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Abstract

Existing tracking-by-detection Multi-Object Tracking methods mainly rely on
associating objects with tracklets using motion and appearance features. However,
variations in viewpoint and occlusions can result in discrepancies between the fea-
tures of current objects and those of historical tracklets. To tackle these challenges,
this paper proposes a novel Spatial-Temporal Tracklet Graph Matching paradigm
(STAR). The core idea of STAR is to achieve long-term, reliable object association
through the association of Tracklet Clips (TCs). TCs are segments of confidently
associated multi-object trajectories, which are linked through graph matching.
Specifically, STAR initializes TCs using a Confident Initial Tracklet Generator
(CITG) and constructs a TC graph via Tracklet Clip Graph Construction (TCGC).
In TCGC, each object in a TC is treated as a vertex, with the appearance and local
topology features encoded on the vertex. The vertices and edges of the TC graph are
then updated through message propagation to capture higher-order features. Finally,
a Tracklet Clip Graph Matching (TCGM) method is proposed to efficiently and
accurately associate the TCs through graph matching. STAR is model-agnostic, al-
lowing for seamless integration with existing methods to enhance their performance.
Extensive experiments on diverse datasets, including MOTChallenge, DanceTrack,
and VisDrone2021-MOT, demonstrate the robustness and versatility of STAR,
significantly improving tracking performance under challenging conditions. The
code is available at https://github.com/baixuewei430-dotcom/STAR.

1 Introduction

Multi-object tracking (MOT) is a longstanding task in computer vision [1} 2} 13} 4], generally divided
into two paradigms: tracking-by-detection (TBD) and joint detection-and-tracking (JDT). Currently,
TBD [5}16, 17, 18,19] generally outperforms JDT in terms of accuracy. The core task in TBD involves
effectively extracting object features and designing accurate association strategies to assign stable
IDs to the same object. However, existing methods still encounter challenges in feature extraction
and data association in difficult scenarios, such as crowded environments or frequent occlusions.
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Reliable object association in crowded or occluded scenarios poses challenges for both feature
extraction and association. Existing methods utilize a variety of features, including object appearance
(L0, 114 [12) [13]], motion [[14} 15, [16L 17} 18], temporal [19} 20} 21]], and neighborhood topology fea-
tures [22, 23] 24] 25]]. However, these features may not be sufficiently distinctive in such challenging
environments. For association, methods mainly employ bipartite matching [26} 27, 128l 29, 30] and
graph matching [31, 32]]. While graph matching provides higher accuracy, its computational cost
increases rapidly with the number of objects and is highly reliant on the distinctiveness of features.

To address the challenges of object association in crowded and occluded scenarios, we propose a
novel Spatial-Temporal trAcklet gRaph matching paradigm (STAR). The key aspect of STAR is
its ability to maintain reliable long-term object associations, even when objects are occasionally
obstructed. The central idea is to enhance feature distinctiveness by utilizing Tracklet Clips instead
of individual object instances. A Tracklet Clip (TC) refers to a segment of confidently associated
trajectories of multiple objects, which captures the appearance, spatial, and temporal features of an
object, making it more distinctive in the feature space. Additionally, we further enhance the features
of TCs by integrating topology information and high-order features through graph neural networks.

More specifically, STAR consists of three components. (1) The Confident Initial Tracklet Generator
(CITG) uses a dynamically adjusted IoU-based method to produce initial tracklet segments from
the input video, ensuring consistency by adaptively separating tracklets of the same object during
occlusion. (2) The Tracklet Clip Graph Construction component rearranges tracklet segments by
timestamps, divides them into tracklet clips (TCs), and converts them into feature graphs. Each
tracklet within a TC is treated as a vertex, while the relationships between these vertices are modeled
as edges. Vertex features integrate appearance, topology, and temporal information, with message
propagation used to capture higher-order features. (3) The Tracklet Clip Graph Matching (TCGM)
module enables fast and accurate TC association through graph matching. The main contributions of
this work are summarized as follows:

1. STAR innovatively reformulates the object association problem into the construction and
matching of Tracklet Clip feature graphs, thus effectively addressing occlusions.

2. The proposed Tracklet Clip Graph Construction (TCGC) method enhances distinctiveness
and robustness of each object’s feature by constructing multi-object spatial-temporal feature
graphs.

3. Our Tracklet Clip Graph Matching (TCGM) approach employs tracklet-level graph match-
ing to not only enhance matching accuracy but also overcome the efficiency bottlenecks
associated with traditional frame-level graph matching.
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Figure 1: Comparison on MOT17 and MOT20. The x-axis represents MOTA, the y-axis represents
IDF1, and the bubble size indicates the number of ID Switches (smaller is better).



2 Related Work

MOT has gained significant attention across industry and academia. We review relevant methods
focusing on feature extraction and data association approaches.

2.1 Feature Extraction

Features fall into four categories: motion, appearance, temporal, and topology. We examine how
existing methods address feature discontinuities caused by viewpoint changes.

Motion Feature. Basic motion features (position, velocity, bounding box dimensions) become
unreliable with irregular camera movement. OCSORT [33]] modifies the Kalman filter [34] to
prioritize detection results. StrongSORT [35]] and MAT [36] use regression to connect fragmented
trajectories. While BOT-SORT [11] and MAA [15] compensate for camera motion through coordinate
transformations, they remain computationally expensive and struggle in crowded scenes.

Appearance Feature. Deep learning models extract high-dimensional appearance vectors [37]] that
complement motion features. FairMOT [10] enhances feature extraction, while SimpleTrack [38]]
and BoT-SORT [[L1] optimize feature combinations. Xie et al. [39] develop region-based networks
for fine-grained features. However, these methods perform poorly with UAV footage where object
textures are less distinct and undergo perspective deformation.

Temporal Feature. These features model frame-to-frame dependencies. CenterTrack [19] and STTA
[20] employ temporal attention, while McLaughlin et al. [40]] use recurrent networks. Zhang et al.
[21] propose orderless representations for better temporal modeling. These approaches, however, are
sensitive to occlusions and often neglect multi-object relationships.

Topology Feature. Graph-based structures capture object relationships. GSM [22] builds directed
graphs based on relative positions. GTAN [23] creates graphs between detections and trajectories
but overlooks intra-frame relationships. [25]] introduces topology features that remain stable under
viewpoint changes but often ignore temporal information.

Existing methods underutilize tracklet-level features, limiting their effectiveness against occlusions
and viewpoint changes.

2.2 Data Association

Data association connects current object features with previous tracklet features through bipartite or
graph matching.

Bipartite Matching. This approach treats association as a linear assignment problem. ByteTrack
[41] uses thresholding while retaining low-confidence detections. This two-stage association has
become standard (used in [26} 27, [17,128]]). Some methods extend this approach: [29] uses three-stage
association, while LG-Track [30] employs four stages. However, multi-stage approaches that don’t
consider all tracklet-detection pairs simultaneously can introduce identity switches.

Graph Matching. This approach formulates data association as a graph problem, where vertices
represent objects or tracklets and edges capture their relationships. GM [31]] was the first to apply
this method in MOT, significantly improving association accuracy. GPM [9] pioneers the abstraction
of the multi-object tracking problem into frame-level point set matching. SuperGlue [42] combines
graph matching with deep learning but mainly focuses on keypoint relationships, neglecting important
intra-frame connections. GMTracker [32] enhances convergence speed by replacing the Sinkhorn
layer with a graph matching network. However, graph matching methods have notable limitations:
computational costs increase rapidly with the number of objects, and accuracy is highly reliant on the
distinctiveness of features, which restricts their scalability for large-scale MOT applications.

To address these challenges, we propose STAR, which utilizes spatial-temporal information to create
distinctive and robust TC feature graphs, while efficiently reducing computational bottlenecks and
maintaining accuracy through effective TC feature graph matching.



3 Methodology

3.1 Problem Definition and Overview

Given an input video sequence of L frames, the detected objects in frame ¢ are represented as
I = {01,02,...,0n,}, where n; is the number of objects. Each detection o; is a tuple o, =
{pos;, 1;, score;, t; }, with pos; as the position, f; as the appearance feature, score; as the confidence
score, and ¢; as the timestamp. The goal of multi-object tracking (MOT) is to generate trajectories for
all objects by matching detections that refer to the same object, represented as T* = {1}, Ts, ..., T, }.
An overview of STAR is shown in Figure 2] The detection set is processed by the Confident
Initial Tracklet Generator (CITG) to produce Confident Initial Tracklets (CITs), denoted as G =
{91,92,-..,9r} Itisimportant to ensure that CITs are generated with a strict object association
strategy, so each CIT corresponds to the same object. Due to occlusions, a single object’s trajectory
may be split into multiple CITs, leading to a total number % of CITs that is typically greater than or
equal to n. MOT is then reframed as matching these CITs to produce the final object trajectories,
denoted as G* = {¢7,95,...,95}.
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Figure 2: Overview of STAR. STAR consists of three essential components. CITG generates reliable
initial tracklets G. The TCGC produces TCs and constructs robust spatial-temporal feature graphs
F) where each object in a TC is represented as a vertex, with black cuboids serving as empty
placeholders in F,. TCGM facilitates efficient and accurate matching of object vertices across
different TCs, ensuring robust associations.

3.2 Confident Initial Tracklet Generator (CITG)

A critical component of STAR is the CITG, which employs a strict association strategy. Tracklets are
initialized based on object detections in the first frame and iteratively refined by calculating the IoU
values between consecutive frames. If a detection matches multiple tracklets, none are selected. By
prioritizing detections with higher IoU values, the generated tracklets correspond to the same object
across frames. A tracklet is considered terminated if it remains unmatched for three consecutive
frames, ensuring that only reliable and consistent tracklets are retained. To enhance generality while
maintaining reliable associations, the IoU threshold is dynamically adjusted based on factors such as



object velocity, detection box size, and inter-frame time intervals. The reliably generated Confident
Initial Tracklets (CITs) provide a solid foundation for the subsequent stages of TCGC and TCGM.
Additional details can be found in Section[A2]

3.3 Tracklet Clip Graph Construction (TCGC)

Since CITs G = {g1, g2, - - -, gx } have been obtained, two tasks will then be performed: generating
Tracklet Clips (TCs) and constructing the TC graph, as shown in Figure[3]
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Figure 3: Overview of TCGC.

Generating Tracklet Clips. We arrange G by aligning in time and then cut them from time dimension,
into fixed length Tracklet Clips (TC). Note that each TC contains trajectory segments of the objects
detected within that short time interval. For object that haven’t appeared in a frame in the TC, we use
an empty placeholder which is represent by black cuboid in Figure[3] We denote the generated TCs
by TC = {TCy,TC,...,TCy,}, and the interval length of each TC is N consecutive frames. A
TC contains at most k objects. For each tracklet segment of object, we apply weighted pooling to
the position and appearance features based on confidence scores, resulting in the aggregated feature
gi = {posi, ]} for the Ith object in the ith TC.

Constructing TC Graph. Each TC encodes the temporal features of the concurrently appeared
objects during that interval. We then construct a graph for each TC, to further model the spatial,
appearance, and topology features of the objects in TC. It involves two steps: initialization and
propagation. Initialization builds a graph which treats the objects in the TC as vertices, and builds
edges by distances and angles. Propagation refers to the message-passing process that extracts
high-order topological features. The appearance feature is also considered, and the two types of
features are concatenated. Since every TC is constructed using the same method, the superscript
of TC is omitted. The constructed graph of each TC successfully encode the temporal, spatial and
appearance features of the objects in the TC, making each object have more distinctive feature.

3.3.1 Initialization of a TC Graph

Appearance and topology features are utilized, which ensure stability under varying viewpoints. Due
to dimensional differences between the topology and appearance features, we divide the TC feature
graph F = (V, E) into two parts: Fypp and Fy,p,o. Each object is treated as a vertex. Let ny and ny,
represent the topology and appearance features of the kth vertex, and e;; and &, represent the
topology and appearance features of the edge (j, k) respectively. Finally, we combine these two
feature graphs as F = Fp, U Fiopo, Where Fiopo = (1, €) and Fyp, = (D, €).

Vertex topology features are constructed using normalized lengths, angles, and positions rela-
tive to neighboring objects. We define the neighborhood set for vertex k as Ny = {gx | gr €



T'C and dist(g;, gr) < r x min(hg, wo)}, where < 1 is a constant, and hy and wy are the height
and width of the input image, respectively. The function dist(-) represents the Euclidean distance
between vertices. Then, the vertex topology features are as follows.

ng_o) = htopo (POs; [[1;]10;) ,  where

o we B ist(a. 1))
x; y; w; hy dist(g;, gx) (
R e N T I € N;.
POs; {wo ho wo’ hg } ! {max(ho, wo) o €N,

|| denotes concatenation, (x;,y;) are the bounding box center coordinates, and (w;, h;) are the
bounding box dimensions. 0; represents the angle between adjacent neighborhood objects. We
concatenate position, distance, and angle information and pass it through h.po, a Kolmogorov-Arnold
Network (KAN) [43]]. Edges are established between each vertex and its neighbors. The edge features
are initialized based on positional and feature similarities.

0 Tji — Tk Yj — Yk W h,
,12’ = Gropo (|: on , J o , 10U (posj,posk) ,log <wi> ,log <h1j€) ,COS(fj,fk):|> .

¢
The superscript (0) indicates the initial state. cos(-) denotes cosine similarity, and the appearance
features f; € R®'? are obtained from a Re-ID module [44]. The construction of F,y, follows a
similar approach of Fiup,, but using object’s image appearance features. To balance the dimensions
of topology and appearance features, we use a three-layer KAN to reduce the dimension for vertex
features in Fp, from 512 to 128.

3.3.2 Propagation

High-order features are obtained through iterative message passing. This process is executed for M
iterations, with messages passed from vertices to edges and then from edges to vertices. The features
of two connected vertices, n; and ny, are first fused with the corresponding edge feature e; ;.. Then,
each vertex n; aggregates messages from its neighboring edges and incident vertices.

(v s ) = e v (0 0"V IKAN (&3

Js J

3)
(e — 'U) : n;-m) = TI(Q) (ng'mil), @nkE/\/j'Vvertex (ngmil), e;?]z)))
Aggregating vertex features and neighboring edge features through three levels of fusion. (1) Fusion
of Neighboring Vertex and Edge Features using the aggregation function ~yerex, which employs a
KAN and a ReLLU activation function.(2) Aggregation of Neighboring Features using a permutation-
invariant and differentiable aggregation function ¢. (3) Final Vertex Feature Update using the

function ™. The update step 7(-) is based on the message normalization proposed in [43].

m;
7 (n;, m;) = KAN (ni—i—s- ||n2|2”1n”) @)
illo

where s is a learnable factor, and || - ||2 denotes the L2 norm. This step ensures that updated vertex
features remain well-scaled and balanced. The same propagation process is applied to Fypp, resulting

in aggregated high-order features nEM) and ﬁ,EM). Finally, the vertex feature v; of the graph F' is

obtained by concatenating these features. This process ensures that the final vertex features encode
rich spatial-temporal information, enabling robust associations in subsequent tasks.

3.4 Tracklet Clip Graph Matching (TCGM)

After each TC graph has been constructed. The next step is to perform matching between different
TCs. Our approach TCGM involves inputting the existing graph (including both vertex and edge
features) into a differentiable graph matching layer [32], which produces the matching output. The
core component of Tracklet Clip Graph Matching (TCGM) is the differentiable graph matching
layer. This layer optimizes the matching process between detections and tracklets by solving a
Quadratic Programming (QP) problem [32]. The result is an optimal matching score vector x,
reshaped into a matrix form X € RN %2 to generate the matching score map. To ensure effective
training, the gradients of the graph matching layer are computed using the KKT conditions, aided
by the implicit function theorem [32]]. TCGM leverages spatial-temporal information to establish



robust associations between tracklets, significantly reducing identity switches caused by occlusions.
By modeling interactions between tracklets within a learnable and differentiable framework, TCGM
improves the accuracy of the association stage, resulting in precise and reliable trajectory generation
for MOT tasks.

Complexity Analysis. Previous graph matching methods construct graphs for individual objects
in each frame, resulting in ngpn = n x £ graphs, where 7 is the number of objects and £ is the
number of frames. The complexity of graph matching algorithms typically ranges from O(ngraph)
to O(ngmph log ngraph ). By proposing TC graphs, we reduce the number of graphs to approximately
ﬁ of the original count, remarkably improving the efficiency of graph matching.

3.5 Loss

To train the differentiable graph matching layer, we use a weighted binary cross-entropy loss function.

N1 Ny
—1 . R
Litack = NN, DN (N = 1) ysnlog (§54) + (1= yjx)log (1= G5x) &)
i=1j=1

where j; 1, is the predicted matching score between tracklet g; and tracklet gy, and y; 1, is the ground
truth indicating whether tracklet g; belongs to tracklet gi. (N2 — 1) is the weight used to balance the
contributions of positive and negative samples to the loss. Due to the QP-based formulation of graph
matching, the resulting score map X tends to have a relatively smooth distribution. To sharpen this
distribution and improve the focus on high-confidence matches, we apply a softmax function with
temperature 7.

_ exp(z/T)

= —= ,
2521 0P (L5 k/T)

where ;1 is the original matching score from the score map X, and 7 is the inverse temperature

parameter. A smaller 7 sharpens the distribution, while a larger 7 smooths it. Moreover, the method is

applicable in both public and private detection settings. For public detection, the provided detections

are directly used for tracking. For private detection, the training data is utilized to fine-tune the private
detector. The total loss includes both detection and tracklet matching loss.

L= Edetect + Etracka (7)

where Lgeect denotes the object detection loss, which depends on the private detector.

U5, = Softmax (z; 5, 7)

(6)

4 Experiments

4.1 Datasets and Metrics

Datasets. We select a variety of challenging benchmarks. The MOTChallenge [46, 47] datasets
feature diverse scenes, viewpoints, and weather conditions. MOT17 includes 14 videos (7 for training)
with three detection types: DPM [6]], Faster R-CNN [7], and SDP [5]]. MOT20 focuses on crowded
scenes with 8 videos (4 for training and 4 for testing) that employ Faster R-CNN [[7] detections.
DanceTrack [48] contains 100 videos of various group dances, while VisDrone2021-MOT [49]
comprises 96 sequences with around 40,000 frames across five object categories, posing challenges
like occlusions and varying lighting conditions. These datasets present common issues in Multiple
Object Tracking (MOT), such as frequent occlusions, irregular movements, and similar appearances,
facilitating a comprehensive evaluation of STAR’s robustness and generalization capabilities.

Metrics. The main metric for evaluating our method is the Higher Order Tracking Accuracy
(HOTA) [50], which provides a balanced measure of both object detection accuracy (DetA) and
association accuracy (AssA). Additionally, we also report MOTA [51], IDF1 [52]], False Positives
(FP), False Negatives (FN), Identity Switches (ID Sw.), and Frames Per Second (FPS) metrics.

4.2 Implementation Details

We employ several common data augmentation techniques, including random resize, crop, and color
jitter. The input images are resized such that the shorter side is 800 pixels and the longer side is 1440



pixels. The proposed method is implemented using PyTorch. During training, 2V frames are sampled
from each tracklet, resized to 256 x 128 pixels, and divided into two [N-frame clips to enhance feature
representation. The initial learning rate is set to 0.0003 and is reduced by a factor of 0.1 every 40
epochs. The model is trained for 150 epochs using the Adam optimizer with a mini-batch size of 32.
Additional details and discussions can be found in Section[A.4l

4.3 Comparison with State-of-the-Art Methods

We compare STAR with numerous previous methods on the MOTChallenge (46,147, DanceTrack [48]
and VisDrone2021-MOT [49] benchmarks, as shown in Table [T} Table 2| Table [3] and Table [}
respectively. YOLOX [8] is used as the detector to ensure a fair comparison. The best results are
indicated in bold, and the second-best results are in underline.

MOTChallenge. We evaluate STAR in the private detection setting and compare its performance
against several state-of-the-art algorithms. The results presented in Table|l|and Table [2|indicate that
STAR consistently outperforms existing methods. Our tracklet-level paradigm effectively extracts
and utilizes distinctive tracklet features, achieving improvements of 1.3% and 3.0% in HOTA on the
MOT17 and MOT?20 datasets, respectively, compared to SUSHI [53]].

Table 1: Performance comparison with state-of-
the-art methods on the MOT17 [46] test set.

Table 2: Performance comparison with state-of-

Meth HOTA MOTA IDF1 ID Sw.
ethod | HO o Sw the-art methods on the MOT20 [47]] test set.
FairMOT [[0] 593 737 723 3303
GRTU [54] 62.0 74.9 750 1,812 Method | HOTA MOTA IDF1 ID Sw.
N oo Tos 16 5% FairMOT [10] 546 618 673 5243
iy g6J ou Ry DY N MAA [I5] 573 739 712 1331
6] : . . : ReMOT [63] 612 774 731 1,789
MO3TR [57] 603 776 729 2,847
ByteTrack [41] 613 778 752 1,223
ByteTrack [41] 63.1 80.3 773 2,196
GMTracker [32] | 649 806 798 1197 GMTracker 32} 629 778 767 1331
FeatureSORT [58] | 64.2 80.6 767 2,637 BPMTrack [0J)] 62.3 83 767 1314
BASE [16] 63.5 782 716 984
SMILEtrack [T7] | 653 8.1  80.5 1246 ,
OmniTrack [13] 62.3 791 75.6 1,968 SparseTrack [60] 63.4 78.1 77.6 1,120
BPMTrack [59) 636 813 781 2010 BoostTrack++[61] | 664 777 820 762
SparseTrack [60] | 65.1  81.0 801 1,170 OccluTrack+02] | 66.7  77.7  82.7 429
BoostTrack++[61] | 66.6  80.7 822 1,062 SUSHIIS3] 643 743 798 706
OccluTrack+[62] 66.8 802 828 951 STAR | 673 796 790 1,047
SUSHI[33] 665  81.1 831 1,149
STAR | 678 819 802 1,057

DanceTrack. The complex scenarios characterized by frequent occlusions and irregular motion
present significant challenges for tracking systems. Using the same pre-trained detector, STAR shows
substantial improvements over SparseTrack [60], with improvement of 0.4% in HOTA, 0.5% in
MOTA, 0.4% in AssA, and 0.2% in DetA as indicated in Table

Table 3: Performance comparison with state-of-the-art meth-
ods on the DanceTrack [48]] test set.

Method | HOTA' MOTA 1IDF1 AssA  DetA
CenterTrack [19] 41.8 86.8 35.7 22.6 78.1
TraDes [12] 43.3 86.2 41.2 254 74.5
OCSORT [33] 55.1 92.0 54.6 38.3 80.3
FairMOT [10] 39.7 82.2 40.8 23.8 66.7
QDTrack [64] 54.2 87.7 50.4 36.8 80.1
GTR [56] 48.0 84.7 50.3 31.9 72.5
ByteTrack [41] 47.7 89.6 53.9 32.1 71.0
BoT-SORT [11] 54.7 91.3 56.0 37.8 79.6
SparseTrack [60] 55.5 91.3 58.3 39.1 78.9

STAR | 559 91.8 579 39.5 79.1




These results highlight the considerable potential of our method in managing occlusion scenarios.
Notably, even with a simple IoU distance association strategy, STAR achieves comparable or even
superior performance relative to other methods.

VisDrone2021-MOT. This dataset presents even greater challenges due to frequent occlusions and
varying lighting conditions. As shown in Table[d STAR surpasses BoT-SORT by 2.9% in HOTA and
1.4% in IDF1, while outperforming OCSORT [33] by 2.4% in HOTA and 6.2% in IDF1. Furthermore,
STAR demonstrates a 0.4% improvement in IDF1 over UGT while achieving a 1.6 FPS advantage,
highlighting its efficiency in aerial tracking tasks.

Table 4: Performance comparison with state-of-the-art methods on the
VisDrone2021-MOT [49] test set.

Method | HOTA MOTA IDF1 FN FP ID Sw. FPS
DeepSORT [65] 36.9 34.4 46.7 110,989 21,077 1,784 185
ByteTrack [41] 40.7 39.5 50.4 105,518 16,257 1,581 31.2
BoT-SORT [11] 424 41.7 56.8 103,505 14,114 1,430 253
BiOU_Tracker [66] | 40.2 40.7 48.8 103,188 15,794 2,029 28.5
MOTDT [67] 37.0 35.5 52.6 106,006 15385 2,668 26.2
OCSORT [33] 429 41.6 52.0 132,279 22,019 2859 154

StrongSORT [35] 36.6 333 425 185,503 12,214 1,980 12.1
UCMCTTrack [14] 37.1 28.1 38.4 150,590 9,244 7231 178

QDTrack [64] 44.7 39.1 553 104,759 34242 2,627 103
OUTrack [68] 34.0 35.0 445 115,570 25276 3,335 174
FairMOT [10] 31.1 12.8 377 114,834 59,997 3,072 215
TrackFormer [69] 353 25.0 51.0 141,526 25856 1,534 7.0
SGT [24] 43.6 39.2 548 110,652 17,707 951 27.9
UGT [25] 45.5 41.8 57.8 101,074 15,174 618 16.2
STAR | 453 41.9 58.2 100,832 15,289 602 17.8

These results emphasize STAR’s strong tracking stability and superior performance. Its effective
modeling of distinctive spatial-temporal tracklet feature and the matching of TC graph enable STAR to
achieve state-of-the-art results on MOTChallenge, DanceTrack, and VisDrone2021-MOT, establishing
a new benchmark for multi-object tracking (MOT).

4.4 Ablation analysis
4.4.1 Effect of Tracklet Clip Graph Construction (TCGC)

Each TC consists of N consecutive frames. The analysis of the frame count (N) per TC is shown in
Table [5]and Figure[d] It can be observed that N' = 6 performs the best and N = 4 is the second-best.
Although there was a slight improvement at N = 6, it was not significant. Therefore, we opted for
N = 4 to ensure robust performance in challenging scenes.

For the sampling strategy with N = 4 and a stride length of L in TCGC, we experimented with
various stride lengths to assess their impact on model performance. The detailed experimental results
are presented in Table[6] The model achieved optimal performance at a stride length of L = 1. This
smaller stride length allowed for more effective capture of continuity and changes over time, thus
enhancing the model’s temporal data processing capabilities. Furthermore, comparing stride lengths
of L = 2 and L = 1 with a window size of N = 4, we found that although both settings yielded
good performance, the L = 2 configuration provided high accuracy and improved efficiency.

Appearance similarity serves as a baseline for tracklet association. As shown in Table[7] distinctive
and robust tracklet features significantly enhance tracking performance compared to models that
rely solely on IoU distance for association. While Global Average Pooling (GAP) utilizes a simpler
pooling strategy, our TCGC improves IDF1 from 61.9% to 69.2%. These results clearly highlight the
importance of advanced tracklet feature extraction.

4.4.2 Effect of STAR

We demonstrate that integrating our proposed STAR method with existing tracking approaches
enhances their performance, as summarized in Table E} The evaluated baseline methods, Deep-
SORT [65]], JDE [[70], and CTracker [71], utilize IoU distance and frame-level features for tracklet
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Figure 4: Effect of N in TCGC.

Table 6: Experimental results for various combi- Table 7: Effect of Different Tracklet Description
nations of window size N and stride length L. Methods.

N L HOTA MOTA IDF1 ID Sw. Methods IDF1 HOTA MOTA ID Sw.

4 1 67.9 82.1 80.4 1,023 Baseline 61.9 55.5 57.6 296
4 2 67.8 81.9 80.2 1,057 GAP 63.1 55.6 57.6 209
4 3 67.4 81.5 79.6 1,129 STTA [20] 68.6 58.7 57.7 133
4 4 67.0 81.2 79.5 1,327 TCGC 69.2 59.0 57.9 125

generation, with CTracker also incorporating topological information for data association. When com-
paring the baseline versions with their modified counterparts (DeepSORT*, JDE*, and CTracker*)
that rely solely on IoU distance, we observe comparable MOTA scores but a significant drop in IDF1
(from 62.0% to 55.0%). This decline highlights IoU distance limitations in maintaining identity con-
sistency across long trajectories and emphasizes the necessity for advanced feature extraction and data
association techniques. Integrating STAR with these methods boosts performance, improving IDF1
by 3.2%, 3.5%, and 8.0% for DeepSORT, JDE, and CTracker, respectively. These results demonstrate
STAR’s effectiveness in enhancing identity preservation and association accuracy. In conclusion,
STAR is model-agnostic and can be seamlessly integrated into various tracking frameworks.

Table 8: Performance of Adding STAR upon Existing Methods on the

MOT16 Training Dataset.
Methods | MOTA IDF1 HOTA  FP FN  IDSw.
Deepsort [63] 569 620 513 13,227 33454 932
Deepsort* 566 550 483 10433 35627 1,883
Deepsort*+STAR | 588 652 543 13,041 31,105 1315
JDE [0} 731 689 551 6,593 21,788 1312
JDE* 73.0 61.9 53.6 6,185 22,296 1,330
JDE#*+STAR 735 724 553 6871 21,350 1,125
CTracker [71] 762 686 611 2,149 23,188 912
CTracker* 762 686  61.1 2,149 23,188 912
CTracker*+STAR | 78.8 76.6 66.0 3981 18,960 540

5 Limitation and Conclusion

Unlike previous approaches that overlook historical information and temporal continuity, STAR ex-
tracts and effective leverages distinctive tracklet features through TC to address occlusion challenges.
The framework consists of three core components. CITG efficiently generates reliable CITs, TCGC
produces discriminative TC feature graphs by exploring spatial-temporal information within tracklets,
and TCGM uses graph matching to enhance association accuracy and improve efficiency. Together,
these components produce high-integrity trajectories and achieve state-of-the-art performance across
three widely used benchmarks, demonstrating STAR’s effectiveness and robustness. Despite its
strong performance, the method faces efficiency limitations. Future work will focus on designing an
end-to-end tracking framework to further enhance STAR’s robustness and applicability in real-world
multi-object tracking (MOT) scenarios.
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A Appendix

A.1 Overview
In the supplementary material, we primarily:

1. Provide more details of CITG in Appendix
2. Provide a overview of TCGM in Appendix [A.3]
3. State more experimental details in Appendix [A.4]

4. Provide additional experimental results in Appendix [A.5]

A.2 Construction of CITG

A short-term trajectory continues to be associated with the detection in the next frame until it no
longer matches any detection. The Confident Initial Tracklet Generator utilizes the Intersection over
Union (IoU) metric to associate objects by calculating the overlap between detection boxes. Below is
the detailed process.

Trajectory Initialization: In the first frame of the video, each detection box is initialized as an
independent short-term trajectory.

IoU Calculation: For each trajectory in the current frame, the IoU with all detection boxes in the
subsequent frame is calculated. The IoU value, ranging from 0 to 1, indicates the degree of overlap,
with higher values denoting greater overlap.

Trajectory Matching: Trajectories are matched to detection boxes based on IoU values. A trajectory
and a detection box from the next frame are considered to belong to the same object if their loU
exceeds a specific threshold. If a detection box matches multiple trajectories, none are selected.
Unmatched detection boxes are initialized as new trajectories.

Dynamic Adjustment of IoU Threshold: To accommodate varying motion characteristics of targets,
a dynamic adjustment method for the IoU threshold is employed. This method considers multiple
factors, including the target’s motion speed (v), detection box size (A), and time interval between
frames (At). These factors dynamically influence the ToU threshold.

Trajectory Update and Termination: Matched detection boxes are added to corresponding trajec-
tories, updating their state (such as location and timestamp). Trajectories that remain unmatched
for more than three consecutive frames are terminated. Unmatched detection boxes initiate new
trajectories.

Output Short-Term Trajectories: The aforementioned steps generate a set of short-term trajectories
that capture the preliminary motion trajectories of all targets in the video. These trajectories form the
basis for further trajectory association and long-term trajectory generation.

A.3 Overview of TCGM
A.4 More Implementation Details

We train our model on 24 NVIDIA RTX 2080Ti GPUs. During testing, the entire tracklet is used as
input, with every N=4 frames treated as a clip.

MOTChallenge. In the MOT 16 dataset [46], only objects with a visible ratio greater than 0.3 are
selected, resulting in 517 training identities, 438 gallery identities, and 429 query identities. The
total number of training videos is 2,065, and there are 2,173 testing videos, with each ground truth
trajectory divided into four variable-length tracklets.

VisDrone2021-MOT. The VisDrone2021-MOT-train set, which consists of 56 sequences, is used
for training, while the VisDrone2021-MOT-test-dev set, containing 17 sequences, is used for testing.
During evaluation, a single tracklet per identity serves as the query, with the remaining tracklets in
the gallery.
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Figure 5: Overview of TCGM.

UAVDT. STAR is also evaluated on the UAVDT dataset [[72], which provides diverse scenarios and
challenges. The UAVDT dataset contains 50 sequences with over 80,000 frames, capturing various
situations that present frequent occlusions and significant camera motion.

A.5 More Comparisons with State-of-the-Art Methods

We compare the proposed STAR method with traditional TBD approaches using Tracktor to refine
detections in the public detection setting. As shown in Table[9] STAR outperforms existing methods
on most evaluation metrics, achieving significant improvements in MOTA, IDF1, and HOTA across
the MOT15, MOT16, MOT17, and MOT20 datasets. The tracklet-level approach of STAR integrates
tracklet information during feature extraction and data association, which facilitates more robust
tracking.

Table 9: Performance comparison of Public Detection with state-of-the-art methods on the MOTChal-
lenge test set.The best results are indicated in bold, and the second-best results are in underline.

Datasets | Methods | HOTA MOTA IDF1 FP FN ID Sw.
Tracktor [73] 37.6 46.6 47.6 4,624 26,896 1,280
MOTI5 LFP [74] 43.8 472 57.6 7,635 24,277 554
MPNTrack [75] 45.0 51.5 58.6 7,620 21,780 375
| STAR | 458 558 599 5983 20,700 475
Tracktor [73] 44.6 56.2 54.9 2,394 76,844 617
GSM [22] 459 57.0 582 4332 73,543 475
LFP [74] 49.6 57.5 64.1 4,249 72,868 335
MPNTrack [[75] 48.9 58.6 61.7 4,949 70,252 354
MOT16 | LPC [76] 51.7 58.8 67.6 6,167 68,432 435
MO3TR [57] 50.3 64.2 60.6 7,620 56,761 929
TMOH [77] 50.7 63.2 63.5 3,122 63,376 635
GMTracker [32] 48.9 55.9 63.9 2,371 77,545 531
‘ STAR ‘ 51.2 64.1 66.5 2,427 62,377 511
Tracktor [73] 44.8 56.3 55.1 8,866 235,449 1,987
GSM [22] 45.7 56.4 57.8 14,379 230,174 1,485
LFP [74] 50.7 58.2 652 16,850 217,944 1,022
MPNTrack [[75] 49.0 58.8 61.7 17,413 213,594 1,185
MOT17 | LPC [76] 51.5 59.0 66.8 23,102 206,948 1,122
MO3TR [57] 49.6 63.2 60.2 21,966 182,860 2841
TMOH [77] 50.4 62.1 62.8 10,951 201,135 1,897
GMTracker [32] 49.1 56.2 63.8 8,719 236,541 1,778
‘ STAR ‘ 52.5 64.2 66.5 8,971 190,636 1,994
Tracktor [73] 42.1 52.6 52.7 6,930 236,680 1,648
MOT20 | TMOH [77] 48.9 60.1 61.2 8,043 165,899 2,342
STAR 52.9 64.1 66.5 39,357 143,583 2,825
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For the UAVDT dataset, 40 sequences are randomly selected for training, while 10 sequences are
designated for testing. As summarized in Table STAR demonstrates superior performance
on the UAVDT dataset, achieving HOTA, MOTA, and IDF1 scores of 63.4%, 71.4%, and 80.3%,
respectively, surpassing all other methods. STAR outperforms BoT-SORT [1L1] by 2.0% in HOTA and
3.7% in MOTA, highlighting its effective modeling of topological relationships. Additionally, STAR
exceeds UGT [23]], the best-performing method on UAVDT, by 1.4 FPS in terms of computational
efficiency.

Table 10: Performance comparison with state-of-the-art methods on the UAVDT [72]] test set. The
best results are indicated in bold, and the second-best results are in underline.

Method | HOTA MOTA IDF1  FN FP IDSw. FPS
DeepSORT [65] 620 685 786 20,035 4,008 61 203
ByteTrack [41] 622 688 788 20,010 3,796 102  32.1
BoT-SORT [11] 614 677 785 20296 4323 64 250
BiOU_Tracker [66] | 62.9 703  79.6 17,405 5224 79  38.1
MOTDT [67] 61.8 665 778 17,760 5824 76 224
OCSORT [33] 598 69.5 745 18246 6480 249 133

StrongSORT [35] 583 49.3 72.6 10,606 28,032 134 10.6
UCMCTTrack [14] 54.1 61.0 659 25888 2,482 984 15.4

QDTrack [64] 612 703 761 17304 6420 92 134
OUTrack [68) 586 643 665 18,193 7,826 240 182
FairMOT [[10] 49.1 512 665 33,102 4,136 110 255
TrackFormer [69] 432 379 533 45197 5582 680  7.94
SGT [24] 582 578 770 11,658 20,598 102 30.0
UGT [25] 63.6 71.6 800 17285 4357 67 183
STAR | 634 714 803 17462 4389 74 197
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction match theoretical and experimental
results, and reflect the results may be generalized to other settings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of this work is discuss in Section[3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the equation in the paper have been numbered and cross-referenced.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper disclose the information needed to reproduce the main experimental
results of the paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: This paper provide instructions to reproduce the main experimental results in
Section 4. 2land Section[A4]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper provide instructions to train and test details necessary to understand
the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: This paper reports statistical results, which is staticed by MOTMetrics.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This paper provide information on the computer resources in Section [A.4]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: This paper may have positive societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented and it is provided
alongside the assets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Feature Extraction
	Data Association

	Methodology
	Problem Definition and Overview
	Confident Initial Tracklet Generator (CITG)
	Tracklet Clip Graph Construction (TCGC)
	Initialization of a TC Graph
	Propagation

	Tracklet Clip Graph Matching (TCGM) 
	Loss

	Experiments
	Datasets and Metrics
	Implementation Details
	Comparison with State-of-the-Art Methods
	Ablation analysis
	Effect of Tracklet Clip Graph Construction (TCGC)
	Effect of STAR


	Limitation and Conclusion
	Appendix
	Overview
	Construction of CITG
	Overview of TCGM
	More Implementation Details
	More Comparisons with State-of-the-Art Methods


