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Abstract

Extending reinforcement learning (RL) to offline contexts is a promising prospect, partic-
ularly in sectors where data collection poses substantial challenges or risks. Pivotal to the
success of transferring RL offline is mitigating overestimation bias in value estimates for
state-action pairs absent from data. Whilst numerous approaches have been proposed in re-
cent years, these tend to focus primarily on continuous or small-scale discrete action spaces.
Factorised discrete action spaces, on the other hand, have received relatively little attention,
despite many real-world problems naturally having factorisable actions. In this work, we
undertake an initial formative investigation into offline reinforcement learning in factoris-
able action spaces. Using value-decomposition as formulated in DecQN as a foundation,
we conduct an extensive empirical evaluation of several offline techniques adapted to the
factorised setting. In the absence of established benchmarks, we introduce a suite of our
own based on a discretised variant of the DeepMind Control Suite, comprising datasets of
varying quality and task complexity. Advocating for reproducible research and innovation,
we make all datasets available for public use, alongside our code base.

1 Introduction

The idea of transferring the successes of reinforcement learning (RL) to the offline setting is an enticing one.
The opportunity for agents to learn optimal behaviour from sub-optimal data prior to environment interaction
extends RL’s applicability to domains where data collection is costly, time-consuming, or dangerous (Lange
et al., 2012). This includes not only those domains where RL has traditionally found favour, such as games
and robotics (Mnih et al., 2013; Hessel et al., 2018; Kalashnikov et al., 2018; Mahmood et al., 2018), but also
areas in which online learning presents significant practical and/or ethical challenges, such as autonomous
driving (Kiran et al., 2022) and healthcare (Yu et al., 2021a).

Unfortunately, taking RL offline is not as simple as naively applying standard off-policy algorithms to pre-
existing datasets and removing online interaction. A substantial challenge arises from the compounding and
propagation of overestimation bias in value estimates for actions absent from data (Fujimoto et al., 2019b).
This bias stems from the underlying bootstrapping procedure used to derive such estimates and subsequent
maximisation to obtain policies, whether implicit such as in Q-learning or explicit as per actor-critic methods
(Levine et al., 2020). Fundamentally, agents find it difficult to accurately determine the value of actions
not previously encountered, and thus any attempt to determine optimal behaviour based on these values is
destined to fail. In online learning, such inaccuracies can be compensated for through continual assimilation
of environmental feedback, but offline such a corrective mechanism is no longer available.

In response to these challenges, there has been a plethora of approaches put forward that aim to both curb the
detrimental effects of overestimation bias as well as let agents discover optimal policies, or at least improve
over the policy/policies that collected the data to begin with (Levine et al., 2020). The last few years in
particular have seen a wide variety of approaches proposed, making use of policy constraints (Fujimoto et al.,
2019b; Zhou et al., 2021; Wu et al., 2019; Kumar et al., 2019; Kostrikov et al., 2021b; Fujimoto & Gu, 2021),
conservative value estimation (Kostrikov et al., 2021a; Kumar et al., 2020), uncertainty estimation (An et al.,
2021; Ghasemipour et al., 2022; Bai et al., 2022; Yang et al., 2022; Nikulin et al., 2023; Beeson & Montana,
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2024) and environment modelling (Kidambi et al., 2020; Yu et al., 2021b; Argenson & Dulac-Arnold, 2020;
Janner et al., 2022), to name just a few. Each approach comes with its own strengths and weaknesses in
terms of performance, computational efficiency, ease of implementation and hyperparameter tuning.

To date, most published research in offline-RL has focused on either continuous or small-scale discrete action
spaces. However, many complex real-world problems can be naturally expressed in terms of factorised action
spaces, where global actions consist of multiple distinct sub-actions, each representing a key aspect of the
decision process. Examples include ride-sharing (Lin et al., 2018), recommender systems (Zhao et al., 2018),
robotic assembly (Driess et al., 2020) and healthcare (Liu et al., 2020).

Formally, the factorised action space is considered the Cartesian product of a finite number of discrete
sub-action spaces, i.e. A = A1 × ... × AN , where Ai contains ni (sub-)actions and N corresponds to the
dimensionality of the action space. The total number of actions, often referred to as atomic actions, is thus∏N
i=1 ni, which can undergo combinatorial explosion if N and/or ni grow large.

In recognition of this propsect, in online-RL various strategies have been devised to preserve the effectiveness
of commonly used discrete algorithms (Tavakoli et al., 2018; Tang & Agrawal, 2020). The concept of value-
decomposition (Seyde et al., 2022) is particularly prominent, wherein value estimates for each sub-action
space are computed independently, yet are trained to ensure that their aggregate mean converges towards a
universal value. This paradigm is inspired by the centralised training and decentralised execution framework
popular in multi-agent RL (MARL) (Kraemer & Banerjee, 2016), in which each sub-action space is treated
analogously to individual agents. The overall effect is to reduce the total number of actions for which a value
needs to be learnt from a product to a sum, making problems with factorisable actions spaces much more
tractable for approaches such as Q-learning.

In this work, we undertake an initial investigation into offline-RL for factorisable action spaces. Using
value-decomposition, we show how a factorised approach provides several benefits over standard atomic
representation. We conduct an extensive empirical evaluation of a number of offline approaches adapted to
the factorised action setting, comparing the performance of these approaches under various conditions. In
the absence of benchmarks for this research area, we introduce a set of our own based on the discretised
variant of the DeepMind Control Suite (Tunyasuvunakool et al., 2020) used in prior value decomposition
work (Seyde et al., 2022; Ireland & Montana, 2023). This benchmark contains transitions from agents trained
to varying levels of performance across a range of diverse tasks, testing an agent’s ability to learn complex
behaviours from data of varying quality. In the spirit of advancing research in this area, we provide open
access to these datasets as well as our full code base.

To the best of our knowledge, this investigation represents the first formative analysis of offline-RL in
factorisable action spaces. We believe our work helps pave the way for developments in this important
domain, whilst also contributing to the growing field of offline-RL more generally.

2 Preliminaries

2.1 Offline reinforcement learning

Following standard convention, we begin by defining a Markov Decision Process (MDP) with state space S,
action space A, environment dynamics T (s′ | s, a), reward function R(s, a) and discount factor γ ∈ [0, 1]
(Sutton & Barto, 2018). An agent interacts with this MDP by following a state-dependent policy π(a | s),
with the primary objective of discovering an optimal policy π∗(a | s) that maximises the expected discounted
sum of rewards, Eπ [

∑∞
t=0 γ

tr(st, at)].

A popular approach for achieving this objective is through the use of Q-functions, Qπ(s, a), which estimate
the value of taking action a in state s and following policy π thereafter. In discrete action spaces, optimal
Q-values can be obtained by repeated application of the Bellman optimality equation:

Q∗(s, a) = r(s, a) + γEs′∼T

[
max
a′

Q∗(s′, a′)
]
.
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These Q-values can then be used to define an implicit policy such that:

π(s) = arg max
a

Q(s, a) ,

i.e. the action that maximises the optimal Q-value at each state. Given the scale and complexity of real-
world tasks, Q-functions are often parameterised (Mnih et al., 2013), with learnable parameters θ that are
updated so as to minimise the following loss:

L(θ) = 1
|B|

∑
(s,a,r,s′)∈B

(Qθ(s, a)− y)2
, (1)

where y = r(s, a)+γmaxa′ Qθ(s′, a′) is referred to as the target value, and B denotes a batch of data sampled
uniformly at random from a replay buffer B of stored transitions from the agent’s own interactions with the
environment. To promote stability during training, when calculating Q-values in the target it is common to
use a separate target network Qθ̂(s′, a′) (Mnih et al., 2013; Hessel et al., 2018) with parameters θ̂ updated
towards θ either via a hard reset every specified number of steps, or gradually using Polyak-averaging.

In the offline setting, an agent is prohibited from interacting with the environment and must instead learn
solely from a pre-existing dataset of interactions B = (sb, ab, rb, s′

b), collected from some unknown behaviour
policy (or policies) πβ (Lange et al., 2012). This lack of interaction allows errors in Q-value estimates to
compound and propagate during training, often resulting in a complete collapse of the learning process
(Fujimoto et al., 2019b). Specifically, Q-values for out-of-distribution actions (i.e. those absent from the
dataset) suffer from overestimation bias as a result of the maximisation carried out when determining target
values. The outcome is specious Q-values estimates, and policies derived from those estimates consequently
being highly sub-optimal. In order to compensate for this overestimation bias, Q-values must be regularised
by staying “close” to the source data (Levine et al., 2020).

2.2 Decoupled Q-Network

By default, standard Q-learning approaches are based on atomic representations of action spaces (Sutton &
Barto, 2018). This means that, in a factorisable action space, Q-values must be determined for every possible
combination of sub-actions. This potentially renders such approaches highly ineffective due to combinatorial
explosion in the number of atomic actions. Recalling that the action space can be thought of as a Cartesian
product, then for each Ai we have that |Ai| = ni, and so the total number of atomic actions is

∏N
i=1 ni.

This quickly grows unwieldly as the number of sub-action spaces N and/or number of actions within each
sub-action space ni increase.

To address this issue, the Branching Dueling Q-Network (BDQ) proposed by Tavakoli et al. (2018) learns
value estimates for each sub-action space independently and can be viewed as a single-agent analogue to
independent Q-learning from multi-agent reinforcement learning (MARL) (Claus & Boutilier, 1998). Seyde
et al. (2022) expand on this work with the introduction of the Decoupled Q-Network (DecQN), which
computes value estimates in each sub-action space independently, but learns said estimates such that their
mean estimates the Q-value for the combined (or global) action. Such an approach is highly reminiscent of
the notion of value-decomposition used in cooperative MARL (Sunehag et al., 2017; Rashid et al., 2020b;a;
Du et al., 2022), with sub-action spaces resembling individual agents.

In terms of specifics, DecQN introduces a utility function U iθi
(s, ai) for each sub-action space and redefines

the Q-value to be:

Qθ(s,a) = 1
N

N∑
i=1

U iθi
(s, ai) , (2)

where a = (a1, ..., aN ) is the global action, θi are the parameters for the ith utility function and θ = {θi}Ni=1
are the global set of parameters. The loss in Equation (1) is updated to incorporate this utility function
structure:

L(θ) = 1
|B|

∑
(s,a,r,s′)∈B

(Qθ(s,a)− y)2
, (3)
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where

y = r(s, a) + γ

N

N∑
i=1

max
a′

i

U iθi
(s′, a′

i) .

As each utility function only needs to learn about actions within its own sub-action space, this reduces the
total number of actions for which a value must be learnt to

∑N
i=1 ni, thus preserving the functionality of

established Q-learning algorithms. Whilst there are other valid decomposition methods, in this work we focus
primarily on the decomposition proposed in DecQN. In Appendix D we provide a small ablation justifying
our choice.

3 Related Work

3.1 Offline RL

Numerous approaches have been proposed to help mitigate Q-value overestimation bias in offline-RL. In
BCQ (Fujimoto et al., 2019b), this is achieved by cloning a behaviour policy and using generated actions
to form the basis of a policy which is then optimally perturbed by a separate network. BEAR (Kumar
et al., 2019), BRAC (Wu et al., 2019) and Fisher-BRC (Kostrikov et al., 2021a) also make use of cloned
behaviour policies, but instead use them to minimise divergence metrics between the learned and cloned
policy. One-step RL (Brandfonbrener et al., 2021) explores the idea of combining fitted Q-evaluation and
various policy improvement methods to learn policies without having to query actions outside the data.
This is expanded upon in Implicit Q-learning (IQL) (Kostrikov et al., 2021b), which substitutes fitted Q-
evaluation with expectile regression. TD3-BC (Fujimoto & Gu, 2021) adapts TD3 (Fujimoto et al., 2018) to
the offline setting by directly incorporating behavioural cloning into policy updates, with TD3-BC-N/SAC-
BC-N (Beeson & Montana, 2024) employing ensembles of Q-functions for uncertainty estimation to alleviate
issues relating to overly restrictive constraints as well as computational burden present in other ensembles
based approaches such as SAC-N & EDAC (An et al., 2021), MSG (Ghasemipour et al., 2022), PBRL (Bai
et al., 2022) and RORL (Yang et al., 2022).

In the majority of cases the focus is on continuous action spaces, and whilst there have been adaptations
and implementations in discrete action spaces (Fujimoto et al., 2019a; Gu et al., 2022), these tend to only
consider a small number of (atomic) actions. This is also reflected in benchmark datasets such as D4RL (Fu
et al., 2020) and RL Unplugged (Gulcehre et al., 2020). Our focus is on the relatively unexplored area of
factorisable discrete action spaces.

3.2 Action decomposition

Reinforcement learning algorithms have been extensively studied in scenarios involving large, discrete action
spaces. In order to overcome the challenges inherent in such scenarios, numerous approaches have been put
forward based on action sub-sampling (Van de Wiele et al., 2020; Hubert et al., 2021), action embedding
(Dulac-Arnold et al., 2015; Gu et al., 2022) and curriculum learning (Farquhar et al., 2020). However, such
approaches are tailored to handle action spaces comprising numerous atomic actions, and do not inherently
tackle the complexities nor utilise the structure posed by factorisable actions.

For factorisable action spaces various methods have been proposed, such as learning about sub-actions
independently via value-based (Sharma et al., 2017; Tavakoli et al., 2018) or policy gradient methods (Tang
& Agrawal, 2020; Seyde et al., 2021). Others have also framed the problem of action selection in factorisable
action spaces as a sequence prediction problem, where the sequence consists of the individual sub-actions
(Metz et al., 2017; Pierrot et al., 2021; Chebotar et al., 2023).

There exists a strong connection between factorisable action spaces and MARL, where the selection of a
sub-action can be thought of as an individual agent choosing its action in a multi-agent setting. Value-
decomposition has been shown to be an effective approach in MARL (Sunehag et al., 2017; Rashid et al.,
2020b;a; Du et al., 2022), utilising the centralised training with decentralised execution paradigm (Kraemer &
Banerjee, 2016), which allows agents to act independently but learn collectively. DecQN (Seyde et al., 2022)
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and REValueD (Ireland & Montana, 2023) have subsequently shown such ideas can be used with factorised
action spaces in single-agent reinforcement learning, demonstrating strong performance on a range of tasks
that vary in complexity. Theoretical analysis of errors in Q-value estimates has also been conducted in efforts
to stabilise training (Ireland & Montana, 2023; Thrun & Schwartz, 1993)

In this work, we focus on adapting DecQN to the offline setting by incorporating existing offline techniques.
Whilst prior work has explored offline RL with value decomposition (Tang et al., 2022), this was limited
to specific low-dimensional healthcare applications using only BCQ. Furthermore, accurately evaluating
performance in such domains is notorious challenging (Gottesman et al., 2018). In contrast, we systematically
study multiple offline methods using low and high-dimensional factorised action spaces across a suite of
benchmark tasks.

4 Algorithms

In this Section we introduce several algorithms incorporating offline-RL methods into DecQN. We focus on
methods that offer distinct takes on combatting overestimation bias, namely, policy constraints, conservative
value estimation, implicit Q-learning and one-step RL. In each case, attention shifts from Q-values to utility
values, with regularisation performed at the sub-action level.

4.1 DecQN-BCQ

Batch Constrained Q-learning (BCQ) (Fujimoto et al., 2019b;a) is a policy constraint approach to offline-
RL. To compensate for overestimation bias in out-of-distribution actions, a cloned behaviour policy πϕ is
used to restrict the actions available for target Q-values estimates, such that their probability under the
behaviour policy meets a relative threshold τ . This can be adapted and incorporated into DecQN by cloning
separate behaviour policies πiϕi

for each sub-action dimension and restricting respective sub-actions available
for corresponding target utility value-estimates.

The target value from Equation (3) becomes:

y = r(s, a) + γ

N

N∑
i=1

max
a′

i
: ρi(a′

i
)≥τ

U iθi
(s′, a′

i) ,

where ρi(a′
i) = πiϕi

(a′
i | s′)/maxâ′

i
πiϕi

(â′
i | s′) is the relative probability of sub-action a′

i under policy πiϕi
.

Each cloned behaviour policy is trained via supervised learning with ϕ = {ϕ}Ni=1. The full procedure can be
found in Algorithm 1.

Algorithm 1 DecQN-BCQ
Require: Threshold τ , discounter factor γ, target network update rate µ, number sub-action spaces N and

dataset B.
Initialise utility function parameters θ = {θi}Ni=1, corresponding target parameters θ̂ = θ and policy
parameters ϕ = {ϕi}Ni=1
for t = 0 to T do

Sample minibatch of transitions (s,a, r, s′) from B
ϕ← arg minϕ 1

N

∑N
i=1−

∑
s,ai

log πiϕi
(ai | s)

θ ← arg minθ
∑
s,a,r,s′(Qθ(s,a)− y)2

where:
Qθ(s,a) = 1/N

∑N
i=1 U

i
θi

(s, ai),
y = r + γ/N

∑N
i=1 maxa′

i
: ρi(a′

i
)≥τ U

i
θ̂i

(s′, a′
i),

ρi(a′
i) = πiϕi

(a′
i | s′)/maxâ′

i
πiϕi

(â′
i | s′)

θ̂ ← µθ + (1− µ)θ̂
end for
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4.2 DecQN-CQL

Conservative Q-learning (CQL) (Kumar et al., 2020) attempts to combat overestimation bias by targeting
Q-values directly. The loss in Equation (1) is augmented with a term that “pushes-up” on Q-value estimates
for actions present in the dataset and “pushes-down” for all others. This can be adapted and incorporated
into DecQN by “pushing-up” on utility value estimates for sub-actions present in data and “pushing-down”
for all others.

Using one particular variant of CQL this additional loss term under DecQN becomes:

LCQL(θ) = α

|B|
∑
s,a∼B

1
N

N∑
i=1

[
log

∑
aj∈Ai

exp(U iθi
(s, aj))− U iθi

(s, ai)
]

; (4)

where aj denotes the jth sub-action within the ith sub-action space, and α is a hyperparameter that controls
the overall level of conservatism. The full procedure can be found in Algorithm 2.

Algorithm 2 DecQN-CQL
Require: Conservative coefficient α, discounter factor γ, target network update rate µ, number sub-action

spaces N and dataset B.
Initialise utility function parameters θ = {θi}Ni=1 and corresponding target parameters θ̂ = θ
for t = 0 to T do

Sample minibatch of transitions (s,a, r, s′) from B
θ ← arg minθ

∑
s,a,r,s′(Qθ(s,a)− y)2 + α log

∑
j expQθ(s,aj)−Qθ(s,a)

where:
Qθ(s,a) = 1/N

∑N
i=1 U

i
θi

(s, ai),
y = r + 1/N

∑N
i=1 maxa′

i
U i
θ̂i

(s′, a′
i),

log
∑
j expQθ(s,aj) = 1/N

∑N
i=1 log

∑
aj∈Ai

exp(U iθi
(s, aj))

θ̂ ← µθ + (1− µ)θ̂
end for

4.3 DecQN-IQL

Implicit Q-learning (IQL) (Kostrikov et al., 2021b) addresses the challenge of overestimation bias by learning
a policy without having to query actions absent from data. A state and state-action value function are trained
on the data and then used to extract a policy via advantage-weighted-behavioural-cloning.

The state value function Vψ(s) is trained via expectile regression, minimising the following loss:

L(ψ) = 1
|B|

∑
s,a∼B

[Lτ2(Qθ(s, a)− Vψ(s))] ;

where if we denote u = Qθ(s, a) − Vψ(s) then Lτ2(u) = |τ − 1(u < 0)|u2 is the asymmetric least squares for
the τ ∈ (0, 1) expectile.

The state-action value function Qθ(s, a) is trained using the same loss as Equation (1), with the target value
now y = r(s, a) + γVψ(s′).

The policy follows that of discrete-action advantage-weighted-behavioural-cloning (Luo et al., 2023) such
that:

π = arg max
a

[
1
λ
A(s, a) + log πϕ(a | s)

]
;

where A(s, a) = Q(s, a)− V (s) is the advantage function, πϕ(a | s) is a cloned behaviour policy trained via
supervised learning and λ is a hyperparameter controlling the balance between reinforcement learning and
behavioural cloning.
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This can be adapted and incorporated into DecQN by replacing Q(s, a) with its decomposed form as per
Equation (2) and adjusting the policy to reflect a sub-action structure, i.e:

πi = arg max
ai

[
1
λ
A(s, ai) + log πiϕi

(ai | s)
]
.

The full procedure can be found in Algorithm 3.

Algorithm 3 DecQN-IQL
Require: Expectile τ , discounter factor γ, target network update rate µ, number sub-action spaces N and

dataset B.
Initialise utility function parameters θ = {θi}Ni=1 and corresponding target parameters θ̂ = θ. Initialise
state value function parameters ψ and policy parameters ϕ = {ϕi}Ni=1
for t = 0 to T do

Sample minibatch of transitions (s,a, r, s′) from B
ϕ← arg minϕ 1

N

∑N
i=1−

∑
s,ai

log πiϕi
(ai | s)

θ ← arg minθ 1
N

∑
s,a,r,s′(Qθ(s,a)− y)2

ψ ← arg minψ 1
N

∑
s,a[Lτ2(Qθ̂(s,a)− Vψ(s))]

where:
Qθ(s,a) = 1/N

∑N
i=1 U

i
θi

(s, ai),
Qθ̂(s,a) = 1/N

∑N
i=1 U

i
θ̂i

(s, ai),
y = r + Vψ(s′)
θ̂ ← µθ + (1− µ)θ̂

end for

4.4 DecQN-OneStep

We can derive an alternative approach to IQL which removes the requirement for a separate state value
function altogether. Noting that V (s) =

∑
a π(a | s)Q(s, a), we can instead use the cloned behaviour policy

πϕ(a′ | s′) and state-action value function Qθ(s′, a′) to calculate the state value function V (s′) instead. This
can be adapted and incorporated into DecQN be replacing Q(s, a) with its decomposed form as per Equation
(2) and adjusting the policy to reflect a sub-action structure. We denote this approach DecQN-OneStep as
it mirrors one-step RL approaches that train state value functions using fitted Q-evaluation (Brandfonbrener
et al., 2021). The full procedure can be found in Algorithm 4.

Algorithm 4 DecQN-OneStep
Require: Discounter factor γ, target network update rate µ, number sub-action spaces N and dataset B.

Initialise utility function parameters θ = {θi}Ni=1 and corresponding target parameters θ̂ = θ. Initialise
policy parameters ϕ = {ϕi}Ni=1
for t = 0 to T do

Sample minibatch of transitions (s,a, r, s′) from B
ϕ← arg minϕ 1

N

∑N
i=1−

∑
s,ai

log πiϕi
(ai | s)

θ ← arg minθ 1
N

∑
s,a,r,s′(Qθ(s,a)− y)2

where:
Qθ(s,a) = 1/N

∑N
i=1 U

i
θi

(s, ai),
y = r + 1/N

∑N
i=1

∑
ai
πiϕi

(ai | s)U iθ̂i
(s′, a′

i)
θ̂ ← µθ + (1− µ)θ̂

end for
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5 Environments and datasets

Although there are a number of established environments/tasks for continuous and small-scale discrete action
spaces, there is an absence of similar environments/tasks specifically designed for factorisable action spaces.
As such, there is also an absence of benchmark datasets analogous to those found in D4RL (Fu et al., 2020)
and RL Unplugged (Gulcehre et al., 2020). In light of this, we introduce our own set of benchmarks based on
a discretised variant of the DeepMind control suite, as previously adopted by Seyde et al. (2022); Ireland &
Montana (2023). This suite contains a variety of environments and tasks that range in size and complexity,
which although originally designed for continuous control (which is not our focus), can easily be repurposed
for a discrete factorisable setting by discretising individual sub-action spaces. This discretisation process
involves selecting a subset of actions from the original continuous space which then become the discrete
actions available to the agent. For example, a continuous action in the range [−1, 1] can be discretised into
three discrete actions corresponding to the subset {−1, 0, 1}. We emphasise this discretisation procedure
happens prior to data collection.

For the datasets themselves, we follow a similar procedure to D4RL. Using DecQN/REValueD, we train
agents to “expert” and “medium” levels of performance and then collect 1M transitions from the resulting
policies. Here, we define “expert” to be the peak performance achieved by DecQN/REValueD and “medium”
to be approximately 1/3rd the performance of the “expert”. We create a third dataset “medium-expert”
by combining transitions from these two sources and a fourth “random-medium-expert” containing 200k
transitions constituting 45% random and medium transitions and 10% expert. Each of these datasets presents
a specific challenge to agents, namely the ability to learn from optimal or sub-optimal data (“expert” and
“medium”, respectively) as well as data that contains a mixture (“medium-expert” and “random-medium-
expert”). More details on this training and data collection procedure are provided in Appendix A.

6 Experimental evaluation

6.1 Implementation

We train agents using DecQN, DecQN-BCQ, DecQN-CQL, DecQN-IQL and DecQN-OneStep on our bench-
mark datasets and evaluate their performance in the simulated environment. We also train and evaluate
agents using a factorised equivalent of behavioural cloning to provide a supervised learning baseline.

Utility functions are parameterised by neural networks, comprising a 2-layer MLP with ReLU activation
functions and 512 nodes, taking in a normalised state as input and outputting utility values for each sub-
action space. We use the same architecture for policies, with the output layer a softmax across actions within
each sub-actions-space. State value functions mirror this architecture except in the final layer which outputs
a single value. We train networks via stochastic gradient descent using the Adam optimiser (Kingma & Ba,
2014) with learning rate 3e−4 and a batch size of 256. For state and state-action value functions we use the
Huber loss as opposed to MSE loss. We set the discount factor γ = 0.99 and the target network update
rate µ = 0.005. We utilise a dual-critic approach, taking the mean across two utility estimates for target
Q-values. All agents are trained for 1M gradient updates.

The only hyperparameters we tune are the threshold τ in BCQ, conservative coefficent α in CQL, expectile
τ and balance coefficient λ in IQL/OneStep. We allow these to vary across environment/task, but to
better reflect real-world scenarios where the quality of data may be unknown, we forbid variation within
environments/tasks. Values for each environment/task dataset can be found in Table 3 in the Appendix.

Performance is measured in terms of normalised score, where:

scorenorm = 100× score− scorerandom
scoreexpert − scorerandom

;

with 0 representing a random policy and 100 the “expert” policy from the fully trained agent. We repeat
experiments across five random seeds, and evaluate each agent’s final policy 10 times, reporting results as
mean normalised scores ± one standard error across seeds. For each set of experiments we provide visual
summaries with tabulated results available in Appendix C for completeness.
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6.2 Case study: Atomic-CQL vs DecQN-CQL

Before evaluating and comparing agents on the full benchmark, we conduct a case study using CQL which
directly compares performance and computation using a standard atomic representation of actions, which
we denote Atomic-CQL, and a factorised and decomposed approach as proposed in DecQN-CQL.

Following the procedure outlined in Section 5 we construct a “medium-expert” dataset of 100k transitions for
the “cheetah-run” task for bin sizes ni ∈ {3, 4, 5, 6}. We train agents using Atomic-CQL and DecQN-CQL
for 500k gradient steps and compare both the performance of resulting policies and overall computation
time. For both Atomic-CQL and DecQN-CQL we set α = 0.5 for n = 3 and α = 2 for n ∈ {4, 5, 6}. We
summarise results in Figure 1.

Figure 1: Comparisons of performance (left) and computation time (right) for Atomic-CQL and DecQN-CQL
on the “cheetah-run-medium-expert” dataset for varying bin-sizes. Performance is measured in terms of mean
normalised score ± one standard error, where 0 and 100 represent random and expert policies, respectively.
As bin-size increases, Atomic-CQL suffers notable drops in performance and increases in computation time,
whereas DecQN-CQL is relatively resilient in both areas.

We see that as the number of sub-actions ni increases, Atomic-CQL exhibits a notable decline in performance,
whereas DecQN-CQL performance declines only marginally. We also see a dramatic increase in computation
time for Atomic-CQL whereas DecQN-CQL remains roughly constant. For Atomic-CQL, these outcomes
are symptomatic of the combinatorial explosion in the number of actions requiring value-estimation and the
associated number of out-of-distribution global actions. These issues are less prevalent in DecQN-CQL due
to its factorised and decomposed formulation.

To provide further insights, we also examine the evolution of Q-value errors during training. Every 5k
gradient updates we obtain a MC estimate of true Q-values using discounted rewards from environmental
rollouts. We then compare these MC estimates with Q-values predicted by both Atomic-CQL and DecQN-
CQL networks for the respective actions taken. To make better use of rollouts (which can be expensive),
we calculate MC estimates and Atomic-/DecQN-CQL Q-values for the first 500 states in the trajectory, as
using a discount factor of γ = 0.99 discounts rewards by over 99% for time-steps beyond 500 (and all tasks
considered have trajectory length 1000). In total we perform 10 rollouts, giving 5000 estimates of the error
between true and Atomic-CQL/DecQN-CQL Q-values. In Figure 2 we plot the mean absolute error over
the course of training, with the solid line representing the mean across five random seeds and shaded area
the standard error. For all values of ni we observe the mean absolute error is less for DecQN-CQL than
Atomic-CQL, particularly for ni > 3, aligning with each algorithm’s respective performance in Figure 1.

9



Under review as submission to TMLR

Figure 2: Comparison of estimated errors in Q-values for “cheetah-run-medium-expert” dataset for varying
bin sizes. Errors are lower for DecQN-CQL for all bin-sizes, most notably for ni > 3, mirroring the deviation
in performance levels between the two approaches.

6.3 Benchmark comparison

We train and evaluate agents across our benchmark suite setting ni = 3. This necessitates the use of
value-decomposition for all but the most simple tasks, as highlighted in Table 1 where we summarise each
environment’s state and action space. Results are summarised in Figure 3.

Table 1: Environment details for DeepMind Control Suite. |S| represents the size of the state space and
N the number of sub-action spaces.

∏
i ni is the total number of actions under atomic representation and∑

i ni under factorised representation when ni = 3.
Environment |S| N

∏
i ni

∑
i ni

Finger Spin 9 2 9 6
Fish Swim 24 5 243 15

Cheetah Run 17 6 729 18
Quadruped Walk 78 12 ≈ 530k 36
Humanoid Stand 67 21 ≈ 1010 63

Dog Trot 223 38 ≈ 1018 114

In general we see that all offline-RL methods outperform behavioural cloning across all environments/tasks
and datasets, with the exception of DecQN-BCQ for “random-medium-expert” datasets which performs quite
poorly. DecQN without offline adjustments leads to highly sub-optimal policies, in the vast majority of cases
failing to learn a policy that improves over random behaviour (a direct consequence of aforementioned issues
relating to overestimation bias). In terms of offline methods specifically, in general DecQN-CQL has a slight
edge over others for lower dimensional tasks such as “finger-spin”, “fish-swim” and “cheetah-run”, whilst
DecQN-IQL/OneStep have the edge for higher-dimensional tasks such as “humanoid-stand” and “dog-trot”.
For “medium-expert” datasets we see in most cases all methods are able to learn expert or near-expert level
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Figure 3: Performance comparison across benchmark for ni = 3. For presentation purposes the prefix
“DecQN-” has been omitted for each offline method. Figures are mean normalised score ± one standard
error, where 0 and 100 represent random and expert policies, respectively. In general, all offline-RL methods
improve over behavioural cloning, with the exception of DecQN-BCQ for random-medium-expert datasets.
DecQN without any offline modification performs poorly across all environments/tasks.

policies. Extracting optimal behaviour from “random-medium-expert” datasets proves significantly more
challenging, likely a result of these datasets being both highly variable and constituting relatively few expert
trajectories.

6.4 Larger bin sizes

In this sub-section we investigate the impact of increasing the number of sub-actions within each sub-action
dimension. This helps provide insights into the ability of our chosen offline methods to scale to larger and
larger action spaces. We focus in particular on the dog-trot environment since this is by far the largest
in terms of actions. We collect datasets following the same procedure outlined in Section 5 for bin sizes
ni ∈ {10, 30, 50, 75, 100}. We summarise results in Figure 4.

In general, we see that our chosen offline methods are robust to increases in bin size, continuing to outperform
behavioural cloning (with the same exception for DecQN-BCQ on “random-medium-expert”) and extract
near-expert policies from “medium-expert” datasets, with DecQN-IQL/-OneStep maintaining their edge
over DecQN-CQL. For “random-medium-expert” datasets we start to notice a decline in performance as we
approach the upper end of our bin size range, most noticeably when n = 100. This is likely a consequence
of higher bin sizes exacerbating the difficulties in obtaining good policies from highly variable and largely
sub-optimal data.
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Figure 4: Performance comparison for dog-trot for ni ∈ {3, 10, 30, 50, 75, 100}. For presentation purposes
the prefix “DecQN-” has been omitted for each offline method. Figures are mean normalised score ± one
standard error, where 0 and 100 represent random and expert policies, respectively. Each approach is
reasonably resilient to larger bin sizes, although for “random-medium-expert” datasets extracting a good
policy appears to become more challenging as n gets very large.

7 Discussion and conclusion

In this work, we have explored the realm of offline reinforcement in factorisable action spaces. Through
empirical evaluation, we have shown how a factorised and decomposed approach offers numerous benefits over
standard/atomic approaches. Using a bespoke dataset we have conducted an extensive empirical evaluation
of several offline-RL approaches adapted to this factorised and decomposed framework, providing insights
into each approach’s ability to learn tasks of varying complexity from datasets of differing size and quality.

In general, our empirical evaluation demonstrates our chosen offline methods adapt well to the factorised
setting when combined with value-decomposition in the form of DecQN. With one exception, all approaches
are consistently able to outperform behavioural cloning regardless of data quality, and where datasets contain
sufficient levels of high-quality trajectories (i.e. “expert” and “medium-expert”), obtain expert/near-expert
policies, even as the number of actions increase. There is however notable room for improvement for datasets
with a scarcity of high-quality trajectories (i.e. “medium” and “random-medium-expert”).

Our initial investigation opens up numerous other possibilities for future research. One of these is the
development of techniques for automatically tuning hyperparameters during training, which at present are
not environment/task agnostic. In addition, as with their continuous counterparts, performance can be
enhanced by allowing hyperparameters to vary for each dataset (see Appendix B.1 for examples). Off-policy
evaluation could also prove beneficial here (Rebello et al., 2023), providing assurances on the quality of a
policy prior to deployment.
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For DecQN-BCQ/-IQL/-OneStep, alternative approaches to modelling the behaviour policy πϕ may help
improve performance for more challenging datasets. In our particular implementation we use an MLP, but
alternative architectures such as LSTMs may better capture underlying environmental complexity (Scheller
et al., 2020). Incorporating other methods outlined in Section 3 is another possibility. For example, the use
of ensembles for capturing uncertainty in value estimates has been shown to perform well in combination with
behavioural cloning in continuous action spaces (Beeson & Montana, 2024), and is a relatively straightforward
extension to the approaches we consider here.

Whilst DecQN offers a simple, effective and computationally efficient foundation for offline-RL in factorisable
action spaces, we note there are some inherent assumptions and limitations to the value decomposition
approach that warrant further investigation. In particular, the efficacy of DecQN relies on individual sub-
action optimisation leading to globally optimal joint policies. However, for tasks with sparse rewards or
complex sub-action dependencies, individually learned sub-policies may fail to properly compose into a
coherent overall policy. For example, in assembly tasks, separately learned pick, place, and connect skills
could lead to conflicting behaviors when combined. Additional research into modeling sub-action interactions
during decomposition could help overcome this limitation.

Owing to practical considerations, the discretisation procedure in this work is relatively simplistic, splitting
actions into equally sized and equally spaced bins. Future work could investigate more nuanced aspects
relating to action spaces, such as variable bin sizes, non-even spacing between actions, clustering of actions
and masked actions. Furthermore, the creation of bespoke environments would be particularly beneficial,
as this not only removes the need to discretise continuous-action environments, but provides more realistic
scenarios to evaluate against.

We hope our work underscores the unique setting and challenges of conducting offline-RL in factorisable
action spaces and paves the way for future research by providing an accessible and solid foundation from
which to build upon.
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A Data collection procedure

To collect the datasets we followed the training procedures laid out by (Seyde et al., 2022; Ireland & Montana,
2023) to train the Decoupled Q-networks. To expedite the data collection process during training we used a
distributed setup using multiple workers to collect data in parallel (Horgan et al., 2018). We parameterised
the utility functions using a (shared) single ResNet layer followed by layer norm, followed by a linear head
for each of the sub-action spaces which predicts sub-action utility values. Full details regarding network
architecture and hyperparameters can be found in Table 2.

Once we have trained the DecQNs we create the benchmark datasets by collecting data using a greedy
policy derived from the learned utility values. Each dataset contains 1M transitions – as each episode is
truncated at 1,000 time steps in the DM control suite, this corresponds to collecting 1,000 episodes. For the
expert policy we trained the DecQNs until their test performance corresponded to the performance given in
(Seyde et al., 2022; Ireland & Montana, 2023). For the medium policy we aimed for a test performance of
approximately 1/3rd of the reported expert score.

We largely employ the same hyperparameters as the original DecQN study, as detailed in Table 3. Exceptions
include the decay of the exploration parameter (ϵ) to a minimum value instead of keeping it constant, and the
use of Polyak-averaging for updating the target network parameters, as opposed to a hard reset after every
specified number of updates. Finally, we sample from the replay buffer uniformly at random, as opposed to
using a priority. We maintain the same hyperparameters across all our experiments.

For n = 3 we use DecQN to train networks and collect datasets. For n > 3 we use REValueD to train
networks and collect datasets due to better scaling to larger bin sizes (Ireland & Montana, 2023).

Table 2: Hyperparameters used in DecQN and REValueD training.
Parameters Value
Optimizer Adam

Learning rate 1× 10−4

Replay size 5× 105

n-step returns 3
Discount, γ 0.99
Batch size 256

Hidden size 512
Gradient clipping 40

Target network update parameter, c 0.005
Imp. sampling exponent 0.2

Priority exponent 0.6
Minimum exploration, ϵ 0.05

ϵ decay rate 0.99995
Regularisation loss coefficient β 0.5

Ensemble size K 10

B Hyperparameters

Following on from Section 6, Table 3 provides hyperparameters for all environments/tasks. For DecQN-
BCQ we searched over τ = {0.05, 0.1, 0.25, 0.5}. For DecQN-CQL we searched over α = {0.25, 0.5, 1, 2}. For
DecQN-IQL we searched over τ = {0.5, 0.6, 0.7, 0.8}, λ = {1, 2, 5, 10}. For DecQN-OneStep we searched over
λ = {1, 2, 5, 10}.
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Table 3: Hyperparameters for experiments in Section 6
Environment/task Bin Size (n) BCQ τ CQL α IQL β, λ OneStep λ

FingerSpin 3 0.25 0.25 0.5, 1 1
FishSwim 3 0.25 0.25 0.5, 1 1

CheetahRun 3 0.25 0.25 0.5, 1 1
QuadrupedWalk 3 0.25 0.25 0.5, 2 1
HumanoidStand 3 0.25 0.25 0.5, 2 2

DogTrot 3 0.25 1 0.5, 5 5
DogTrot 10 0.25 0.25 0.5, 5 2
DogTrot 30 0.25 1 0.5, 2 2
DogTrot 50 0.5 0.5 0.5, 2 2
DogTrot 75 0.5 0.5 0.5, 2 2
DogTrot 100 0.5 2 0.5, 5 5

Table 4: Individual performance allowing hyperparameters to vary within environment/taskc; “dog-trot’,
n = 3. Figures are mean normalised scores, with 0 and 100 representing random and expert policies,
respectively. Highest score highlighted in bold

Environment -dataset
DogTrot (BCQ) τ = 0.025 τ = 0.05 τ = 0.1 τ = 0.25
-expert 57.8 85 93.6 94.4
-medium-expert 3.9 10.1 42.7 74.9
-medium 39.8 38.8 34.2 49.1
-random-medium-expert 5 5.6 9 0.1
DogTrot (CQL) α = 0.25 α = 0.5 α = 1 α = 2
-expert 90.8 95.7 99.5 100.2
-medium-expert 76.6 81.7 84.8 75.1
-medium 50.6 48.3 46.5 45.2
-random-medium-expert 41.2 40.8 43.4 38.6
DogTrot (IQL τ = 0.5) λ = 1 λ = 2 λ = 5 λ = 10
-expert 37.9 82.5 98.9 99.5
-medium-expert 33 64 89.3 98.6
-medium 58.8 56.5 52 47.3
-random-medium-expert 10.6 28.6 44.1 44.7
DogTrot (OneStep) λ = 1 λ = 2 λ = 5 λ = 10
-expert 53.3 91.7 101.2 102
-medium-expert 44.5 79.4 93.9 96.6
-medium 59.3 57.5 50.2 48
-random-medium-expert 23.8 43.9 44.9 45.1

B.1 Allowing hyperparameter variation within environment/task

As per Section 7, in Table 4 we provide examples of performance improvement after permitting hyperpa-
rameter variation within the same environment/task. In general, we see lower quality datasets benefit from
smaller hyperparameters (i.e. those that weight more towards RL and less towards BC) and higher quality
datasets benefit from larger hyperparameters (i.e. those the weight more towards BC and less towards RL).
This mirrors findings from previous papers outlined in Section 3.
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C Tabulated results

Tabulated results for Figure 1 are presented in Table 5. Tabulated results for Figure 3 are presented in Table
6. Tabulated results for Figure 4 are presented in Table 7.

Table 5: Atomic-CQL vs DecQN-CQL - performance and computation comparison. Performance figures
are mean normalised scores ± one standard error, with 0 and 100 representing random and expert policies,
respectively. Computation figures are training time and GPU usage. Actions figures are total number of
actions requiring value estimation based on atomic/factorised representation.

Method ni Actions Score Training time (mins) GPU usage (MB)
Atomic-CQL 3 729 79.7 ± 6.0 19 266
Atomic-CQL 4 4096 30.2 ± 1.7 30 412
Atomic-CQL 5 15625 32.2 ± 1.4 85 958
Atomic-CQL 6 46656 32.3 ± 4.0 227 2388
DecQN-CQL 3 18 92.7 ± 3.7 19 244
DecQN-CQL 4 24 85.4 ± 3.8 19 246
DecQN-CQL 5 30 79.5 ± 1.8 20 246
DecQN-CQL 6 36 84.3 ± 2.5 20 246
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Table 6: Individual performance comparison n = 3. Figures are mean normalised scores ± one standard
error, with 0 and 100 representing random and expert policies, respectively. At the bottom of the table
we also provide totals, split by data quality and the entire benchmark. We see that DecQN-BCQ is the
least performant of the offline methods and that DecQN-CQL/IQL/OneStep perform similarly overall and
on expert, medium-exert and and medium datasets and DecQN-CQL the best on random-medium-expert
datasets.

Environment -dataset BC DecQN DecQN-BCQ DecQN-CQL DecQN-IQL DecQN-OneStep
FingerSpin
-expert 99.5 ± 0.4 -0.2 ± 0.1 101.4 ± 0.3 107.1 ± 0.3 102.9 ± 0.2 102.5 ± 0.4
-medium-expert 77.9 ± 6.5 -0.5 ± 0 83.7 ± 3.5 106.8 ± 0.2 102.8 ± 0.3 102.7 ± 0.2
-medium 38.3 ± 1 -0.5 ± 0 41.2 ± 0.4 49.4 ± 0.3 44 ± 0.8 45.2 ± 0.6
-random-medium-expert 8.2 ± 2.3 56.2 ± 2.9 37.9 ± 20.4 100 ± 0.5 77.1 ± 5.1 78.5 ± 3.5
FishSwim
-expert 82.9 ± 12.2 -1.8 ± 1.9 112 ± 2.7 120.8 ± 14.7 123.8 ± 11.7 105.3 ± 8.2
-medium-expert 40.6 ± 6.9 0.7 ± 6.5 97.5 ± 4.3 127.2 ± 11.1 91.1 ± 13.3 112.2 ± 8.5
-medium 42.8 ± 9.6 -4 ± 1.5 56.1 ± 9.8 71.5 ± 6.3 63.4 ± 7.2 76.7 ± 6
-random-medium-expert 23.6 ± 9.2 -0.4 ± 3.3 17.8 ± 4.8 52.1 ± 9 37.1 ± 9 59.9 ± 11
CheetahRun
-expert 99.9 ± 1.7 2.7 ± 2.1 105.5 ± 0.4 105.6 ± 0.9 104.6 ± 1.1 106.3 ± 0.3
-medium-expert 61.6 ± 12.5 0.9 ± 0.8 104.2 ± 1.6 103.2 ± 0.7 102.5 ± 1.2 104.8 ± 0.7
-medium 40.4 ± 0.4 0 ± 0.7 47.1 ± 0.4 48.3 ± 0.3 47.7 ± 0.5 47.9 ± 0.3
-random-medium-expert 41.5 ± 0.6 0.5 ± 1.2 22.2 ± 4.4 79.6 ± 5.6 61.4 ± 3.3 53.2 ± 1.9
QuadrupedWalk
-expert 97.7 ± 3.2 3.3 ± 4.6 114.9 ± 1.2 118.2 ± 1.4 122.3 ± 1.1 115.3 ± 2.4
-medium-expert 63.4 ± 11 8.5 ± 1.5 110.4 ± 1.9 115.4 ± 4 121.2 ± 1 109.4 ± 2.1
-medium 39.2 ± 8.5 11.3 ± 6.3 47.6 ± 8.4 48.6 ± 7.9 46.3 ± 5.7 46.8 ± 9.2
-random-medium-expert 28 ± 6.4 -5.2 ± 4.7 -12.3 ± 1.5 76.7 ± 5 65.8 ± 4.4 69.4 ± 5.7
HumanoidStand
-expert 102.2 ± 1.3 -0.1 ± 0 107.3 ± 1 109 ± 1.9 116.6 ± 0.6 117.2 ± 0.8
-medium-expert 63.1 ± 3.9 0.1 ± 0 73.9 ± 0.9 104.7 ± 1.9 113.3 ± 0.4 116.7 ± 0.7
-medium 44.4 ± 0.5 0 ± 0 49 ± 0.5 51.4 ± 0.3 53.8 ± 0.4 53.8 ± 0.4
-random-medium-expert 34.4 ± 2.6 0 ± 0.1 22.9 ± 3.3 42.7 ± 0.9 46 ± 1 47.3 ± 0.7
DogTrot
-expert 98 ± 0.7 0.1 ± 0.1 94.4 ± 0.5 99.5 ± 0.7 98.9 ± 2.2 101.2 ± 1.6
-medium-expert 62 ± 3.7 0 ± 0.3 74.9 ± 3.5 84.8 ± 3.7 89.3 ± 1.4 93.9 ± 1.4
-medium 43.8 ± 0.5 0.1 ± 0.1 49.1 ± 0.6 46.5 ± 0.5 52 ± 0.3 50.2 ± 0.2
-random-medium-expert 37.2 ± 3.6 0.1 ± 0.2 0.1 ± 0.1 43.4 ± 0.5 44.1 ± 1.2 44.9 ± 0.7
Sum
-expert 580.2 ± 19.5 4 ± 8.8 635.5 ± 6.1 660.2 ± 19.9 669.1 ± 16.9 647.8 ± 13.7
-medium-expert 368.6 ± 44.5 9.7 ± 9.1 544.6 ± 15.7 642.1 ± 21.6 620.2 ± 17.6 639.7 ± 13.6
-medium 248.9 ± 20.5 6.9 ± 8.6 290.1 ± 20.1 315.7 ± 15.6 307.2 ± 14.9 320.6 ± 16.7
-random-medium-expert 172.9 ± 24.7 51.2 ± 12.4 88.6 ± 34.5 394.5 ± 21.5 331.5 ± 24 353.2 ± 23.5
-all 1370.6 ± 109.2 71.8 ± 38.9 1558.8 ± 76.4 2012.5 ± 78.6 1928 ± 73.4 1961.3 ± 67.5

D Decomposition comparisons

In this Section we compare the DecQN decomposition to two alternative methods that can be used for
factorisable discrete action spaces. The first is based on the Branching Dueling Q-Network (BDQ) proposed
by Tavakoli et al. (2018). Using our notation, each utility function is considered its own independent Q-
function, i.e.

Qiθi
(s, ai) = U iθi

(s, ai) . (5)

Each Q-function is trained by bootstrapping from its own target, and no decomposition is used. That is, the
target for Qiθi

(s, ai) is given by y = r + γmaxa′
i
∈Ai

Qi
θ̄i

(s′, a′
i). The findings of Ireland & Montana (2023)
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Table 7: Individual performance comparison n = {3, 10, 30, 50, 75, 100}. Figures are mean normalised scores
± one standard error, with 0 and 100 representing random and expert policies, respectively. At the bottom
of the table we also provide totals, split by data quality and the entire benchmark. We see across all datasets
that DecQN-IQL/OneStep perform best, followed by DecQN-CQL and DecQN-BCQ.

Environment -dataset BC DecQN DecQN-BCQ DecQN-CQL DecQN-IQL DecQN-OneStep
DogTrot (n = 3)
-expert 98 ± 0.7 0.1 ± 0.1 94.4 ± 0.5 99.5 ± 0.7 98.9 ± 2.2 101.2 ± 1.6
-medium-expert 62 ± 3.7 0 ± 0.3 74.9 ± 3.5 84.8 ± 3.7 89.3 ± 1.4 93.9 ± 1.4
-medium 43.8 ± 0.5 0.1 ± 0.1 49.1 ± 0.6 46.5 ± 0.5 52 ± 0.3 50.2 ± 0.2
-random-medium-expert 37.2 ± 3.6 0.1 ± 0.2 0.1 ± 0.1 43.4 ± 0.5 44.1 ± 1.2 44.9 ± 0.7
DogTrot (n = 10)
-expert 97.3 ± 1.7 -0.3 ± 0 96.8 ± 1.8 99.2 ± 1.3 106.5 ± 1.1 113.4 ± 0.9
-medium-expert 58.1 ± 5.5 0.5 ± 0.1 82.3 ± 4.6 83.4 ± 2.1 105.1 ± 2.1 109.8 ± 1.2
-medium 34.7 ± 0.4 0.5 ± 0.2 36.9 ± 0.3 39.1 ± 0.6 41 ± 0.8 47.2 ± 0.4
-random-medium-expert 33.6 ± 4.4 0.1 ± 0.1 6.1 ± 2.8 33.4 ± 1.5 52.1 ± 2.3 45.4 ± 4.1
DogTrot (n = 30)
-expert 99.7 ± 0.4 -0.3 ± 0 98.5 ± 1 99.8 ± 0.8 102.8 ± 0.4 106.4 ± 0.8
-medium-expert 70.3 ± 4.9 0.6 ± 0.2 73.2 ± 8.7 90.7 ± 3.7 98.3 ± 1.6 100.7 ± 3
-medium 33.1 ± 0.2 0.7 ± 0.2 29.1 ± 0.5 33.4 ± 0.4 39.9 ± 0.1 40.5 ± 0.5
-random-medium-expert 22.4 ± 0.9 0.2 ± 0.1 6.1 ± 0.8 22.9 ± 2.5 31.6 ± 1.3 30.4 ± 1.8
DogTrot (n = 50)
-expert 98.2 ± 0.5 0.5 ± 0.1 98.6 ± 0.6 97.7 ± 0.6 99.2 ± 0.9 100.4 ± 1.4
-medium-expert 67.7 ± 5 -0.3 ± 0 68.7 ± 4.2 88.9 ± 2.1 95 ± 2.1 97.1 ± 1.4
-medium 34.9 ± 0.4 -0.3 ± 0 36.5 ± 0.7 36.7 ± 0.2 45.1 ± 0.6 43.1 ± 0.7
-random-medium-expert 21 ± 2 0.7 ± 0.1 9.3 ± 1.5 27.6 ± 1.3 27.9 ± 2.4 36.4 ± 1.8
DogTrot (n = 75)
-expert 98.4 ± 0.8 0.6 ± 0.2 100.2 ± 0.6 98 ± 1 101.4 ± 1.4 102.9 ± 0.9
-medium-expert 75.3 ± 2.6 0 ± 0 55.4 ± 3 85 ± 2 89.9 ± 0.7 97.9 ± 2.5
-medium 41.4 ± 0.2 0.5 ± 0.1 41.8 ± 0.1 42.5 ± 0.1 48.5 ± 0.4 47.8 ± 0.5
-random-medium-expert 27.7 ± 0.7 0.7 ± 0.2 4 ± 0.8 33.4 ± 2 45.3 ± 2.9 43.6 ± 2.6
DogTrot (n = 100)
-expert 96.4 ± 1.1 0.1 ± 0 95 ± 1.8 100.4 ± 0.7 103.2 ± 0.4 105.5 ± 0.8
-medium-expert 70.9 ± 6.5 0.4 ± 0.1 74.6 ± 5.8 74.4 ± 5.1 93.9 ± 1 101.5 ± 2.5
-medium 34.7 ± 0.8 0.1 ± 0.1 34.5 ± 0.5 34.8 ± 0.7 40.9 ± 0.2 41.5 ± 0.5
-random-medium-expert 18.9 ± 2.7 0.3 ± 0.1 0 ± 0 12.7 ± 2.4 24 ± 2.8 26.2 ± 1
Sum
-expert 588 ± 5.2 0.7 ± 0.4 583.5 ± 6.3 594.6 ± 5.1 612 ± 6.4 629.8 ± 6.4
-medium-expert 404.3 ± 28.2 1.2 ± 0.7 429.1 ± 29.8 507.2 ± 18.7 571.5 ± 8.9 600.9 ± 12
-medium 222.6 ± 2.5 1.6 ± 0.7 227.9 ± 2.7 233 ± 2.5 267.4 ± 2.4 270.3 ± 2.8
-random-medium-expert 160.8 ± 14.3 2.1 ± 0.8 25.6 ± 6 173.4 ± 10.2 225 ± 12.9 226.9 ± 12
-all 1375.7 ± 50.2 5.6 ± 2.6 1266.1 ± 44.8 1508.2 ± 36.5 1675.9 ± 30.6 1727.9 ± 33.2

demonstrate that, in the online setting, BDQ is unable to match the performance of DecQN. This is likely
caused by the fact that, as each sub-action space is now learnt independently, the effects of other sub-actions
are treated as effects of the environment dynamics. Due to the fact that each agent is continually updating
its own policy, this leads to non-stationary environment dynamics, making the learning problem much more
challenging.

We also consider an alternative value-decomposition technique to the mean, namely the sum. That is, we
replace the mean operator in Equation 2 with the sum operator:

Qθ(s,a) =
N∑
i=1

U iθi
(s, ai) . (6)
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Table 8: Individual performance comparison for DecQN-CQL using mean and sum decompositions and
BDQ-CQL for n = 3. Figures are mean normalised scores ± one standard error, with 0 and 100 representing
random and expert policies, respectively.

Environment -dataset DecQN-CQL (Mean) DecQN-CQL (Sum) BDQ-CQL
HumanoidStand
-expert 109 ± 1.9 95.1 ± 1.8 105.5 ± 0.7
-medium-expert 104.7 ± 1.9 86.1 ± 2.8 94.0 ± 5.8
-medium 51.4 ± 0.3 44.6 ± 0.8 48.2 ± 0.5
-random-medium-expert 42.7 ± 0.9 36.3 ± 1.6 43.2 ± 0.5
DogTrot
-expert 99.5 ± 0.7 93.1 ± 1.3 94.9 ± 1.2
-medium-expert 84.8 ± 3.7 81.4 ± 2.8 75.7 ± 3.6
-medium 46.5 ± 0.5 44.3 ± 0.3 48.5 ± 0.5
-random-medium-expert 43.4 ± 0.5 39.9 ± 0.9 37.9 ± 2.3

Whilst this may seem a subtle change, Ireland & Montana (2023) proved that the mean and variance of
the learning target under this decomposition are both higher than DecQN. Empirical experiments by Seyde
et al. (2022); Ireland & Montana (2023) also confirm the inferior performance of the sum decomposition
compared to the mean.

In Table 8 we can see that the sum decomposition is less performant in each of the tasks and datasets than the
mean. For BDQ, we see that whilst in some cases performance is better than using the sum decomposition,
it is generally still less performant than using the mean decomposition. Owing to these results, we focus on
the mean decomposition in our main work.
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