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Abstract

The rapidly increasing size of deep-learning models has renewed interest in alterna-
tives to digital-electronic computers as a means to dramatically reduce the inference
energy cost of running state-of-the-art neural networks. Optical matrix-vector mul-
tipliers are best suited to performing computations with very large operands, which
suggests that large Transformer models could be a good target for them. However,
the ability of optical accelerators to run efficiently depends on the model being run,
and if the model can be run at all when subject to the noise, error, and low precision
of analog-optical hardware. Here we investigate whether Transformers meet the
criteria to be efficient when running optically, what benefits can be had for doing
so, and how worthwhile it is at scale. We found using small-scale experiments on
and simulation of a prototype hardware accelerator that Transformers may run on
optical hardware, and that elements of their design — the ability to parallel-process
data using the same weights, and trends in scaling them to enormous widths —
allow them to achieve an asymptotic energy-efficiency advantage running optically
compared to on digital hardware. Based on a model of a full optical accelerator
system, we predict that well-engineered, large-scale optical hardware should be
able to achieve a 100× energy-efficiency advantage over current digital-electronic
processors in running some of the largest current Transformer models, and if both
the models and the optical hardware are scaled to the quadrillion-parameter regime,
optical accelerators could have a > 8,000× energy-efficiency advantage.

This is an abridged version of our full paper at
https://arxiv.org/abs/2302.10360.

1 Introduction

Deep learning models’ exponentially increasing scale is both a key driver in advancing the state-of-
the-art and a cause of growing concern about their energy usage, speed, and practicality. This has led
to the development of hardware accelerators and model training/compression/design techniques for
efficient and fast inference on them. Because they still perform all the underlying operations using
the same physical mechanisms, most digital-electronic accelerators [1–5] can improve performance
by constant factors. This is because in digital systems there is an energy cost for every computation
[6], so improvements do not change the way costs scale with the number of computations to perform.

Analog accelerators can differ from digital ones in that the energy cost of performing computations
may fundamentally scale differently than digital systems. For example, in optics or analog-electronic
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Figure 1: Can Transformers benefit from running on optical hardware? Optical Neural Networks
(ONNs) have been proposed as an alternative computing platform that can achieve asymptotic energy-
efficiency advantages over digital computers running neural networks. This is not a guarantee; their
behavior is affected by model architecture, statistics, and resilience to the noise/imprecision of analog
hardware. Thus, while there are many implementations of general-purpose optical matrix accelerators
(such as those depicted in the inset), there are still model-dependent challenges/tradeoffs in realizing
their purported advantages. We seek here to answer the question of how much today’s enormous
Transformer models can benefit from this technology. We hypothesize that Transformers’ architecture
allows for ONN-enabled benefits that scale.

crossbar arrays, a common heuristic is that the energy of a matrix-vector product scales linearly with
vector size, rather than the ∼ d2 of digital systems (assuming all dimensions are ∼ d). This is a
key intuition for why alternative analog computing platforms using optics have been proposed as a
new paradigm for better scalability [7–13]. Ideally, the scaling is asymptotically better than digital
systems in energy per MAC [6, 14, 15, 10].

But these optical neural networks (ONNs) have additional complexities and limitations of their own
such as low precision, noise, and analog/digital data conversion overheads which depend on the access
patterns of the model running. Benefits can only be realized when operands reach a certain scale and
level of parallelism, because optics-based systems have additional overheads such as analog-digital
conversion whose costs must be amortized. Thus, advantageously accelerating any neural network
architecture with ONNs is in practice hard, and DNNs without the necessary activation statistics and
model architecture may not achieve this scaling.

But Transformers’ efficient data-access patterns (wide layers, parallel/batched token processing, etc.)
and trends in methods for scaling them make them an especially attractive match to leverage this
analog optical scaling advantage for asymptotic energy-efficiency. Here, our goal is to investigate if
this Optical Transformer hypothesis is true in realistic settings (Figure 1, right) — with real noise,
hardware imperfections, memory and digital-analog-conversion costs, and state-of-the-art models.

Here we demonstrate how Transformers run on ONN systems, and estimate the potential benefits of
doing so. To first verify that Transformers may run on these systems despite their imprecision, we
sampled operations from a Transformer and ran them on a real spatial light modulator (SLM) based
experimental system, and used the results to create a calibrated simulation of the optical hardware,
with the systematic error, noise, and imprecision of weights/inputs we observed. Transformers
running on the simulated hardware could perform nearly as well as those running digitally, and could
be far more efficient.

2 Background and Related Work

2.1 Large-Scale Deep Learning

In the past few years, it has been found in particular that Transformer architectures significantly
improve when sized up to billions or even trillions of parameters [16–21], causing an exponential
growth of deep learning compute usage [22, 23]. These large-scale Transformers achieve ever
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Figure 2: Optical Transformer evaluation: prototype hardware; simulator model; Transformer
architecture. Bottom: typical Transformer architecture, but with ReLU6 activation. Top Left:
experimental spatial light modulator (SLM)-based accelerator setup. From some layers—marked
with a laser icon—we sampled dot products to run on real hardware. Top Middle: Linear operations,
in light blue, run on a simulated accelerator with noise/error. Lookup tables (LUT) allow simulation
using our setup’s supported weight/activation values. Top right: our model of energy consumption
for optical accelerators, based on assumptions and results from our experiment/simulations. The
model accelerator system consists of random-access memory (RAM), a analog/digital conversion
(DAC/ADC), light modulation (MOD), amplification (AMP).

more impressive results in not only natural language processing, but also in other domains such as
computer vision [24, 25], graphs [26], and in multi-modal settings [27–32], making them a popular
but expensive solution for many tasks—digital hardware’s energy efficiency (ie. per-flop or per-
inference cost) has not kept up with the growing FLOP requirements of state-of-the-art deep learning
models [23]. They also have transfer learning capabilities [33–35, 16, 36, 24], allowing them to easily
generalize to specific tasks, in some cases in a zero-shot setting where no further training is necessary
[16, 30, 37].

2.2 Traits of Optical Accelerators

Researchers have explored a wide variety of controllable optical systems to implement linear oper-
ations on optical fields, such as arbitrary matrix-vector multiplications, vector-vector dot products
[38, 39, 6, 40, 41, 14, 42–44], or convolutions [45–49]. In this work, we adopt one kind of free-
space multiplier [14, 40, 42] (Figure 2, top left) to demonstrate Transformer operations in optical
experiments and for our simulations. We selected this system because it has many of the same
characteristics as other ONN implementations (photon detection noise, free optical data transport
and reuse, systematic errors), and aim to draw conclusions that could generally be useful for those
working with other ONN designs. Many ONN systems, including ours, share the following typical
traits (Figure 1):

Optical Shot Noise Noise in photon detection that causes outputs to be Poisson-distributed around
the ground truth value. This limits the precision of the accelerator’s outputs. The signal-to-noise —
the effective precision — depends only on the photon totals at the output of an operation.

Device Imprecision and Systematic Errors Systematic errors, on the other hand, are not noise but
rather errors resulting from deficiencies of the hardware. These errors occur consistently; they are not
random. ONN devices also have precision constraints, often only supporting a number of mappable
transmission/emission levels.

Free Data Transport and Reuse Transport and copying of data encoded in light is free when
performed optically. However, when splitting a signal in this way, the total amount of light is divided
by the number of copies. The ability to reuse data in this way is particularly important because it
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allows for a device to pay the cost of loading data only once (such as a vector) to be used as much as
is necessary (such as for multiple vector-vector dot products in a matrix-vector product).

Efficient Photon Usage Shot noise, and therefore an optical dot product’s signal-to-noise ratio is
related to the mean number of photons at the output. The efficiency of photon usage can therefore
grow with increasing multiply-accumulate operations (MACs), because the total amount of optical
energy needed for a dot product is independent of the dot product size. Work on ONNs has studied
this behavior in a variety of scenarios [6, 10, 14, 15]. For example, if a dot product of size d requires
P photons to compute with precision b, then a dot product of size 2d only requires the same P photons
if b does not change. However, this only holds true when wider models (ie. models with larger dot
products in their matrix-vector computations) do not have precision requirements that scale with the
model size. Thus the efficient scaling is not a guarantee—the required number of photons may be
influenced by a model architecture’s activation/weight distributions, encoding schemes, precision
requirements, etc [50].

2.3 Optical Accelerator Energy Usage

Experiment

Experimental 
Error

Simulated 
Noise

First FF
σ = 2.09%

First Attention
σ = 5.65%

20.25

Last FF
σ = 1.31%

Last Attention
σ = 5.99%

Figure 3: Comparison of experimental and simu-
lated noise models and simulated Optical Trans-
former noise tolerance. Top: Simulated perfor-
mance (Wikitext-103 validation perplexity (PPL))
versus percent mean-relative simulated noise in
feed-forward (FF) and attention (Attn) layers. Sys-
tematic errors from experimental data marked with
a star. Bottom: comparison of simulated noise
model to error from experimental data. The Gaus-
sian shape of the simulated error behavior matches
experiment accurately.

ONNs’ energy consumption is modelled as fol-
lows: the energy cost is broken down into the
optical costs of performing MACs and the elec-
trical costs of loading/detecting data (including
conversion to/from digital/analog), which are
usually dominant. Consider a matrix product
involving A ∈ Rn×d, B ∈ Rd×k. Such a
product results in loading (detecting) nd + dk
(nk) scalars, and performing ndk MACs. If
the energy to electrically load (detect) a scalar
is Eload (Edet), and to perform a MAC opti-
cally is Eoptical, then the total energy is: E =
(nd+ dk)Eload + nkEdet + ndkEoptical. This
illustrates how ONNs may have asymptotic en-
ergy advantages over digital computers. No-
tice that regardless of the number of reuses,
all data is only loaded once (and partial prod-
ucts are accumulated at a detector before con-
verting and storing the data digitally). Mean-
while, Eoptical ideally scales as 1/d. These
properties make energy cost disproportional to
the number of MACs, ndk. In other words,
Edigital

EONN
∼ min(n, d) (or just d for weights-in-

place systems — systems where weights may
be loaded once, and kept in the hardware to
be reused for long periods of time). The elec-
trical overheads include the costs of memory
read/write, conversion (analog-digital and vice-
versa), modulation, and detection. Further de-
tails about assumed values, based on existing
hardware capabilities, are in Appendix E.

3 Optical Transformers

We designed models that are intentionally simi-
lar to other Transformers, with the goal of simu-
lating their behavior (informed by some experi-
mental measurements) and energy consumption
on optical hardware. A summary of our approach and model is in Figure 2. We created optical
Transformer models with a GPT2-like [35] architecture that replaces the GELU [51] activation
with ReLU6, which is known to improve low-precision model performance [52–54]. For language

4



Constant photons/MAC 

Constant dot-product total (1/d photons per MAC)

8-bit PPL

Equivalent to 8-bit PPL 

Figure 4: Simulations of Optical Transformer behavior with varying photon usage. Left:
Wikitext-103 validation-set perplexity (PPL) versus embedding dimension d and total photons used
for a single forward pass/inference. 8-bit digital model performance is shown with dashed lines.
Middle: perplexity degrades from ideal with fewer photons-per-MAC; the plot exhibits truncated
power-law scaling. Right: Scaling of number of photons needed for an Optical Transformer to
achieve the same perplexity as an 8-bit digital-electronic processor, versus model size.

modelling, we used the raw Wikitext-103 dataset [55]. The models we simulated have 12 layers
(consisting of multi-head attention and feed-forward blocks), operate on a context length of 1024
tokens, use 12 attention heads, and have embedding dimension d varying from 192 to 1536. The full
details of the training technique, architecture, and hyperparameters are in Appendix A.

3.1 Transformers Are Resilient To ONN Systematic Errors

We ran experiments using a real Transformer’s (we used the base-sized model with d = 768) weights
in order to characterize the behavior of an ONN system. We adopted as a representative example of
an optical accelerator a spatial light modulator (SLM) based system which computes vector-vector
dot products [14]. Vectors are encoded on a display, and copies are shone through the SLM which
has varying transmission corresponding to some data (ie. a weight matrix). The outputs of this
operation—element-wise products—are collected at detectors as the resultant dot products (Figure 2,
top left).

Informed by our experiments, we constructed a simulation of the optical hardware, incorporating
collected calibration, noise, and error data.We also evaluated the digital, 8-bit-QAT-trained model for
comparison purposes.

We found that Transformer operations can be run on real hardware without severely degraded
performance from systematic errors. The bottom four panels of Figure 3 are histograms of the
experimental differences from correct values. The simulated noise distributions (dotted lines) match
well with the experimental data, which confirms that they are an accurate representation of the real
systematic error behavior. Figure 3 (top) is a map of the performance of the simulated model over
different configurations of the mean-relative (in percent) noise at every layer of feed-forward and
attention blocks. The model performs well with significant noise (experimental noise levels marked
with stars), within 1 perplexity from noise-free performance unless the noise is very high.

3.2 Transformers’ Shot-Noise Resilience and Optical Scaling Laws

We simulated the Transformer models running on optical hardware in the presence of shot noise.
To isolate shot noise from other effects, we excluded systematic errors from these simulations. We
define photons/MAC as the total photon budget (amount at input) divided by total MACs.

Optical Transformers achieve language modelling performance close to their digital counterparts’
when shot-noise-limited at photon budgets where optical energy is negligible. The perplexities on
the Wikitext-103 validation set of various optical Transformer models simulated with different total
photon usage (amount used for input data) are shown in Figure 4 (left). The curves illustrate a
tradeoff: larger models need larger photon totals to function well, and there are different optimal
model choices based on the photon budget.
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Figure 5: Estimated energy usage of Transformer models on optical hardware for a single
forward pass/inference. Hypothetical future model designs are labelled FUTURE-*. Estimated
energy/MAC for digital systems is based on [1]. Trend for energy usage in optical systems (blue)
computed based on real models only. Inset: energy advantage of running on optics over estimated
NVIDIA A100 usage. The advantage grows with the model compute. M = 106, G = 109, T = 1012,
q = 1015 parameters.

The models use fewer photons/MAC as they scale, achieving the theoretical efficient scaling where the
total per-dot-product photons needed is constant. To study how photon usage scales, we determined
how many photons it takes to reach the performance of 8-bit digital models. These values, in Figure 4
(right), decrease nearly as 1

d—the total photons needed per dot product is constant (bottom dashed
line). The Transformer architecture clearly takes advantage of efficient optical scaling with larger
model sizes, suggesting that required output SNR does not increase with scale, and that model
statistics and dynamic ranges do not become unmanageable.

3.3 Estimated Energy Usage

The efficient photon scaling trend we observed suggests that Transformers running on optical
hardware could achieve significant energy efficiency advantages over running on digital hardware. To
understand the efficiency of Transformers on optical hardware, we designed an ONN system based
on current hardware that is like our experimental setup, with our measured precision and photon
scaling (see: Figure 2, top right). It is an inference system with in-place weights which are loaded
once and reused forever, activations read from and written to SRAM for every layer, a 10 GHz light
modulator array, and an optical “core” which can perform 10M multiplications per cycle (this can be
thought of as a 10 megapixel SLM). The electrical energy costs are calculated using the approach in
Section 2.3. We assume that the element-wise nonlinear layers (and softmax) must be run digitally,
but none scale as d2 — so an advantage is still possible in sufficiently large models. Because they are
data-access-heavy, we estimate their costs as the cost of storing/loading all operands to/from memory.
All linear operations (matrix products, both in attention and MLP) are assumed to run optically, as
verified by our experiments.

As models grow, running Transformers on optical hardware has a large and asymptotic efficiency
advantage over running on digital hardware. In Figure 5 we chart estimates of the forward pass energy
required for various models, which include our calculations for electrical overheads, optical energy,
and digital operation overheads1. We include a hypothetical family of large, dense Transformer
models designed in a similar fashion, which we label FUTURE-*. For comparison, we also chart
various digital systems [1] in different performance regimes, and a hypothetical “next generation”

1The recent PaLM [56] models used a modified architecture. A For simpler comparison, we make our
estimates using a model with GPT-like architecture but with the PaLM model dimensions, which we call
PaLM-Like.
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GPU that can use ∼10 fJ/MAC. For small models, the optics-based system uses about the same
energy, but eventually gains an advantage that scales asymptotically with the number of MACs. For
the larger models, MT-NLG-530B and FUTURE-4q, the optics-based approach would have ∼140×
and ∼8500× energy advantages over the current state-of-the-art GPU (NVIDIA A100) respectively.

4 Conclusion

We have demonstrated the ability of Transformer models to run accurately and efficiently on optical
hardware through optical experiments and an experiment-informed simulation of future optical
hardware. We examined Transformers’ scaling behavior with optics and used our findings to show
that optical systems could have a large and asymptotic energy advantage over digital-electronic
ones that grows with the model size. For example, we showed that optical hardware may achieve
an over 100× energy advantage when performing inference with the largest Transformer models
today (∼500 billion parameters) and that larger, future Transformers (∼4 quadrillion parameters)
may be realized with an >8000× optical energy advantage. We believe our findings about the
potential energy-efficiency of optical accelerator hardware strongly motivate the development of
optical processors for large-scale deep learning with Transformers.
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learning with coherent nanophotonic circuits. Nature Photonics, 11(7):441, 2017. URL
https://doi.org/10.1038/nphoton.2017.93.

[39] William Andregg, Michael Andregg, Robert T Weverka, and Lionel Clermont. Wavelength
multiplexed matrix-matrix multiplier, April 19 2019. URL https://patents.google.com/
patent/US10274989B2/en. (U.S. Patent No. 10,274,989). U.S. Patent and Trademark Office.

[40] James Spall, Xianxin Guo, Thomas D Barrett, and AI Lvovsky. Fully reconfigurable coherent
optical vector–matrix multiplication. Optics Letters, 45(20):5752–5755, 2020. URL https:
//doi.org/10.1364/OL.401675.

[41] Wim Bogaerts, Daniel Pérez, José Capmany, David A B Miller, Joyce Poon, Dirk Englund,
Francesco Morichetti, and Andrea Melloni. Programmable photonic circuits. Nature, 586
(7828):207–216, 2020. URL https://doi.org/10.1038/s41586-020-2764-0.

[42] Yoshio Hayasaki, Ichiro Tohyama, Toyohiko Yatagai, Masahiko Mori, and Satoshi Ishihara.
Optical learning neural network using Selfoc microlens array. Japanese Journal of Applied
Physics, 31(5S):1689, 1992. URL https://doi.org/10.1143/JJAP.31.1689.

[43] Charis Mesaritakis, Vassilis Papataxiarhis, and Dimitris Syvridis. Micro ring resonators as
building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system.
J. Opt. Soc. Am. B, 30(11):3048–3055, Nov 2013. doi: 10.1364/JOSAB.30.003048. URL
https://opg.optica.org/josab/abstract.cfm?URI=josab-30-11-3048.

[44] Alexander N. Tait, John Chang, Bhavin J. Shastri, Mitchell A. Nahmias, and Paul R. Prucnal.
Demonstration of WDM weighted addition for principal component analysis. Opt. Express,
23(10):12758–12765, May 2015. doi: 10.1364/OE.23.012758. URL https://opg.optica.
org/oe/abstract.cfm?URI=oe-23-10-12758.

[45] Changming Wu, Heshan Yu, Seokhyeong Lee, Ruoming Peng, Ichiro Takeuchi, and Mo Li.
Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional
neural network. arXiv preprint arXiv:2004.10651, 2020.

[46] Johannes Feldmann, Nathan Youngblood, Maxim Karpov, Helge Gehring, Xuan Li, Maik
Stappers, Manuel Le Gallo, Xin Fu, Anton Lukashchuk, Arslan Sajid Raja, et al. Parallel
convolutional processing using an integrated photonic tensor core. Nature, 589(7840):52–58,
2021.

[47] Mario Miscuglio, Zibo Hu, Shurui Li, Jonathan K George, Roberto Capanna, Hamed Dalir,
Philippe M Bardet, Puneet Gupta, and VolkerJ̃. Sorger. Massively parallel amplitude-only
fourier neural network. Optica, 7(12):1812–1819, 2020. URL https://doi.org/10.1364/
OPTICA.408659.

[48] Xingyuan Xu, Mengxi Tan, Bill Corcoran, Jiayang Wu, Andreas Boes, Thach G Nguyen, Sai T
Chu, Brent E Little, Damien G Hicks, Roberto Morandotti, Arnan Mitchell, and David J Moss.
11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589(7840):
44–51, 2021. URL https://doi.org/10.1038/s41586-020-03063-0.

[49] Lingling Fan, Zhexin Zhao, Kai Wang, Avik Dutt, Jiahui Wang, Siddharth Buddhiraju, Casey C.
Wojcik, and Shanhui Fan. Multidimensional convolution operation with synthetic frequency
dimensions in photonics. Phys. Rev. Appl., 18:034088, Sep 2022. doi: 10.1103/PhysRevApplied.
18.034088. URL https://link.aps.org/doi/10.1103/PhysRevApplied.18.034088.

[50] Alexander N Tait. Quantifying power use in silicon photonic neural networks. arXiv:2108.04819,
2021. URL https://arxiv.org/abs/2108.04819.

[51] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs), 2016. URL https:
//arxiv.org/abs/1606.08415.

[52] Alex Krizhevsky. Convolutional deep belief networks on cifar-10. 2010. URL https:
//www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf.

11

https://doi.org/10.1038/nphoton.2017.93
https://patents.google.com/patent/US10274989B2/en
https://patents.google.com/patent/US10274989B2/en
https://doi.org/10.1364/OL.401675
https://doi.org/10.1364/OL.401675
https://doi.org/10.1038/s41586-020-2764-0
https://doi.org/10.1143/JJAP.31.1689
https://opg.optica.org/josab/abstract.cfm?URI=josab-30-11-3048
https://opg.optica.org/oe/abstract.cfm?URI=oe-23-10-12758
https://opg.optica.org/oe/abstract.cfm?URI=oe-23-10-12758
https://doi.org/10.1364/OPTICA.408659
https://doi.org/10.1364/OPTICA.408659
https://doi.org/10.1038/s41586-020-03063-0
https://link.aps.org/doi/10.1103/PhysRevApplied.18.034088
https://arxiv.org/abs/2108.04819
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf
https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf


[53] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural
networks for mobile vision applications. arXiv:1704.04861, 2017.

[54] Hyungjun Kim, Jihoon Park, Changhun Lee, and Jae-Joon Kim. Improving accuracy of binary
neural networks using unbalanced activation distribution. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 7858–7867, 2021. doi: 10.1109/
CVPR46437.2021.00777.

[55] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations (ICLR), 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

[56] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling
language modeling with Pathways, 2022. URL https://arxiv.org/abs/2204.02311.

[57] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. 2019. URL
https://openreview.net/forum?id=Bkg6RiCqY7.

[58] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):
26–31, 2012.

[59] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR. URL https://proceedings.mlr.press/v9/glorot10a.html.

[60] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joseph E.
Gonzalez. Train large, then compress: Rethinking model size for efficient training and inference
of transformers. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

[61] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming
the challenges of efficient Transformer quantization. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 7947–7969, Online and Punta
Cana, Dominican Republic, November 2021. Association for Computational Linguistics. URL
https://aclanthology.org/2021.emnlp-main.627.

[62] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model
parallelism, 2019. URL https://arxiv.org/abs/1909.08053.

[63] Corby Rosset. Turing-nlg: A 17-billion-parameter lan-
guage model by Microsoft. https://www.microsoft.com, Feb
2020. URL https://www.microsoft.com/en-us/research/blog/
turing-nlg-a-17-billion-parameter-language-model-by-microsoft/.

[64] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zhang,

12

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://arxiv.org/abs/2204.02311
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v9/glorot10a.html
https://aclanthology.org/2021.emnlp-main.627
https://arxiv.org/abs/1909.08053
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/


Rewon Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi,
Yuxiong He, Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. Using DeepSpeed and
Megatron to train Megatron-Turing NLG 530B, a large-scale generative language model, 2022.
URL https://arxiv.org/abs/2201.11990.

[65] Yaosheng Fu, Evgeny Bolotin, Niladrish Chatterjee, David Nellans, and Stephen W. Keckler.
GPU domain specialization via composable on-package architecture. ACM Trans. Archit.
Code Optim., 19(1), dec 2021. ISSN 1544-3566. doi: 10.1145/3484505. URL https:
//doi.org/10.1145/3484505.

[66] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.
URL https://doi.org/10.1109/JPROC.2017.2761740.

[67] Flavio Ponzina, Miguel Peon-Quiros, Andreas Burg, and David Atienza. E2CNNs: Ensem-
bles of convolutional neural networks to improve robustness against memory errors in edge-
computing devices. IEEE Transactions on Computers, 70(8):1199–1212, August 2021. doi:
10.1109/tc.2021.3061086. URL https://doi.org/10.1109/tc.2021.3061086.

[68] Benoît W. Denkinger, Flavio Ponzina, Soumya S. Basu, Andrea Bonetti, Szabolcs Balási,
Martino Ruggiero, Miguel Peón-Quirós, Davide Rossi, Andreas Burg, and David Atienza.
Impact of memory voltage scaling on accuracy and resilience of deep learning based edge
devices. IEEE Design & Test, 37(2):84–92, 2020. doi: 10.1109/MDAT.2019.2947282.

[69] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B. Jablin,
George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie, Nishant
Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David Patterson. Ten lessons from
three generations shaped Google’s TPUv4i : Industrial product. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA), pages 1–14, 2021. doi:
10.1109/ISCA52012.2021.00010.

[70] Pietro Caragiulo, Clayton Daigle, and Boris Murmann. DAC performance survey 1996-2020.
URL https://github.com/pietro-caragiulo/survey-DAC.

[71] Mengyue Xu, Yuntao Zhu, Fabio Pittalà, Jin Tang, Mingbo He, Wing Chau Ng, Jingyi Wang,
Ziliang Ruan, Xuefeng Tang, Maxim Kuschnerov, et al. Dual-polarization thin-film lithium
niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9(1):61–62,
2022.

[72] Maruf N. Ahmed, Joseph Chong, and Dong Sam Ha. A 100 Gb/s transimpedance amplifier in
65 nm CMOS technology for optical communications. In 2014 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1885–1888, 2014. doi: 10.1109/ISCAS.2014.6865527.

[73] David A B Miller. Attojoule optoelectronics for low-energy information processing and
communications. Journal of Lightwave Technology, 35(3):346–396, 2017. URL https:
//doi.org/10.1109/JLT.2017.2647779.

[74] Juzheng Liu, Mohsen Hassanpourghadi, and Mike Shuo-Wei Chen. A 10GS/s 8b 25fJ/c-s
2850um2 two-step time-domain ADC using delay-tracking pipelined-SAR TDC with 500fs
time step in 14nm CMOS technology. In 2022 IEEE International Solid- State Circuits
Conference (ISSCC). IEEE, February 2022. doi: 10.1109/isscc42614.2022.9731625. URL
https://doi.org/10.1109/isscc42614.2022.9731625.

[75] Sony Corporation. LCX027AKB Datasheet (PDF) - Sony Corporation. Sony Corpo-
ration. URL https://pdf1.alldatasheet.com/datasheet-pdf/view/47550/SONY/
LCX027AKB.html.

[76] Matthias Wuttig, Harish Bhaskaran, and Thomas Taubner. Phase-change materials for non-
volatile photonic applications. Nature photonics, 11(8):465–476, 2017. URL https://doi.
org/10.1038/nphoton.2017.126.

[77] Boris Murmann. ADC performance survey 1997-2020. http://web.stanford.edu/
~murmann/adcsurvey.html, 2020. Online Accessed: 2021-02-18.

13

https://arxiv.org/abs/2201.11990
https://doi.org/10.1145/3484505
https://doi.org/10.1145/3484505
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/tc.2021.3061086
https://github.com/pietro-caragiulo/survey-DAC.
https://doi.org/10.1109/JLT.2017.2647779
https://doi.org/10.1109/JLT.2017.2647779
https://doi.org/10.1109/isscc42614.2022.9731625
https://pdf1.alldatasheet.com/datasheet-pdf/view/47550/SONY/LCX027AKB.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/47550/SONY/LCX027AKB.html
https://doi.org/10.1038/nphoton.2017.126
https://doi.org/10.1038/nphoton.2017.126
http://web.stanford.edu/~murmann/adcsurvey.html
http://web.stanford.edu/~murmann/adcsurvey.html


[78] Saumil Bandyopadhyay, Alexander Sludds, Stefan Krastanov, Ryan Hamerly, Nicholas Harris,
Darius Bunandar, Matthew Streshinsky, Michael Hochberg, and Dirk Englund. Single chip
photonic deep neural network with accelerated training. arXiv preprint arXiv:2208.01623, 2022.
URL https://doi.org/10.48550/arXiv.2208.01623.

[79] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference. arXiv:2211.05102, 2022.

14

https://doi.org/10.48550/arXiv.2208.01623


Table 1: Model configurations for optical Transformers. M = 106.

Model n d h L Non-emb. Params

Tiny 1024 192 12 12 15M
Small 1024 384 12 12 40.6M
Base 1024 768 12 12 123.7M
Large 1024 1536 12 12 416.3M

Table 2: Pretraining hyperparameters for optical Transformer models. All models were trained with
the AdamW [57] optimizer.

Model Steps Batch lr β1 β2 ϵ Weight decay Dropout Schedule Warmup Stop

Tiny 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 -
Small 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 -
Base 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 -
Large 90000 32 2e-4 0.9 0.999 1e-8 0.02 0.1 Cosine 2500 82500

A Appendix

B Optical Transformer Training Hyperparameters

The optical Transformer models were pretrained on the Wikitext-103 [55] dataset and used the same
tokenizer as GPT2 [35]. All models used Xavier uniform initialization [59]. The architectures are
in Table 1. Embedding layers were initialized with a normal distribution with σ = 0.02. We used the
AdamW [57] optimizer, with weight decay applied to parameters which were not embedding, gains,
or biases. Dropout was applied after every linear layer (including those in attention), as well as on the
attention matrix and after the softmax(QKT

√
dh

)V product in the attention calculation. The values of the
parameters used for the training scheme are in Table 2.

After pretraining the models were quantized via our 8-bit QAT scheme. For QAT we used the
RMSProp optimizer [58]. The parameters we used for the training are in Table 3. To clamp weights
and activations we employ two different approaches: first, we kept running statistics of minimum
and maximum values with an exponential moving average (EMA, with parameter α) for every
layer and use those to clamp. Second, we recorded the minimum/maximum statistic throughout
the network for a forward pass to apply a clipping scheme. Specifically, we clamped weights and
activations to percentiles of the maximum values collected for each layer. The outputs were either
rounded to the nearest integer during QAT, or stochastically rounded to nearby values. Finally, for the
Base-sized model we used to run the experiments, we directly used the lookup tables (LUT) instead
of “simulating” the quantization of inputs and weights (though outputs are still quantized). Table 4
details our use of these various techniques in the models.

For evaluation we used the perplexity (PPL) metric to measure the language modelling performance
on Wikitext-103. We evaluated the perplexity over the entire validation set, and ran the model with
context length 1024 (the same as in training) and a 1024-token stride length.

C ONN Experimental Procedure

C.1 Experimental Setup

Our setup is a SLM-based matrix-vector/vector-vector multiplier. The setup is shown in Figure 6
with a simplified illustration in Figure 7, and works as follows: Vectors corresponding to the inputs
and weights are rearranged into squares of pixels and loaded onto the display and SLM respectively.
They are aligned such that the light from display pixels will reach the corresponding pixels on the
SLM. First, light from the display enters into the polarizing beam splitter (PBS), and reaches the
SLM through a half-wave plate (HWP) which rotates its polarization. The phase is then modified
by the SLM and reflected back through the half-wave plate, rotating the polarization again based
on the phase difference. Then, the PBS only admits light of a certain polarization along one of its
arms, aimed at a camera for detection. Summation of the output pixels is performed digitally. This
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Table 3: Quantization aware training hyperparameters for optical Transformer models. All models
were trained with the RMSProp [58] optimizer. Quantization parameters are in Table. 4.

Model Steps Batch lr α ϵ Weight decay Dropout Schedule Warmup Stop

Tiny 7327 64 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 -
Small 7327 64 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 -
Base 7327 64 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 5500
Large 7327 32 1e-5 0.99 1e-8 1e-5 0.1 Cosine 2500 5500

Table 4: Hyperparameters for optical Transformer Quantization. We perform QAT with both a
percentile-clipping approach and by clamping based on an exponential moving average (EMA) of
model statistics with factor γ. For the Base-sized model that is used in our experiments (LUT-Base),
we use lookup tables (LUT) for inputs and weights instead of quantization.

Overall Config EMA Attention Clipping Feed-Forward Clipping
Model Precision Rounding γ Input1 Input2 Output Input Weights Output

Tiny 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%
Small 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%
Base 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%
Large 8-bit Stochastic - 99.99% 99.9% 99.9999% 99.99% 99.9% 99.9999%

LUT-Base LUT Stochastic - 99.99% 98% 99.9999% 99.99% 99% 99.9999%
Tiny 8-bit Deterministic 0.999 - - - - - -
Small 8-bit Deterministic 0.999 - - - - - -
Base 8-bit Deterministic 0.999 - - - - - -
Large 8-bit Deterministic 0.999 - - - - - -

SLM–HWP–PBS arrangement effectively creates an amplitude modulating SLM, where the output at
each pixel is the element-wise product of the input pixel and corresponding weight pixel.

The OLED display has multiple color channels and a broad spectrum. For easier modulation by the
SLM, we used a band-pass filter and only green light.

The components we used are:

• Organic light-emitting diode (OLED) display (Google Pixel 2016)
• Reflective liquid-crystal modulator (1920-500-1100-HDMI, Meadowlark Optics)
• Half-wave plate (PH10ME-532, Thorlabs)
• Polarizing beam splitter (CCM1-PBS251, Thorlabs)
• Zoom lens for imaging onto SLM (Resolv4K, Navitar)
• Zoom lens and objective lens for imaging onto detector (1-81102, Navita and

XLFLUOR4x/340, Olympus)
• Band-pass filter (FF01-525/15-25, Semroc)
• Camera for detection (Prime 95B Scientific CMOS Camera, Teledyne Photometrics)

This setup works as a good bench for testing the precision of optical Transformers by performing
optical dot products involved in attention and feed-forward layers. Even though the optical dot
products were performed one at a time, it is sufficient for showing that Transformer operations
can run with the accuracy of ONNs, since matrix-vector and matrix-matrix products are merely
collections of many dot products run in parallel.

C.2 Calibration and Lookup Tables

We used several techniques to reduce errors, map inputs to SLM/display values, and to convert
detected outputs back to neural network values.

First, we developed a specialized data-pixel encoding scheme to reduce systematic errors. We noticed
that a large source of error was with a limitation of our hardware—in particular the SLM pixels have
cross-talk (pixels may affect their neighbors if they have very different values) and misalignment
in the experimental setup may lead to corrupted outputs. To help with these issues, we created
“macropixels”—each input element (and weight) does not occupy one pixel on the display (SLM) but
rather is mapped to a 3x3 grid of pixels, all with the same value. For the attention layers, we used 5x5
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Figure 6: Photo of experimental setup used for running Transformer dot-product operations. Inset:
simplified illustration of the experimental system. Spatial light modulator (SLM) + half-wave plate
(HWP) + polarizing beam splitter (PBS) arrangement is effectively an amplitude-modulating SLM.
The system works as follows: in our experiments, a vector is loaded as pixels on the organic light-
emitting diode (OLED) display, and weights on the SLM. The input light enters through the PBS
towards the SLM, passing through the HWP twice as the SLM reflects it. The SLM and HWP together
rotate the polarization of the light, such that the amount reflected by the PBS towards the detector for
each pixel is roughly the product between the pixel value and the corresponding weight on the SLM.
The summation of these element-wise products by the detector yields the dot product.

Display Amplitude SLM

Input Vector Weights

Rearrange to block Element-wise products summed
at detector

Output

Calibration Curve

Convert measurement to
neuron value

Figure 7: Simplified illustration of experimental setup operation. Weights are loaded and rearranged
into a block on spatial light modulator (SLM) to prevent crosstalk between pixels of drastically
different values. Data is rearranged on display accordingly. Measurements are looked up against
calibration curve to obtain the final output value.

macropixels for the results we report, but later discovered that with 3x3 the performance is essentially
the same. We also rearranged vectors into square blocks of pixels so that significantly nonzero
weights are nearby each other Figure 7. For the vectors to better fit in the center of the field of view
(where there is less distortion/misalignment) we computed the dot products using only the 400 largest
weight elements (the corresponding input elements are loaded). While this may introduce some
inaccuracy in the final results, we found that the benefits of computing the element-wise products
more accurately outweigh the drawbacks of pruning the weights; the outputs were still quite accurate
to the ground-truth dot-product values (see main text, Figure 3). We suspect that this was the case
because:

• Transformer weights are not entirely dense; some weights were already zero.

• Because our setup only supports non-negative data anyway, we use the four-pass approach
(Section 3.3, main text). This means that for any given dot product, roughly half the weights
and activations will be zero before considering the previously mentioned sparsity.

• Meanwhile, a second consequence of this four-pass approach is that roughly half of activa-
tions will be zero as well, possibly rendering some of the pruned weights irrelevant.
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• Transformers still perform well when pruned, and luckily larger models can be pruned more
heavily [60]. While our pruning method is quite basic, the number of weights pruned was
light (ie. < 75%) compared to what is possible with more advanced methods.

This approach was not necessary for attention calculations, since the dot products were sufficiently
small to fit them entirely (64 elements).

Next, we consider the lookup tables (LUTs) of the display and SLM in the setup. In order to optimize
the experimental results, the model used for experiment was trained to be aware of the realistic,
discrete mappable values supported by the system. The display has a LUT with 256 unique levels
(1000 levels total, but many are the same as others) and the SLM has roughly 128 unique levels (256
total). So they are roughly capable of 7 and 8 bit precision. The SLM also cannot fully extinguish
input light—the minimum modulation is 2% of the maximum transmission. Thus, the minimum
absolute values of the weights were mapped to 0.02 instead of 0.

After applying these approaches, we finally collected the calibration curve, which maps the output
intensity measurements to neuron values in the neural network and allows us to determine the
experimental setup’s systematic error. To do this we sampled randomly inputs and outputs of
the layers we wished to run, computed their dot products both digitally and in experiment, and
created a data set of experimental measurements and ground-truth-digital dot-product outputs. We
then performed linear regression to find a mapping between experimental output and the correct
values, effectively creating another lookup table. Then when future dot products were computed
experimentally, the output was passed to this linear regression model (or it can literally be stored as a
lookup table) to get the output. We used many photons and averaged outputs across multiple shots
for each input, eliminating shot noise—any remaining error in this calibration scheme we defined as
the system’s systematic error.

It is important to note that in general other optical systems might have different causes of error from
ours, but the overall accuracy of our system is representative of a typical ONN nowadays.

C.3 Model Design Optimization

Transformers tend to have large dynamic ranges in their activations and weights [61]. In particular, we
found that systematic error is proportional to some characteristic amplitude of the output. So, because
it scales roughly with the sizes of outputs, having large outlier values can increase the systematic
error and worsen the calibration for all other values in the representable range. Furthermore, after
quantization in a naive, linear scheme, large outliers mean that huge ranges of outputs which are
seldom used are assigned to many of the quantization levels, while the rest of the small, common
outputs are squashed into few buckets—so the model precision is poor. This can be an issue when
quantizing any deep learning model, but was exacerbated here by those systematic errors and the
fact that the lowest levels of the weights are 0.02 and not 0.0. Therefore, we opted for an aggressive
clipping scheme and the clamped activation ReLU6 when training the model to be run (Appendix
B, LUT-base model); they reduce the dynamic range of inputs and weights and we found that they
drastically improved the ONN’s ability to run Transformer operations with smaller error. Having
fewer values in the 0.02 bucket of the SLM LUT also improved QAT training stability significantly.
Even though the non-zero light extinction at 0.02 is caused by the specific SLM in our setup, such
issues may happen with other optical implementations made of elements with finite extinction or
resolution, and here we described a method to mitigate such issues by modifying training methods.

C.4 Transformer Dot Product Samples

While the speed and parallelism limitation of our setup made it intractable to run an entire Transformer
model on it, we attempted to sample dot products to run that were representative of the range of
possible activation/weight statistics in the model. That way, our results would be very representative
of what running the full model would be like. In particular, we found two ways in which statistics
throughout the model vary: the statistics change with depth (shallow and deep layers behave differ-
ently) and operation type (matrix-matrix multiplication in attention has different statistics from MLP
layers). So, given our limited ability to run operations on the setup, we sampled roughly 10000 dot
products from the first (QKT ) attention operation and second MLP layer of the first and last encoder
layers of the model. The inputs to the whole model were samples from the Wikitext-103 dataset. Our
approach captures the range of statistics throughout a model’s different components, over its depth,
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Table 5: Simulated optical Transformer precision ablation. Input precision is degraded by subsampling
from lookup table (LUT), while output is quantized. Input precision is approximate, as LUT has
1000 levels, not 1024. Bold: most compressed model found in our ablation with performance very
close to the baseline.

Input Precision (LUT) Output Precision Val. Loss

∼ 10 bits 32 bits 3.0059

∼ 9 bits 32 bits 3.0057
∼ 8 bits 32 bits 3.0054
∼ 7 bits 32 bits 3.0039
∼ 6 bits 32 bits 3.0034
∼ 5 bits 32 bits 3.0017
∼ 4 bits 32 bits 3.0111
∼ 3 bits 32 bits 3.1223
∼ 5 bits 8 bits 3.0032
∼ 5 bits 7 bits 3.0074
∼ 5 bits 6 bits 3.0335
∼ 5 bits 5 bits 3.3966

and when processing a real task’s data. The second MLP layer has dot product size 4d, making it the
hardest to run experimentally.

In sampling the dot products, we tried to sample from both operands equally. For example, one
could sample 1000 dot products by taking a single input vector and 1000 weight matrix vectors, and
vice-versa, but choosing random vector pairs captures dot products involving different tokens and
weights. This is important because Transformer output sizes, particularly the outlier activation values,
are token-dependent [61]. To maintain this balance, we sample equal rows/columns for both operands.
For attention layers we sample 100 from each; For linear layers, we sampled 56 rows from the input
data and 200 columns from the weight matrix WT , where the product being computed is xWT .

D Simulated Precision Ablation Study

To further study how the optical Transformer can perform inference at lower precisions, we conducted
a simple ablation on the input and output precisions used at inference, on the 8-bit-QAT base-sized
model with LUT. We opted to leave the weights at 8-bit precision, since in-place weights are not a
significant energy cost, and do not take more space/memory in these analog optical systems. In Table
5 is the performance of the model at lower precisions. With 5-bit input and 7-bit output precision, the
model performs as well as the baseline. The reported precision values for the LUT are approximate,
since the LUT has 1000 levels instead of 210 = 1024 levels.

When using the LUT, it is also not possible to directly change the precision of the input. Instead, we
employed a subsampling scheme where the precision is degraded by rounding to every n’th integer
level before using the LUT, where n is a power of 2 and represents a reduction in the effective bit
precision. The LUT of our display has 1000 levels, some levels have the same value, and we simulate
the model without added noise. So we say that the original precision is initially at most 10 bits
(210 = 1024).

E ONN Energy Calculation

The models we used to estimate the energy use of ONN systems are in Table 6. We used a variety of
real models that have been introduced by other works, and then designed our family of hypothetical
future models FUTURE-* in a similar fashion, keeping a reasonable sequence length, increasing the
embedding dimension drastically, and following the trend of recent large models like PaLM [56] and
MT-NLG [64] of increasing the ratio d/h, which results in favorable energy calculations due to the
lower fraction of memory operations in attention.

The calculation of energy costs for ONNs requires consideration of the entire system design and the
costs of the surrounding electronics—since the optical computation itself is so cheap the electronics
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Table 6: Designs of models used for energy estimates. Transformers have embedding dimension d,
process sequence length n, use h attention heads, and have L layers. M = 106 parameters.

Model n d h L Parameters Reference

GPT2 1024 768 12 12 117M [35]
GPT2 1024 1024 16 24 345M
GPT2 1024 1280 20 36 762M
GPT2 1024 1600 25 48 1.5B
Megatron 2048 1536 16 40 1.2B [62]
Megatron 2048 1920 20 54 2.5B
Megatron 2048 2304 24 64 4.2B
Megatron 2048 3072 32 72 8.3B
GPT3 2048 768 12 32 125M [16]
GPT3 2048 1024 16 24 350M
GPT3 2048 1536 16 24 760M
GPT3 2048 2048 24 24 1.3B
GPT3 2048 2560 32 32 2.7B
GPT3 2048 4096 32 32 6.7B
GPT3 2048 5140 40 40 13B
GPT3 2048 12288 96 96 175B
Turing-NLG 1024 4256 28 78 17B [63]
MT-NLG 2048 20480 128 105 530B [64]
Chinchilla 2048 640 10 10 73M [19]
Chinchilla 2048 1024 16 20 305M
Chinchilla 2048 1280 10 24 552M
Chinchilla 2048 1792 14 26 1.1B
Chinchilla 2048 2048 16 28 1.6B
Chinchilla 2048 3584 28 40 6.8B
Chinchilla 2048 8192 64 80 70B
PaLM-like 2048 4096 16 32 8B [56]
PaLM-like 2048 8192 32 64 62B
PaLM-like 2048 18432 48 118 540B

FUTURE 2048 40960 80 120 2.4T This work
FUTURE 2048 81920 128 200 16T
FUTURE 2048 163840 160 400 129T
FUTURE 2048 655360 512 800 4q

account for nearly all of the energy cost. The way the energy is accounted for is as follows: The
energy Eload can be broken down into three components, related to the energy of the cost of reading
from memory Eread, digital-to-analog conversion (DAC) EDAC, and modulation to generate the light
Emod:

Eload = Eread + EDAC + Emod. (1)

Detection energy consumption Edet can broken down in a similar fashion, where

Edet = Edetector + Eamp + EADC + Ewrite (2)

represent the costs of detecting a signal, amplifying the detected signal, performing analog-to-digital
conversion, and writing to memory respectively. There is also a cost of maintaining the weights in
a weights-in-place system, which we call Emaintain. Because this cost scales per element, it is a
per-MAC cost. But based on values from efficient commercial SLM systems, it is sufficiently small
(and amortized by a large clock rate) that even the largest models we do estimations for are not
bottlenecked. For optical energy, we take 1 eV (single-photon energy at 1240 nm). We started with
using our measured 8-bit-performance photon count of 1500/MAC for the smallest model (d = 192)
and rescaled the value for larger ones using the constant-per-dot-product trend which we know our
simulated models can match or beat.

The assumptions we used were that weights would be loaded from off-chip memory like DRAM (in
the case of a chunked-weights strategy; for a full weights-in-place, one-shot approach this cost does
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not exist), and that the system uses large amounts of SRAM for activations [65]. We assumed that the
system only needs 5 bits worth of input precision and 7 bits worth of output precision, per the results
of our ablation on the base-sized model. We still assumed 8-bit memory accesses for convenience.
The actual costs for the data access and weight maintenance were assumed to be these values:

• Eread = 1 pJ/bit for off-chip memory [66], and 0.3 pJ/bit for SRAM. The SRAM estimate
is based on results for DNN accelerator measurements with 9.55 pJ/32-bit access [67, 68],
and cutting edge/near-future assumptions for data transport from SRAM/cache [65]. [69]
estimates 14 pJ per 64-bit access, or roughly 0.22 pJ/bit, for a recent TPU architecture.

• EDAC = 10 pJ per 5-bit sample @ 10GHz—this is achievable with 100mW at 30.1dB
SFDR [70].

• Emod = 1 fJ/bit @ 110GHz with thin-film lithium-niobate modulators [71].

• Eamp = 2.4 pJ per access. A transimpedance amplifier can run at 24 mW at 70 GHz [72].
We will just assume 10 GHz. 24mW / 1010 = 2.4 pJ per element.

• Edetector is negligible compared to Eamp. For example, [73] calculates the cost of detection
as the capacitive discharge, 1

2CV 2, with capacitance C ∼ 1 fF and voltage V = 0.5 V. This
results in <500 aJ of energy consumption per detection. The cost is therefore negligible
compared to amplification (Eamp).

• EADC = 3.17 pJ per 7-bit sample. 10 Ghz, need 7-bits of precision, so 128 conversion steps
per sample – Achievable with 24.8 fJ/c-s [74] (24.8 fJ × 128 = 3.17 pJ per 7-bit sample).

• Ewrite = Eread. Actually, write access was measured to be cheaper than read access in [68],
but we use Ewrite = Eread as a simple, conservative assumption.

• Emaintain = 0.002 fJ/MAC. Assuming 2W for operation of a 10MP SLM, with inputs
shone at 10 GHz (each pixel performs one MAC every cycle). There is not much information
SLM power consumption for maintenance of a fixed pattern on the LCD panel, though more
typical LCD displays which update can operate in the ∼1W regime. For example, [75]
consumes 30mW with 180000 pixels, which would scale to 1.67W with 10MP (at worst,
multiple SLMs/LCDs could be used in order to scale up).

F Breakdown-Of-Costs For Estimated ONN Energy Usage

Figure 8: Breakdown of optical Transformer energy costs by energy type at 8-bit operation. Data
access costs are dominant due to the high costs of DAC/ADC, but weight maintenance becomes
important for large models.
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Figure 9: Breakdown of computing costs for optical Transformer models. Left: fraction of total
compute used by digital operations, attention, and feed-forward components. Feed-forward layers
account for most of the compute. Right: breakdown-of-costs for models by layer. The energy costs
of attention operations is expensive. “Ele *” operations: electrical costs of loading (Ld), detecting
(Dt), or both for data for the operation. Operations related to attention computation (ie. QKT ) are
expensive for little compute. Functions computed digitally have their energy costs estimated as the
cost of reading and writing to memory the required data.

In Figure 8 we see that data access costs, that is costs per element loaded/stored in memory, are most
expensive. In particular, the cost of ADC and DAC are the leading contributors to the access costs,
though since their cost is exponential in the bit precision, one might imagine that a future, optimized
Transformer running at lower precision than our assumptions would have energy costs dominated
by the actual SRAM memory costs. Also, for very large models, since the energy from weight
maintenance scales with the number of MACs, it eventually will dominate if model sizes scale past
that of FUTURE-4q. But future hardware would reduce Emaintain through improved electronics or
higher clock speeds allowing for lower energy per MAC. Finally, the contribution from optical energy
is vanishingly small, a consequence of the efficient photon usage scaling that we found Transformers
can leverage. Were it not for this, the cost of actually performing the MACs would be orders of
magnitude larger than everything else, resulting in energy usage that scales the same way as digital
systems’.

Breaking down the sources of compute and energy costs in Transformer models running optically
further illustrates how aspects of model/system design affect energy usage. The breakdown of
compute and energy costs by source is in Figure 9. We find that as models get larger the feed-forward
layers require most of the computation, but that the energy of data access in attention is still very
expensive. This is because of the need to save/load many attention matrices from memory, and
the fact that a weights-in-place scheme cannot be used for the matrix-matrix products because the
products are between activations. Of course, this also means that there are more activations to load.
In total, this means that attention layers have high energy costs for small amounts of computation.
Thankfully, and interestingly, existing model design trends have moved towards focusing much harder
on feed-forward layers, and so for the largest real (and our hypothetical future) models the fraction of
energy cost taken by attention is low. Finally, we note that the operations we assume run on digital
computers - such as nonlinear functions, in gray - do not account for much of the total energy cost
(though they too are a small fraction of the total compute).
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Figure 10: Energy usage estimates of forward pass for Transformers running on optical hardware,
under future electronics energy cost assumptions. The energy advantages over our estimate for the
current-day NVIDIA A100 GPU are larger than under our original assumptions (main text, Figure 5).
M = 106, G = 109, T = 1012, q = 1015 parameters.

G Future ONN Energy Consumption

As optical accelerators are an emerging technology and as Transformer models continue to scale over
time, it is worth considering how ONNs might improve over the next several years. For example, an
interesting question to ask is how well future ONNs will do by the time it is possible to run a large
model like FUTURE-4q. To investigate this, we estimated the energy costs of various Transformer
models running optically again, but with the following changes and assumptions:

• Emaintain = 0—Future weights-in-place hardware will need effectively no energy to main-
tain weight information (for example, one might consider the usage of phase change materials
[76]).

• EDAC and EADC are 1/32 the size—we assume that electronics could achieve a 2× improve-
ment in fJ/c-s efficiency, while future advancements in model compression allow for 4-bit
Transformer models, which are much cheaper since DAC and ADC costs scale exponentially
with the number of bits [77].

• Eread and Estore are 1/5 the size—there is already a growing recognition of the fact that
AI accelerators will need high efficiency and large quantities of SRAM and DRAM in the
future [65, 3].

• Eamp 10× cheaper (there are already cheaper trans-impedance amplifiers than our conser-
vative estimate here, and receiver-less configuration without any amplifier has also been
demonstrated [78]).

Under these assumptions, ONNs become far more efficient, highlighting that improvements to
electronics will impact ONNs, and not just competing digital hardware. The energy scaling (Figure 10)
is shifted downward for optics compared to under our previous assumptions, leading to over 1900×
and 130, 000× advantages over the current A100 GPU for MT-NLG and FUTURE-4q models
respectively. Of course, by the time this is possible, GPU efficiency will have improved significantly
as well, and we are comparing a 4-bit accelerator to the 16-bit performance of the A100. It is difficult
to predict the future efficiency of GPUs at lower precision, but it is clear that ONNs can benefit from
improvements to electronics and low-precision inference.
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H Scaling ONNs: System Specifications and Communication Costs in
Multi-Processor and Memory-Constrained ONN and GPU Setups

Implementation of a real ONN for large models might be difficult because the amount of hardware
needed to maintain all the weights is exceedingly large. In Table 7 are the requirements for hardware
to run the largest future model. To compute the number of weights/elements, we selected the largest
MLP layer in the model, since that requires the most space for weights and activations. While
detector and memory requirements are achievable, the number of required cores—each an optical
component capable of performing 10M multiplications with weights—is enormous. There are some
approaches to remedy this kind of memory issue in both GPUs and ONNs, and we are interested in
their hardware-time-energy tradeoffs for ONNs.

One solution is to introduce chunking, where only a portion of the weights are loaded at a time, and
the inputs are passed through. Then, the amount of time it takes to run is increased by a factor of
the number of chunks. This also impacts the optical system’s energy advantage over digital ones in
two ways. First, the weights must be loaded, but the cost can be amortized via reuse with batched
inference. This comes at the expense of latency. This is a new kind of tradeoff, since digital systems
cannot reuse weight data for free. Second, for each weight chunk, all inputs must be reloaded;
changing the chunk number trades energy efficiency for lower hardware requirements. These energy
tradeoffs are illustrated in Figure 11; other factors dominate energy usage until the chunk number is
large and chunking becomes the bottleneck.

Realizing large models with GPUs will likely also require a multi-GPU strategy, which will incur
overhead over the peak performance of a single GPU. We find that with a simple model of communi-
cation costs—modelling the activation reloading in both GPU and ONN systems—that ONNs can
retain some of their advantages, dependant on how much system memory (or maximum number
of weight elements) is available per-processor. We created a simple model to estimate the cost of
this approach in GPU systems. In GPU systems, instead of splitting a model over time, the model
may instead be split over multiple GPUs. This introduces an analogous tradeoff to the activation
reloading in ONNs due to communication costs: if each GPU holds some chunk of weights, then
after every layer, the outputs of multiplying the inputs with each chunk must be broadcasted to every
GPU in an all-to-all fashion. This is in essence an all-reduce operation—after every layer, the outputs
from all GPUs must be copied onto all GPUs. In total, this means the total number of activations
is loaded k times, where k is the number of GPUs. As a crude but conservative estimate of these
costs, we modeled this by taking the cost of running the entire model on one GPU, and then adding
the energy cost of loading the activations from DRAM, multiplied by the number of chunks (GPUs).
This is likely an underestimate, as broadcasting data across GPUs in a real setup requires sending
data electronically over much longer distances than required for DRAM access, which would be
expensive.

To determine the number of chunks, we tested multiple assumptions about device memory. We
assumed a value for the amount of memory that can be used to store weights and take the total number
of weights for each model divided by this memory capacity to determine the number of chunks to be
used.

With these models, we found that too much chunking is detrimental to ONN performance, but that
there is still some energy advantage to be had if it is used sparingly (Figure 11). In Figure 12 (top)
are the energy cost estimates assuming a fixed memory of 100M weights (ie. 100MPixel SLM, or
RAM with 100MB capacity if each weight is one byte). We assumed that for GPU, the cost of
communication is at least that of DRAM-level communication due to the physical distances between
GPUs. The curves for GPUs bend upward as the communication costs begin to take over, as do the
largest models running optically. The ONNs still maintain an advantage, but the advantage stops
growing with model size. Looking at the energy advantage illustrates this idea more clearly: up to a
certain model size the advantage is increasing, then as the model size reaches the memory limit it
begins to level off, and then the advantage begins to shrink as the cost of chunking takes over. For
a small range of model sizes near this peak, the advantage is maintained, suggesting that a small
amount of chunking may be useful before it quickly diminishes the energy advantage.

The optimal configuration for ONNs, obviously, is to have enough memory (cores which have weights
fixed in place) so that chunking is not necessary. When plotting the advantages for larger memories
(and therefore fewer chunks), the advantage gets better, and larger models become worthwhile to
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Figure 11: Optical energy advantage vs A100 (FUTURE-4q). When chunking, the cost of loading
weights is amortized by increasing batch size, but the overall performance is limited by large numbers
of chunks because of input data reloading.

run. In hindsight this conclusion makes sense: the benefit of ONNs is their ability to copy data
(“optical fan-out”) for free for parallel computation, and so reducing this in favor of repeated memory
accesses removes exactly the mechanism that gives optics-based systems their advantages. This also
suggests that an “optical memory” from which fixed data can be accessed for free (or significantly less
than re-access through electronics) may solve this problem, allowing for more scalable ONN design
without huge amounts of hardware for weights. Currently, optics still has an advantage when using
multiple cores because in principle the data could be fanned out across cores, while GPUs must pay
communication costs in multi-processor setups. With a fan-out/fan-in design that can collect/spread
a vector across cores, the efficiency of an entirely weights-in-place system is fully that of a single,
large core.

Comparison to Language Model Caching Techniques Transformers running autoregressive
language modelling at inference time may utilize caching techniques (such as KV-cache in attention)
to speed up and save computation for inference. However, such mechanisms also use exorbitant
amounts of memory, and requires offloading to off-chip memory or farther-away memory [79], each
of which is far more expensive per bit than SRAM. It is difficult to estimate the energy consumption in
these scenarios, but Transformers with unrestricted attention (such as for masked language modelling
[34], vision transformers [24], etc.) must perform the full computation in a single forward pass
anyway.

Table 7: Requirements for optical accelerator running feed-forward layer (embedding dimension d,
sequence length n) without chunking at 8-bit precision. The requirement of many cores to maintain
weights for matrix-vector products (MVM) is high, and we assume the ONN system requires static
RAM (SRAM) for saving and loading activations.

Model Input Vector Elements Detectors MVM Cores (107 weights each) SRAM (activations)

FUTURE-4.1q 2.6 × 106 2.6 × 106 170,000 5.37 GB
FUTURE-129T 6.55 × 105 6.55 × 105 11,000 1.34 GB
FUTURE-16T 3.28 × 105 3.28 × 105 2,700 671 MB
FUTURE-2.4T 1.64 × 105 1.64 × 105 671 336 MB

PaLM-like-540B 7.37 × 104 7.37 × 104 136 151 MB
MT-NLG-530B 8.19 × 104 8.19 × 104 168 168 MB
GPT3-175B 4.91 × 104 4.91 × 104 61 100 MB

General 4d 4d 4d2/107 4nd
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Figure 12: Energy estimates assuming a fixed processor memory size and chunking. Top: estimated
energy scaling plot for Transformer models running on optical and digital hardware with 100MB
of memory. As models get larger, both optical and digital systems have an upward bend in energy
consumption trends, driven by communication/input-reloading-from-chunking costs. Bottom: energy
advantage scaling for different memory sizes. As the memory increases, there is a maximum energy
advantage for optics over NVIDIA A100 and corresponding model size before chunking costs take
over. M = 106, G = 109, T = 1012, q = 1015 parameters.
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Figure 13: Behavior of optical Transformer models with varying photon usage with percentile clipping
scheme. Left: Wikitext-103 validation set perplexity (PPL) versus embedding dimension d and total
photons usage. 8-bit quantized digital model performance levels in dashed lines. Middle: Percent
change in perplexity from ideal 10000 photon count performance still exhibits truncated power-law
scaling with photons per multiply-accumulate (MAC) operation for all models. Right: Scaling of
photon usage for maintaining the 8-bit digital performance versus model size. Dashed lines: constant
photons per dot product (optical scaling) and constant photons/MAC analogous to digital scaling.
Note that unlike for our results in the main text, smaller models beat the constant-dot-product-total
scaling, but the largest model exhibits poor efficiency, as the clipping scheme used here was not well
suited for it.

I Effects of Training and Quantization Scheme on Optical Scaling

Our results demonstrating favorable scaling of photon usage in Transformers show that they can
be optically efficient, but in general the photon usage is affected by the training scheme and other
factors like quantization. This is because approaches for optimization quantization, regularization,
etc. affect the statistics of weights and activations in the network, which unlike digital systems, are
tied to the resource usage. The main example of this is with weights: they are normalized before
being loaded onto an ONN accelerator, and so large outliers may lead to many weights being near 0
after normalization—admitting fewer photons through to the detector. This has a direct impact on the
output SNR, and so depending on weight statistics more or fewer photons may be needed in order to
run at the same precision.

To discover how a different scheme might affect photon usage, we analyzed the optical scaling of our
quantized optical Transformer models with percentile clipping instead of clamping based on EMA
statistics. We applied the same clipping to all models (details in Table 4). These clipped models have
familiar trends in their language modelling performance versus photon numbers, but we notice key
differences in the photons needed to maintain 8-bit digital performance: first, the absolute number
of photons needed for the smaller models (120 and 40 versus 340 and 170 of our unclipped scheme
for d = 192, 384) is much lower—this indicates that clipping of large weight values leads to more
transmission after normalization. Second, the scaling is inconsistent, with smaller models needing
significantly fewer photons than the expected 1/d scaling, but then requiring many photons again
for the largest model. The clipping scheme degraded the performance of the large model. Of course,
this could be improved by designing a better scheme for the largest model such that it requires few
photons; these results illustrate how differences in the training and quantization recipe could lead to a
variety of outcomes, and why efficiency is achievable but not an automatic guarantee for any scheme.
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