇fL is the gradient of the loss with respect to the
logit f and ∥H∥2 is the L2 norm of the Hessian matrix of
the loss with respect to the logit, evaluated at some point
between f(x) and f(x+ δ).

The proof of this lemma uses the convexity of cross-entropy
loss function L(f(x)) with respect to f(x), and the details
can be found in Appendix B. This bound is quadratic with
respect to the perturbed logit vector f(x + δ), and hence,
we call the bound quadratic. In order to use the bound in
adversarial training, we need to specify the value ||H||2 or
its upper bound, which is given in the following lemma.

Lemma 2. We have ||H||2 ≤ 1
2 .

The derivation of the bound is presented in Appendix C.

Based on Lemmas 1 and 2, the QUB loss is defined as

LQUB = L(f(x))+(f(x+ δ)− f(x))T∇fL(f(x))

+
1

4
∥f(x+ δ)− f(x)∥22. (7)

Algorithm 1 AT with Static QUB Loss
Input: network architecture f parameterized by θ, batch
size B, batched training data {xi, yi}Bi=1, training epoch
T , perturbation generation method P
Output: Adversarially robust network f
for t = 1 to T do

for i = 1 to B do
δ = P (f, xi, yi)
Use Equation (7) to compute LQUB
θ ←− θ −∇θLQUB

end for
end for

Algorithm 2 AT w/ Decreasing Weight on QUB Loss
Input: network architecture f parameterized by θ, batch
size B, batched training data {xi, yi}Bi=1, training epoch
T , perturbation generation method P
Output: Adversarially robust network f
for t = 1 to T do
λt = t/T
for i = 1 to B do
δ = P (f, xi, yi)
LAT = L(f(xi + δ), y)
Use Equation (7) to compute LQUB
Ltotal = (1− λt) · LQUB + λt · LAT
θ ←− θ −∇θLtotal

end for
end for

3.2. Interpretation of QUB Loss

We analyze each term in the QUB loss (7) and discuss how
the loss can help improve the robustness against adversarial
attacks. The first term, L(f(x)), represents the loss on clean
samples, reflecting the model’s ability to handle unperturbed
data. This term drives the model towards higher standard
accuracy (SA), which measures the model’s performance
on unperturbed data.

The second term, (f(x+ δ)− f(x))T∇fL(f(x)), can be
approximated by applying the chain rule as

(f(x+ δ)− f(x))T∇fL(f(x)) ≈ δT∇xL(f(x)). (8)

The detailed derivation is available in Appendix D. The
right-hand side is the inner product between the perturbation
δ and the gradient of the loss with respect to the input. This
value is small when the direction of the perturbation does
not align with the direction that increases the loss the most.
Consequently, minimizing the second term can potentially
mitigate the adversarial impact of perturbation on the loss,
thereby enhancing robustness. This is closely related to
the flatness of the loss landscape: when the loss landscape
is flatter (i.e., small ||∇xL(f(x))||), small perturbations
have less impact on the model’s performance, leading to
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greater robustness (Yu et al., 2018; Li & Spratling, 2023).
The second term is the increment of loss by perturbation,
and hence, minimizing the second term has the effect of
flattening the loss landscape as well.

The third term, ||f(x+ δ)− f(x)||22, represents the change
in the model’s logit when perturbation is applied. Obviously,
minimizing this term helps limit the impact of adversarial
examples on the model’s output, further strengthening ro-
bustness, as shown in previous works (Zhang et al., 2019;
Sriramanan et al., 2021; 2020).

The second and third terms seem to have similar effect in
enhancing robustness, however, using both of the terms
may achieve better robustness. Specifically, for the same
value of the third term, there may be various logit change
vector f(x+δ)−f(x) aligning differently with the gradient
∇xL(f(x)). Hence, the second term can further enhance
robustness by adjusting the vector f(x + δ) − f(x) away
from the gradient so as to prevent the increase of loss.

Remark. One could directly use the right hand side of
(8) in order to minimize the change in loss L when per-
turbation δ is applied to input. However, the second term
of QUB offers several advantages over the right-hand side,
δT∇xL(f(x)). First, as shown in (C.13), the gradient∇fL
can be computed in closed form as the difference between
the softmax vector ŷ and the one-hot vector y, without
requiring additional backpropagation steps. Second, the
memory usage is also saved. In contrast to the second term,
which uses f(x), f(x+ δ), and ∇fL(f(x))—all of which
lie in RC , where C is the number of classes—the terms δ
and ∇xL(f(x)) require the storage of input-sized tensors,
which lie in Rc×H×W (or Rc·H·W if vectorized), where c
is the number of channels, H is the height, and W is the
width of the input. Therefore, using the second term in
QUB instead of right hand side in (8) is efficient in both
computation and memory usage.

3.3. Training Strategy

We propose a generalized training framework based on
the QUB loss, as detailed in Algorithm 1. As shown in
Eq. (4), we retain the original inner maximization procedure
P , which corresponds to existing perturbation generation
methods and is not the focus of our contribution. Since the
QUB loss serves as an upper bound on the standard adver-
sarial training (AT) loss, minimizing the QUB loss has the
effect of reducing the AT loss. Therefore, the AT loss can
be replaced with the QUB loss in the original outer mini-
mization problem in (4), enabling a standalone adversarial
training method.

While this upper-bound property can be beneficial, partic-
ularly in the early phase of training where minimizing the
QUB loss can quickly improve robustness, it also introduces

a potential drawback. Due to its worst-case nature, the QUB
loss tends to produce gradients with larger magnitude com-
pared to the original AT loss. In stochastic gradient descent
(SGD), this corresponds to treating the current model as
overly pessimistic and applying stronger corrective forces
toward robustness. As training progresses and the model
becomes sufficiently robust, continuing to rely solely on
the QUB loss can lead to excessive regularization, which
in turn may degrade standard accuracy. In other words,
the model may overcompensate for robustness, sacrificing
generalization on clean inputs.

To mitigate this issue, we propose a training strategy in
which the model is trained with the QUB loss in the initial
phase, and the QUB loss is gradually transitioned to the AT
loss as the training progresses. This approach, which we
call QUB-decreasing, is designed to emphasize robustness
in the early phase and progressively restore balance between
robustness and generalization. We implement this transi-
tion using a simple linear schedule with respect to training
epochs, which requires no additional tuning or computa-
tional overhead. This choice reflects our goal of maintain-
ing training efficiency and simplicity. This AT method is
detailed in Algorithm 2.

4. Experiments
4.1. Experimental Settings

We conduct experiments to compare the performance of
models trained with QUB loss to existing methods adopting
the traditional AT loss in (4). We use a single NVIDIA
GeForce RTX 4090 GPU with 24GB of memory.

Datasets and Training Settings. To evaluate robustness
in image classification, we use three datasets: CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet
(Netzer et al., 2011). Following common settings in adver-
sarial training, we use ResNet18 (He et al., 2016b) and
WideResNet34-10 (Zagoruyko & Komodakis, 2016) as
backbones for CIFAR-10 and CIFAR-100, and PreActRes-
Net18 (He et al., 2016a) for Tiny ImageNet. The optimizer
is SGD (Ruder, 2016), with a learning rate of 0.1, weight
decay of 5e-4, and momentum of 0.9. The batch size is
set to 128. Training is conducted over 100 epochs, and we
utilize a multistep learning rate scheduler that scales the
learning rate by 0.1 at epochs 70 and 85.

Adversarial Attack Settings. We set the attack budget ϵ to
8/255 and use a step size α of 2/255 for multi-step attacks
such as PGD and TRADES. Each method’s hyperparam-
eters are chosen based on the values recommended in the
respective papers. We apply early stopping and save the
model with the highest robust accuracy using PGD-10 on
the validation set, following (Rice et al., 2020).
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Table 1. Test robustness (%) on the CIFAR-10 dataset using ResNet18 architecture. Number in bold indicates the best.

Method Step SA PGD10 PGD20 PGD50-10 AA Time (h)

no AT - 94.64 0.00 0.00 0.00 0.00 0.57
NuAT 1 82.99 51.40 50.33 49.60 47.70 1.36
GAT 1 81.64 54.78 53.87 53.30 47.96 1.45
TRADES 10 82.11 54.25 53.39 52.77 50.16 3.50

Free-AT 1 75.99 45.32 44.74 44.27 41.38 0.3
+ QUB-static 1 72.98 46.72 46.19 45.89 42.82 0.56
+ QUB-decreasing 1 76.10 45.58 44.89 44.35 41.60 0.56
FGSM-RS 1 84.32 47.28 45.60 44.66 43.34 0.86
+ QUB-static 1 71.13 42.96 42.19 41.54 38.48 1.16
+ QUB-decreasing 1 72.90 43.85 42.96 42.52 39.31 1.16
FGSM-CKPT 1 90.02 41.19 38.81 37.42 37.22 1.05
+ QUB-static 1 87.63 45.41 43.78 42.54 41.53 1.35
+ QUB-decreasing 1 88.56 43.87 41.88 40.70 39.85 1.35
FGSM-GA 1 82.93 49.89 48.53 47.74 45.75 3.02
+ QUB-static 1 79.75 52.24 51.33 50.82 47.33 3.27
+ QUB-decreasing 1 81.83 50.88 49.83 49.07 46.74 3.27
FGSM-PGI(MEP) 1 81.48 53.43 52.47 51.75 48.41 0.89
+ QUB-static 1 80.45 53.99 53.16 52.43 48.35 1.19
+ QUB-decreasing 1 81.56 53.95 52.99 52.24 48.58 1.19
N-FGSM 1 81.21 49.12 48.02 47.36 45.17 0.58
+ QUB-static 1 80.76 51.19 50.24 49.60 47.00 0.70
+ QUB-decreasing 1 80.77 50.30 49.35 48.70 46.60 0.70
FGSM-UAP 1 81.62 53.38 52.59 51.83 47.75 1.18
+ QUB-static 1 79.70 54.25 53.51 52.77 47.76 1.49
+ QUB-decreasing 1 80.54 54.07 53.32 52.43 47.80 1.49
ELLE-A 1 82.14 47.91 46.39 45.57 43.52 0.97
+ QUB-static 1 77.60 50.20 49.44 48.86 45.51 1.21
+ QUB-decreasing 1 80.96 49.70 48.62 47.88 45.55 1.21
PGD-AT 10 81.53 52.99 52.30 51.82 48.33 2.34
+ QUB-static 10 80.24 54.58 53.87 53.39 49.91 2.64
+ QUB-decreasing 10 82.78 53.33 52.31 51.58 49.02 2.64

Baselines. We compare the performance of widely used AT
methods including Free-AT (Shafahi et al., 2019), FGSM-
RS (Wong et al., 2020), FGSM-GA (Andriushchenko
& Flammarion, 2020), FGSM-CKPT (Kim et al., 2021),
FGSM-PGI (Jia et al., 2022a), N-FGSM (de Jorge Aranda
et al., 2022), FGSM-UAP (Pan et al., 2024), ELLE-A (Ro-
camora et al., 2024), and PGD-AT (Madry et al., 2018), with
and without QUB loss. Methods that avoid applying cross-
entropy loss directly to adversarial inputs, such as TRADES
(Zhang et al., 2019), NuAT (Sriramanan et al., 2021), and
GAT (Sriramanan et al., 2020), are also included purely for
performance comparisons without QUB loss.

4.2. Impact of QUB on Accuracy

To evaluate the effectiveness of our method, we conduct
extensive experiments focusing on accuracy under different
adversarial conditions. Using an attack budget of ϵ = 8/255,
we assess Standard Accuracy (SA) for original images and
Robust Accuracy (RA) against various attacks.

The attacks include:

• PGD10 and PGD20 that perform 10 and 20 iterations
of perturbation updates, respectively.

• PGD50-10 (Wong et al., 2020) that applies 50 iter-
ations per restart over 10 restarts, generating signifi-
cantly stronger perturbations.

• AutoAttack (AA) (Croce & Hein, 2020a) that com-
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Figure 1. Loss landscape for a specific sample: (a) model trained with FGSM-CKPT and (b) with FGSM-CKPT + QUB. The left side
shows colors based on the loss value, and the right side shows colors based on prediction accuracy.

bines multiple attacks—APGD-CE and APGD-DLR
with auto-adjusting step size (Croce & Hein, 2020a),
Square Attack (Andriushchenko et al., 2020), and FAB
attack (Croce & Hein, 2020b) —that provides a com-
prehensive evaluation of robustness.

Table 1 presents the results on CIFAR-10 using ResNet18 as
the backbone architecture. Additional experimental results
with different model architectures and datasets are provided
in Appendix F.

QUB-static refers to the case where the QUB loss is used
throughout the entire training process following Algorithm
1, while QUB-decreasing refers to the approach outlined
in Algorithm 2, where the QUB loss is initially used in the
early stages of training, gradually transitioning to AT loss
as the training progresses.

Interestingly, we observe that combining QUB with FGSM-
RS not only fails to improve robustness, but can even de-
grade performance. This is because FGSM-RS, which is
well known to suffer from limited exploration and is highly
prone to catastrophic overfitting (Kang & Moosavi-Dezfooli,
2021), often generates suboptimal or misleading adversarial
examples. When QUB regularizes the loss landscape around
such low-quality perturbations, it may inadvertently enforce
smoothness in non-informative or misleading regions, fur-
ther harming generalization. As a result, QUB may amplify
the limitations of FGSM-RS rather than compensating for
them.

Except for FGSM-RS, all baselines show an improvement in
robustness when applying the QUB loss. This result verifies
our discussion in Section 3.2 that the QUB loss can possibly
drive the model toward the point where the change in loss is
somewhat dampened in the face of perturbations or attacks.

Note that QUB-static achieves better RA than QUB-
decreasing for most of AT methods and attacks, while SA
is more compromised with QUB-static than with QUB-
decreasing. In many cases—such as with Free-AT—the
drop in standard accuracy outweighs the gain in robustness
accuracy. This result supports our hypothesis in Section 3.3
that QUB, due to its upper-bound nature, may apply stronger

gradients and lead to overemphasis on robustness at the cost
of clean performance.

In contrast, QUB-decreasing balances this trade-off more
effectively by gradually shifting from QUB loss to AT loss
during training. As a result, it achieves comparable or im-
proved RA and better SA in many settings (see Table 1).

In terms of training time, we observe a slight increase due
to the additional computation required for each term in the
QUB loss. However, compared to multi-step attacks used in
methods such as PGD-AT and TRADES, FAT methods with
QUB loss still require comparatively less time. Therefore,
QUB loss can be considered an effective auxiliary approach
in FAT, as it significantly enhances performance with only a
modest increase in training time.

4.3. Flatness of the Loss Landscape

We visualize the loss landscape on the CIFAR-10 dataset
using the ResNet18 architecture.

Visualization of Loss Landscape

Visualizing the cross-entropy loss landscape around the in-
put can help assess a model’s vulnerability to adversarial
attacks. If sharp peaks exist in the loss landscape, it indi-
cates that even a small perturbation can potentially mislead
the model to make an incorrect classification. In contrast, a
flatter landscape implies greater robustness, as successful
attacks may need stronger perturbations of input (Yu et al.,
2018; Li & Spratling, 2023).

To create a 3D visualization of the loss landscape, we project
a clean image’s cross-entropy loss in two directions: the
gradient direction (dg) corresponding to the cross-entropy
loss gradient and a random direction (dr). We generate a
50×50 grid from 0 to the attack budget ϵ (8/255) for each
direction and compute the loss value at each grid point. This
visualization offers insights into the sharpness or flatness
of the landscape around the input, showing how resilient
the model may be to adversarial perturbations (Chan et al.,
2020; Dong et al., 2020; Kim et al., 2021).

Figure 1 shows that models trained with QUB loss exhibit
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Figure 2. Average dominant eigenvalue for each method. Models
trained with QUB loss show smaller dominant eigenvalues.

a significantly flatter loss landscape. As mentioned above,
this flatter landscape indicates that the model can make ac-
curate predictions across a broader region around each input
sample. Consequently, the model’s robustness is enhanced,
as it becomes less sensitive to small perturbations around
the input. This result demonstrates that our QUB loss effec-
tively strengthens robustness and more importantly, trains
the model to remain robust against unseen attacks.

Dominant Eigenvalue of Hessian Matrix

While the visualization verifies the flatness of loss landscape
around a single sample, it gives only a limited view of land-
scape over the entire dataset. To further assess the flatness
of the loss landscape, we examine the dominant eigenvalue
of the Hessian matrix of the cross-entropy loss with respect
to the input. The eigenvalue of the Hessian matrix reflects
the curvature along specific directions; a larger eigenvalue
suggests a steeper curvature along the corresponding eigen-
vector. By focusing on the dominant (largest) eigenvalue,
we can capture the overall sharpness or flatness of the loss
landscape. A smaller dominant eigenvalue indicates a flat-
ter landscape, which is typically associated with greater
robustness.

In this experiment, we extract 1,000 samples from the
CIFAR-10 test dataset and calculate the dominant eigen-
value of the Hessian matrix of the cross-entropy loss with
respect to each sample. We then compute the average of
these dominant eigenvalues to compare the flatness of the
loss landscape across different training methods.

As shown in Figure 2, the use of QUB loss results in gener-
ally smaller eigenvalues across the dataset. This indicates
that the loss landscape is not only flattened for specific
samples as shown in Figure 1, but also exhibits enhanced
robustness across the entire dataset. This experiment em-
pirically supports the claim made in Section 3.2 that the
second term in QUB loss contributes to flattening the loss
landscape. Moreover, the upper bound loss helps the model
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+ QUB (orange line) for each attack budget shows that the sparsity
value with QUB is consistently higher in all ranges.
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Figure 4. Sparsity values with and without QUB for each method.
Using QUB consistently results in higher values across all methods.

defend not only against the perturbations used in training
but also against potential attacks that are unseen in training,
suggesting robustness against broader adversarial scenarios.

4.4. Adversarial Sparsity

Several studies suggest that RA alone cannot fully capture
the robustness of a model, as it focuses solely on whether
an attack point is defended. The sparsity metric (Olivier &
Raj, 2023) addresses this by measuring the average distance
to the nearest attackable point within L∞ ball, with a larger
value indicating greater robustness. The experiments are
conducted in the same environment as in Section 4.3, and
we vary the attack budget ϵ across [4/255, 8/255, 12/255,
16/255] as opposed to the training with fixed ϵ of 8/255.

As shown in Figure 3, applying QUB loss during training on
FGSM-CKPT results in better performance in terms of the
density metric of attackable points compared to training with
AT loss on FGSM-CKPT. Figure 4 illustrates the sparsity of
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each AT method measured at four different values of epsilon.
In all the methods, the sparsity values are consistently larger
for every attack budget, indicating that the QUB loss helps
reduce the number of attackable points.

5. Conclusion
In this paper, we presented a novel FAT method for enhanc-
ing the robustness of a model against adversarial attacks.
Our method aims to drive the model toward minimizing a
quadratic upper bound on the cross-entropy loss function,
instead of the conventional AT loss function. Our method
can be applied to many existing FAT methods that are based
on the conventional AT loss function. We showed through
extensive experiments that the robustness of existing FAT
methods can be further enhanced with the QUB loss. Var-
ious metrics such as eigenvalues and sparsity demonstrate
that the QUB loss has the effect of flattening the loss land-
scape, which contributes to enhanced robustness.
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Quadratic Upper Bound for Boosting Robustness

A. Proof of convexity of loss function
Although the convexity of cross-entropy loss function with respect to the logit is known in the literature, we present the
proof for the completeness of the paper. A function g is convex if it satisfies the following inequality for any two vectors a
and b in the domain of g:

g(λa+ (1− λ)b) ≤ λg(a) + (1− λ)g(b), ∀λ ∈ [0, 1]. (A.1)

We will use this definition to prove the convexity of the loss function with respect to the logit.

The cross-entropy loss is a nonnegative linear combination of functions of the following form:

g(z) = − log

(
ezi∑C

k=1 e
zk

)
, (A.2)

where zi is the i-th element of the logit vector, and C is the number of classes. Since a nonnegative combination of convex
functions is convex, it suffices to prove the convexity of g(z). The function g(z) is written as:

g(z) = −zi + log

(
C∑

k=1

ezk

)
. (A.3)

Since the linear function is convex, we just need to prove the convexity of the second term. We invoke Hölder’s inequality
for the proof.

Consider p, q ∈ [1,∞] such that 1
p + 1

q = 1. Hölder’s inequality states that:

n∑
i=1

uivi ≤

(
n∑

i=1

|ui|p
) 1

p

·

(
n∑

i=1

|vi|q
) 1

q

, (A.4)

for any two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) of real numbers. To apply this inequality, let ui = eλai and
vi = e(1−λ)bi , where ai’s and bi’s are arbitrary real numbers and λ is a constant that lies within the interval (0, 1). Choose
p = 1

λ and q = 1
1−λ , which satisfies 1

p + 1
q = 1. Hölder’s inequality gives:

C∑
i=1

eλaie(1−λ)bi ≤

(
C∑
i=1

eai

)λ

·

(
C∑
i=1

ebi

)1−λ

. (A.5)

Taking the logarithm on both sides yields:

log

(
C∑
i=1

eλai+(1−λ)bi

)
≤ λ log

(
C∑
i=1

eai

)
+ (1− λ) log

(
C∑
i=1

ebi

)
. (A.6)

This implies that the second term in (A.3) is convex, and consequently, g(z) is convex. This completes the proof.

B. Proof of Lemma 1
We derive a quadratic upper bound for convex functions using the two well-known facts in the following.

Lemma 3 (Taylor’s Theorem, (Apostol, 1975)). For any twice continuously differentiable function g,

g(y) = g(x) +∇g(x)T (y − x) +
1

2
(y − x)T∇2g(z)(y − x), ∀x, y, (B.1)

where z is some vector between x and y (i.e., z = αx+ (1− α)y for some α ∈ [0, 1]).

Note that ∇2g(z) denotes the Hessian of g, which represents the matrix of second-order partial derivatives of the function g
evaluated at the point z. This Hessian matrix is denoted as H in the following sections.
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Lemma 4 ((Horn & Johnson, 1985)). For a symmetric matrix A,

vTAv ≤ λmax(A) · ∥v∥2, (B.2)

where λmax(A) is the largest eigenvalue of A.

By utilizing the symmetry of the Hessian matrix, and applying inequality (B.2) to equation (B.1), we derive the following
inequality:

g(y) ≤ g(x) +∇g(x)T (y − x) +
λmax(H)

2
∥y − x∥2. (B.3)

For a convex function g, its Hessian H is always positive semidefinite and hence, the eigenvalues of H are all nonnegative.
Furthermore, the largest eigenvalue of H can be computed as follows:

∥H∥2 = max
∥v∥2=1

∥Hv∥2 (B.4)

= max
∥v∥2=1

√
vTHTHv (B.5)

= max
∥v∥2=1

√
vTH2v (∵ H is symmetric) (B.6)

=
√
λmax(H2) (B.7)

=
√
λ2
max(H) (B.8)

= λmax(H). (∵ g is convex ≡H ⪰ 0) (B.9)

Therefore, we have the following quadratic upper bound on the convex function g:

g(y) ≤ g(x) +∇g(x)T (y − x) +
∥H∥2

2
∥y − x∥2. (B.10)

This together with the convexity of L(f(x)) with respect to the logic f(x) (Appendix A) yields

L(f(x+ δ)) ≤ L(f(x)) + (f(x+ δ)− f(x))T∇fL(f(x))

+
∥H∥2

2
∥f(x+ δ)− f(x)∥22, (B.11)

where H is the Hessian of the loss with respect to logits, evaluated at some point between f(x) and f(x + δ), i.e.,
H = ∇2

fL(f̃) with f̃ = αf(x) + (1− α)f(x+ δ) for some α ∈ [0, 1]. This completes the proof.

Remark. An alternative derivation of the QUB loss can be made using the notion of β-smoothness, a standard tool in
optimization theory. In particular, one may derive the bound by first assuming that the cross-entropy loss has a Hessian with
bounded l2-norm and then applying the lemma that such a condition implies β-Lipschitz continuity of the gradient. This
yields the same upper bound as in (B.1), and offers a more succinct interpretation (see, e.g., (Hazan, 2019)). We chose to
present the derivation via Taylor’s theorem to explicitly connect the upper bound to the local behavior of the loss landscape.

C. Proof of Lemma 2
Derivative of Softmax function

For the convenience of the notation, we will use z to represent the logits instead of f(x). The probability of each class after
applying the softmax function is given by:

ŷi =
ezi∑C
j=1 e

zj
, (C.1)

where zi is the i-th value of the logit vector z. The derivative of ŷi with respect to the logit zn is written as follows. When
the indices are the same (i.e., i = n),

∂ŷi
∂zi

=
ezi
∑C

j=1 e
zj − (ezi)2(∑C

j=1 e
zj

)2 =
ezi∑C
j=1 e

zj
·
∑C

j=1 e
zj − ezi∑C

j=1 e
zj

= ŷi(1− ŷi). (C.2)
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When the indices are different (i.e., i ̸= n),

∂ŷi
∂zn

=
0− eziezn(∑C

j=1 e
zj

)2 = −ŷiŷn. (C.3)

Combining both cases, we have

∂ŷi
∂zn

=

{
ŷi(1− ŷi), if i = n

−ŷiŷn, if i ̸= n
(C.4)

Derivative of Cross-Entropy Loss

Let yi be the i-th element of the one-hot encoding vector y, where yi = 1 for the correct class and yi = 0 otherwise. The
cross-entropy loss function is defined as

L(z) = −
C∑
i=1

yi log(ŷi). (C.5)

Now, the derivative of the loss with respect to zn is

∂L(z)
∂zn

= −
C∑
i=1

yi
∂ log(ŷi)

∂zn
(C.6)

= −
C∑
i=1

yi
∂ log(ŷi)

∂ŷi

∂ŷi
∂zn

(C.7)

= −
C∑
i=1

yi
ŷi

∂ŷi
∂zn

(C.8)

= −yn
ŷn

ŷn(1− ŷn) +
∑
i̸=n

yi
ŷi
ŷiŷn (C.9)

= −yn + ynŷn +
∑
i̸=n

yiŷn (C.10)

= −yn +

c∑
i=1

yiŷn (C.11)

= −yn + ŷn. (C.12)

Thus, we have

∂L(z)
∂zn

= −yn + ŷn and
∂L(z)
∂z

= −y + ŷ. (C.13)

Therefore, the derivative of the loss with respect to the logits is simply the difference between the softmax vector ŷ and the
one-hot encoded vector y.

Second Derivative (Hessian)

The second derivative of the loss is computed as follows:

∂2L(z)
∂z2

=
∂(−y + ŷ)

∂z
=

∂ŷ

∂z
. (C.14)
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Since y is a one-hot encoded vector, it does not depend on the logits and is treated as constant. Therefore, we focus on the
derivative of ŷ with respect to z. The Hessian matrix is given by:

H =


ŷ1 − ŷ21 −ŷ1ŷ2 · · · −ŷ1ŷn
−ŷ2ŷ1 ŷ2 − ŷ22 · · · −ŷ2ŷn

...
...

. . .
...

−ŷnŷ1 −ŷnŷ2 · · · ŷn − ŷ2n

 (C.15)

or equivalently:

Hij =

{
ŷi − ŷ2i , if i = j

−ŷiŷj , if i ̸= j
(C.16)

Calculating the L2 norm of the matrix is computationally expensive. Instead, we use the following upper bound for
approximation (Bertsekas & Tsitsiklis, 1997):

∥H∥22 ≤ ∥H∥1 · ∥H∥∞, (C.17)

where ∥H∥1 and ∥H∥∞ are the L1 and L∞ norms of the Hessian matrix, representing the maximum absolute column sum
and row sum, respectively. Using the properties of the softmax vector, where 0 < ŷi < 1 and

∑
i ŷi = 1, we can calculate

the L1 norm of the Hessian matrix:

∥H∥1 = max
1≤j≤m

n∑
i=1

|Hij | (C.18)

= max
1≤j≤m

(
n∑

i=1

ŷj ŷi + ŷj − 2ŷ2j

)
(C.19)

= max
1≤j≤m

(2ŷj − 2ŷ2j ). (C.20)

The maximum value of this expression occurs when ŷj = 1
2 , yielding 1

2 . Since the Hessian matrix is symmetric, its L∞
norm is also 1

2 . Therefore, we have:

∥H∥22 ≤
1

2
· 1
2
=

1

4
. (C.21)

This completes the proof.

D. Expressing the Second Term Using Chain Rule
In this section, we further discuss the interpretation of the second term of the QUB loss. Recall that fθ(x) represents the
logit vector of a neural network model parameterized by θ, when the input is x. For convenience, we denote it as f(x). For
a sufficiently small δ, the Taylor expansion of f(x+ δ) around x is given by

f(x+ δ) ≈ f(x) +∇xf(x)δ, (D.1)

where ∇xf(x) is the Jacobian matrix of the logit with respect to the input x. It lies in RC×(c·H·W ), where C is the number
of classes, c is the number of channels, H is the height, and W is the width of the input. As the notation indicates, we
assume that the input vector x or perturbation δ is vectorized appropriately.

Using the above approximation, we substitute it into the second term of QUB loss, (f(x+ δ)− f(x))T∇fL(f(x)) as

(f(x+ δ)− f(x))T∇fL(f(x)) ≈ (∇xf(x)δ)
T∇fL(f(x)) (D.2)

= δT∇xf(x)
T∇fL(f(x)). (D.3)

By the chain rule, the gradient of L(f(x)) with respect to x can be written as

∇xL(f(x)) = ∇xf(x)
T∇fL(f(x)). (D.4)
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It follows that

δT∇xf(x)
T∇fL(f(x)) = δT∇xL(f(x)). (D.5)

We thus have

(f(x+ δ)− f(x))T∇fL(f(x)) ≈ δT∇xL(f(x)). (D.6)

This completes the derivation, showing that the expression (f(x + δ) − f(x))T∇fL(f(x)) can be approximated by
δT∇xL(f(x)) for small δ.

E. Performance Comparison of QUB Loss with Respect to Perturbation Budget
The QUB is derived by applying Taylor’s Theorem around f(x) with perturbation δ on x, and hence, the bound is effective
(i.e., captures the core characteristics of AT loss) when the perturbation δ is small. We conduct experiments to verify how
the QUB loss affects performance across various ranges of attacks, including FGSM-RS, N-FGSM, and PGD-AT. These
experiments are performed on the CIFAR-10 dataset using the ResNet-18 architecture.

The training and evaluation are conducted using four different values of ϵ: [4/255, 8/255, 12/255, 16/255]. The rest of the
experimental setup is the same as the one used in Section 4.

Table 2. Comparison of SA and AA performance under different perturbation budgets for each epsilon. Bold numbers indicate the best
result within each attack method (i.e., FGSM-RS, N-FGSM, and PGD-AT).

Perturbation (/255) 4.0 8.0 12.0 16.0
Method SA AA SA AA SA AA SA AA

FGSM-RS 89.46 67.42 84.32 43.34 81.48 25.79 81.21 12.94
+ QUB-static 87.92 68.52 71.13 38.48 78.11 29.68 76.21 17.06
+ QUB-decreasing 88.47 67.74 72.90 39.31 49.22 22.66 39.46 17.15

N-FGSM 89.32 66.64 82.57 48.98 74.18 39.45 65.43 34.97
+ QUB-static 87.66 69.33 78.96 51.32 73.84 41.34 62.86 35.84
+ QUB-decreasing 88.42 68.43 80.92 50.69 72.16 40.42 64.39 35.92

PGD-AT 89.04 68.03 81.19 48.35 73.35 34.81 67.69 24.48
+ QUB-static 87.90 70.09 80.58 50.07 72.71 36.16 67.38 25.18
+ QUB-decreasing 88.24 69.32 82.78 49.47 72.57 35.89 69.60 25.20

Table 2 presents the results for clean image classification performance (SA) and robustness (AA) across various values of
the budget ϵ on the perturbation δ. To effectively illustrate the changes in values, Figure 5 depicts how the performance
metrics evolve relative to the PGD-AT and N-FGSM baselines using AT loss.

During training, when AT loss is replaced with QUB loss, both the standard version (+QUB-static) and its variant with
increasing perturbations (+QUB-decreasing) exhibit a gradual decline in robustness as the magnitude of perturbation
increases. This is somewhat natural in that the gap between the upper bound and the AT loss increases as the perturbation δ
increases. The QUB loss should thus be used with careful consideration of the attack environment. Nonetheless, this result
shows that the QUB can be used to enhance the robustness against some range of attacks. This trend is generally observed in
both PGD and N-FGSM, while FGSM-RS does not follow this pattern due to catastrophic overfitting, which distorts the
relationship between perturbation size and robustness.
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Figure 5. Accuracy improvement from applying QUB to adversarial training using (a) PGD-AT and (b) N-FGSM. While QUB-decreasing
shows smaller AA gains compared to QUB-static, it better preserves standard accuracy. As the perturbation strength ϵ increases, the
improvement gradually diminishes, reflecting the characteristics of QUB.
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F. Experiments Results
To verify the effectiveness of our method across various datasets and models, we conduct the experiments presented below
(Tables 3, 4, 5, and 6). For CIFAR100 and Tiny ImageNet datasets, we include only QUB-decreasing as QUB-static exhibits
excessively deteriorated standard accuracy for those datasets. In all the experiments, we observe that the robustness of many
existing AT methods can be enhanced by our QUB loss.

F.1. CIFAR10, WRN34-10

Table 3. Test robustness (%) on the CIFAR-10 dataset using WRN34-10 architecture. Numbers in bold indicate the best.

Method Step SA PGD10 PGD20 PGD50-10 AA Time (h)

Natural Training - 95.07 0.00 0.00 0.00 0.00 2.67
NuAT 1 85.16 53.96 52.74 51.81 49.90 9.37
GAT 1 83.44 56.17 55.39 55.00 50.65 9.85
TRADES 10 84.97 55.38 54.59 54.22 51.86 40.45

Free-AT 1 80.05 42.64 41.80 41.25 39.85 2.15
+ QUB-static 1 76.42 47.06 46.51 46.08 43.59 4.29
+ QUB-decreasing 1 78.83 45.53 44.59 44.07 41.97 4.29
FGSM-RS 1 87.05 48.70 46.93 46.03 45.18 5.02
+ QUB-static 1 80.89 50.64 49.70 49.09 46.65 7.45
+ QUB-decreasing 1 69.65 40.62 39.88 39.43 36.78 7.45
FGSM-CKPT 1 91.45 43.87 41.31 40.10 39.49 8.68
+ QUB-static 1 87.63 48.14 46.66 45.80 44.18 11.23
+ QUB-decreasing 1 91.01 46.03 43.55 42.49 42.26 11.23
FGSM-GA 1 85.03 52.15 50.81 49.88 48.27 20.82
+ QUB-static 1 82.86 54.27 53.59 52.76 50.32 22.42
+ QUB-decreasing 1 85.05 53.47 52.35 51.66 49.74 22.42
N-FGSM 1 84.26 50.01 48.67 47.98 46.64 3.44
+ QUB-static 1 85.39 53.39 52.12 51.36 49.91 5.04
+ QUB-decreasing 1 82.66 51.31 51.29 50.66 48.86 5.04
FGSM-PGI(MEP) 1 80.36 52.84 52.33 51.68 48.59 5.89
+ QUB-static 1 84.66 54.26 53.23 52.33 49.14 8.32
+ QUB-decreasing 1 84.31 55.28 54.08 53.37 50.10 8.32
ELLE-A 1 80.78 46.95 45.80 45.20 43.16 8.49
+ QUB-static 1 78.97 49.93 48.86 48.42 46.92 10.04
+ QUB-decreasing 1 81.00 47.97 46.71 46.10 44.14 10.04
FGSM-UAP 1 84.73 53.93 52.64 51.44 48.84 7.49
+ QUB-static 1 84.47 54.46 53.42 52.68 49.72 9.92
+ QUB-decreasing 1 84.54 54.31 53.12 52.29 49.52 9.92
PGD AT 10 84.88 53.99 52.98 52.46 49.80 24.24
+ QUB-static 10 82.66 56.14 55.47 54.99 51.49 26.63
+ QUB-decreasing 10 85.21 55.12 54.17 53.66 50.86 26.63
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F.2. CIFAR100, ResNet18

Table 4. Test robustness (%) on the CIFAR-100 dataset using ResNet18 architecture. Numbers in bold indicate the best.

Method Step SA PGD10 PGD20 PGD50-10 AA Time (h)

Natural Training - 76.92 0.02 0.02 0.00 0.00 0.92
NuAT 1 54.90 25.50 22.14 19.44 18.79 3.01
GAT 1 59.92 28.37 27.76 27.09 22.87 2.81
TRADES 10 57.69 30.22 29.78 29.15 25.06 7.17

Free-AT 1 48.42 23.27 22.85 22.56 19.03 0.30
+ QUB-decreasing 1 44.36 23.85 23.61 23.49 19.71 0.56
FGSM-RS 1 45.39 19.98 19.41 18.87 15.93 1.16
+ QUB-decreasing 1 33.57 19.86 18.62 18.48 15.16 1.60
FGSM-CKPT 1 69.79 12.68 9.55 7.39 5.71 1.34
+ QUB-decreasing 1 63.16 24.97 23.96 23.27 21.54 2.16
FGSM-GA 1 56.38 28.37 27.55 26.98 23.43 3.03
+ QUB-decreasing 1 51.11 29.09 29.46 29.12 25.11 3.28
N-FGSM 1 55.40 27.18 26.69 26.25 23.36 1.21
+ QUB-decreasing 1 51.99 30.46 30.14 29.78 25.82 1.97
FGSM-PGI(MEP) 1 55.69 29.21 28.55 28.23 24.48 2.83
+ QUB-decreasing 1 53.68 29.78 29.20 28.77 24.92 3.46
ELLE-A 1 54.36 25.53 24.80 23.92 21.03 1.15
+ QUB-decreasing 1 52.13 27.39 26.81 26.39 22.93 1.30
FGSM-UAP 1 56.57 28.83 28.23 27.66 24.39 3.70
+ QUB-decreasing 1 55.01 29.28 29.13 28.76 25.15 4.25
PGD AT 10 55.52 29.14 28.85 28.38 24.22 5.66
+ QUB-decreasing 10 53.49 29.98 29.61 29.25 25.40 6.29
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F.3. CIFAR100, WRN34-10

Table 5. Test robustness (%) on the CIFAR-100 dataset using WRN34-10 architecture. Numbers in bold indicate the best.

Method Step SA PGD10 PGD20 PGD50-10 AA Time (h)

Natural Training - 78.89 0.04 0.01 0.00 0.00 4.9
NuAT 1 49.43 20.45 18.44 16.41 16.94 9.53
GAT 1 65.71 25.92 25.05 24.32 22.44 9.93
TRADES 10 61.14 31.55 31.16 30.62 27.17 40.54

Free-AT 1 48.74 21.82 21.38 21.00 18.45 2.15
+ QUB-decreasing 1 44.13 24.70 24.40 23.92 21.01 4.28
FGSM-RS 1 62.48 26.80 25.46 24.70 23.25 5.97
+ QUB-decreasing 1 38.24 19.54 19.42 19.26 15.86 7.44
FGSM-CKPT 1 60.66 8.89 7.25 5.31 3.16 8.21
+ QUB-decreasing 1 51.82 18.95 18.02 17.40 15.79 11.26
FGSM-GA 1 60.44 27.48 26.45 25.78 23.92 20.70
+ QUB-decreasing 1 53.60 30.16 29.64 29.13 25.85 23.87
N-FGSM 1 58.85 29.08 28.36 27.84 25.34 3.48
+ QUB-decreasing 1 53.10 30.88 30.49 30.15 26.41 5.04
FGSM-PGI(MEP) 1 61.95 30.30 29.26 28.20 25.80 5.86
+ QUB-decreasing 1 59.22 30.38 29.43 28.77 26.20 8.29
ELLE-A 1 55.24 29.63 29.71 29.28 22.92 8.50
+ QUB-decreasing 1 54.02 26.43 26.12 25.48 18.64 9.96
FGSM-UAP 1 61.00 29.49 28.55 27.68 24.87 7.52
+ QUB-decreasing 1 59.19 29.97 29.39 28.85 26.03 9.91
PGD AT 10 58.56 29.95 29.37 28.98 25.70 24.20
+ QUB-decreasing 10 52.98 31.41 31.11 30.85 27.20 26.63
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F.4. Tiny ImageNet, PreActResNet18

Table 6. Test robustness (%) on the Tiny ImageNet dataset using PreActResNet18 architecture. Numbers in bold indicate the best.

Method Step SA PGD10 PGD20 PGD50-10 AA Time (h)

Natural Training - 63.27 0.01 0.01 0.00 0.00 2.06
NuAT 1 53.97 18.25 17.52 17.06 13.50 5.72
GAT 1 49.75 17.71 17.30 16.93 12.62 6.11
TRADES 10 46.70 21.76 21.56 21.38 16.33 16.55

Free-AT 1 36.32 16.22 16.04 15.91 12.03 1.29
+ QUB-decreasing 1 31.34 16.59 16.47 16.38 12.51 2.52
FGSM-RS 1 48.14 20.54 19.98 19.67 16.39 3.39
+ QUB-decreasing 1 29.47 16.02 15.89 15.77 11.73 5.10
FGSM-CKPT 1 57.93 11.68 10.49 9.89 9.07 4.16
+ QUB-decreasing 1 52.11 19.13 18.33 17.83 15.19 5.59
FGSM-GA 1 44.98 21.25 20.75 20.52 16.46 18.73
+ QUB-decreasing 1 38.39 21.87 21.57 21.33 17.21 19.95
N-FGSM 1 44.96 21.20 20.80 20.52 16.70 2.66
+ QUB-decreasing 1 41.97 21.67 21.31 21.10 17.18 3.79
FGSM-PGI(MEP) 1 42.72 23.63 23.35 23.07 17.58 5.51
+ QUB-decreasing 1 43.32 23.79 23.40 23.38 18.03 7.02
ELLE-A 1 43.95 17.62 16.91 16.34 13.42 5.98
+ QUB-decreasing 1 41.97 21.67 21.31 21.10 17.18 6.96
FGSM-UAP 1 46.25 21.86 21.53 21.36 17.26 4.88
+ QUB-decreasing 1 42.45 22.49 22.20 21.94 17.71 6.28
PGD AT 10 43.15 21.93 21.67 21.44 17.44 11.29
+ QUB-decreasing 10 41.00 22.94 22.75 22.61 18.38 13.16

21


