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ABSTRACT

Sentiment analysis is a costly yet necessary task for enterprises to study the opin-
ions of their customers to improve their products and services and to determine
optimal marketing strategies. Due to the existence of a wide range of domains
across different products and services, cross-domain sentiment analysis methods
have received significant attention in recent years. These methods mitigate the
domain gap between different applications by training cross-domain generalizable
classifiers which help to relax the need for individual data annotation for each
domain. Most existing methods focus on learning domain-agnostic representations
that are invariant with respect to both the source and the target domains. As a
result, a classifier that is trained using annotated data in a source domain, would
generalize well in a related target domain. In this work, we introduce a new domain
adaptation method which induces large margins between different classes in an
embedding space based on the notion of prototypical distribution. This embedding
space is trained to be domain-agnostic by matching the data distributions across the
domains. Large margins in the source domain help to reduce the effect of “domain
shift” on the performance of a trained classifier in the target domain. Theoretical
and empirical analysis are provided to demonstrate that the method is effective.

1 INTRODUCTION

The main goal in sentiment classification is to predict the polarity of users automatically after
collecting their feedback, e.g., Amazon customer reviews. Popularity of online shopping and reviews,
fueled further by the recent pandemic, provides a valuable resource for businesses to study the
behavior and preferences of consumers and to align their products and services with the market
demand. A major challenge for automatic sentiment analysis is that polarity is expressed using
completely dissimilar terms and phrases in different domains. For example, while terms such as
“fascinating” and “boring” are used to describe books, terms such as “tasty” and “stale” are used
to describe food products. As a result of this discrepancy, a model that is trained for a particular
domain may not generalize well in other different domains, referred as the problem of “domain
gap” (Wei et al., 2018). Since generating annotated training data for all domains is expensive and
time-consuming, cross-domain sentiment analysis has gained significant attention recently (Saito
et al., 2018; Li et al., 2017; Peng et al., 2018; He et al., 2018; Li et al., 2018; Barnes et al., 2018;
Sarma et al., 2019; Li et al., 2019; Guo et al., 2020; Xi et al., 2020; Dai et al., 2020; Lin et al.,
2020). The goal in cross-domain sentiment classification is to relax the need for data annotation via
transferring knowledge from another domain with annotated data to domains with unannotated data.

The above problem has been studied more broadly in the “domain adaptation” literature. A common
approach for domain adaptation is to map data points from two domains into a shared embedding
space to align the data distributions (Redko & Sebban, 2017). Since the embedding space would
become domain-agnostic, i.e., a classifier that is trained using the source domain annotated data, will
generalize in the target domain. In the sentiment analysis problem, this means that polarity of natural
language can be expressed independent of the domain in the embedding space. We can model this
embedding space as the output of a shared deep encoder which is trained to align the distributions of
both domains at its output. This training procedure have been implemented using both adversarial
learning (Pei et al., 2018; Long et al., 2018; Li et al., 2019; Dai et al., 2020), which aligns distributions
indirectly, or by loss functions that are designed to directly align the two distributions (Peng et al.,
2018; Barnes et al., 2018; Kang et al., 2019; Guo et al., 2020; Xi et al., 2020; Lin et al., 2020).

1



Under review as a conference paper at ICLR 2021

Contributions: our main contribution is to develop a new cross-domain sentiment analysis algorithm
for model adaptation by introducing large margins between classes in the source domain. Our idea is
based on learning a prototypical distribution for the source domain in a cross-domain embedding
space which is trained to be domain-agnostic. We model this distribution as a Gaussian mixture
modal (GMM). We estimate the parameters of the prototypical distribution using a subset of source
samples for which the classifier is confident about its predictions. As a result, larger margins between
classes are introduced in the prototypical distribution which help reducing domain gap. We then
use this prototypical distribution to align the source and the target distributions via minimizing the
Sliced Wasserstein Distance (SWD) (Lee et al., 2019). We draw confident random samples from
this distribution and enforce the distribution of the target in the embedding matches this prototypical
distribution in addition to the source distribution. We provide a theoretical proof to demonstrate that
our method minimizes an upperbound for the target domain expected error. Experimental results
demonstrate that our algorithm outperforms state-of-the-art sentiment analysis algorithms.

2 RELATED WORK

While domain adaptation methods for visual domains usually use generative adversarial networks
(GANs) (Goodfellow et al., 2014) and align distributions indirectly, the dominant approach for
cross-domain sentiment analysis is to design appropriate loss functions that directly impose domain
alignment. The main reason is that natural language is expressed in terms of discrete values such
as words, phrases, and sentences. Since this domain is not continuous, even if we convert natural
language into real-valued vectors, it is not differentiable. Hence, adversarial learning procedure
cannot be easily implemented for pure natural language processing (NLP) applications. Several
alignment loss functions have been designed for cross-domain sentiment analysis. A group of
methods are based on aligning the lower-order distributional moments, e.g., means and covariances,
across the two domains, in an embedding space (Wu & Huang, 2016; Peng et al., 2018; Sarma et al.,
2019; Guo et al., 2020). An improvement over these methods is to use probability distribution metrics
to consider the encoded information in higher order statistics (Shen et al., 2018). Damodaran et
al. (Bhushan Damodaran et al., 2018) demonstrated that using Wasserstein distance (WD) for domain
alignment boosts the performance significantly in visual domain applications (Long et al., 2015; Sun
& Saenko, 2016). In the current work, we rely on the sliced Wasserstein distance (SWD) for aligning
distribution. SWD has been used for domain adaptation in visual domains (Lee et al., 2019).

The major reason for performance degradation of a source-trained model in a target domain stems
from “domain shift”, i.e., the boundaries between the classes change in the embedding space even
for related domains which in turn increases possibility of misclassification. It has been argued
that if a max-margin classifier is trained in the source domain, it can generalize better than many
methods that try to align distributions without further model adaptation (Tommasi & Caputo, 2013).
Inspired by the notion of “class prototypes”, our method is based on both aligning distributions in the
embedding space and also inducing larger margins between classes using the notion of “prototypical
distributions”. Recently, cross-domain alignment of the class prototypes has been used for domain
adaptation (Pan et al., 2019; Chen et al., 2019). The idea is that when a deep network classifier
is trained in a domain with annotated data, data points of classes form separable clusters in an
embedding space, modeled via network responses in hidden layers. A class prototype is defined as
the mean of each class-specific data cluster in the embedding space. Domain adaptation then can
be addressed by aligning the prototypes across the two domains as a surrogate for distributional
alignment. Following the above, our work is based on using the prototypical distribution, rather
simply the prototypes, to induce maximum margin between the class-specific clusters after an initial
training phase in the source domain. Since the prototypical distribution is a multimodal distribution,
we can estimate it using a Gaussian mixture model (GMM). We estimate the GMM using the source
sample for which the classifier is confident and use random samples with high-confident labels to
induce larger margins between classes, compared to using the original source domain data.

3 CROSS-DOMAIN SENTIMENT ANALYSIS

Consider two sentiment analysis problems in a source domain S with an annotated dataset DS =
(XS ,YS), where XS = [xs1, . . . ,x

s
N ] ∈ X ⊂ Rd×N and YS = [ys1, ...,y

s
N ] ∈ Y ⊂ Rk×N and

a target domain T with an unannotated dataset DT = (XS), where XT = [xt1, . . . ,x
t
N ] ∈ X ⊂
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Figure 1: Architecture of the proposed cross-domain sentiment analysis framework. Left: separable
clusters are formed in the embedding space after initial supervised model training in the source
domain and then the prototypical distribution is estimated as a GMM. Right: random samples from
the GMM with high-confident labels are used to generate a pseudo-dataset. The pseudo-dataset
induces larger margins between the classes to mitigate the effect of domain shift in the target domain.

Rd×M . The real-valued feature vectorsXS andXT are obtained after pre-processing the input text
data using common NLP methods, e.g., bag of words or word2vec. We consider that both domains
share the same type of sentiments and hence the one-hot labels ysi encode k sentiment types, e.g.,
negative or positive in binary sentiment analysis. Additionally, we assume that the source and the
target feature data points are drawn independent and identically distributed from the domain-specific
distributions xsi ∼ pS(x) and xti ∼ pT (x), respectively, where pT (x) 6= pS(x).

Given a family of parametric functions fθ : Rd → Y , e.g., deep neural networks with learnable
parameters θ, and considering an ideal labeling function f(·), e.g., ∀(x,y) : y = f(x), the goal
is to search for the optimal predictor model fθ∗(·) in this family for the target domain. This
model should have minimal expected error for sentiment analysis, i.e., θ∗ = arg minθ{eθ} =
arg minθ{Ext∼pT (x)(L(f(xt), fθ(x

t))}, where L(·) is a proper loss function and E(·) denotes the
expectation operator. Since the target domain data is unlabeled, the naive approach is to estimate the
optimal model using the standard empirical risk minimization (ERM) in the source domain:

θ̂ = arg min
θ
{êθ(XS ,YS ,L)} = arg min

θ
{ 1

N

∑
i

L(fθ(x
s
i ),y

s
i )} (1)

Given a large enough labeled datasets in the source domain, ERM model generalizes well in the
source domain. The source-trained model may also perform much better than chance in the target
domain, given cross-domain. However, its performance will degrade in the target domain compared
to its performance in the source domain due to existing distributional discrepancy between the two
domains, since pS 6= pT . Our goal is to benefit from the encoded information in the unlabeled target
domain data and adapt the source-trained classifier fθ̂ to generalize in the target domain. We use the
common approach of reducing the domain gap by mapping data into a shared embedding space.

We consider that the predictor model fθ(·) can be decomposed into a deep encoder φv(·) : X → Z ⊂
Rp and a classifier hw(·) : Z → Y such that fθ = hw ◦ φv , where θ = (w,v). Z is an embedding
space which is modeled by the encoder responses at its output. We assume that the classes have
become separable for the source domain in this space after an initial training phase (see Figure 1,
left). If we can adapt the source-trained encoder network such that the two domains share similar
distributions Z , i.e., φ(pS)(·) ≈ φ(pT )(·), the embedding space would become domain-agnostic. As
a result, the source-trained classifier network will generalize with similar performance in the target
domain. A number of prior cross-domain sentiment analysis algorithms use this strategy, select a
proper probability distribution metric to compute the distance between the distributions φ(pS(xs))

3



Under review as a conference paper at ICLR 2021

and φ(pT (xt)), and then train the encoder network to align the domains via minimizing this distance:

v̂, ŵ = arg min
v,w

1

N

N∑
i=1

L
(
hw(φv(xsi )),y

s
i

)
+ λD

(
φv(pS(XT )), φv(pT (XT ))

)
, (2)

where D(·, ·) denotes a probability metric to measure the domain discrepancy and λ is a trade-off
parameter between the source ERM and the domain alignment term. In this work, we use SWD (Lee
et al., 2019) to compute D(·, ·) in equation 2. Using SWD has three advantages. First, SWD can
be computed efficiently compared to WD based on a closed form solution of WD distance in 2D.
Second, SWD can be computed using the empirical samples that are drawn from the two distributions.
Finally, SWD possesses a non-vanishing gradient even when the support of the two distributions do
not overlap (Bonnotte, 2013; Lee et al., 2019). Hence SWD is suitable for deep learning problems
which are normally solved using first-order gradient-based optimization techniques, e.g., Adam.

While methods based on variations of equation 2 are effective to reduce the domain gap to some
extent, our goal is to improve upon the baseline obtained by equation 2 by introducing a loss term that
increases the margin between classes in the target domain (check the embedding space in Figure 1,
right). By doing so, our goal is to mitigate the negative effect of domain shift in the target domain.

4 LEARNING MAX-MARGIN CLASSIFIERS

Algorithm 1 SAUM2 (λ, τ)

1: Initial Training:
2: Input: source dataset DS = (XS ,YS),
3: Training on the Source Domain:
4: θ̂0 = (ŵ0, v̂0)
5: = arg minθ

∑
i L(fθ(x

s
i ),y

s
i )

6: Prototypical Distribution Estimation:
7: Use equation 4 and estimate αj ,µj , Σj
8: Model Adaptation:
9: Input: target dataset DT = XT

10: Pseudo-Dataset Generation:
11: D̂P = (ZP ,YP) =
12: ([zp1 , . . . ,z

p
N ], [yp1 , . . . ,y

p
N ]), where:

13: zpi ∼ p̂J(z), 1 ≤ i ≤ Np
14: ypi = arg maxj{hŵ0

(zpi )},
15: max{hŵ0

(zpi )} > τ
16: for itr = 1, . . . , ITR do
17: draw data batches from DS , DT , and DP
18: Update the model by solving equation 6
19: end for

Our idea for increasing margins between the
classes is based on using an intermediate proto-
typical distribution in the embedding space. We
demonstrate that this distribution can be used to
induce larger margins between the classes. To
this end, we consider that the classifier subnet-
work consists of a softmax layer. This means
that the classifier should become a maximum
a posteriori (MAP) estimator after training to
be able to assign a membership probability to
a given input feature vector. Under this formu-
lation, the model will generalize in the source
domain if after supervised training of the model
using the source data, the input distribution
is transformed into a multi-modal distribution
pJ(·) = φv(pS)(·) with k modes in the embed-
ding space (see Figure 1, left). Each mode of
this distribution corresponds to one type of senti-
ments. The mean for each of these modes corre-
sponds to the notion of “class prototype” in the
prior works (Pan et al., 2019; Chen et al., 2019).
Following a similar terminology, we refer to this
distribution as the prototypical distribution. The
geometric distance between the modes of proto-
typical distribution corresponds to the margins

between classes. If we test the source-trained model in the target domain, the boundaries between
class modes will change due to the existence of “domain shift”, i.e., φv(pT )(·) 6= φv(pS)(·). Intu-
itively, as visualized in Figure 1, if we can increase the margins between the class-specific modes in
the source domain, domain shift will cause less performance degradation (Tommasi & Caputo, 2013).

We estimate the prototypical distribution in the embedding space as a parametric GMM as follows:

pJ(z) =

k∑
j=1

αjN (z|µj ,Σj), (3)

where µj and Σj denote the mean and co-variance matrices for each component and αj denotes mix-
ture weights for each component. We need to solve for these parameters to estimate the prototypical
distribution. Note that unlike usual cases in which expectation maximization algorithm (Bilmes et al.,

4



Under review as a conference paper at ICLR 2021

1998) is used to estimate GMM parameters, the source data points are labeled. As a result, we can
estimate µj and Σj for each component independently using standard MAP estimates. Similarly,
the weights αj can be computed by a MAP estimate. Let Sj denote the support set for class j
in the training dataset, i.e., Sj = {(xsi ,ysi ) ∈ DS | arg maxysi = j}. To cancel out outliers, we
include only those source samples in the Sj sets, for which the source-trained model predicts the
corresponding labels correctly. The MAP estimate for the mode parameters can be computed as:

α̂j =
|Sj |
N

, µ̂j =
∑

(xs
i ,y

s
i )∈Sj

1

|Sj |
φv(x

s
i ), Σ̂j =

∑
(xs

i ,y
s
i )∈Sj

1

|Sj |
(
φv(x

s
i )− µ̂j

)>(
φv(x

s
i )− µ̂j

)
.

(4)

Computations in Eq. equation 4 can be done efficiently. For a complexity analysis, please refer to
the Appendix. Our idea is to use this prototypical distributional estimate to induce larger margins
in the source domain (see Figure 1, right). We update the domain alignment term in equation 2 to
induce larger margins. To this end, we update the source domain samples in the domain alignment
term by samples of a labeled pseudo-dataset DP = (ZP ,YP) that we generate using the GMM
estimate, where ZP = [zp1 , . . . ,z

p
Np

] ∈ Rp×Np ,YP = [yp1 , ...,y
p
Np

] ∈ Rk×Np . This pseudo-dataset
is generated using the prototypical distribution. We draw samples from the prototypical distributional
estimate zpi ∼ p̂J(z) for this purpose. To induce larger margins between classes, we feed the initial
drawn samples into the classifier network and check the confidence level of the classifier about its
predictions for these randomly drawn samples. We set a threshold 0 < τ < 1 level and select a subset
of the drawn samples for which the confidence level of the classifier is more than τ :

(zpi ,y
p
i ) ∈ DP if zpi ∼ p̂J(z) and max{h(zpi )} > τ and ypi = arg max

i
{h(zpi )}. (5)

Given the GMM distributional form, selection of samples based on the threshold τ means that we
include GMM samples that are closer to the class prototypes (see Figure 1). In other words, the
margin between the clusters in the source domain increase if we use the generated pseudo-dataset for
domain alignment. Hence, we update equation 2 and solve the following optimization problem:

v̂, ŵ = arg min
v,w

1

N

N∑
i=1

L
(
hw(φw(xsi )),y

s
i

)
+

1

Np

Np∑
i=1

L
(
hw(zsi ),y

s
i

)
+ λD̂

(
φv(XT ),XP))

)
+ λD̂

(
φv(XS),XP

)
,

(6)

The first and the second terms in equation 6 are ERM terms for the source dataset and the generated
pseudo-dataset to guarantee that the classifier continues to generalize well in the source domain
after adaptation. The third and the fourth terms are empirical SWD losses (see Appendix for more
details) that align the source and the target domain distributions using the pseudo-dataset which as
we describe induces larger margins. The hope is that as visualized in Figure 1, these terms can reduce
the effect of domain shift. Our proposed solution, named Sentiment Aanlysis Using Max-Margin
classifiers (SAUM2), is presented and visualized in Algorithm 1 and Figure 1, respectively.

5 THEORETICAL ANALYSIS

We provide a theoretical justification for our algorithm. Following a standard PAC-learning framework,
we prove that Algorithm 1 minimizes an upperbound for the target domain expected error. Consider
that the hypothesis class in a PAC-learning setting is the family of classifier sub-networks H =
{hw(·)|hw(·) : Z → Rk,v ∈ RV }, where V denotes the number of learnable parameters. We
represent the expected error for a model hw(·) ∈ H on the source and the target domains by
eS(w) and eT (w), respectively. Given the source and the target datasets, we can represent the
empirical source and target distributions in the embedding space as µ̂S = 1

N

∑N
n=1 δ(φv(xsn)) and

µ̂T = 1
M

∑M
m=1 δ(φv(xtm)). Similarly, we can build an empirical distribution for prototypical

distribution µ̂P = 1
Np

∑Np

q=1 δ(z
q
n). In our analysis we also use the notion of joint-optimal model

hS,T (·) in our analysis which is defined as: w∗ = arg minw eS,T = arg minw{eS + eT } for any
given domains S and T . When we have labeled data in both domains, this is the best model that
can be trained using ERM. Existence of a good joint-trained model guarantees that the domains are
related, e.g., similar sentiment polarities are encoded consistently across the two domains.
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Theorem 1: Consider that we the procedure described in Algorithm 1 for cross-domain sentiment
analysis, then the following inequality holds for the target expected error:

eT ≤eS + D̂(µ̂S , µ̂P) + D̂(µ̂T , µ̂P) + (1− τ) + eS,P +

√(
2 log(

1

ξ
)/ζ
)(√ 1

N
+

√
1

M
+ 2

√
1

Np

)
,

(7)

where ξ is a constant number which depends on characteristic of the loss function L(·).

Proof: The complete proof is included in the Appendix due to space limit.

Theorem 1 provides an explanation to justify Algorithm 1. We observe that all the terms in the
upperbound of the target expected error in the right-hand side of equation 7 are minimized by
SAUM2 algorithm. The source expected error is minimized as the first term in equation 6. The
second and the third terms terms are minimized as the third and fourth terms of equation 6. The
fourth term 1 − τ will be small if we set τ ≈ 1. Note however, when we select τ too close to 1,
the samples will be centered around the prototypes. As a result, we will not match the higher-order
distributional moments in the terms D̂(µ̂S , µ̂P) and D̂(µ̂S , µ̂T ) and this can make the upperbound
looser. The term eS,P is minimized through the first and the second term of equation 6. This is highly
important as using the pseudo-dataset provides a way to minimize this term. As can be seen in our
proof in the Appendix, if we don’t use the pseudo-dataset, this terms is replace with eS,T which
cannot be minimized directly due to lack of having annotated data in the target domain. The last term
in equation 7 is a constant term that as common in PAC-learning can become negligible states that in
order to train a good model if we have access to large enough datasets. Hence all the terms in the
upperbound are minimized and if this upperbound is tight, then a good model will be trained for the
target domain. If the two domain are related, e.g., share the same classes, and also classes become
separable in the embedding space, i.e., GMM estimation error is small, then the upperbound is going
to be likely tight. However, we highlight that possibility of a tight upperbound is a condition for our
algorithm to work. This is a common limitation for most parametric algorithms.

6 EXPERIMENTAL VALIDATION

Our implemented code is available at Appendix.

6.1 EXPERIMENTAL SETUP

Most existing works report performance cross-domain tasks that are defined using the Amazon
Reviews benchmark dataset (Blitzer et al., 2007). The dataset is built using Amazon product reviews
from four product domains: Books (B), DVD (D), Electronics (E), and Kitchen (K) appliances. Each
review is considered to have positive (higher than 3 stars) or negative (3 stars or lower) sentiment.
Each Review is encoded in a 5000 dimensional or 30000 dimensional tf-idf feature vector of bag-of-
words unigrams and bigrams. We report our performance on the 12 definable cross-domain tasks for
this dataset. Each task consists of 2000 labeled reviews for the source domain and 2000 unlabeled
reviews for the target domain, and 2500–5500 examples for testing. We report the average prediction
accuracy and standard deviation (std) over 10 runs on the target domain testing split for our algorithm.

We compare our method against several recently developed algorithms. We compare against
DSN (Bousmalis et al., 2016) CMD (Zellinger et al., 2017), ASYM (Saito et al., 2018), PBLM (Ziser
& Reichart, 2018), MT-Tri (Ruder & Plank, 2018), TRL (Ziser & Reichart, 2019), and TAT (Liu et al.,
2019). DSN and CMD are similar to SAUM2 in that both align distributions in an embedding space.
DSN learns shared and domain-specific knowledge for each domain and aligns the shared knowledge
using the mean-based maximum mean discrepancy metric. CMD uses the central moment discrepancy
metric for domain alignment. ASYM benefits from the idea of pseudo-labeling of the target samples
to updated the base model. MT-Tri is based on ASYM but it also benefits from multi-task learning.
TRL and PBLM do not use distribution alignment and are based on the pivot based language model.
TAT is a recent work that has used adversarial learning successfully for cross-domain sentiment
analysis. We provided results by the authors for the tasks in our table. We report std if std is reported
in the original paper. All the methods except TAT that uses 30000 dimensional features use 5000
dimensional features. In our results, methods are comparable if they use features with the same
dimension. We report performance of the source only (SO) model as a lowerbound.
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Task B→D B→E B→K D→B D→E D→K
SO 81.7 ± 0.2 74.0 ± 0.6 76.4 ± 1.0 74.5 ± 0.3 75.6 ± 0.7 79.5 ± 0.4

DSN 82.8 ± 0.4 81.9 ± 0.5 84.4 ± 0.6 80.1 ± 1.3 81.4 ± 1.1 83.3 ± 0.7
CMD 82.6 ± 0.3 81.5 ± 0.6 84.4 ± 0.3 80.7 ± 0.6 82.2 ± 0.5 84.8 ± 0.2

ASYM 80.7 79.8 82.5 73.2 77.0 82.5
PBLM 84.2 77.6 82.5 82.5 79.6 83.2
MT-Tri 81.2 78.0 78.8 77.1 81.0 79.5

TRL 82.2 - 82.7 - - -
SAUM2 83.2 ± 0.2 83.9 ± 0.3 85.9 ± 0.3 80.3 ± 0.4 84.2 ± 0.3 87.3 ± 0.2

TAT∗ 84.5 80.1 83.6 81.9 81.9 84.0
SAUM2∗ 86.2 ± 0.2 85.1 ± 0.2 87.6 ± 0.2 80.9 ± 0.5 85.2 ± 0.2 88.6 ± 0.2

Task E→B E→D E→K K→B K→D K→E
SO 72.3 ± 1.5 74.2 ± 0.6 85.6 ± 0.6 73.1 ± 0.1 75.2 ± 0.7 85.4 ± 1.0

DSN 75.1 ± 0.4 77.1 ± 0.3 87.2 ± 0.7 76.4 ± 0.5 78.0 ± 1.4 86.7 ± 0.7
CMD 74.9 ± 0.6 77.4 ± 0.3 86.4 ± 0.9 75.8 ± 0.3 77.7 ± 0.4 86.7 ± 0.6

ASYM 73.2 72.9 86.9 72.5 74.9 84.6
PBLM 71.4 75.0 87.8 74.2 79.8 87.1
MT-Tri 73.5 75.4 87.2 73.8 77.8 86.0

TRL - 75.8 - 72.1 - -
SAUM2 78.6 ± 0.4 79.7 ± 0.2 89.2 ± 0.2 76.7 ± 0.4 79.1 ± 0.4 87.0 ± 0.1

TAT∗ 83.2 77.9 90.0 75.8 77.7 88.2
SAUM2∗ 78.8 ± 0.3 78.9 ± 0.3 90.1 ± 0.2 78.1 ± 0.2 78.8 ± 0.4 88.1 ± 0.1

Table 1: Classification accuracy for the cross-domain sentiment analysis tasks for Amazon Reviews
dataset. In this table, ∗ denotes methods that use 30000 dimensional tf-idf feature vectors.

We used the benchmark network architecture that is used in the above mentioned works. We used an
encoder with one hidden dense layer with 50 nodes with sigmoid activation function. The classifiers
consist of a softmax layer with two output nodes. We implemented our method in Keras, used adam
optimizer, and tuned the learning rate in the source domain. We set τ = 0.99 and λ = 10−2. We
observed empirically that our algorithm is not sensitive to the value of λ.

6.2 RESULTS

Our results are reported in Table 1. In this table, bold font denotes best performance among the
methods that use 5000 dimensional features. We see that SAUM2 algorithm performs reasonably
well and in most cases leads to the best performance. Note that this is not unexpected as none of
the methods has the best performance across all tasks. We observe from this table that overall the
methods DSN and CMD which are based on aligning the source and target distributions- which
are more similar to our algorithm- have relatively similar performances. This observation suggests
that we should not expect considerable performance boost if we simply align the distributions by
designing a new alignment loss function. This means that outperformance of SAUM2 compared to
these methods likely stems from inducing larger margins. We verify this intuition in our ablative study.
We also observe that increasing the dimensional of tf-idf features to 30000 leads to performance
boost which is probably the reason behind good performance of TAT compared to the rest of methods.
Hence, we need to use the same dimension for features for fair comparison among the methods.

To provide an intuition for the rationale we used, we have used UMAP McInnes et al. (2018)
visualization tool to reduce the dimension of the data representations in the 50D embedding space to
two for the purpose of 2D visualization. Figure 2 visualizes the testing splits of the source domain
before model adaptation, the testing splits of the target domain before and after model adaptation,
and finally random samples drawn from the prototypical distribution for the D→K task. Each point
represents one data point and each color represents one of the sentiments. Observing Figure 2a
and Figure 2b, we conclude that GMM prototypical distribution approximates the source domain
distribution reasonably well and at the same time, a margin between the classes in the boundary
region is observable. Figure 2c visualizes the target domain samples prior to model adaptation. As
expected, we observe that domain gap has caused less separations between the classes, as also evident
from SO performance in Table 1. Figure 2d visualizes the target domain samples after adaptation
using SAUM2 algorithm. Comparing Figure 2d with Figure 2c and Figure 2a, we see that the classes
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(a) Source (b) Proto. Dist. Samples (c) Target: Pre-Adapt. (d) Target: Post-Adapt.

Figure 2: UMAP visualization for the task D→K task: (a) the source domain testing split, (b) the
prototypical distribution samples, (c) the target domain testing split prior to adaptation, and (d) the
target domain testing split after adaptation. (Best viewed in color).

Figure 3: Effect of τ on performance.

Table 2: Performance of AO setting.

Task B→D B→E B→K
81.9 ± 0.5 80.9 ± 0.8 83.2 ± 0.8

Task D→B D→E D→K
74.0 ± 0.9 80.9 ± 0.7 83.4 ± 0.6

Task E→B E→D E→K
74.1 ± 0.6 74.0 ± 0.3 87.8 ± 0.9

Task D→B D→E D→K
74.1 ± 0.6 74.0 ± 0.3 87.8 ± 0.9

have become more separated. Also, careful comparison of Figure 2d and Figure 2b reveals SAUM2

algorithm has led to a bias in the target domain to move the data points further from the boundary.

6.3 ABLATION STUDIES

First note that the source only (SO) model result, which is trained using equation 1, already serve
as a basic ablative study to verify the effect of domain alignment. Improvement over this baseline
demonstrates effect of using the information which is encoded in the target unlabeled data.

In Table 2, we have provided an additional ablative studies. We have reported result of alignment
only (AO) model adaptation based on equation 2. The AO model does not benefit from the margins
that SAUM2 algorithm induces between the classes. Comparing AO results with Table 1, we can
conclude that the effect of increased margins is important in our performance. Compared to other
cross-domain sentiment analysis methods, the performance boost for our algorithm stems from
inducing large margins. This suggests that researchers may check to investigate secondary techniques
for domain adaptation in NLP domains, in addition to probability distribution alignment.

Finally, we have studied the effect of the value of the confidence parameter on performance. In
Figure 3, we have visualized the performance of our algorithm for the task B → D when τ is varied
in the interval [0, 0.99]. When τ = 0, the samples are not necessarily confident samples. We observe
that as we increase the value of τ , the performance increases as a result of inducing larger margins.
For values τ > 0.8, the performance has less variance which suggests robustness of performance if
τ ≈ 1. These empirical observations about τ accord with our theoretical result, stated in equation 7.

7 CONCLUSIONS

We developed a method for cross-domain sentiment analysis based on aligning two domain-specific
distributions in a shared embedding space. We demonstrated that one can improve upon this baseline
by inducing larger margins between the classes in the source domain using an intermediate multi-
modal prototypical distribution. As a result, the domain shift problem is mitigated in the target
domain. Our experiments demonstrate that our algorithm is effective. A future research direction is to
address cross-domain sentiment analysis when different types of sentiment exists across the domains.
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A APPENDIX

A.1 SLICED WASSERSTEIN DISTANCE

We relied on minimizing the Sliced Wasserstein (SWD) distance for domain alignment. SWD is
defined based on the Wasserstein distance (WD) and is a mean to come up with a more computationally
efficient distribution metric. The WD between two distributions pS and pT , is defined as:

Wc(pS , pT ) = infγ∈Γ(pS ,pT )

∫
X×Y

c(x, y)dγ(x, y) (8)

where Γ(pS , pT ) is the set of all joint distributions pS,T with marginal single variable distributions
pS and pT , and c : X × Y → R+ is the cost function, e.g., `2-norm Euclidean distance.

We observe that computing WD involves solving a complicated optimization problem in the general
case. However, when the two distributions are 1−dimensional, WD has a closed-form solution:

Wc(pS , pT ) =

∫ 1

0

c(P−1
S (τ), P−1

T (τ))dτ, (9)

where PS and PT are the cumulative distributions of the 1D distributions pS and pT . This closed-
form solution motivates the definition of SWD in order to extend applicability of equation 9 for
higher dimensional distributions.

SWD is defined based on the idea of slice sampling Neal (2003). The idea is to project two d-
dimensional distributions into their marginal one-dimensional distributions along a subspace, i.e.,
slicing the high-dimensional distributions, and then compute the distance between the two distribution
by integrating over all the WD between the resulting 1D marginal probability distributions over all
possible 1D subspaces using the closed form solution of WD. This can be a good replacement for the
WD as any probability distribution can be expressed by the set of 1−dimensional marginal projection
distributions Helgason (2011). More specifically, a one-dimensional slice of the distribution for the
distribution pS is defined:

RpS(t;γ) =

∫
Sd−1

pS(x)δ(t− 〈γ,x〉)dx, (10)

where δ(·) denotes the Kronecker delta function, 〈·, ·〉 denotes the vector inner dot product, Sd−1 is
the d-dimensional unit sphere, and γ is the projection direction.

The SWD is defined as the integral of all WD between the sliced distributions over all 1D subspaces
γ on the unit sphere as follows:

SW (pS , pT ) =

∫
Sd−1

W (RpS(·; γ),RpT (·; γ))dγ (11)

The main advantage of using SWD is that, computing SWD does not require solving a numerically
expensive optimization.

In our practical setting, only samples from the distributions are available and we don’t have the
distributional form. Another advantage of SWD is that its empirical version can be computed based
on the one-dimensional empirical WD. One-dimensional empirical WD be approximated as the `p-
distance between the sorted samples. We can compute merely the integrand function in equation 11
for a known γ and then the integral in equation 11 via Monte Carlo style numerical integration. To
this end, we draw random projection subspace γ from a uniform distribution that is defined over
the unit sphere and then compute 1D WD along this sample. We can then approximate the integral
in equation 11 by computing the arithmetic average over a suitably large enough number of drawn
samples. More specifically, the SWD between f -dimensional samples {φ(xSi ) ∈ Rf ∼ pS}Mi=1 and
{φ(xTi ) ∈ Rf ∼ pT }Mj=1 in our setting can be approximated as the following sum:

SW 2(pS , pT ) ≈ 1

L

L∑
l=1

M∑
i=1

|〈γl, φ(xSsl[i]〉)− 〈γl, φ(xTtl[i])〉|
2 (12)

where γl ∈ Sf−1 is uniformly drawn random sample from the unit f -dimensional ball Sf−1, and
sl[i] and tl[i] are the sorted indices of {γl · φ(xi)}Mi=1 for source and target domains, respectively.

12
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We utilize this empirical version of SWD in equation 12 to align the distributions in the embedding
space. Note that the function in equation 12 is differentiable with respect to the encoder parameters
and hence we can use gradient-based optimization techniques to minimize it with respect to the model
parameters.

A.2 PROOF OF THEOREM 1

We use the following theorem by Redko et al. Redko & Sebban (2017) and a result by Bolley Bolley
et al. (2007) on convergence of the empirical distribution to the true distribution in terms of the WD
distance in our proof.

Theorem 2 (Redko et al. Redko & Sebban (2017)): Under the assumptions described in our
framework, assume that a model is trained on the source domain, then for any d′ > d and ζ <

√
2,

there exists a constant number N0 depending on d′ such that for any ξ > 0 and min(N,M) ≥
max(ξ−(d′+2),1) with probability at least 1− ξ, the following holds:

eT ≤eS +W (µ̂T , µ̂S) + eS,T +

√(
2 log(

1

ξ
)/ζ
)(√ 1

N
+

√
1

M

)
. (13)

Theorem 2 provides an upperbound for the performance of a source-trained model in the target
domain Redko et al. Redko & Sebban (2017) prove Theorem 2 for a binary classification setting. We
also provide our proof in this case but it can be extended.

The second term in Eq. equation 13 demonstrates the effect of domain shift on the performance
of a source-trained model in a target domain. When the distance between the two distributions is
significant, this term will be large and hence the upperbound in Eq. equation 13 will be loose which
means potential performance degradation. Our algorithm mitigates domain gap because this term is
minimized by minimization of the second and the third terms in Theorem 1.

Theorem 1 : Consider that we the procedure described in Algorithm 1 for cross-domain sentiment
analysis, then the following inequality holds for the target expected error:

eT ≤eS + D̂(µ̂S , µ̂P) + D̂(µ̂T , µ̂P) + (1− τ) + eS,P +

√(
2 log(

1

ξ
)/ζ
)(√ 1

N
+

√
1

M
+ 2

√
1

Np

)
,

(14)

where ξ is a constant which depends on L(·) and e′C(w∗) denotes the expected risk of the optimally
joint trained model when used on both the source domain and the pseudo-dataset.

Proof: Due to the construction of the pseudo-dataset, the probability that the predicted labels for the
pseudo-data points to be false is equal to 1− τ . Let:

|L(hw0(zpi ),ypi )− L(hw0(zpi ), ŷpi )| =
{

0, if yti = ŷti .

1, otherwise.
(15)

We use Jensen’s inequality and take expectation on both sides of equation 15 to deduce:

|eP − eT | ≤ E
(
|L(hw0(zpi ),ypi )− L(hw0(zpi ), ŷpi )|

)
≤ (1− τ). (16)

Applying equation 16 in the below, deduce:

eS + eT = eS + eT + eP − eP ≤ eS + eP + |eT − eP | ≤ eS + eP + (1− τ). (17)

Taking infimum on both sides of equation 17, we deduce:

eS,T ≤ eS,P + (1− τ). (18)

Now by considering Theorem 2 for the two domains S and T and then using equation 18 in
equation 13, we can conclude:

eT ≤eS +D(µ̂T , µ̂S) + eS,P + (1− τ) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

N
+

√
1

M

)
. (19)
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Now using the triangular inequality on the metrics we can deduce:

D(µ̂T , µ̂S) ≤ D(µ̂T , µP) +D(µ̂S , µP) ≤ D(µ̂T , µ̂P) +D(µ̂S , µ̂P) + 2D(µ̂P , µP). (20)

Now we replace the term D(µ̂P , µP) with its empirical counterpart using Theorem 1.1 in the work
by Bolley et al. (2007).

Theorem 3 (Theorem 1.1 by Bolley et al. Bolley et al. (2007)): consider that p(·) ∈ P(Z) and∫
Z exp (α‖x‖22)dp(x) < ∞ for some α > 0. Let p̂(x) = 1

N

∑
i δ(xi) denote the empirical

distribution that is built from the samples {xi}Ni=1 that are drawn i.i.d from xi ∼ p(x). Then for any
d′ > d and ξ <

√
2, there exists N0 such that for any ε > 0 and N ≥ No max(1, ε−(d′+2)), we have:

P (W (p, p̂) > ε) ≤ exp(−−ξ
2
Nε2), (21)

where W denotes the WD distance. This relation measures the distance between the empirical
distribution and the true distribution, expressed in the WD distance.

Applying equation 20 and equation 21 on equation 19 concludes Theorem 2 as stated:

eT ≤eS +D(µ̂S , µ̂P) +D(µ̂T , µ̂P) + (1− τ) + eS,P +

√(
2 log(

1

ξ
)/ζ
)(√ 1

N
+

√
1

M
+ 2

√
1

Np

)
,

(22)

A.3 COMPLEXITY ANALYSIS FOR GMM ESTIMATION

Estimating a GMM distribution usually is a computationally expensive tasks. The major reason is
that normally the data points are unlabeled. This would necessitate relying on iterative algorithms
such expectation maximization (EM) algorithm Moon (1996). Preforming iterative E and M steps
until convergence leads to high computational complexity Roweis (1998). However, estimating the
prototypical distribution with a GMM distribution is much simpler in our learning setting. Existence
of labels helps us to decouple the Gaussian components and compute the parameters using MAP
estimate for each of the mode parameters in one step as follows:

α̂j =
|Sj |
N

, µ̂j =
∑

(xs
i ,y

s
i )∈Sj

1

|Sj |
φv(x

s
i ), Σ̂j =

∑
(xs

i ,y
s
i )∈Sj

1

|Sj |
(
φv(x

s
i )− µ̂j

)>(
φv(x

s
i )− µ̂j

)
.

(23)

Given the above and considering that the source domain data is balanced, complexity of computing
αj is O(N) (just checking whether data points xsi belong to Sj). Complexity of computing µj is
O(NF/k), where F is the dimension of the embedding space. Complexity of computing the co-
variance matrices Σj is O(F (Nk )2). Since, we have k components, the total complexity of computing
GMM is O(FN

2

k ). If O(F ) ≈ O(k), which seems to be a reasonable practical assumption, then
the total complexity of computing GMM would be O(N2). Given the large number of learnable
parameters in most deep neural networks which are more than N for most cases, this complexity is
fully dominated by complexity of a single step of backpropagation. Hence, this computing the GMM
parameters does not increase the computational complexity for.

A.4 ADDITIONAL EXPERIMENTS ON IMBALANCED DATA

We have used a balanced dataset in terms of class labels in our experiments. However, the label
distribution for the target domain training dataset cannot be enforced to be balanced in practical
applications due to absence of labels. This a highly unexplored challenge in the domain adaptation
literature which we study in this section. To study the effect of label imbalance using a controlled
experiment, we synthetically design an imbalanced dataset using the Amazon dataset. We repeat the
experiments we had, only with the difference of using imbalanced target domain datasets. We design
two experiments by only include 111 and 250 data points from class one such that the target domain
datasets has the 90/10 and 80/20 ratios of imbalance between the two classes, respectively. We have
provided domain adaptation results using for these two imbalanced scenarios in Table 3. We can see
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Task B→D B→E B→K D→B D→E D→K
80/20 82.8 ± 0.3 83.2 ± 0.5 85.5 ± 0.3 78.7 ± 0.2 83.3 ± 0.2 86.8 ± 0.2
90/10 82.9 ± 0.5 83.4 ± 0.3 85.8 ± 0.2 78.5 ± 0.4 83.3 ± 0.4 86.8 ± 0.3
Task E→B E→D E→K K→B K→D K→E
80/20 78.7 ± 0.2 78.5 ± 0.5 88.6 ± 0.1 76.3 ± 0.6 77.9 ± 0.4 86.6 ± 0.1
90/10 78.7 ± 0.2 78.0 ± 0.4 88.0 ± 0.2 76.5 ± 0.5 77.3 ± 0.3 86.7 ± 0.2

Table 3: Effect of label imbalance in the target domain on the proposed method.

(a) Source (b) Proto. Dist. Samples (c) Target: Pre-Adapt. (d) Target: Post-Adapt.

Figure 4: UMAP visualization for the task D→K task in the imbalanced regime of 90/10: (a) the
source domain testing split, (b) the prototypical distribution samples, (c) the target domain testing
split prior to adaptation, and (d) the target domain testing split after adaptation. (Best viewed in
color).

that performance of our algorithm slightly has degraded but our algorithm has been robust to a large
extent with respect to label imbalance.

As a secondary sanity check, we have presented the UMAP visualization for the testing data split of
the task D→K for the imbalanced 90/10 task in Figure 4. Observations in Figure 4 match what we
reported in Table 3, confirming that our algorithm does suffer considerable degradation if the target
domain data imbalanced for the tasks built using the Amazon reviews dataset.
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