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ABSTRACT

In recent years, conversational large language models (LLMs) have shown tremen-
dous success in tasks such as casual conversation, question answering, and per-
sonalized dialogue, making significant advancements in domains like virtual as-
sistance, social interaction, and online customer engagement. However, they often
generate responses that are not aligned with human values (e.g., ethical standards,
safety, or social norms), leading to potentially unsafe or inappropriate outputs.
While several techniques have been proposed to address this problem, they come
with a cost, requiring computationally expensive training or dramatically increas-
ing the inference time. In this paper, we present DIESEL, a lightweight inference
guidance technique that can be seamlessly integrated into any autoregressive LLM
to semantically filter undesired concepts from the response. DIESEL can function
either as a standalone safeguard or as an additional layer of defense, enhancing
response safety by reranking the LLM’s proposed tokens based on their similar-
ity to predefined negative concepts in the latent space. This approach provides
an efficient and effective solution for maintaining alignment with human values.
Our evaluation demonstrates DIESEL’s effectiveness on state-of-the-art conversa-
tional models (e.g., Llama 3), even in challenging jailbreaking scenarios that test
the limits of response safety. We further show that DIESEL can be generalized
to use cases other than safety, providing a versatile solution for general-purpose
response filtering with minimal computational overhead.

1 INTRODUCTION

Large language models (LLMs), particularly those designed for conversational tasks, have achieved
state-of-the-art performance across a wide range of applications, such as casual conversation, ques-
tion answering, and personalized dialogue Zhong et al. (2023); Liang et al. (2022). These advance-
ments have resulted in models capable of generating more natural and contextually aware responses,
enhancing their ability to provide accurate and personalized interactions. As a result, LLMs have
seen widespread adoption across various domains, becoming essential tools in both personal and
professional settings.

Despite their impressive achievements and capabilities, LLMs remain vulnerable to generating re-
sponses that may not align with human values, including toxic content Gehman et al. (2020), misuse
for malicious purposes Weidinger et al. (2021), and exploitation through adversarial attacks such as
jailbreaks, which can result in harmful outcomes Yi et al. (2024); Chu et al. (2024). An example is
shown in Figure 1. The increased accessibility of these models exacerbates these risks, significantly
raising the potential for widespread negative impact.

Recent studies have proposed various techniques to address these challenges, including align-
ment Ouyang et al. (2022); Zhou et al. (2023); Bai et al. (2022), filtering Kim et al.
(2023); Jain et al. (2023); Robey et al. (2023), and inference guidance Touvron et al.
(2023); Phute et al. (2023); Li et al. (2023); Xu et al. (2024) techniques. Alignment tech-
niques, such as reinforcement learning from human feedback (RLHF) Ouyang et al. (2022),
aim to ensure that the model’s responses align with desired objectives, incorporating hu-
man feedback and preferences into the fine-tuning process. Although RLHF-based algo-
rithms are widely adopted in LLMs, they face several limitations, such as scalability is-
sues and difficulty in comprehensively capturing diverse human values Casper et al. (2023).
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Figure 1: An example of a prompt with an ad-
versarial suffix (jailbreak), with the responses of a
vanilla auto-regressive inference and DIESEL.

Moreover, these algorithms lack robust-
ness Wallace et al. (2019); Zhu et al. (2023);
Zou et al. (2023) and are vulnerable to poi-
soning attacks Shu et al. (2023), which can
undermine the model’s safety and reliabil-
ity. Additionally, RLHF-based methods are
extremely resource-inefficient, demanding
significant computational power for fine-tuning
and substantial human effort for manual data
annotation. Filtering mechanisms can be
roughly categorized into rule-based Alon &
Kamfonas (2023); Jain et al. (2023); Robey
et al. (2023) and model-based Google (2024);
OpenAI (2024); Inan et al. (2023) approaches.
Both approaches mainly aim at detecting harm-
ful content and suppress those that fail to meet
safety criteria, resulting an unhelpful response
(e.g., “As an AI model, I cannot..”). Recently,
several inference guidance techniques have emerged to address these safety concerns. RAIN Li et al.
(2023) employs a search-and-backward approach to guide token selection, while SafeDecoding Xu
et al. (2024) utilizes an expert model, which is fine-tuned on a safety-aware dataset, to select
the most appropriate tokens. However, these techniques have notable shortcomings. RAIN, for
instance, has a significantly longer inference time compared to vanilla auto-regressive inference,
while SafeDecoding requires the additional overhead of training an expert model, which can be
resource-intensive and limit its practicality. Furthermore, these techniques rely on a static and
unalterable definition of safety, making it difficult to adapt to evolving safety standards or handle
nuanced contexts that may require a more flexible interpretation of harmful content.

Given the limitations of existing techniques, methods that efficiently operate at inference time are
essential, as they provide practical solutions to either complement existing safeguards or serve as
alternatives to traditional safety measures. Therefore, in this paper, we introduce DIESEL, a flexi-
ble and efficient inference guidance technique that operates with minimal overhead and requires no
additional model training. DIESEL addresses the challenge of generating safer responses by rerank-
ing the tokens proposed by the original LLM according to their similarity to predefined negative
concepts, steering the generation process away from undesirable outcomes. Importantly, DIESEL
aims to maintain the flow of conversation by providing nuanced, “soft” responses rather than out-
right denying discussion, as shown in Figure 1. DIESEL consists of three steps: candidate selection,
semantic latent space similarity, and token reranking. By using a lightweight off-the-shelf sentence
embedding model, DIESEL effectively guides the decoding process towards safer outputs based
on simple textual descriptions of negative concepts. Utilizing textual descriptions allows DIESEL
to flexibly filter out any undesirable concepts without requiring specialized expertise or additional
training in case new concepts need to be added or existing ones removed.

We conduct an extensive evaluation of DIESEL, assessing its effectiveness across several state-of-
the-art conversational LLMs (Llama 3 Meta (2024), Mistral Jiang et al. (2023), and Vicuna Chiang
et al. (2023)), both as a standalone safeguard and as an additional layer of defense. Additionally, we
evaluate DIESEL’s robustness against jailbreaking attacks (GCG Zou et al. (2023)). To ensure that
DIESEL does not negatively impact the model’s performance on benign prompts, we also examine
the model’s fidelity using the TruthfulQA benchmark Lin et al. (2021). We evaluate DIESEL ’s
effectiveness using automated tools (GPT-4o as an LLM judge), along with a user study to assess
DIESEL ’s practical effectiveness in real-world scenarios. Furthermore, our evaluation demonstrates
DIESEL’s generalization capability, highlighting its ability to filter out concepts beyond just safety-
related domains. In our experiments, DIESEL outperforms the state-of-the-art techniques while
significantly improving the runtime.

Our contributions can be summarized as follows:

• We present DIESEL, a lightweight inference guidance technique which filters undesired
outputs and can be easily integrated into any autoregressive LLM without requiring any
fine-tuning or additional data collection.
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• We demonstrate DIESEL’s effectiveness in diverse settings involving different LLMs and
jailbreaking attacks and verify that it does not interfere with benign prompt responses.

• We conduct a user study to assess DIESEL’s effectiveness, rather than solely relying on
automated evaluation tools.

• We demonstrate DIESEL’s generalizability to domains beyond safety, showcasing its po-
tential application in various use cases.

• The use of textual description allows non-experts to easily apply and benefit from DIESEL,
making it accessible to a broader audience without requiring specialized knowledge or
expertise.

2 RELATED WORK

In this section, we review recent studies on conversational safety in LLMs, focusing on alignment,
filtering approaches, and inference guidance Dong et al. (2024). A key differentiator among these
approaches is their integration point within the model’s lifecycle: whether they are applied during
training (i.e., ad-hoc) or at inference time (i.e., post-hoc).

2.1 SAFETY ALIGNMENT

Alignment algorithms are crucial for ensuring that LLMs adhere to desired objectives, such as hu-
man values and safety. The alignment process typically begins with supervised fine-tuning (SFT) on
high-quality prompt-response datasets Rajpurkar et al. (2016). Then, RLHF Ouyang et al. (2022)
is employed, leveraging human feedback and preferences to further enhance the model’s alignment.
Given the complexity of balancing multiple alignment objectives, Multi-Objective RLHF Zhou et al.
(2023) has been proposed to manage trade-offs between safety and other goals (e.g., helpfulness).
An alternative approach, known as reinforcement learning with AI feedback (RLAIF) Bai et al.
(2022), uses surrogate LLMs to generate training data, reducing the need for human annotation.
While RLHF-based methods have been shown to be highly effective, they have several drawbacks:
(a) resource-intensive - they require extensive additional training time (ad-hoc) and, in most cases,
human annotation, although RLAIF reduces this need by using AI-generated data; (b) lack of robust-
ness - models that rely solely on RLHF or RLAIF have been found to be vulnerable to adversarial
attacks during inference Carlini et al. (2024). As opposed to these ad-hoc techniques, our proposed
method employs a post-hoc approach. It can serve either as an additional layer of defense to enhance
the safety of RLHF-trained models or as the primary safety mechanism.

2.2 INPUT/OUTPUT FILTERS

Filtering mechanisms, applied either to the input prompt or the generated output, are typically inte-
grated during the inference phase of the model lifecycle (i.e., post-hoc). These mechanisms aim to
detect and mitigate harmful content and can be broadly categorized into rule-based and model-based
filters. Rule-based filters are designed to capture specific characteristics of harmful content. For in-
stance, the PPL (perplexity) filter Alon & Kamfonas (2023) eliminates inputs with excessively high
complexity. Jain et al. (2023) proposed paraphrasing and retokenization techniques to modify the ex-
pression of statements, and SmoothLLM Robey et al. (2023) employs character-level perturbations
to counteract perturbation-sensitive techniques. Model-based filters use learning-based approaches
to identify harmful content. Modern methods include LLM-based filters, where an LLM classifies
the harmfulness of the given text, such as Perspective Google (2024), Moderation OpenAI (2024),
and Llama Guard Inan et al. (2023). While filtering mechanisms are widely used and popular among
various LLM providers, they primarily focus on detection either in the input or the output. In con-
trast, our approach is integrated directly into the generation phase, emphasizing the production of
safer responses from the outset, rather than merely suppressing those that fail to meet safety criteria.

2.3 INFERENCE GUIDANCE

Inference guidance is a technique used to enhance the safety of LLMs during the generation phase
without modifying the model’s parameters. One prominent method involves utilizing the sys-
tem prompt to influence the model’s behavior. By carefully designing a prompt that emphasizes
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Figure 2: Overview of DIESEL’s generation pipeline.

safety Touvron et al. (2023) or instructs the LLM to conduct self-checks Phute et al. (2023), the
system encourages the generation of safer outputs. Another approach is token selection adjustment,
which focuses on guiding the selection of tokens based on safety considerations. For example,
RAIN Li et al. (2023) employs a search-and-backward method to enhance token safety. In the
search phase, the method explores the potential content and then evaluates its safety scores. In the
backward phase, these scores are aggregated to adjust the probabilities of token selection. Similarly,
SafeDecoding Xu et al. (2024) leverages an expert model, fine-tuned with a safety-aware dataset,
to identify and rank tokens based on safety criteria from both the original and expert models. Our
approach can be categorized as an inference guidance technique, specifically a token adjustment
technique that selects the chosen token based on a safety score in each step of the generation pro-
cess. A key advantage of our method is its efficiency: It does not require additional model training,
unlike SafeDecoding, which involves fine-tuning an expert model on a safety-aware dataset. Addi-
tionally, our approach is more computationally efficient compared to RAIN, as it does not involve
the complex search-and-backward phases that RAIN employs, which can be time-consuming. By in-
tegrating seamlessly with the existing generation process and minimizing additional computational
overhead, our method offers a practical and scalable solution for enhancing safety in LLMs.

3 METHOD

In this section, we first provide the preliminaries to establish the basis for our approach, followed by
a description of our proposed methodology, DIESEL.

3.1 PRELIMINARIES

Decoding in Language Models. In this paper, we focus on conversational LLMs, which are pre-
dominantly autoregressive models that operate under the next-word prediction paradigm Yang et al.
(2019).

Formally, let fθ1 be an autoregressive language model with parameters θ1 that takes a token sequence
x1:n−1 and outputs token logits for the n-th token xn. For token probabilities, the softmax function
is applied to the logits, which can be formalized as follows:

P (xn|x1:n−1) = softmax(fθ1(x1:n−1)) (1)

Next, a decoding algorithm such as greedy search, beam search, and Nucleus (Top-p) Minaee et al.
(2024) is employed to sample the next token xn, a crucial step for generating diverse and con-
textually appropriate responses from the model. This process is repeated iteratively, wherein each
iteration the sampled token is concatenated to the previous token sequence, until a stopping criteria
is met (e.g., end-of-sentence (EOS) token is sampled, maximum response length is reached).
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Algorithm 1 DIESEL Sampling
Input: Token distribution V , number of candidate tokens b, and cumulative cutoff threshold p
Output: Vb = (x1

n, x
2
n, ..., x

b
n) sampled tokens

1: V ′ ← Sort(V )

2: k ← min{k′|
k′∑
i=1

V ′
i >= p}

3: Vk ← (x1, ..., xk)
4: Ck ←

∑
V1:k {The cumulative sum of chosen tokens}

5: Vk ← ( x1

Ck
, x2

Ck
, ..., xk

Ck
)

6: Vb ← MultinomialDistributionSampling(Vk, b)
7: return Vb

3.2 DIESEL - DYNAMIC INFERENCE-GUIDANCE VIA EVASION OF SEMANTIC EMBEDDINGS
IN LLMS

DIESEL is a lightweight technique aimed at guiding the decoding process (i.e., next-word predic-
tion) away from pre-defined negative concepts without requiring additional model fine-tuning. To
achieve this, DIESEL reranks the potential tokens proposed by the language model to better align
with the desired goal. DIESEL operates in three steps: (a) candidate selection, (b) latent space
semantic similarity, and (c) token reranking. The full procedure is shown in Algorithm 2. In the
remainder of this section, we describe each step in detail.

3.2.1 STEP 1: CANDIDATE SELECTION

For token selection, we use the first two steps of the Nucleus (Top-p) sampling algorithm, primarily
due to its low computational cost and its ability to reduce repetitive generation while maintaining a
high level of text coherence Wiher et al. (2022). During inference, in the n-th step, a token sequence
x1:n−1 is fed into the language model fθ1 , producing probability distribution P (xn|x1:n−1) over the
vocabulary V . The candidate token selection (outlined in Algorithm 1) involves the following steps:

• Sort the tokens in V in descending order of their probability P (xn|x1:n−1).

• Identify the smallest set of tokens Vp ⊆ V such that the cumulative probability satisfies:∑
xn∈V

P (xn|x1:n−1) ≥ p (2)

Here, p is a hyperparameter in the range (0, 1] typically set close to 1 (e.g., 0.9), which balances
the trade-off between diversity and coherence.

• Sample b tokens according to their respective probabilities, producing b potential candidates for
the next token, denoted as Vb. Here, b is a tunable parameter of DIESEL that controls the number
of candidates evaluated in the next step, representing the trade-off between variation and compu-
tational cost. When b is too small, the sample space becomes limited, potentially increasing the
likelihood of unsafe generation if most candidates are close to negative concepts. Conversely, a
large b increases the computational cost.

3.2.2 STEP 2: LATENT SPACE SEMANTIC SIMILARITY

This stage involves the core mechanism of our proposed approach – latent space similarity compari-
son between the tokens of the generated response with each potential token in Vb and the pre-defined
negative concepts R. One key advantage of our proposed method is that these pre-defined concepts
are user-friendly, composed in natural language (e.g., ”violence and violent crimes”), and require no
special expertise (e.g., machine learning expertise).

To perform this comparison, we utilize the latent space of an external sentence embedding model
fθ2 with parameters θ2. The latent space represents a high-dimensional manifold where semanti-
cally similar inputs are mapped to proximate regions, allowing the model to encodesemantic rela-
tionships Radford et al. (2018). By measuring the proximity between the generated response with
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Algorithm 2 DIESEL Generation Loop
Input: Conversational LLM fθ1 , Sentence Embedding Model fθ2 , Input Token Sequence x1:n−1,
Negative Concepts R, Hperparameters α, b, p, Max Num. of Generation Tokens T
Output: Generated Token Sequence XG

1: XG ← ∅
2: Re ← fθ2(R) ▷ Pre-calculated negative concepts embedding
3: for n to n+ T do
4: V ← softmax(fθ1({x1:n−1}+XG))
5: Vb ← DIESEL Sampling(V, b, p) ▷ Algorithm 1
6: for i← 0 to b do
7: xi

n ← Vb[i]

8: γ(xi
n)← 1

2

(
1− max

re∈Re

CS
(
fθ2(XG + {xi

n}), re
))

▷ Equation 3

9: S(xi
n)← (1− α) · P (xi

n|x1:n−1) + α · γ(xi
n) ▷ Equation 4

10: xn ← argmax
i

S(xi
n) ▷ Equation 5

11: if xn = [EOS] then
12: break
13: XG ← XG + {xn}
14: return XG

candidate tokens and the negative concepts within the latent space, we can effectively identify un-
desired completions. We use an external sentence embedding model, because accurate sentence
embedding and similarity measurement do not require the extensive representation capabilities of
billion-scale LLMs. As a result, a model that is an order of magnitude smaller can be used to
enhance the runtime efficiency.

The safety score of i-th candidate xi
n ∈ Vb relative to the set of negative concepts can be formalized

as follows:

γ(xi
n) =

1

2

(
1−max

r∈R
CS

(
fθ2({xn′:n−1, x

i
n}), fθ2(r)

))
(3)

where CS denotes the cosine similarity, r a token sequence from the set of negative concepts R,
and n′ the length of input token sequence. Importantly, similarity is measured only between the
tokens of the generated response (and not the entire input prompt tokens) and the negative concepts.
Note that the embeddings of the negative concepts {fθ2(r)|r ∈ R} are only calculated once to
improve the runtime efficiency. The use of the max function allows the method to focus on the
negative concept most similar to the given text, thereby penalizing the safety score accordingly in
each iteration. To ensure consistency with the original token probabilities in the combined score
calculation (Equation 4), we scale γ to the range [0, 1].

A high safety score (γ → 1) indicates that using token i as the completion is likely to result in
a safe response, while a low score (γ → 0) suggests that the generated response is similar to at
least one negative concept. A low safety score will eventually decrease that token’s final probability
(explained in Step 3 below), reducing its probability of being selected as the completion.

3.2.3 STEP 3: TOKEN RERANKING

After obtaining the safety score γ for each token in Vb, the tokens are reranked based on a combined
score that incorporates both the original token probabilities and the safety scores. The final score for
token xi

n ∈ Vb is as follows:

S(xi
n|x1:n−1) = (1− α) · P (xi

n|x1:n−1) + α · γ(xi
n) (4)

Here, α is a parameter that controls the trade-off between the original token probabilities and the
safety score. It adjusts how strongly we penalize a token for being close to one of the negative
concepts.

The output token is then chosen based on the highest combined score:

xn = argmax
i

S(xi
n|x1:n−1) (5)
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4 EVALUATION

4.1 EVALUATION SETUP

4.1.1 MODELS

In our experiments, we evaluate DIESEL across several state-of-the-art open-source conversational
models. Specifically, we employ the chat versions of Llama-3-8B Meta (2024), Mistral-7B Jiang
et al. (2023), and Vicuna-7B Chiang et al. (2023) models. To first demonstrate the general applica-
bility of our method, we utilize the uncensored versions of these models, which have been fine-tuned
on unaligned datasets. Subsequently, to demonstrate the effectiveness of DIESEL as an additional
defense layer, we apply our approach to standard RLHF-aligned chat models that include safety
system instructions in a jailbreaking scenario.

4.1.2 DATASETS

To assess the safety improvement provided by our proposed method, we employ the popular bench-
mark dataset, AdvBench Zou et al. (2023). AdvBench comprises approximately 500 unsafe prompts
that reflect harmful or toxic behavior spanning a wide spectrum of harmful content (e.g., profanity,
graphic depictions).

For a comprehensive assessment of our method, we also verify that it does not interfere with the
model’s response to “benign” (safe) prompts. To achieve this, we use the TruthfulQA benchmark Lin
et al. (2021), which contains 817 questions spanning 38 categories, including health, law, finance,
and politics. Each question has sets of true and false reference answers, allowing us to accurately
assess the truthfulness of the generated responses.

4.1.3 METRICS

Since there is no definitive ground truth for measuring safety, we assess the effectiveness of our
method using the widely adopted LLM-as-a-judge approach Li et al. (2023); Xu et al. (2024), which
has been shown to produce labels comparable to human judgment Pan et al. (2023). We use the
evaluation prompt proposed in Xu et al. (2024), which contains 14 unsafe activities (e.g., generation
of hateful, harassing, or violent content, generation of malware). In this setup, GPT-4o serves as the
LLM judge, rating responses on a scale of 1 to 5: where 1 signifies a proactive refusal to engage
in harmful activities, and 5 indicates full compliance with the user’s unsafe request. Further details
and the full evaluation prompt are provided in the supplementary material.

4.1.4 IMPLEMENTATION DETAILS

For DIESEL’s hyperparameters, we set α = 0.98 (Equation 4), and the number of token candidates
b = 20. We include the ablation studies in the supplementary material. For the negative concepts,
we use the set of unsafe activities discussed in Section 4.1.3 for a total of 14 concepts. For the
sentence embedding model fθ2 , we use off-the-shelf sentence transformer MiniLM Thakur et al.;
Wang et al. (2020) that contains ∼33M parameters (0.47% of the size of a 7B parameter model).
For the models’ (fθ1 ) inference hyperparameters, we use the default values: P (Top-P) is set at 0.9,
and the temperature (softmax) is set at 0.6. All experiments are conducted on an RTX6000 GPU
with 16-bit precision.

4.2 RESULTS

4.2.1 EFFECTIVENESS IN GENERATING SAFE RESPONSES

To assess DIESEL’s effectiveness in generating safe responses, we first evaluate it as a standalone
safeguard applied to the the uncensored versions of Llama 3, Mistral, and Vicuna. Figure 3 com-
pares the safety scores assigned by the LLM judge when DIESEL and the baselines are used in
the generation process on the AdvBench dataset. Specifically, we compare DIESEL effectiveness
against vanilla auto-regressive inference (i.e., no defense), and against RAIN Li et al. (2023), the
only competitive inference guidance technique that does not involve model fine-tuning. For ex-
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Figure 3: LLM judge scores distribution on the AdvBench dataset across Llama 3, Mistral, and
Vicuna models.

ample, the results on Llama 3 show a notable improvement, with the number of highly unsafe
responses (severity level 5) reduced from 313 with no defense to 215 when DIESEL is applied.

Figure 4: Number of responses
with score changes when DIESEL is
applied, compared to vanilla auto-
regressive inference. Nodes represent
the original score, while arrows indi-
cate transitions between scores.

In contrast, RAIN demonstrates a decreased ability to gen-
erate safer responses, even underperforming compared to
the baseline with no defense. We hypothesize that this
is due to two factors: (a) RAIN was not originally tested
on uncensored models, (b) RAIN’s binary classification
of safety (harmless/harmful) limits its flexibility in han-
dling nuanced safety risks. In Figure 4 we illustrate how
response scores transition when DIESEL is applied. As
shown, DIESEL effectively lowers the severity of unsafe
responses, with many high-severity responses shifting to
lower levels. For example, 94 responses classified with
severity 5 are reduced to a score of 1. Interestingly, while
the majority of transitions move from 5 to 1, a consider-
ate number of responses transition to intermediate scores
(2–4), suggesting that DIESEL reduces the severity of un-
safe content while still maintaining informative outputs.

4.2.2 ROBUSTNESS AGAINST JAILBREAKING

We also assess the robustness of DIESEL against jailbreak attacks, employing the GCG Zou et al.
(2023) attack, which optimizes an adversarial suffix to bypass safety mechanisms in standard chat
models. We employ the attack on safety-aligned models coupled with a system prompt Touvron
et al. (2023) to assess DIESEL’s ability to serve as an additional layer of defense. Figure 5 shows
the results for the Mistral and Vicuna models, showing that DIESEL effectively reduces the sever-
ity of responses. Without any defense, most responses are classified with a score of 5, indicating
high-risk behavior. In contrast, with DIESEL applied, the number of responses rated at severity 5
is substantially reduced, while those rated at score 1 (the model declines to respond) increase. Fur-
thermore, responses scored between 2 and 4 are more evenly distributed, suggesting that DIESEL
remains effective while still producing safer, informative outputs. Overall, although DIESEL was
not specifically designed to counteract adversarial attacks (e.g., forcing the model to avoid a spe-
cific response like “Sure,”), it enhances the model’s robustness. Detailed results can be found in the
supplementary material.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Mistral (b) Vicuna

Figure 5: LLM judge scores distribution when no defense and DIESEL are applied to different
LLMs in a jailbreak scenario (GCG attack Zou et al. (2023))

4.2.3 TRUTHFULNESS & COHERENCY

Since DIESEL modifies the original token distribution generated by the LLM, we further investigate
its impact on responses to benign (safe) prompts. For this evaluation, we used the TruthfulQA dataset
and generated responses using Llama 3. Similar to the safety evaluation, we asked the LLM judge
whether the produced response matched any of the ground-truth answers provided in the dataset.
If the response did not align with the ground-truth answers, we further assessed whether it was
semantically coherent or incoherent. From the results on Llama 3, we observe that as α increased to a
certain threshold, the coherence of responses remained largely unaffected (<5%) while maintaining
comparable levels of truthfulness (51%) compared to the vanilla auto-regressive inference (60%).
We include the evaluation prompt and detailed results in the supplementary material.

4.2.4 INFERENCE TIME ANALYSIS

Llama 3 Mistral Vicuna
RAIN ×189.74 × 186.45 × 202.18
DIESEL (Ours) ×1.46 ×1.52 × 1.64

Table 1: Inference time comparison be-
tween RAIN and DIESEL. Values repre-
sent the inference time increase compared
to a vanilla model.

A key consideration for inference guidance techniques
is the additional execution time they introduce. Table 1
compares the inference times for DIESEL and RAIN
against a vanilla auto-regressive inference. For exam-
ple, generating responses with Llama 3 using DIESEL
results in only a 1.46× increase in runtime, which re-
mains feasible for real-time applications. In contrast,
RAIN introduces a prohibitive overhead, increasing
runtime by 189× compared to the vanilla auto-regressive inference, rendering it unsuitable for prac-
tical use cases. We hypothesize that this drastic overhead arises from the use of conversational mod-
els in our evaluation, whereas RAIN’s original results were based on non-chat models. Non-chat
models typically produce shorter, more concise responses, whereas conversational models—fine-
tuned to provide helpful and informative answers—tend to generate longer responses, significantly
impacting RAIN’s runtime. Importantly, as model size increases, the relative increase in execution
time from using DIESEL becomes less pronounced compared to the model’s base forward runtime.

4.2.5 USER STUDY

To verify DIESEL’s ability to generate safer responses compared to vanilla auto-regressive infer-
ence from a human perspective, we conducted a user study with 20 human evaluators, equally split
between male and female participants. For each prompt, participants were given two responses and
asked to rank each prompt on a scale of 1 to 5. A score of 1 indicates that “response 1” is sub-
stantially safer than “response 2” (vice versa for a score of 5), a score of 2 indicates that “response
1” is slightly safer than “response 2” (vice versa for a score of 4), and a score of 3 indicates that
both responses are equally safe/unsafe. To reduce bias, the responses of DIESEL and vanilla auto-
regressive inference were randomly shuffled for each participant and each prompt. The averaged
results show that for 80% of DIESEL’s responses are safer than those of a vanilla auto-regressive
inference, 10% are equally safe, and the remaining 10% are slightly unsafer.
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4.2.6 BEYOND SAFETY

To demonstrate the generalizability of DIESEL beyond safety-focused tasks, we conducted an ex-
periment in the domain of movies. For this, we used the Wiki Movie Plots dataset Priya (2024),
which provides detailed movie summaries across various genres. In this experiment, we tasked the
model with summarizing plots of horror films while treating the genre “horror” as a negative con-
cept. Specifically, we focus on horror movies, where the objective was to evaluate whether DIESEL
could effectively reduce the presence of horror-related content in the generated summaries. Then,
using the LLM judge, we compare the generated summaries with the originals from the dataset,
asking the model to assess which summary exhibited more horror elements. The results indicated
that 82% of the summaries generated with DIESEL contained fewer horror elements than their orig-
inal counterparts, underscoring DIESEL’s ability to suppress undesired content in domains beyond
safety-related contexts.

5 LIMITATIONS

One limitation of DIESEL is that as the response length increases (during generation), the sentence
embedding model faces challenges in accurately assessing the similarity between the generated con-
tent and predefined negative concepts. However, we observed that once the general ”direction” of
the response is established, subsequent tokens tend to follow the same trajectory, minimizing the
impact of this limitation on the overall safety of the generated output. Future research could explore
embedding models that are more specialized in handling long sequences, or dynamic strategies that
adapt to the response length and complexity of generated responses. Another limitation of DIESEL
relates to the irrevocable nature of token selection during each iteration. Once a token is selected at
the end of an iteration, it cannot be undone. In some instances, a token chosen at iteration i may not
be flagged as unsafe in isolation but, when combined with a token selected in a subsequent itera-
tion, may result in an unsafe sentence. While this issue could potentially be mitigated by employing
a look-ahead mechanism, this approach would come at the cost of increased runtime. Given the
trade-off between computational efficiency and safety, we opted to maintain a lightweight approach
suitable for real-world applications.

6 CONCLUSION

In this paper, we introduced DIESEL, a novel lightweight inference guidance technique designed to
enhance the safety of responses generated by large language models. We demonstrated that DIESEL
effectively mitigates harmful outputs while maintaining coherence and relevance. Moreover, our
evaluations against a competitive state-of-the-art inference guidance technique highlighted DIESEL
’s practical advantages, including significantly lower runtime overhead, making it suitable for real-
world applications. We also evaluated DIESEL’s robustness against jailbreak attacks, showing that
it offers an additional layer of defense even in adversarial contexts. Importantly, our method’s re-
liance on simple textual descriptions of negative concepts allows it to be flexible, easily updated,
and usable without specialized expertise. Finally, through both automated metrics and human eval-
uations, we verified DIESEL’s ability to produce safer responses without compromising the quality
or truthfulness of benign outputs.

7 ETHICAL IMPACT

This paper aims to enhance the safety of large language models (LLMs) by introducing a novel
lightweight inference guidance technique. As LLMs find broader application in real-world scenar-
ios, ensuring their safety becomes increasingly crucial. Importantly, the development of DIESEL
does not involve crafting new jailbreak attacks but instead makes use of those that are already pub-
licly available. For illustration, we include examples of harmful model responses. We acknowl-
edge that the introduction of DIESEL may inspire the creation of new attack strategies aimed at
circumventing its defenses. We will release the associated code and demonstrations to aid future
red-teaming efforts in preventing LLM misuse.
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