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Abstract

The emergence of agentic recommender systems powered by Large Language Mod-
els (LLMs) represents a paradigm shift in personalized recommendations, leverag-
ing LLMs’ advanced reasoning and role-playing capabilities to enable autonomous,
adaptive decision-making. Unlike traditional recommendation approaches, agentic
recommender systems can dynamically gather and interpret user-item interactions
from complex environments, generating robust recommendation strategies that
generalize across diverse scenarios. However, the field currently lacks standardized
evaluation protocols to systematically assess these methods. To address this critical
gap, we propose: (1) an interactive textual recommendation simulator incorporating
rich user and item metadata and three typical evaluation scenarios (classic, evolving-
interest, and cold-start recommendation tasks); (2) a unified modular framework
for developing agentic recommender systems; and (3) the first comprehensive
benchmark comparing over 10 classical and agentic recommendation methods. Our
findings demonstrate the superiority of agentic systems and establish actionable
design guidelines for their core components. The benchmark environment has been
rigorously validated through an open challenge and remains publicly available
with a maintained leaderboard at https://tsinghua-fib-lab.github.io/
AgentSocietyChallenge/pages/overview.html. The benchmark is avail-
able at: https://huggingface.co/datasets/SGJQovo/AgentRecBench.

1 Introduction

Recommender systems have become indispensable for addressing information overload on web
platforms by modeling user preferences. Over the decades, the field has evolved from rule-based
recommendation [1, 2] to data-driven deep learning approaches [3–5], achieving remarkable gains
in accuracy and efficiency. Despite these advances, there still remains some critical challenges,
including (1) the black-box nature of recommendations limits interpretability of recommendation
results [6, 7]; (2) most methods rely predominantly on historical interaction data, failing to fully
leverage rich contextual information in real-world applications [8]; and (3) existing methods often
depend on handcrafted features with fixed recommendation strategies [9], which constrain their
adaptability to different scenarios.

Recent advancements in LLM-based agents present a transformative opportunity to revolutionize
the paradigm of recommender systems [10–14]. Equipped with complex reasoning and role-playing
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capabilities brought by LLMs, LLM-based agents can automatically tackle complex tasks through
human-like planning [15, 16], reflective reasoning [17, 18], and iterative action [19, 20]. Compared to
traditional recommender systems, agentic recommender systems offer several key advantages. Firstly,
by leveraging natural language as a medium, these systems can explicitly articulate their recommen-
dation logic, enhancing transparency and fostering user trust. Secondly, with advanced perception
and reasoning abilities, agentic recommender systems can autonomously gather and integrate rich,
personalized contextual information from the environment, beyond ID-based interactions to enrich
user modeling. Thirdly, these systems exhibit continuous self-improvement through environmental
interactions, dynamically refining their recommendation strategies by incorporating external feedback
and internal memory to achieve unprecedented adaptability across various scenarios.

Despite this promising paradigm shift, the field currently lacks standardized benchmarks to sys-
tematically evaluate agentic recommendation approaches, which hinders our understanding of their
effectiveness and practical deployment. Existing recommendation benchmarks are typically static
and non-interactive, rendering them inadequate for modern recommendation agents that require
autonomous interaction and dynamic information gathering. To bridge this critical gap, we introduce
AgentRecBench, the first comprehensive benchmark for agentic recommender systems, explicitly
designed to overcome the limitations of static evaluation frameworks. Our benchmark makes four
key contributions to advancing agentic recommender systems. First, to address the central challenge
of building an interactive environment, we construct a unified textual interaction environment by
processing Yelp*, GoodReads†, and Amazon‡ datasets into a standardized schema. Crucially, we
developed standardized information retrieval tools that empower agents to perform flexible and
autonomous information retrieval, such as navigating user, review, and item networks to dynam-
ically fetch contextual semantic information for personalized recommendations. This capability
is a fundamental differentiator from prior static benchmarks. Second, to tackle the challenge of
creating diverse and complex evaluation demands, we establish three carefully designed evaluation
scenarios: classic recommendation tasks for general performance assessment, evolving-interest tasks
to evaluate dynamic adaptation capabilities, and cold-start tasks to measure generalization ability.
These scenarios collectively reflect the core challenges in real-world recommendation systems. Third,
we propose a modular agent framework with essential cognitive components [21, 22] for rapidly
building agentic recommender systems. The framework includes four core modules: dynamic plan-
ning for task decomposition, complex reasoning for decision-making, tool utilization for environment
interaction, and memory management for experience retention and utilization. Finally, through
extensive evaluation of over 10 existing recommendation agents and traditional methods, we establish
the first comprehensive benchmark for agentic recommenders. Our analysis reveals critical insights
into current capabilities and limitations, from which we derive practical design guidelines to facilitate
future development in this emerging field.

The benchmark’s practical utility has been demonstrated through the AgentSociety Challenge [10],
which attracted 295 competing teams worldwide and received over 1,400 submissions during the
37-day competition. Participants achieved 20.3% performance improvement in Recommendation
Track during the Development Phase, with a further 15.9% gain in the Final Phase, validating the
practical utility of our evaluation framework. The complete benchmark environment remains publicly
available with continuously maintained leaderboards to support ongoing research.

In summary, this work has the following main contributions:

• We propose AgentRecBench, the first large-scale and comprehensive benchmark that systematically
evaluates both emerging agentic recommender systems and traditional recommendation methods
across diverse scenarios.

• We provide a textual environment simulator equipped with multi-domain recommendation datasets
and a standardized agent development framework, establishing a closed-loop development-
evaluation pipeline. This toolkit helps facilitate rapid prototyping and systematic testing of
recommendation agents.

• Through in-depth analysis of over 10 approaches, we distill key insights into the superior designs
of current approaches. Our findings provide actionable design guidelines to inspire more powerful
agentic recommender systems.

*https://www.yelp.com/dataset
†https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home
‡https://amazon-reviews-2023.github.io/
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Figure 1: The overall framework of our interactive textual environment simulator.

2 Definition of Agentic Recommender System

We formalize an agentic recommender system as a system where an LLM-based agent interacts with
an environment E = (U , I,H) to produce recommendations. Here, U and I denote the user and item
feature spaces respectively, while H = {(u, i, c, τ)} represents user-item historical interactions with
contextual metadata c (e.g., ratings, comments) and timestamp τ . At each step t, the agent observes a
state st ∈ S (encoding user and item profile, interactions, and other environmental feedback) and
selects an action at ∈ A via policy πθ:

at ∼ πθ(a|st), πθ : S → p(A), (1)

where p(A) is a probability distribution over the action space A = I ∪ Aseek including item
recommendations and information-seeking actions, and θ parameterizes the agent’s internal functional
modules such as reasoning and memory.

The agentic recommender system exhibits three distinguishing characteristics that differentiate it
from traditional approaches. First, it can adaptively collect personalized contextual information
from the environment while maintaining generalized, zero-shot adaptable recommendation policies
across diverse scenarios. Second, the system demonstrates self-improving capability by continuously
refining its internal representations and decision strategies through accumulated experience and
external feedback, enabling ongoing performance enhancement. Third, the system is promising
to enhance proactive engagement by strategically initiating targeted interactions beyond passive
response paradigms.

3 Textual Environment Simulator

The textual experiment environment simulates the information retrieval logic and functionalities
typically found in social and web platforms. It provides a standardized interaction space, enabling
recommendation agents to query and receive feedback systematically. This environment addresses
two primary concerns: defining a clear interaction space and ensuring controlled data accessibility.
The overall framework is shown in Figure 1.

3.1 Data and Interaction Space

A clearly defined interaction space is crucial for the reliable evaluation of recommending agents.
It enables consistent comparisons across various recommendation methods by providing uniform
conditions. To facilitate this, we merge diverse data sources into a coherent network structure, forming
a unified User-Review-Item (U-R-I) network with standardized query capabilities.

Building the U-R-I network involves aggregating data from multiple sources, such as user profiles,
item characteristics, and user-generated content (e.g., reviews and ratings). User nodes represent
individuals interacting with the platform, item nodes represent recommendable entities, and review
nodes encapsulate user feedback and ratings. Edges between these nodes illustrate interactions,
forming a structured and navigable data space for agent exploration.
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Figure 2: Illustration of the dynamic data visibility control workflow of our textual environment
simulator.

The standardized query functionality is defined as:

Query(Type, SortMethod, Formation) → StructuredData | TextualData (2)

In this function, Type specifies the retrieval data type (e.g., user, item, review). SortMethod
defines how the query results are ordered, such as by date, relevance, or popularity. The boolean
Formation indicates the format of the returned data (structured or textual); structured queries yield
clearly defined attributes suitable for algorithmic processing(key-values), while textual queries return
natural-language content for interpretive tasks.

However, different recommendation scenarios may necessitate various data control mechanisms,
such as temporal filtering (e.g., restricting data to a specific time frame), item-based filtering (e.g.,
selecting items with minimum review thresholds), or user attribute-based constraints.

3.2 Dynamic Data Visibility Control

Dynamic data visibility control aims to address the scenario-specific data requirements outlined
above. As shown in Figure 2, the core concept is a two-layer control system composed of scenarios
and tasks. Scenarios define broad filtering criteria, shaping the environment for a collection of related
tasks, while each task focuses on a clearly defined recommendation objective with explicit targets
and contexts.

A scenario is formally structured as follows:

Scenario = {TimeFilter, ItemFilter}, (3)

where TimeFilter manages the temporal scope of accessible data, such as selecting reviews posted
within a designated period. ItemFilter sets criteria for item inclusion, like enforcing a minimum
review threshold to ensure sufficient data quality. Within each scenario, a task specifies a precise
recommendation problem:

Task = {TargetUser,GroundTruth}, (4)

where TargetUser identifies the individual for whom recommendations are generated, and
GroundTruth provides benchmark data (e.g., known user preferences or past interactions) es-
sential for evaluating recommendation accuracy. The proposed dynamic data visibility control
ensures flexible, scenario-driven management of data accessibility, facilitating comprehensive and
systematic evaluation of agentic recommender systems across diverse experimental conditions.
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Table 1: Structure of aggregated data including user-side, item-side profiles and review information.
Data Type Description and Key Fields

User
• User ID
• Review count
• Social connections (friendship)
• Average rating

Item

• Item ID
• Item name
• Type (product/business/book)
• Metadata (price, title, descriptions, location etc.)
• Average rating
• Review count

Review

• Review ID
• User ID
• Item ID
• Rating (1-5)
• Textual review content
• Timestamp of interaction
• Helpfulness votes (funny/useful/cool)

4 Experimental Setting

Our experimental evaluation leverages three large-scale publicly available datasets (Yelp§,
GoodReads¶, and Amazon||), which collectively provide extensive user interaction records and
rich user/item profiles that enable comprehensive retrieval and personalization analysis. Below, we
provide a detailed description of datasets, defined task scenarios, baselines, and evaluation metrics.

4.1 Dataset

The three used datasets are introduced as follows:

Amazon. The Amazon dataset captures user purchase behavior, product reviews, and ratings across
multiple categories on an e-commerce platform. It comprises large-scale user-item interaction records
along with detailed textual reviews, providing a rich source for modeling consumer preferences.

GoodReads. The Goodreads dataset consists of user ratings and reviews of books, reflecting diverse
reading interests and preferences. This dataset is particularly valuable for studying recommendation
models in the context of literary content.

Yelp. The Yelp dataset contains extensive user reviews and ratings of local businesses, including
restaurants and retail stores. It effectively captures real-world consumer experiences and preferences
across a variety of service domains.

We organize these datasets into three structured sub-datasets (items, users, and reviews) to facilitate
effective agent interaction and enhance the extraction of user and item features. This structured
partitioning enables efficient information retrieval for personalized recommendations. Table 1
summarizes the key fields of the structured dataset. As evidenced in Figure 3 (a), the dataset exhibits
complementary domain coverage, with Yelp contributing the majority of users and Goodreads
providing the most extensive items. The power-law distributions in user/item interactions shown in
Figure 3 (b) and (c) faithfully reflect real-world recommendation scenarios where most users engage
moderately while only a few exhibit extremely high activity levels.

§https://www.yelp.com/dataset
¶https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home
||https://amazon-reviews-2023.github.io/
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(a) (b) (c)

Figure 3: Statistical distributions of our aggregated multi-platform dataset showing (a) user/item
distribution (b) user interaction distribution (c) item interaction distribution.

4.2 Task Scenarios

To systematically evaluate agentic recommender systems, we design three representative evaluation
scenarios that mirror real-world recommendation challenges. We provide detailed descriptions of
each scenario below.

Classic recommendation. This serves as our foundational benchmark, evaluating general perfor-
mance under standard conditions where agents can access complete user profiles and interactions
from the environment.

Evolving-interest recommendation. To rigorously evaluate the temporal adaptation capabilities
of agentic recommender systems, we design a multi-scale evaluation framework that captures both
gradual and immediate preference dynamics. The long-term recommendation task uses a three-
month user interaction window. We sample active users (≥5 interactions), testing the system’s ability
to identify stable user preference. This task allows assessment of the agent’s capacity for longitudinal
user modeling. Complementing this, the short-term recommendation task focuses on immediate
adaptation through a compressed one-week interaction window. This task mainly measures agents’
ability to model emerging interaction patterns.

Cold-start recommendation. To systematically assess the capability of agentic recommender sys-
tems in addressing real-world data sparsity challenges, we design comprehensive evaluations for both
user-side and item-side cold-start scenarios. In the user cold-start recommendation, we construct
test sets comprising users with fewer than m historical interactions (where m is dataset-dependent).
This setting rigorously examines the system’s ability to generate accurate recommendations from
sparse interaction signals and effectively utilize available contextual user data. For the item cold-start
recommendation, we evaluate on items with fewer than n recorded interactions, testing the system’s
proficiency in reasoning about item attributes and detecting similarity patterns with existing items.
This evaluation specifically measures how agentic systems transcend the limitations of conventional
ID-based recommendation approaches through item information mining capabilities.

4.3 Baselines

We conduct a comprehensive evaluation across three paradigms of recommender systems:

Traditional Recommender Systems. We select Matrix Factorization (MF) [1] as a representative
traditional recommendation method, which decomposes the user-item interaction matrix into low-
dimensional latent factors to capture implicit user preferences and item characteristics.

Deep Learning-based Recommender Systems. LightGCN [4] represents an effective modern
graph learning-based recommendation approach, employing simplified graph convolution operations
to effectively propagate and aggregate neighborhood information in user-item interaction graphs.
BC Loss [23] is a bias-aware contrastive loss for collaborative filtering that introduces adaptive
margins to mitigate popularity bias and improve recommendation quality. XSimGCL [24] is a
deep learning–based recommendation method that uses graph contrastive learning with noise-based
augmentation for self-supervised representation learning.

Agentic Recommender Systems. Our evaluation includes eight different available agentic recom-
mender systems, which are detailed as follows:

6



• BaseAgent. A handcrafted base agent that performs direct recommendation generation through
standard LLM inference without additional reasoning components.

• CoTAgent. Extends BaseAgent with zero-shot chain-of-thought (CoT) [25] prompting to enable
explicit recommendation rationale generation and step-by-step decision making.

• MemoryAgent. Augments BaseAgent with a memory mechanism [16] that maintains and retrieves
relevant interaction history to inform recommendations.

• CoTMemAgent. Combines the reasoning capabilities of CoTAgent with the contextual retention
of MemoryAgent through integrated chain-of-thought reasoning with memory augmentation.

• Baseline666. The winning solution from the AgentSociety Challenge Recommendation Track [10],
distinguished by its platform-aware feature extraction that dynamically adapts feature representation
based on data source characteristics.

• RecHackers. The second-place solution from the AgentSociety Challenge Recommendation
Track [10], which achieves robust content-based recommendations through the comprehensive
integration of user historical comments with detailed item attributes.

• DummyAgent. The third-place solution from the AgentSociety Challenge Recommendation
Track [10], which employs advanced comment feature engineering to identify and leverage high-
information content for enhanced user/item modeling.

• Agent4Rec [12]. An advanced framework that implements multi-step reasoning through orches-
trated LLM-agent interactions for complex recommendation scenarios.

4.4 Envaluation Metric

We evaluate recommendation performance using ranking-based metrics with emphasis on Top-N
accuracy. Following standard evaluation protocols [1, 3], each test instance consists of 20 candidate
items: one ground-truth positive item sampled from the user’s interaction history and 19 negative items
sampled from unobserved interactions. The primary metric is Hit Rate@N (HR@N ), measuring
the probability that the ground-truth item appears in the top-N ranked positions (N ∈ {1, 3, 5}).
Formally:

HR@N =
1

|T |
∑
t∈T

I(pt ∈ RN
t ), (5)

where T is the test set, pt is the ground-truth positive item for test case t, RN
t denotes the top-N

recommendations, I(·) is the indicator function.

5 Experimental Results

In this section, we present the performance of several representative baseline methods evaluated
on the AgentRecBench benchmark. Our analysis is structured into three key parts: (1) Overall
Performance, (2) Performance in Cold-start Scenarios, and (3) Performance under Evolving User
Interests.

5.1 Main Performance

We begin by evaluating model performance in the classic recommendation scenario. Experiments are
conducted on three datasets using three proprietary model families: Qwen-72 B-Instruct, DeepSeek-
v3, and GPT-4o-mini. The detailed results are summarized in Table 2. Each experiment is conducted
five times, and the results are presented as mean and standard deviation.

We train both traditional and deep learning-based baseline models on a subset of the available data.
However, due to the high sparsity of the dataset, these models are unable to effectively learn mean-
ingful patterns. As a result, we report the mean prediction as a reference point for comparison. The
experimental results reveal a gradual decline in prediction accuracy across the Amazon, Goodreads,
and Yelp datasets, reflecting an increasing level of recommendation difficulty. Baseline666 con-
sistently outperforms other methods across nearly all settings, demonstrating strong robustness.
Furthermore, Baseline666, DummyAgent, and RecHackers substantially outperform simpler designs,
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Table 2: Performance comparison on classic recommendation tasks with the average HR@N metric
(N=1,3,5).

Category Method Amazon Goodreads Yelp
Traditional RS MF 30.1±1.2 14.1±0.3 34.4±0.9

DL-based RS
LightGCN 46.1±1.2 12.3±0.8 24.9±0.2
BC-Loss 51.5±2.3 11.9±0.2 30.5±2.7

XsimGCL 51.9±3.6 12.3±0.5 48.1±2.6

Agentic RS

Model Qwen Deepseek GPT Qwen Deepseek GPT Qwen Deepseek GPT
BaseAgent 13.8±2.6 21.3±1.3 11.8±1.5 17.2±1.2 20.7±7.7 16.2±2.1 12.6±1.1 15.5±0.5 16.6±0.5
CoTAgent 13.9±1.4 19.4±1.7 12.6±1.5 17.1±0.4 21.2±2.1 17.3±0.9 13.3±0.7 17.7±0.7 16.7±0.2

MemoryAgent 14.3±0.8 21.5±2.8 11.8±0.5 17.2±1.0 18.3±1.2 13.4±1.2 16.4±2.4 15.8±1.8 17.1±1.0
CoTMemAgent 15.0±0.7 17.6±0.9 12.3±0.7 17.2±1.2 19.5±1.0 13.7±0.2 14.4±1.4 17.0±0.2 17.6±0.1

Baseline666 44.9±1.2 54.1±0.5 36.6±1.4 40.8±0.2 53.7±3.1 31.9±0.7 6.3±0.3 9.2±0.5 8.0±0.1
DummyAgent 44.3±1.4 50.4±2.6 30.6±1.0 42.3±0.6 54.1±2.2 25.0±1.1 8.9±0.3 8.8±0.1 8.1±0.4
RecHackers 48.3±4.4 55.1±0.6 40.3±2.3 45.3±0.6 52.4±1.5 27.0±5.0 8.8±0.6 9.3±0.5 6.0±1.5
Agent4Rec 26.2±1.5 28.1±1.8 17.5±1.0 7.3±0.1 9.8±0.7 8.2±0.3 5.5±0.1 6.4±0.4 6.2±0.1

Table 3: Performance comparison on cold-start recommendation tasks with the average HR@N
metric (N=1,3,5).

Category Method
Amazon Goodreads Yelp

User Item User Item User Item
Traditional RS MF 15.7±0.0 16.47±2.4 18.1±2.9 13.1±2.7 21.6±2.0 21.3

DL-based RS
LightGCN 12.8±0.7 15.5±2.2 16.7±1.8 13.9±1.6 21.5±2.8 14.5±2.1
BC-Loss 12.7±0.7 17.9±2.3 14.4±1.1 15.1±3.2 21.7±1.9 14.9±2.1

XsimGCL 12.4±0.7 14.2±1.1 16.4±2.0 11.4±2.5 20.1±3.1 14.2±1.8

Agentic RS

BaseAgent 15.3±1.1 14.3±1.1 18.2±0.3 15.5±1.0 3.1±0.2 2.7±0.2
CoTAgent 15.9±0.2 13.3±0.4 17.9±0.7 16.1±1.4 2.0±0.1 4.3±0.4

MemoryAgent 17.3±0.5 14.6±2.2 17.8±1.0 17.8±1.6 3.1±0.2 4.0±0.2
CoTMemAgent 17.1±1.0 12.3±1.9 18.2±0.5 18.8±0.6 2.3±0.7 3.7±0.5

Baseline666 50.6±1.4 47.8±0.5 35.8±0.1 37.5±0.5 1.5±0.0 1.3±0.0
DummyAgent 50.4±1.6 47.0±0.3 38.9±0.7 39.2±0.5 1.2±0.1 1.2±0.1
RecHackers 52.4±0.2 52.1±1.9 38.8±0.4 40.1±1.0 1.4±0.1 0.9±0.0
Agent4Rec 46.0±1.8 24.3±2.1 37.6±0.5 8.7±0.5 2.6±0.2 0.7±0.0

highlighting that a well-structured agent workflow can significantly enhance recommendation perfor-
mance. These findings underscore the critical role of agent design in improving predictive accuracy
within agent-based recommendation systems.

5.2 Performance on Cold-start Scenarios

In cold-start scenarios, we focus on users and items with limited historical interactions. Table 3
reports the performance of various methods based on Qwen-72B-Instruct. A comparison between
Table 4 and Table 3 reveals a notable performance drop across nearly all baselines, highlighting the
inherent uncertainty and challenge of cold-start settings. These results suggest that our proposed task
can serve as a foundation for more comprehensive evaluations of recommendation efficiency under
data-sparse conditions.

5.3 Performance on Evolving Interests

To assess models’ adaptability to changing user preferences, we construct a scenario in which user
interests evolve. This setting captures the temporal dynamics commonly observed in real-world
recommendation tasks. The corresponding results are presented in Table 4. While most methods
experience a performance decline under this setting, agent-based approaches such as Baseline666 and
RecHackers demonstrate relatively stable performance, suggesting their enhanced ability to model
and respond to evolving user behavior. We present a case study of Baseline666 in Figure 4.
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Table 4: Performance comparison on evolving-interest recommendation tasks with the average
HR@N metric (N=1,3,5).

Category Method
Amazon Goodreads Yelp

Long Term Short Term Long Term Short Term Long Term Short Term
Traditional RS MF 37.9±0.8 17.1±2.0 12.3±0.0 14.0±0.0 55.2±2.9 28.1±1.8

DL-based RS
LightGCN 55.1±1.8 15.3±2.2 16.0±0.0 14.0±0.0 54.7±1.1 27.2±1.9
BC-Loss 53.7±3.8 14.0±2.0 16.0±0.0 14.7±0.0 56.34±3.2 24.3±2.1

XsimGCL 31.3±2.7 11.1±2.4 16.0±0.0 14.7±0.0 45.0±3.9 25.1±0.9

Agentic RS

BaseAgent 14.2±1.0 16.4±1.5 28.7±0.0 28.3±0.5 4.7±0.2 5.5±0.4
CoTAgent 13.3±0.9 16.8±0.5 25.1±0.2 26.8±1.7 4.3±0.4 5.7±0.2

MemoryAgent 12.5±1.4 15.0±0.9 24.7±1.7 24.3±0.4 4.0±0.0 4.3±0.6
CoTMemAgent 13.9±0.5 15.8±0.4 24.7±1.7 25.3±2.6 3.7±0.3 4.5±0.3

Baseline666 52.3±0.9 57.4±0.8 59.0±1.4 49.6±1.0 6.0±0.0 5.0±0.1
DummyAgent 52.6±0.0 56.2±0.6 57.0±0.5 48.2±0.1 11.4±0.1 6.3±0.2
RecHackers 54.4±2.2 59.2±0.6 58.7±1.2 52.3±1.2 10.5±0.1 6.6±0.5
Agent4Rec 27.8±2.1 37.5±0.8 32.7±2.5 39.7±2.5 8.3±0.2 7.9±0.4

Baseline666’s core workflow

You are a real user on an online platform. Your historical item review text

and stars are as follows: [’user_id ’, ’review_count ’, ’friends ’, ’stars ’...]

Now you need to rank the following 20 items: [candidate item list]

’according to their match degree to your preference ’.

Please rank the more interested items more front in your rank list.

The information of the above 20 candidate items is as follows: [’item_id ’,

’name’, ’stars’, ’review_count ’, ’attributes ’, ’title ’,’average_rating ’,

’rating_number ’, ’description ’...]

Your final output should be ONLY a ranked item list of [Candidate List]

with the following format!

DO NOT introduce any other item ids! DO NOT output your analysis process!

The correct output format: [Sorted Candidate Item List]

1

Figure 4: Illustration of the agentic workflow of a superior recommendation agent (Baseline666),
which conducts domain-adaptive item-side feature engineering to enhance personalization.

6 Related Works

6.1 Agentic Recommender Systems

Recent advances in LLM-based agents have introduced transformative paradigms for recommender
systems. These agentic systems demonstrate autonomous capabilities to collect and process user-item
interactions while leveraging sophisticated reasoning for personalized recommendations. Existing
approaches can be categorized into three main branches: (1) ranking-oriented agents [26–28] that
infer user preferences from historical behavior to generate recommendations, exemplified by Rec-
Mind [26]; (2) simulation-oriented agents [12, 14, 29] that simulate human-like behavior through
role-playing, such as Agent4Rec [12]; and (3) interactive conversational agents [13, 30, 31] that
frame recommendation as dialogue-based intent understanding, as demonstrated by RAH [13].

However, the evaluation of these prior works differ significantly in focus from our benchmark. For
instance, Agent4Rec [12] primarily assesses generative agents for user behavior simulation. Its focus
is on the fidelity of an agent’s role-playing (e.g., rating, commenting) against real user behavior, not on
the agent’s capacity for autonomous information gathering to make recommendations. AgentCF [14]
proposes a multi-agent simulation approach for collaborative filtering, modeling users and items as
agents. It emphasizes personalized behavior modeling within the simulation, but doesn’t evaluate
an agent’s ability to execute an end-to-end recommendation task. AFL [32] primarily emphasizes
the agent’s ability to learn from user feedback. Our work, in contrast, focuses on the agent’s
information retrieval and personalized analysis capabilities, which are more aligned with real-world
recommendation scenarios.
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6.2 LLM-based Agents

Recent advances in LLMs have enabled the development of autonomous agents capable of sophisti-
cated reasoning [25, 18, 33], human-like simulation [16, 34], and decision-making in diverse domains
such as gaming [35] and web navigation [36]. Beyond single-agent applications, multi-agent sys-
tems [37–39] are also being explored for their emergent collaborative intelligence. A key direction in
this field is enhancing agents with personalization capabilities, often achieved through two primary
technical approaches. The first is building sophisticated memory mechanisms [40–42] that allow
agents to continuously adapt to user contexts. The second is human preference alignment [43], which
involves fine-tuning models to better match individual user preferences. While these techniques
are promising for recommendation agents, evaluating personalization remains a challenge. For
instance, PREFEVAL [44] benchmark assesses an LLM’s ability to infer user preferences from static
instructions. In contrast, our work evaluates agents in dynamic, interactive scenarios, focusing on
their ability to autonomously collect information for personalization—a critical distinction from
existing evaluation methods.

6.3 LLM Agent Benchmarks

Several benchmarks have been developed to evaluate the general capabilities of LLM agents [45–49].
AgentBench [46] focuses on reasoning and decision-making in multi-turn, open-ended settings across
code, game, and web environments. AgentBoard [47] encompasses nine diverse tasks, emphasizing
multi-turn interaction and long-term task execution. TheAgentCompany [48] assesses agents on
human work-related tasks like software engineering and financial analysis. While our work also
evaluates autonomous agents interacting with an environment, our domain is entirely distinct. The
aforementioned benchmarks primarily evaluate general-purpose agent capabilities. In contrast, Agen-
tRecBench is the first evaluation framework specifically designed for LLM agents in personalized
recommendation tasks. Our framework uniquely assesses an agent’s ability for personalized prefer-
ence modeling, personalized information retrieval, and end-to-end recommendation task execution,
which are not covered by existing general-purpose benchmarks.

7 Conclusions

In this work, we present AgentRecBench, the first comprehensive benchmark for evaluating the emerg-
ing LLM-powered agentic recommender systems. The benchmark establishes rigorous evaluation
protocols across multiple domains and scenarios, supported by our novel textual interaction environ-
ment that integrates three rich recommendation datasets. Through extensive empirical analysis of
10+ classical and agentic methods, we not only demonstrate the superior performance of LLM-based
approaches but also identify their critical designs. The proposed modular agent design framework and
standardized evaluation platform provide researchers with essential tools to advance the development
of agentic recommender systems. We believe this work offers a fundamental platform for advancing
the next-generation recommender systems.
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [Yes]

Justification: We provided links to our dataset/codes and evaluation environment in the
abstract.

Guidelines:
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided experimental setting details in Section 4.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Given API cost considerations, we validate our method’s robustness through
evaluation across three distinct LLM architectures rather than repeated trials. This multi-
model assessment demonstrates consistent performance while maintaining computational
efficiency.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We reported computing resource information in Section 5.1.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform that our experiments align with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential societal impacts in the appendix.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided details of our benchmark in the link introduced in the
abstract.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not include crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our benchmark is targeted at LLM-based recommendation agents, where
LLMs act as core components of these agents.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Broader impacts

The benchmark and toolkit presented in this work are expected to advance the development of agentic
recommender systems and bring significant positive societal implications. The improved contextual
understanding of agentic recommender systems enables higher-quality personalized recommendations
that can benefit diverse domains, including e-commerce, short-video platforms, etc. Furthermore,
the standardized evaluation framework facilitates the development of more robust and adaptable
recommendation systems that can better serve evolving user needs. Our platform can also provide a
flexible foundation for incorporating ethical AI principles, such as fairness and privacy preservation,
into future recommendation systems. These advancements collectively contribute to building more
user-centric, explainable, and socially beneficial recommendation technologies.

A.2 Limitations

While AgentRecBench provides a comprehensive evaluation framework for agentic recommender
systems, several limitations point to valuable directions for future work. First, the current benchmark
primarily focuses on evaluating emerging agentic recommender systems, and we plan to incorporate
more traditional and deep learning-based baselines for more thorough comparative analysis. Second,
our environment currently operates on textual information, and we aim to extend it to incorporate
multimodal data (e.g., images, videos) to better reflect real-world recommendation scenarios where
agents need to process diverse content types. Finally, while the current framework evaluates single-
agent systems, we plan to extend it to support the evaluation of multi-agent recommendation systems
where collaborative or competitive agents interact to improve recommendation outcomes.

A.3 Potential application scenarios of the benchmark

Recommendation agents offer significant advantages over traditional recommendation methods,
which typically rely on platform-centric training with pre-processed user historical data for content
distribution. Agents, in contrast, excel by autonomously collecting and analyzing information
and flexibly adjusting recommendation strategies in scenarios where data is scattered or not pre-
defined. This capability highlights two promising application scenarios. First, the realization of
personalized user-side recommendation assistants is compelling: a dedicated agent continuously
tracks a user’s behavior and feedback, dynamically adjusting strategies to adapt to evolving interests
and even proactively anticipating needs. This shifts the paradigm from platform-centric to a user-
centric, dynamic, and highly personalized experience. Second, agents are crucial for enhancing
cold-start recommendations. Their powerful autonomous information collection and semantic
analysis capabilities allow them to rapidly build profiles for new users or items, significantly improving
recommendation effectiveness in data-scarce situations where traditional methods struggle, a potential
which our experimental results also validate.

A.4 Supplemented experimental results of the cold-start recommendation tasks and
evolving-interest recommendation tasks

Tables 5 and 6 show the complementary experimental results of our task on DeepSeek V3 and
GPT-4o-mini. Overall, our evaluation results on other mainstream models, such as DeepSeek V3 and
GPT-4o-mini, demonstrate that the agent’s performance is consistent with the findings presented in
the main text. Baseline666, DummyAgent, and RecHackers all exhibit strong performance, further
validating the robustness and reliability of our evaluation method in accurately reflecting agent
capabilities.

A.5 Empirical comparison of traditional evaluation frameworks and autonomous agent
evaluation in AgentRecBench

Autonomous agents inherently require dynamic interaction with their environment, often involving
multi-step reasoning and adaptive tool calling. Traditional evaluation frameworks based on static
data (e.g., user-item matrices) or fixed LLM prompts inherently lack this interactive capability. To
further illustrate this, we experiment with providing LLMs with traditional static user-item matrix
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Table 5: Performance comparison on cold-start recommendation tasks with the average HR@N
metric (N=1,3,5).

DeepSeek-V3

Category Method
Amazon Goodreads Yelp

User Item User Item User Item

Agentic RS

BaseAgent 16.0±1.9 15.1±1.5 20.4±0.6 21.1±2.2 3.8±0.1 4.4±0.1
CoTAgent 19.4±0.4 13.6±2.0 17.8±3.1 17.0±3.4 4.5±0.0 4.3±0.1

MemoryAgent 17.4±0.6 13.5±1.8 19.0±1.1 22.6±4.1 4.2±0.8 4.1±0.1
CoTMemAgent 18.3±3.2 15.0±2.3 14.8±1.5 17.3±0.4 3.6±0.0 3.8±0.4

Baseline666 55.7±1.6 54.1±3.3 41.0±2.8 50.3±2.9 1.1±0.1 2.9±0.0
DummyAgent 54.2±0.6 51.7±0.3 43.6±5.3 49.3±1.4 1.5±0.1 2.8±0.1
RecHackers 59.5±0.9 56.9±0.2 46.8±0.9 46.1±2.2 2.8±0.1 4.0±0.2
Agent4Rec 48.1±1.4 32.7±1.1 35.9±0.2 11.1±0.2 1.7±0.2 0.8±0.0

GPT-4o-mini

Category Method
Amazon Goodreads Yelp

User Item User Item User Item

Agentic RS

BaseAgent 14.8±1.5 8.8±0.5 20.3±0.9 16.2±1.1 3.0±0.0 4.4±0.0
CoTAgent 15.5±0.0 8.7±0.2 20.4±0.1 13.9±0.3 3.0±0.0 4.3±0.0

MemoryAgent 15.3±3.2 7.4±0.5 15.8±0.1 17.7±3.0 2.8±0.1 3.5±0.1
CoTMemAgent 15.8±0.8 7.4±0.2 16.8±0.2 17.6±0.4 3.0±0.0 4.1±0.0

Baseline666 44.5±0.0 31.7±0.2 35.3±0.4 27.7±0.6 0.3±0.0 3.1±0.0
DummyAgent 44.3±0.5 29.6±0.4 37.1±0.0 26.1±1.3 0.3±0.0 3.7±0.0
RecHackers 46.8±10.5 39.3±8.5 40.4±1.4 31.1±2.2 1.0±0.1 2.9±0.1
Agent4Rec 34.9±1.5 20.6±1.4 38.7±0.7 7.9±0.1 0.7±0.0 0.8±0.0

Table 6: Performance comparison on evolving-interest recommendation tasks with the average
HR@N metric (N=1,3,5).

DeepSeek-V3

Category Method
Amazon Goodreads Yelp

Long Term Short Term Long Term Short Term Long Term Short Term

Agentic RS

BaseAgent 21.7±0.7 21.7±0.7 33.2±1.6 33.2±1.6 5.2±0.0 5.2±0.0
CoTAgent 19.1±1.2 19.1±1.2 25.6±0.7 25.6±0.7 4.3±0.0 4.3±0.0

MemoryAgent 21.1±2.2 21.1±2.2 29.3±4.6 29.3±4.6 4.5±0.3 4.5±0.0
CoTMemAgent 16.7±0.2 16.7±0.2 22.8±3.3 22.8±3.3 4.2±0.0 4.2±0.0

Baseline666 61.0±0.4 61.0±0.4 66.6±0.7 66.6±0.7 5.2±0.0 5.2±0.0
DummyAgent 61.3±0.6 61.3±0.6 65.2±2.5 65.2±2.4 10.6±0.1 10.6±0.1
RecHackers 66.2±0.4 66.2±0.4 68.4±1.2 68.4±1.2 10.7±0.1 10.7±0.1
Agent4Rec 32.5±1.8 32.5±1.8 41.5±0.1 41.5±0.1 10.3±0.2 10.3±0.2

GPT-4o-mini

Category Method
Amazon Goodreads Yelp

Long Term Short Term Long Term Short Term Long Term Short Term

Agentic RS

BaseAgent 11.7±0.2 13.0±0.1 13.7±0.2 14.4±0.7 4.6±0.3 4.5±0.1
CoTAgent 11.8±0.3 13.0±0.4 13.9±0.2 14.3±0.4 5.1±0.0 4.8±0.1

MemoryAgent 11.7±0.1 12.6±0.2 17.3±1.7 16.3±1.0 3.6±0.4 4.8±0.1
CoTMemAgent 11.8±0.1 12.6±0.2 18.0±0.3 15.8±0.4 5.2±0.1 4.8±0.1

Baseline666 37.9±0.3 48.1±2.2 47.8±2.2 48.1±0.5 5.8±0.1 5.8±0.1
DummyAgent 37.8±2.6 43.8±2.6 43.1±0.5 42.1±0.6 3.8±0.5 2.1±0.1
RecHackers 43.8±4.4 54.3±3.5 53.4±1.2 53.2±3.8 4.7±0.9 3.0±0.4
Agent4Rec 23.0±0.9 35.5±1.7 30.9±2.7 36.0±1.4 5.8±0.4 4.2±0.3
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Method Qwen 2.5 Deepseek V3 GPT-4o-mini
LLM with static matrix data 19.7 9.0 15.3

Autonomous Rec Agent (Baseline666) 44.9 54.1 36.6
Table 7: Performance comparison of agentic recommender systems on the traditional evaluation
framework and autonomous agent evaluation.

data for recommendation tasks on Amazon data. As shown in Table 7, performance was significantly
lower compared to agents that dynamically collect information. This demonstrates that static, non-
interactive data fails to fully leverage an agent’s ability for autonomous information gathering and
personalized reasoning, and thus is inadequate for agentic recommendation evaluation.

A.6 Case Study

We present the core workflows of the two agents, DummyAgent, and RecHackers in Figure 5, and
6, respectively. Overall, these agents rely on similar types of information for the ranking process,
although their specific implementations differ. The ranking decisions are primarily based on three
key components: (1) historical user reviews, which reflect past preferences; (2) a list of candidate
items to be ranked; and (3) detailed item information, which helps evaluate the relevance of each
item to the user’s preferences.

A major innovation among these agents lies in item-side feature engineering. Notably, the Baseline666
team employed platform-specific feature extraction methods, enabling a robust and adaptable ranking
strategy across different data sources. For instance, on the Amazon platform, features such as item ID,
name, star rating, number of reviews, and item description were extracted. On Yelp, they focused on
core attributes like item ID, name, star rating, and review count. In contrast, the Goodreads platform
required more diverse features, including author, publication year, and similar books.

Review-side feature engineering represents another critical component, aimed at identifying and
extracting the most informative reviews to enrich the understanding of both user preferences and item
characteristics. For example, the DummyAgent team implemented a platform-tailored strategy: on
Yelp, they extracted not only the review text but also interactive attributes such as “useful,” “cool,”
and “funny”; on Amazon, they incorporated publication dates and purchase verification indicators;
and on Goodreads, in addition to the review text and ratings, they utilized metadata such as review
date, number of votes, number of comments, and reading status.

In summary, the key design elements across these agents can be distilled into three core principles:
(1) effective workflows are built on a combination of user history, candidate items, item details,
and platform-specific features, all integrated through large language models (LLMs) to produce
rankings; (2) extracting representative, platform-specific item attributes is essential for enhancing
model performance; and (3) prioritizing reviews that are both highly relevant and information-rich is
crucial for improving ranking quality.
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DummyAgent’s core workflow

You are a real user on an online platform. Your historical item review text

and stars are as follows: [’item_id ’, ’text’, ’timestamp ’, ’source ’,

’type’, ’sub_item_id ’, ’stars ’, ’helpful_vote ’, ’verified_purchase ’,

’title’...]. Now you need to rank the following {final_item_list_len}

items: {final_item_list} according to their match degree to your preference.

Please rank the more interested items more front in your rank list. The

information of the above {final_item_list_len} candidate items is as

follows: [’item_id ’, ’name’, ’stars’, ’review_count ’, ’attributes ’,

’title’, ’average_rating ’, ’rating_number ’, ’description ’, ’ratings_count ’,

’title_without_series ’].

Your final output should be ONLY a ranked item list of {final_item_list}

with the following format , DO NOT introduce any other item ids!

DO NOT output your analysis process! The correct output format: [Sorted

Candidate Item List]

1

Figure 5: Illustration of the agentic workflow of a superior recommendation agent (DummyAgent),
which conducts domain-adaptive item-side feature engineering to enhance personalization.

RecHacker’s core workflow

’You are a real human user on {task_type}, a platform for crowd -sourced

{task_item} reviews ’. Here is your {task_type} profile and review history:

{user}. Your historical {task_item} reviews show your preference as

follows: [’user_id ’, ’review_count ’, ’friends ’, ’stars ’...].

Now you need to rank the following 20 {task_item }: [Candidate List]

according to their match degree to your preference. The information of the

above 20 candidate {task_item} is as follows: [’item_id ’, ’name’, ’stars’,

’review_count ’, ’attributes ’, ’title’, ’average_rating ’, ’rating_number ’,

’description ’, ’ratings_count ’...]. Your final output should be ONLY a

ranked {task_item} list of [Candidate List] with the following format , DO

NOT introduce any other {task_item} ids!

You only need to select the top 5 {task_item} from the candidate list.

’Please rank the more interested {task_item} more front in your rank list.’

You should think step by step before your final answer. DO NOT output your

analysis process! Follow the correct final answer output format strictly ,

remember to output {task_item} ids instead of {task_item} names:

[Sorted Candidate Item List]

1

Figure 6: Illustration of the agentic workflow of a superior recommendation agent (RecHacker),
which conducts domain-adaptive item-side feature engineering to enhance personalization.
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