
Revolutionizing Graph Aggregation:
From Suppression to Amplification via BoostGCN

Jiaxin Wu
School of Management

Guangdong University of Technology, China
704276515@qq.com

Chenglong Pang
School of Computer Science and Technology

Donghua University, China
clongdwyyx@163.com

Guangxiong Chen
School of Management

Guangdong University of Technology, China
3122003350@mail2.gdut.edu.cn

Jie Zhao∗

School of Management
Guangdong University of Technology, China

zhaojie@gdut.edu.cn

Abstract

Graph Convolutional Networks (GCNs) based on linear aggregation have been
widely applied across various domains due to their exceptional performance. To
enhance performance, these networks often utilize the graph Laplacian norm to
suppress the propagation of information from first-order neighbors. However, this
approach may dilute valuable interaction information and make the model slowly
learn sparse interaction relationships from neighbors, which increases training
time and negatively affects performance. To address these issues, we introduce
BoostGCN, a novel linear GCN model that focuses on amplifying significant
interactions with first-order neighbors, which enables the model to accurately and
quickly capture significant relationships. BoostGCN has relatively fixed parameters,
making it user-friendly. Experiments on four real-world datasets demonstrate that
BoostGCN outperforms existing state-of-the-art GCN models in both performance
and efficiency.

1 Introduction

In recent years, Graph Convolutional Network (GCN) [1] has emerged as a powerful tool for learning
from graph-structured data, with applications in various fields, such as fair recommendation [2, 3],
bundle recommendation [4, 5, 6], sequential recommendation [7, 8, 9, 10] and others. The success
of GCNs depends on their ability to accurately capture the user and item representation, which is
achieved through an aggregation process that effectively combines collaborative signals from the
nuanced interactions within the user-item graph. For example, Neural Graph Collaborative Filtering
(NGCF) [11] captures user-item relationships by effectively leveraging high-order interactions through
its aggregation approach. It is worth noting that some subsequent studies [12, 13] have shown that the
use of feature transformations and nonlinear activation functions in aggregation can lead to significant
performance degradation. Consequently, the linear aggregation-based GCN [12] has emerged as the
dominant framework in this field. Then, based on the linear GCN framework, the improved methods
that incorporate multimodal information [14, 15, 16, 17, 18, 19], attention mechanism [14, 20, 21],
constraint loss [22, 23, 13], edge-wise dropout [24] and layer dropout [25] have blossomed.

To preserve the distinctiveness of individual nodes, existing GCN models [12, 13, 25] use the graph
Laplacian norm [1] to suppress information propagation, especially from first-order neighbors. As

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

(a) (b)

Information Suppression Information Amplification

Figure 1: Problem presentation. The red node represents the target node, while the green nodes
denote its first-order or second-order neighbors. (a) shows that information propagation to the red
node via the graph Laplacian norm can lead to information suppression due to considering first-order
and second-order neighbors. (b) shows a new paradigm that amplifies the significant interaction
information from the first-order neighbors in the information propagation.

shown in Figure 1, the red node represents the target node for information aggregation, while the
green nodes represent first-order or high-order neighbors. Figure 1(a) shows the use of first-order
and second-order neighbor information in GCN models, highlighting how the graph Laplacian norm
stabilizes the representation scales without growth due to convolutions. While Laplacian-based
models have established dominance and performance, we argue that their designs may excessively
suppress the propagation of valuable information. Such models employ some stereotypical strategies
that suppress items with higher interactions. However, relying solely on the number of interactions to
assess the value of an item may inevitably overlook its comprehensiveness, leading to the neglect of
some significant items. Specifically, the first-order neighbors, as the immediate interaction objects
of the red target node in Figure 1(b), are replete with significant interaction relationships, such
as conformity [26], trust [27, 28] and so on, which are particularly significant in the context of
recommendation systems. The use of the graph Laplacian norm in this way can inadvertently dilute
information about these significant interactions as information propagates to red nodes, which leads
to a protracted and sub-optimal learning trajectory for the model.

To confirm our hypotheses, we perform an in-depth investigation of LightGCN, a quintessential
representative of Laplacian-based models. As shown in Table 1, experimental results on Amazon-
Book from LightGCN [12] show that the mean-based aggregation method outperforms the graph
Laplacian norm-based method, which suggests that information suppression via the graph Laplacian
norm may miss significant interaction information, especially for large datasets.

Table 1: Overall performance comparison between mean-based aggregation and Laplacian-based
aggregation on Amazon-Book. Mean-based aggregation represents averaging the surrounding infor-
mation according to the number of first-order neighbors. Laplacian-based aggregation represents a
further consideration of second-order neighbors to weaken the entry of surrounding information.

Datasets Amazon-Book

Metrics Recall@20 NDCG@20

Laplacian-based 0.0411 0.0315
Mean-based 0.0419 0.0320
Improv.(%) +1.95% +1.59%

Motivated by these empirical findings, we explore the significant interactions within the first-order
neighbors, and propose a novel linear GCN model, namely BoostGCN. As shown in Figure 1(b),
mining and amplifying the significant interactions in the information propagation from the first-order
neighbors can be a new paradigm to improve model performance and efficiency in GCN. Accordingly,
BoostGCN skilfully uses the amplification function to amplify the significant interactions in the
information aggregation process, equipped with the sensitivity to quickly and accurately capture

2

the significant interaction cues. Moreover, this refined focus on first-order neighbor interactions is
expected to result in a model that not only learns faster, but also achieves higher levels of performance.

The major contributions of this paper are listed as follows:

• We innovate graph aggregation with BoostGCN, moving from suppression to strategic
amplification of significant interactions in GCNs.

• We deliberately design the amplification function of interaction significance used in Boost-
GCN to be sensitive to significant interactions, thereby increasing performance and effi-
ciency.

• Extensive experiments across four real-world datasets clearly show that our proposed
BoostGCN has the best performance in terms of both recommendation performance and
efficiency.

2 Preliminaries

For recommendations, the general GCN [12] based on linear aggregation achieves impressive perfor-
mance through a straightforward process. To understand its general framework in depth, we define
the interactions between users and items in a graph as: G = {(u, i)|u ∈ U , i ∈ I}, where U and I
are the user and item sets, respectively. Also, in the graph, eu and ei are the ID embeddings of user u
and item i.Thus, we can obtain all the original inputs:

E(0) = {eu, ei|u ∈ U , i ∈ I} (1)

where eu ∈ R|U|×d and ei ∈ R|I|×d; |U| and |I| are the number of users and items; d is the
embedding size.

Interestingly, existing linear GCNs [12, 13, 25] all leverage the graph Laplacian norm for information
aggregation, as illustrated by the following formula:

e(k+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e
(k)
i ; e

(k+1)
i =

∑
u∈Ni

1√
|Ni|

√
|Nu|

e(k)u . (2)

where Nu and Ni are the neighbor node sets of user u and item i; |Nu| and |Ni| are the number
of neighbors of user u and item i; 1√

|Nu|
√

|Ni|
is the graph Laplacian norm; e(k)u and e

(k)
i are the

embeddings of user u and item i at layer k.

3 BoostGCN

3.1 Significant Interactions

In recommender systems, it is critical to accurately measure and learn user preferences from historical
interactions. While it’s clear that first-order neighbors with the most direct interactions have the most
influence, it’s significant to recognize that not all interactions are created equal. The assumption that
all interactions carry the same weight contradicts intuitive understanding.

As a result, we introduce a measure of interaction significance Si→u, which represents the significance
of each item i ∈ Nu in the historical interaction relationships of user u:

Si→u = f(Xi) (3)

where Xi = {xi,1, xi,2, ..., xi,n} represents a factor set of item i that contains different factors xi,n

related to interaction significance; f(·) is the function that transforms these factors into interaction
significance.

Drawing from previous research [27, 26, 28], we have discovered that user behavior patterns, such as
conformity, trust and etc., are reflected in the interaction relationships, which are critical for mining
user preferences. Consequently, they are key factors in measuring interaction significance.

Given that the factors of conformity, trust and etc., are {xi,1, xi,2, ..., xi,m}, then we can get a factor
subset X̂i = {xi,1, xi,2, ..., xi,m} for each item i, where X̂i ⊆ Xi. Based on Eq.(3) , we can get the

3

relationship between X̂i and Si→u as follows:

Si→u = f1(X̂i) + f2(Xi \ X̂i) (4)

where f1(·) and f2(·) represent different transformation functions that are used to achieve the
consistent effect of the segmented subsets and full sets of factors.

Interestingly, the effects of conformity, trust and etc., approximately match the trend of the interaction
volume of items [27, 26, 28], that is, the interaction edges |Ni| of items i in GCN. Therefore, we can
always find a way that establishes the following approximate relationship:

f1(X̂i) = Φ|Ni| + △̂ (5)

where Φ|Ni| is the estimate of f(X̂i) quantified by |Ni|; △̂ is used to compensate for the estimation
bias of Φ|Ni|.

Based on Eq.(4) and Eq.(5), we can easily obtain:

Si→u = Φ|Ni| +△ (6)

where △ represents the influence of the factors in Xi \ X̂i, and the estimation bias compensation △̂
of Φ|Ni|.

3.2 Significant Interaction Amplification

According to previous findings [27, 26, 28], we recognize that the higher the level of trust or
conformity associated with an item, the greater the trend for user selection. Based on this insight, it is
reasonable to assume that the more pronounced the positive effects of such factors in X̂i, the higher
the interaction significance with item i. Consequently, we can deduce the following relationship:

Si→u ∝ |Ni| (7)

On the basis of Eq.(7), considering the balance between model sensitivity to interaction significance
and model ability to handle large |Ni|, we choose the logarithmic function rather than the softmax
method to quantify Si→u by |Ni|, thereby amplifying significant interactions from neighboring items.
Accordingly, Eq.(6) can be rewritten as:

SAmp
i→u = Φlog

|Ni| +△log (8)

where Φlog
|Ni| = logβ(|Ni|), logβ(·) is the amplification function and △log denotes the offset under

the logarithmic function. Based on Eq.(7), we can set β > 1 and △log > 0 to keep SAmp
i→u ∝ |Ni|.

Given that εAmp
(ip,iq)

is the difference in the interaction significance of items ip, iq ∈ Nu, then we can
get:

εAmp
(ip,iq)

= SAmp
ip→u − SAmp

iq→u = Φlog
|Np| − Φlog

|Nq| (9)

On the basis of Eq.(9), we can know that the impact of the significance estimation bias between ip
and iq mainly stems from εAmp

(ip,iq)
. The advantage of the logarithmic function is that the significance

estimation bias can be adjusted directly by changing β in the amplification function.

Therefore, for each user u ∈ U and his historical interactions with a set of items {i1, i2, ..., in} where
in ∈ Nu, we can obtain the following amplified interaction significance for each historical interaction
relationship between u and in:

SAmp
Nu→u = {SAmp

i1→u,S
Amp
i2→u, ...,S

Amp
in→u} (10)

3.3 GCN with Information Amplification

According to the above analysis, we propose Boost Graph Convolution (BGC) method that focuses
on amplifying significant interactions with first-order neighbors on the basis of Eq.(10), which allows

4

the model to accurately and quickly capture significant relationships. In BoostGCN, as shown in
Figure 2, the graph convolution operation is:

e(k+1)
u =

∑
i∈Nu

SAmp
i→u

|Nu|
e
(k)
i ; e

(k+1)
i =

∑
u∈Ni

SAmp
i→u

|Ni|
e(k)u . (11)

Also, Eq.(11) can be rewritten as:

e(k+1)
u =

∑
i∈Nu

Φlog
|Ni| +△log

|Nu|
e
(k)
i ; e

(k+1)
i =

∑
u∈Ni

Φlog
|Ni| +△log

|Ni|
e(k)u . (12)

where Φlog
|Ni| is calculated by the amplification function logβ(|Ni|); β > 1 and △log > 0 (we set

△log = 1 in the following experiments to keep the purpose of amplification by making SAmp
i→u > 1).

e
(k)
u and e

(k)
i are the embeddings of user u and item i at layer k. e(0)u = eu and e

(0)
i = ei. |Nu| and

|Ni| are the number of neighbors of user u and item i.

Input

Interaction
Amplification

 Layer k Layer k

 Layer 1 Layer 1 ...
.

Boost Graph Convolution (BGC)

u1

i2i1

Interaction
Amplification

i3

u3u2

...
.

Weighted Layer Combination

Prediction

Weighted Layer Combination

Figure 2: The overview of BoostGCN.

In BoostGCN, each k-th layer captures distinct
information. To integrate this information ef-
fectively, we have applied a weighted sum in
the combination of layers, thereby making the
representation more comprehensive. After K
layers, we obtain the ultimate representation for
a user (or an item) through a weighted combina-
tion of embeddings from each layer, which can
be articulated as follows:

ẽu =

K∑
k=0

γke
(k)
u ; ẽi =

K∑
k=0

γke
(k)
i . (13)

where γk ≥ 0 denotes the significant of the k-th
layer embedding, and we uniformly set γk to

1
K+1 in the following experiments.

Then, the model prediction can be defined as:

r̃(u,i) = ẽ⊤u ẽi (14)

which is used to determine the ranking score for
the recommendation.

Following the previous research [12], we use Bayesian Personalized Ranking (BPR) loss, which is
described as follows:

LBPR =
∑

u,i,i′∈R

−ln(σ(r̃(u,i) − r̃(u,i′))) + λ||E(0)||2 (15)

where R ∈ {(u, i, i′)|(u, i) ∈ R+, (u, i
′
) ∈ R−} is the training dataset including the observed inter-

actions R+ and the unobserved interactions R−; σ(·) and λ denote the sigmod function and regulariza-
tion weight, respectively; the trainable parameters of BoostGCN are only the initial embeddings of the
0-th layer of users and items, i.e., Θ = {E(0)}, where ||E(0)||2 =

∑
u∈U ||e(0)u ||2 +

∑
i∈I ||e(0)i ||2.

4 Theoretical Analysis of BoostGCN

The selection criteria for the amplification function. To balance the signal gain, robustness and
learnability of significant interactions, we propose the following three criteria for selecting a node
amplification function: (i) it should increase monotonically with the number of interactions so
that nodes with a high number of interactions contribute more information; (ii) it should exhibit
non-linear growth to prevent over-amplifying extremely interactive nodes and introducing noise; and
(iii) it should be a closed-form, differentiable expression for efficient gradient-based optimization.

5

Consequently, the logarithmic amplification function is the optimal closed-form solution under these
criteria. Comparative analysis with other amplification functions is provided in Appendix A.2.

Advantages of the logarithmic amplification function. The logarithmic amplifier in Eq.(8) exposes
a single scalar β that instantiates a tunable trade-off between magnitude amplification and model
sensitivity. A larger β compresses inter-item differences εAmp

(ip,iq)
, yielding a more uniform signal

landscape, whereas a smaller β stretches these gaps, heightening sensitivity to subtle interaction
sparsity. Detailed derivations and analysis are provided in Appendix A.2.

While Appendix A.3 details the advantages of BoostGCN’s aggregation over the aggregation using
graph attention, we here focus on its general-purpose properties as a universal aggregation paradigm.

Proposition 4.1 (Smaller aggregation error) With BoostGCN’s aggregation in Eq.(12), the error
bound decays at the rate of O(logβ(|Ni|)+1) as the neighbor cardinality |Ni| increases, guaranteeing
diminishing aggregation error even for highly interactive nodes.

Proposition 4.2 (Near-optimal provable linear convergence rate) By using the logarithmic amplifier
in Eq.(8), BoostGCN can achieve a spectral-radius bound arbitrarily close to the infimum of the
sub-linear family and yield a near-optimal provable linear convergence rate.

Next, we give the stochastic convergence bounds of BoostGCN under stochastic training conditions.

Theorem 4.3 Under independent and identically distributed (i.i.d.) mini-batch sampling, bounded
gradients and L-smoothness, BoostGCN’s expected error bound is

E[||H(K) −Htru||2F] ≤ (1− 2ηλ)K∆0 + ηG2/(2λ) (16)

And BoostGCN’s high-probability bound is

||H(K)−Htru||F = O((logβ(maxj |Nj |)+1)K+

√
log 1

δ

K
), with probability at least 1−δ. (17)

where H(K) is the current embedding matrix of all users and items after K rounds update of random
training and Htru is the ideal embedding when the loss function converges to the minimum value,
where H(K), Htru ∈ R(|U|+|I|)×d; η is the learning rate and λ is the regularization term; G is the
boundary of gradients, where G > 0 and ||∇L|| ≤ G for any mini-batch; ∆0 = E[||H(0)−Htru||2F]
and δ ∈ (0, 1) is confidence parameter. The proofs of the above-mentioned properties can be referred
to Appendix A.4.

5 Experiments

In our experiments, the following questions will be answered:

• RQ1: How does the performance of BoostGCN compare with state-of-the-art GCN models?

• RQ2: How efficient is BoostGCN?

• RQ3: How do different hyper-parameter settings affect BoostGCN?

• RQ4: What benefits does the amplification of significant interactions offer to the representa-
tion?

• RQ5: How does BoostGCN perform in terms of popularity debiasing and noise resistance?

5.1 Experimental Settings

Datasets: To comprehensively demonstrate the effectiveness of BoostGCN, we evaluate our model on
four distinct datasets, including MovieLens-100k (denoted by 100k) [29], MovieLens-1M (denoted
by 1M) [29], Gowalla (denoted by Gowa.) [30] and Yelp2018 (denoted by Yelp) [11], as detailed in
Table 2. The datasets utilized in this paper are all publicly available and can be directly downloaded
from their respective sources. Detailed dataset descriptions are given in Appendix A.6.

6

Table 3: The comparison of overall performance on four real-world datasets. Bold means the optimal
performance, and underline means the sub-optimal performance.

Dataset Metric MF-BPR MMGCNid NGCF UltraGCN IMP-GCN NSE-GCN LayerGCN LightGCN LTGNN TransGNN GAT BoostGCN

R@5 0.2636 0.2463 0.2318 0.2647 0.2864 0.2963 0.2851 0.2861 0.2833 0.2733 0.2879 0.2982
100k N@5 0.6599 0.6181 0.6067 0.6575 0.7029 0.7209 0.6840 0.6971 0.6872 0.6630 0.6983 0.7234

R@15 0.5289 0.4953 0.4929 0.5393 0.5611 0.5886 0.5563 0.5669 0.5612 0.5415 0.5703 0.5908
N@15 0.6616 0.6190 0.6126 0.6662 0.7028 0.7301 0.6894 0.7044 0.6952 0.6708 0.7065 0.7319
R@5 0.2165 0.2178 0.2081 0.2389 0.2424 0.2546 0.2599 0.2476 0.2370 0.2581 0.2537 0.2641

1M N@5 0.7220 0.7183 0.7128 0.7554 0.7624 0.7863 0.7949 0.7770 0.7235 0.7881 0.7844 0.8063
R@15 0.4609 0.4648 0.4545 0.5057 0.4965 0.5128 0.5251 0.5058 0.4770 0.5196 0.5106 0.5316
N@15 0.7041 0.7011 0.6934 0.7464 0.7441 0.7651 0.7782 0.7571 0.7075 0.7707 0.7574 0.7885
R@5 0.1996 0.0706 0.1485 0.2288 0.2808 0.2946 0.2932 0.2521 0.2178 0.2913 0.2883 0.2965

Gowa. N@5 0.2836 0.1122 0.1892 0.3131 0.3733 0.3906 0.3890 0.3408 0.2893 0.3863 0.3828 0.3937
R@15 0.3447 0.1400 0.3310 0.3851 0.4868 0.5123 0.5092 0.4476 0.3780 0.5055 0.5003 0.5145
N@15 0.3125 0.1251 0.2506 0.3460 0.4235 0.4468 0.4444 0.3883 0.3298 0.4410 0.4365 0.4489
R@5 0.1225 0.0826 0.0984 0.1435 0.1753 0.1677 0.1845 0.1545 0.1375 0.1640 0.1635 0.2001

Yelp N@5 0.2225 0.1582 0.1747 0.2581 0.3110 0.2945 0.3238 0.2747 0.2416 0.2883 0.2874 0.3517
R@15 0.2592 0.1900 0.2460 0.3021 0.3567 0.3478 0.3722 0.3213 0.2726 0.3253 0.3243 0.3968
N@15 0.2498 0.1819 0.2186 0.2901 0.3455 0.3324 0.3611 0.3086 0.2658 0.3172 0.3162 0.3869

Table 2: The description of datasets.
Datasets #Interactions #Users #Items Sparsity

MovieLens-100k 91,076 943 1,286 92.49%
MovieLens-1M 898,224 6,036 2,864 94.80%

Gowalla 1,027,370 29,858 40,981 99.92%
Yelp2018 1,561,406 31,668 38,048 99.87%

Data Pre-processing: Each dataset is divided
into training (60%), validation (20%), and test
sets (20%). The training set maintains a 1:1 ratio
of positive to negative samples. For MovieLens-
100k and MovieLens-1M datasets, we add 150
unused negative samples for each user to the val-
idation and test sets, respectively. Correspond-
ingly, for Gowalla and Yelp2018 datasets, we
increase the number to 1500 negative samples. The negative samples of the training set, validation
set and test set are all randomly selected without popular bias.

Evaluation Metrics: We employ Recall (R) and Normalized Discounted Cumulative Gain (N) [31]
as the main performance metrics for Top-N recommendations [32], where N = {5, 15}. For the
sake of convergence, the early stop and total epochs are set to 10 and 1000, respectively. We run each
experiment ten times and report the average results.

Baselines: We compare some representative models, ranging from traditional matrix factorization
models to state-of-the-art GCN-based models: MF-BPR [33], MMGCN [29], NGCF [11], Light-
GCN [12], UltraGCN [13], IMP-GCN [34], NSE-GCN [35], LayerGCN [25], LTGNN [36],
TransGNN [37] and GAT-LightGCN (combining LightGCN with Graph Attention Network). In
order to make a fair comparison, we carefully tune the hyper-parameters of each model based on their
respective published papers and hyper-parameter studies. All baselines compared in this paper can
be obtained directly from the corresponding literature. Detailed baseline descriptions are given in
Appendix A.5.

Implementation Details: To ensure a fair comparison, we set the embedding size to 64, a learning
rate of 10−3 with Adam [38] and initialize the embedding parameters with the Xavier method [39],
which is the same as other baselines. To show the high generalization of BoostGCN on different
datasets without parameter tuning, we set the fixed parameters: a batch size of 512, β = {e} and
△log = 1 in Eq.(12). Also, we provide guidance on λ for different types of datasets to optimize
model performance. We employ λ ≤ {1e−6} for datasets of #Interactions ≥ 1× 106, λ = {1e−4}
for datasets of #Interactions ≤ 5× 105 and λ = {1e−5} for others. Our code can be available on
https://github.com/ClongPang/BoostGCN.

5.2 Experimental Results

Performance Comparison (RQ1): Due to the excellent performance of most baselines at layer 2,
we set K = 2 to evaluate overall performance for a fair comparison, as shown in Table 3. From Table
3, we can easily see that: BoostGCN maintains the best performance against all baselines across four
datasets of different sparsity and data size, which shows that it has stable performance in handling
different types of datasets.

7

https://github.com/ClongPang/BoostGCN

Table 4: The comparison of performance between BoostGCN and LightGCN at different layers. Bold
indicates the optimal performance at each layer on four datasets. * represents the best performance
of different layers on the target dataset. Improv. denotes the improvement of BoostGCN against
LightGCN at each layer.

Dataset 100k 1M Yelp Gowa.

#Layer Model R@5 N@5 R@5 N@5 R@5 N@5 R@5 N@5

LightGCN 0.2840 0.6937 0.2413 0.7647 0.1630 0.2895 0.2614 0.3517
1 BoostGCN 0.2946 0.7157 0.2607 0.7997 0.1824 0.3258 0.2746 0.3631

Improv. +3.73% +3.17% +8.04% +4.58% +11.90% +12.54% +5.05% +3.24%
LightGCN 0.2861 0.6971 0.2476 0.7770 0.1545 0.2747 0.2521 0.3408

2 BoostGCN 0.2982* 0.7234* 0.2641* 0.8063* 0.2001 0.3517 0.2965 0.3937
Improv. +4.23% +3.77% +6.66% +3.77% +29.51% +28.03% +17.61% +15.52%

LightGCN 0.2727 0.6719 0.2467 0.7763 0.1461 0.2598 0.2468 0.3329
3 BoostGCN 0.2894 0.7075 0.2601 0.7959 0.1991 0.3493 0.3030 0.4031

Improv. +6.12% +5.30% +5.43% +2.51% +36.28% +34.45% +22.77% +21.09%
LightGCN 0.2021 0.5339 0.2405 0.7643 0.1396 0.2494 0.2294 0.3138

4 BoostGCN 0.2973 0.7134 0.2373 0.7556 0.2026* 0.3547* 0.3165* 0.4151*
Improv. +47.11% +33.62% -1.33% -1.14% +45.13% +42.22% +37.97% +32.28%

Table 5: The comparison of efficiency on various datasets. Experiments are tested on the same
Intel(R) Xeon(R) Platinum 8255C CPU @2.50GHz machine with a GeForce RTX 2080Ti GPU.
Improv. in training time refers to Eq.(18).

Dataset Model Best R@5 Training Time

LightGCN 0.2861 45s
100k (K=2) BoostGCN 0.2982 23s

Improv. +4.23% +49%
LightGCN 0.2476 1174s

1M (K=2) BoostGCN 0.2641 440s
Improv. +6.66% +63%

LightGCN 0.2294 2762s
Gowa. (K=4) BoostGCN 0.3165 859s

Improv. +37.97% +69%
LightGCN 0.1396 4525s

Yelp (K=4) BoostGCN 0.2026 438s
Improv. +45.13% +90%

Next, we compare our proposed BoostGCN with the basic framework LightGCN at different layers
on four datasets, the results of which are shown in Table 4. We have the following observations: 1)
BoostGCN outperforms LightGCN on almost all layers of four datasets, with the exception of only one
case. 2) For relatively small datasets (#Interactions < 1× 106) such as 100k and 1M, BoostGCN
achieves optimal performance at the second layer. This could be due to the fact that these datasets,
despite their smaller size, have a sufficiently dense user interaction profile, allowing the model to
effectively capture the necessary interaction information within a limited number of layers. 3) For
large datasets (#Interactions ≥ 1× 106) such as Gowalla and Yelp2018, BoostGCN consistently
outperforms LightGCN across all four layers, with the most notable performance achieved at the
fourth layer. This performance demonstrates BoostGCN’s ability to effectively penetrate deeper into
the network layers.

Efficiency Comparison (RQ2): To thoroughly show the advantages of BoostGCN, we perform an
efficiency comparison between BoostGCN and LightGCN on different datasets. Our performance
analysis, as detailed in Table 4, allows us to identify the optimal layer configuration for BoostGCN
on each dataset. For the relative improvement of time efficiency in Table 5, we employ the following
formula:

Improv. =
Long − Short

Long
× 100% (18)

where "Long" and "Short" represent the long and short training time of the two compared models,
respectively.

We present the results in Table 5 and it is easy to find that: 1) BoostGCN not only demonstrates
superior efficiency across all datasets, but also maintains a significant improvement in performance.

8

2) Across the four datasets, BoostGCN records a minimum efficiency improvement of nearly 50%.
More importantly, on larger dataset such as Yelp2018, BoostGCN achieves a significant leap with an
efficiency improvement of 90% and a performance improvement of 45.13%.

5.3 Parameter Analysis (RQ3)

1.00E-06 1.00E-05 1.00E-04 1.00E-03

1.00E-07 1.00E-06 1.00E-05 1.00E-04

0.15

0.20

0.25

0.30

R
ec

al
l@

5

1.00E-06 1.00E-05 1.00E-04 1.00E-03

1.00E-07 1.00E-06 1.00E-05 1.00E-04

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
5

100k 1M Gowalla Yelp2018

Figure 3: The performance of BoostGCN at
K = 2 with different regularization weights
λ on four datasets. For 100k and 1M datasets,
we explore the performance variation with λ =
{1e−6, ..., 1e−3}. For Yelp2018 and Gowalla
datasets, we explore the performance variation
in {1e−7, ..., 1e−4}.

0.5e 0.75e e 2e 3e 4e
0.18

0.21

0.24

0.27

0.30

R
ec

al
l@

5

Best performance

0.5e 0.75e e 2e 3e 4e

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
5

Best performance

100k 1M Gowalla Yelp2018

Figure 4: The performance of BoostGCN at K =
2 via different β in Eq.(8) on four datasets. The pa-
rameter β ranges from {0.5e, 0.75e, e, 2e, 3e, 4e}.
On these four datasets, the optimal performance
of BoostGCN is when the parameter β = {e}.

#U
se

r
24

53
#U

se
r

23
15

6
#U

se
r

14
52

LightGCN BoostGCN

Figure 5: The visualization comparison between
BoostGCN and LightGCN at K = 4 on Yelp2018
dataset. Red, purple, and green represent positive
samples of three different users in the test set.

Effect of Parameter λ: Figure 3 vividly
illustrates the impact of the regularization
weight on the performance of BoostGCN
across various datasets, and there are three
key observations: 1) On all datasets, Boost-
GCN shows stable performance within λ =
{1e−7, 1e−6, 1e−5}, which indicates that
BoostGCN is robust to parameter variations.
2) For relatively large datasets such as 1M,
Gowalla and Yelp2018, a smaller λ is more
beneficial for performance improvement. 3)
Our analysis yields the following guideline
for parameter λ for BoostGCN: λ ≤ {1e−6}
if #Interactions ≥ 1× 106.

Effect of Parameter β: To demonstrate the
simplicity of our model and the robustness
to parameters, we conduct experiments on
the parameter β of amplification function
in Eq.(8), as detailed in Figure 4, and have
the following results: 1) BoostGCN achieves
optimal performance with β = {e} on all
datasets when the parameter β ranges from
{0.5e, 0.75e, e, 2e, 3e, 4e}. 2) According to
Eq.(8), we can easily know that with the de-
crease of β, the interaction significant SAmp

i→u
of each item i is amplified more and the
model tends to be improved more. 3) This
result validates the correctness of focusing on
significant interactions and shows the effec-
tiveness and superiority of information am-
plification in BoostGCN.

9

5.4 Visualization Analysis (RQ4)

To further demonstrate the benefits of amplifying significant interactions on model performance,
we conduct a visualization analysis on Yelp2018 dataset. We randomly select three users and
compare the distribution of their positive sample representations in the test set, which are displayed
under the BoostGCN and LightGCN models at K = 4 respectively. As shown in Figure 5, two
observations are found: 1) For LightGCN, the dispersed and sparse distribution of positive samples
among these users suggests that the model’s suppression-based aggregation method may struggle to
capture their full preferences, potentially biasing node representations. 2) Conversely, BoostGCN
effectively concentrates the positive samples of the same users into a compact space, demonstrating its
ability to capture comprehensive user preferences. This capability underscores BoostGCN’s superior
performance in providing both comprehensive and personalized recommendations.

5.5 Analysis of Popularity Debiasing and Noise Resistance (RQ5)

70.21%

29.79%L
ig

ht
G

C
N 74.15%

25.85%

Popular items

79.17%

20.83%

Unpopular items

90.51%
9.49%

MovieLens-100k

67.77%

32.23%B
oo

st
G

C
N

MovieLens-1M

66.78%

33.22%

Gowalla

68.74%

31.26%

Yelp2018

74.71%

25.29%

Figure 6: Proportion of popular and unpopular
items in Top@15. BoostGCN is able to recom-
mend around 2%-16% more unpopular items.

Figure 7: Performance comparison between
BoostGCN (β = e) and LightGCN at differ-
ent noise levels on ML-100k

Popularity debiasing: To show the popularity debiasing performance of BoostGCN, we show the
results of Top@15 by the proportion of popular and unpopular items (the statistical tests across four
datasets all yield p-value < 0.01), as shown in Figure 6. Specifically, we categorize the positive
samples of each user in the test set based on interaction numbers, with the top 50% as popular items
and the bottom 50% as unpopular items. Experiments show that BoostGCN is able to recommend
about 2%-16% more unpopular items, achieving a better performance of popularity debiasing. Noise
resistance: To evaluate the noise resistance of BoostGCN, we randomly added 5%-20% spurious
interactions to the dataset and compared it with LightGCN, as shown in Figure 7. We can see
that BoostGCN outperforms LightGCN at different noise levels, demonstrating its superior noise
resistance.

5.6 Limitations

BoostGCN is designed based on static graphs, which means it has significant room for improvement
when dealing with real-time data. In Appendix A.7, we additionally examine BoostGCN’s transfer
potential and generalization scenarios across diverse domains. The amplification function we proposed
performs best in the current exploration phase but is not necessarily optimal. Future research can
further explore different amplification functions to achieve better performance, efficiency, and
recommendation fairness. Notably, BoostGCN is designed to replace the base model LightGCN.
Therefore, it can be combined with other advanced techniques to further improve performance.

6 Conclusion

In this paper, we propose a novel linear GCN model, namely BoostGCN. This model abandons the
conventional approach of suppressing information propagation via the graph Laplacian norm, and
instead explores and amplifies significant interactions within the interaction graph, thereby achieving
a dual optimization of performance and efficiency. Also, we provide a new method for quantifying
significant interactions. BoostGCN has relatively fixed parameters and stable performance, which is
convenient for future improvements and applications. Notably, our visualization experiments ensure
that BoostGCN is free from bias in recommendations.

10

Acknowledgements

This work was supported by the National Natural Science Foundation of China (72271063, 71871069),
and Guangdong Province Philosophy and Social Science Planning 2024 Annual General Project
(GD24CGL45).

References

[1] K. T. N. and M. Welling, “Semi-supervised classification with graph convolutional networks,”
in International Conference on Learning Representations, 2017.

[2] C. Wei, Y. Wu, Z. Zhang, F. Zhuang, Z. He, R. Xie, and F. Xia, “Fairgap: Fairness-aware
recommendation via generating counterfactual graph,” ACM Transactions on Information
Systems, vol. 42, no. 2, pp. 1–25, 2024.

[3] Z. Chen, L. Wu, P. Shao, K. Zhang, R. Hong, and M. Wang, “Fair representation learning for
recommendation: A mutual information perspective,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2023, pp. 4911–4919.

[4] W. Nan, J. Sun, and J. Li, “Cross-level relational graph contrastive learning for bundle recom-
mendation,” in IEEE International Conference on Web Services, 2023, pp. 112–117.

[5] C. Jianxin, C. Gao, X. He, D. Jin, and Y. Li, “Bundle recommendation and generation with
graph neural networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 3,
pp. 2326–2340, 2021.

[6] Y. Zhouxin, J. Li, L. Chen, and Z. Zheng, “Unifying multi-associations through hypergraph for
bundle recommendation,” Knowledge-Based Systems, vol. 255, p. 109755, 2022.

[7] Q. Lianyong, Y. Liu, W. Liu, S. Pei, X. Xu, X. Zhang, Y. Wang, and W. Dou, “Counterfactual
user sequence synthesis augmented with continuous time dynamic preference modeling for
sequential poi recommendation,” in Proceedings of the 33rd International Joint Conference on
Artificial Intelligence, 2024, pp. 2306–2314.

[8] Z. Lingzi, X. Zhou, Z. Zeng, and Z. Shen, “Dual-view whitening on pre-trained text embed-
dings for sequential recommendation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2024, pp. 9332–9340.

[9] Z. Mengqi, S. Wu, X. Yu, Q. Liu, and L. Wang, “Dynamic graph neural networks for sequential
recommendation,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp.
4741–4753, 2022.

[10] C. Jianxin, C. Gao, Y. Zheng, Y. Hui, Y. Niu, Y. Song, D. Jin, and Y. Li, “Sequential recom-
mendation with graph neural networks,” in Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2021, pp. 378–387.

[11] W. Xiang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative filtering,” in
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2019, pp. 165–174.

[12] H. Xiangnan, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn: Simplifying
and powering graph convolution network for recommendation,” in Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information Retrieval,
2020, pp. 639–648.

[13] M. Kelong, J. Zhu, X. Xiao, B. Lu, Z. Wang, and X. He, “Ultragcn: Ultra simplification of graph
convolutional networks for recommendation,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021, pp. 1253–1262.

[14] K. Yungi, T. Kim, W.-Y. Shin, and S.-W. Kim, “Monet: Modality-embracing graph convolutional
network and target-aware attention for multimedia recommendation,” in Proceedings of the
17th ACM International Conference on Web Search and Data Mining, 2024, pp. 332–340.

[15] M. Chang, H. Zhang, W. Guo, H. Guo, H. Liu, Y. Zhang, H. Zheng, R. Tang, X. Li, and
R. Zhang, “Hierarchical projection enhanced multi-behavior recommendation,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp.
4649–4660.

11

[16] L. Kang, F. Xue, D. Guo, L. Wu, S. Li, and R. Hong, “Megcf: Multimodal entity graph
collaborative filtering for personalized recommendation,” ACM Transactions on Information
Systems, vol. 41, no. 2, pp. 1–27, 2023.

[17] Z. Xin and Z. Shen, “A tale of two graphs: Freezing and denoising graph structures for
multimodal recommendation,” in Proceedings of the 31st ACM International Conference on
Multimedia, 2023, pp. 935–943.

[18] W. Qifan, Y. Wei, J. Yin, J. Wu, X. Song, , and L. Nie, “Dualgnn: Dual graph neural network
for multimedia recommendation,” IEEE Transactions on Multimedia, vol. 25, pp. 1074–1084,
2021.

[19] Z. Jinghao, Y. Zhu, Q. Liu, S. Wu, S. Wang, and L. Wang, “Mining latent structures for
multimedia recommendation,” in Proceedings of the 29th ACM International Conference on
Multimedia, 2021, pp. 3872–3880.

[20] X. Fei, H. Sun, G. Luo, S. Pan, M. Qiu, and L. Wang, “Graph attention network with high-order
neighbor information propagation for social recommendation,” in Proceedings of the 33rd
International Joint Conference on Artificial Intelligence, 2024, pp. 2478–2486.

[21] B. Shaked, U. Alon, and E. Yahav, “How attentive are graph attention networks?” in Interna-
tional Conference on Learning Representations, 2022.

[22] P. Qiyao, W. Wang, H. Liu, C. Huo, and M. Shao, “Graph collaborative expert finding with
contrastive learning,” in Proceedings of the 33rd International Joint Conference on Artificial
Intelligence, 2024, pp. 2288–2296.

[23] W. Chenhao, Y. Liu, Y. Yang, and W. Li, “Hetergcl: Graph contrastive learning framework on
heterophilic graph,” in Proceedings of the 33rd International Joint Conference on Artificial
Intelligence, 2024, pp. 2397–2405.

[24] C. Feiyu, J. Wang, Y. Wei, H.-T. Zheng, and J. Shao, “Breaking isolation: Multimodal graph
fusion for multimedia recommendation by edge-wise modulation,” in Proceedings of the 30th
ACM International Conference on Multimedia, 2022, pp. 385–394.

[25] Z. Xin, D. Lin, Y. Liu, and C. Miao, “Layer-refined graph convolutional networks for recom-
mendation,” in IEEE 39th International Conference on Data Engineering, 2023, pp. 1247–1259.

[26] Z. Yu, C. Gao, X. Li, X. He, Y. Li, and D. Jin, “Disentangling user interest and conformity
for recommendation with causal embedding,” in Proceedings of the Web Conference, 2021, pp.
2980–2991.

[27] H. Tian-Yu, J.-W. Bi, Z.-H. Wei, and Y. Yao, “Visual cues and consumer’s booking intention
in p2p accommodation: Exploring the role of social and emotional signals from hosts’ profile
photos,” Tourism Management, vol. 102, p. 104884, 2024.

[28] Y. Bo, Y. Lei, J. Liu, and W. Li, “Social collaborative filtering by trust,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 8, pp. 1633–1647, 2016.

[29] W. Yinwei, X. Wang, L. Nie, X. He, R. Hong, and T.-S. Chua, “Mmgcn: Multi-modal graph
convolution network for personalized recommendation of micro-video,” in Proceedings of the
27th ACM International Conference on Multimedia, 2019, pp. 1437–1445.

[30] L. Dawen, L. Charlin, J. McInerney, and D. M. Blei, “Modeling user exposure in recommen-
dation,” in Proceedings of the 25th International Conference on World Wide Web, 2016, pp.
951–961.

[31] H. Xiangnan, T. Chen, M.-Y. Kan, and X. Chen, “Trirank: Review-aware explainable recom-
mendation by modeling aspects,” in Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, 2015, pp. 1661–1670.

[32] G. Zhiqiang, J. Li, G. Li, C. Wang, S. Shi, and B. Ruan, “Lgmrec: Local and global graph
learning for multimodal recommendation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2024, pp. 8454–8462.

[33] K. Yehuda, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,”
Computer, vol. 42, no. 8, pp. 30–37, 2009.

[34] L. Fan, Z. Cheng, L. Zhu, Z. Gao, and L. Nie, “Interest-aware message-passing gcn for
recommendation,” in Proceedings of the Web Conference, 2021, pp. 1296–1305.

12

[35] J. Xinzhou, J. Li, Y. Xie, L. Chen, B. Kong, L. Cheng, B. Hu, Z. Li, and Z. Zheng, “Enhancing
graph collaborative filtering via neighborhood structure embedding,” in IEEE International
Conference on Data Mining, 2023, pp. 190–199.

[36] J. Zhang, X. Rui, F. Wenqi, X. Xin, L. Qing, P. Jian, and L. Xiaorui, “Linear-time graph neural
networks for scalable recommendations,” in Proceedings of the ACM Web Conference, 2024,
pp. 3533–3544.

[37] P. Zhang, Y. Yuchen, Z. Xi, L. Chaozhuo, W. Senzhang, H. Feiran, and K. Sunghun, “Transgnn:
Harnessing the collaborative power of transformers and graph neural networks for recommender
systems,” in Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2024, pp. 1285–1295.

[38] D. P. Kingma, “Adam: A method for stochastic optimization,” https://arxiv.org/abs/1412.6980,
2014.

[39] G. Xavier and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics, 2020, pp. 249–256.

[40] A. Blumer, E. Andrzej, H. David, and W. M. K., “Learnability and the vapnik-chervonenkis
dimension,” Journal of the ACM, vol. 36, no. 4, pp. 929–965, 1989.

[41] D. Sihao, F. Fuli, H. Xiangnan, L. Yong, S. Jun, and Z. Yongdong, “Causal incremental graph
convolution for recommender system retraining,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 35, no. 4, pp. 4718–4728, 2022.

[42] A.-A. Stoica, L. Nelly, and C. Augustin, “Fairness rising from the ranks: Hits and pagerank on
homophilic networks,” in Proceedings of the ACM Web Conference, 2024, pp. 2594–2602.

[43] K. Sharma, L. Yeon-Chang, N. Sivagami, S. Aditya, S. Shlok, K. Sang-Wook, and K. Srijan, “A
survey of graph neural networks for social recommender systems,” ACM Computing Surveys,
vol. 56, no. 10, pp. 1–34, 2024.

[44] Z. Haohui, W. Juntong, L. Shichao, and H. Shen, “A pre-trained multi-representation fusion
network for molecular property prediction,” Information Fusion, vol. 103, p. 102092, 2024.

[45] T. Félix, S. E. H., and V. Oleksandr, “Using gnn property predictors as molecule generators,”
Nature Communications, vol. 16, no. 1, p. 4301, 2025.

[46] G. Zili, X. Jie, W. Rongsen, Z. Changming, W. Jin, L. Yunji, and Z. Chenlin, “Stgaformer: Spa-
tial–temporal gated attention transformer based graph neural network for traffic flow forecasting,”
Information Fusion, vol. 105, p. 102228, 2024.

[47] K. Weiyang, G. Ziyu, and L. Yubao, “Spatio-temporal pivotal graph neural networks for traffic
flow forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2024, pp.
8627–8635.

13

https://arxiv.org/abs/1412.6980

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction of our paper, we clearly stated our contributions
and that the scope was for the GCN-based recommendation system.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We specifically discuss and point out the limitations of our work in subsection
4.6 (Limitations).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]
Justification: To the best of our knowledge, previous methods have mainly focused on
suppression, while we are the first to propose improving performance through amplification.
Our amplification method is heuristic and based on the summary of previous textual theories.
Therefore, our paper is more about verifying our heuristic theories through experiments.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

15

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: All of our datasets are public datasets and the citations are provided in the
supplementary materials. Our baselines are all publicly accessible, and corresponding
citations are also provided in the supplementary materials. The reproducible settings
involved in the experiment are all given in our paper, and we promise that our code will be
sent out after the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our paper specify all the training and test details (e.g., data splits, hyperparam-
eters, how they were chosen, type of optimizer, etc.) necessary to understand the results in
subsection 4.1 (Experimental Settings).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run each experiment ten times and report the average results. Therefore,
our paper report error bars suitably and correctly defined.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided detailed information introductions where computer resources
can affect the experimental results. For example, when conducting efficiency comparisons,
we have provided detailed information on computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research is fully compliant with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

17

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: Our research belongs to foundational research, so it will not involve negative
social impacts. Meanwhile, we have discussed the potential advantages and disadvantages
of our work in the introduction and limitations sections.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets we use in our paper are all commonly used public datasets in the
field and do not involve such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and are the license and terms of use explicitly mentioned and
properly respected.

18

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The main experimental methods and related settings are fully recorded in our
paper. Also, we promise that the code will be made public after the paper is accepted for
others to use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

19

paperswithcode.com/datasets

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Appendices for BoostGCN

A.1 Detailed Explanation for Related Concepts

C.1: ’Interaction significance’ is defined as the degree to which a user is likely to choose an item,
which is influenced by various factors such as the item’s quality, trust, price, etc [27, 26, 28]. For
example, in movie recommendation, among horror movies, those with higher quality are more likely
to be chosen by users. The quality of a movie can be partly obtained from modal information and
partly inferred from interaction data. In this paper, we focus on mining such hidden information from
interaction data.

C.2: ’Factors’ are defined as a broad term encompassing all factors that may influence a user’s choice
of an item, such as trust, quality, conformity, price and etc [27, 26, 28].

C.3: ’Key factors’ are defined as those factors that can be quantified given the available data content.
For example, in this paper we focus only on user-item interaction data; hence, the factors that can be
quantified through interactions constitute the key factors of this study.

C.4: ’The more interactions an item has, the higher a user is associated with the item.’ This
finding is derived from a synthesis of relevant literature and real-world observations. For example,
Yu et al. [26] have shown that items with more user interactions tend to induce conformity in users,
thereby increasing the likelihood that these items will be chosen. In addition, when purchasing
goods, items with a higher number of interactions can give users an impression of high quality and
trustworthiness, which in turn encourages them to choose these items. Therefore, the ranking of the
degree to which each item is chosen by users (referred to as "interaction significance") is consistent
with the ranking of the number of interactions, i.e. Si→u ∝ |Ni|. However, the increase in item
quality, trustworthiness and other related factors is not linearly related to the increase in the degree of
user choice. For this reason, we use a logarithmic function to quantify this hidden information in
order to reduce errors.

C.5: ’The benefits of Amplification.’ From C.4, our amplification method compensates for the loss
of information caused by the information suppression in the GCN basic framework. Notably, our
method outperforms the most commonly used GCN frameworks in terms of recommendation fairness
and noise resistance, as shown in Figures 6 and 7.

A.2 The Selection and Advantages of Logarithmic Amplification Functions

a) Reasons for amplifying first-order neighbors. From the perspective of spectral graph convo-
lution, the standard Laplacian-normalized aggregation is e

(k+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e
(k)
i , where

the significance of each item is 1√
|Nu|

√
|Ni|

. This aggregation will suppress those items with more

significant interactions. However, we instead use logβ(|Ni|)+1√
|Ni|

√
|Ni|

, which can emphasize neighbors with

more significant interactions, thereby accelerating the convergence of sparse interaction patterns and
improving the quality of the representation.

b) The selection criteria for the amplification function. To balance the signal gain, robustness and
learnability of significant interactions, we propose the following three criteria for selecting a node
amplification function:

(i) it should increase monotonically with the number of interactions so that nodes with a high number
of interactions contribute more information;

(ii) it should exhibit non-linear growth to prevent over-amplifying extremely interactive nodes and
introducing noise;

(iii) it should be a closed-form, differentiable expression for efficient gradient-based optimization.

However, the linear amplification function violates (ii); the exponential amplification function violates
(ii) and (iii). Consequently, the logarithmic amplification function is the optimal closed-form solution
under these criteria.

c) Advantages of the logarithmic amplification function. The logarithmic amplifier in Eq.(8)
exposes a single scalar β that instantiates a tunable trade-off between magnitude amplification and

21

model sensitivity. A larger β compresses inter-item differences εAmp
(ip,iq)

, yielding a more uniform
signal landscape, whereas a smaller β stretches these gaps, heightening sensitivity to subtle interaction
sparsity.

Proof.

Let interaction amplification be SAmp
i→u = logβ(|Ni|) + △log with β > 1 and △log > 0. For any

two neighbor items ip and iq , define the difference εAmp
(ip,iq)

= logβ(|Nip |)− logβ(|Niq |). Taking the

derivative w.r.t. β gives dεAmp

dβ = 1
β (ln(|Nip |)− ln(|Niq |)). This derivative monotonically decreases

with β, indicating that the greater β, the gentler the difference εAmp. The smaller β is, the stronger
the difference is magnified. □

d) Performance comparison with other amplification functions. To further verify that the logarith-
mic amplification function is superior to other amplification functions, we compare the logarithmic
amplification function with other amplification function variants: linear (|Ni|), square-root (

√
|Ni|)

and exponential (exp(|Ni|)) variants, as shown in Figure 8.

Linear Squ. Expo. Log
0.0

0.2

0.4

0.6

R
ec

al
l@

15

N/A

100k

Linear Squ. Expo. Log
0.0

0.1

0.2

0.3

0.4

0.5

R
ec

al
l@

15

N/A

1M

Linear Squ. Expo. Log
0.0

0.1

0.2

0.3

0.4

R
ec

al
l@

15

N/A N/A

Yelp2018

Figure 8: Performance comparison with other amplification functions.

From Figure 8, we can know that the linear and exponential amplification may cause gradient
explosion and unstable training. Square-root amplification is relatively mild, but its performance
is poor. The logarithmic amplification function provides the best balance among performance and
stability.

A.3 Advantages of BoostGCN’s Aggregation over the Aggregation using GAT

In this section, we provide a systematic, theoretical comparison of BoostGCN and GAT from three
perspectives: expressive power, sample complexity, and stability.

a) Expressive Power

Here we use the Vapnik-Chervonenkis (VC) dimension to measure the expressive power of a function
class. The higher the VC dimension, the more complex the model becomes and the more likely it
is to overfit on a limited number of samples. When VC dimension is zero, the model contains no
learnable parameters and has the lowest complexity.

· GAT learns attention αui = softmax(LeakyReLu(θT [Weu||Wei])), relying on the learnable
parameter θ and the feature mapping W .

· The weight of BoostGCN is determined only by w = logβ(|Nv|) (|Nv| represents the node degree)
and does not rely on additional learnable parameters. Therefore, the VC dimension is lower and it is
less likely to overfit in scenarios with sparse and node-free features.

Statement 1 (Expressive Power under Feature Scarcity): When dfeat < log(n) (dfeat represents
the feature dimension of each node and n represents the total number of nodes), GAT collapses to
uniform weighting, whereas BoostGCN retains degree-based discrimination.

Proof.

22

From [40], the VC-dimension of a soft-attention network with p learnable parameters is lower-
bounded by Ω(plogn). GAT’s parameters pGAT ≥ dfeat ⇒ V CGAT = Ω(dfeatlogn). When
dfeat < logn, V CGAT ≤ V Cuniform, i.e., GAT collapses to uniform weighting. BoostGCN
uses fixed weights w = logβ(|Nv|); no additional parameters ⇒ V CBoostGCN = 0. Therefore,
BoostGCN retains degree-based discrimination. □

b) Sample Complexity

· The attention parameter of GAT requires Ω(nlogn) interaction samples to converge to a stable weight
with a high probability. BoostGCN only requires O(n) samples to achieve the same generalization
error because the weights are directly given by the degrees.

Statement 2 (Sample Complexity): To achieve error ≤ ε with probability ≥ 1− δ:

(1) GAT requires mGAT = Ω(nlogn) interactions.

(2) BoostGCN requires mBoost = O(n) interactions.

Proof.

GAT: When the number of GAT’s parameters is pGAT ≥ dfeat, standard VC bound [40] gives
mGAT ≥ 1

ε2 (pGAT logn+ log 1
δ) = Ω(nlogn).

BoostGCN: The weights of BoostGCN are directly given by degrees and are equivalent to zero
parameters. The error is only derived from the empirical estimation of the degree. By Hoeffding’s
inequality, mBoost ≥ 1

ε2 log
1
δ = O(n). □

c) Stability under Noise

The sensitivity of GAT’s attention weights to noise edges increases linearly. The logarithmic amplifi-
cation of BoostGCN suppresses high-order noise in a sublinear manner, thus being more robust in
sparse and noisy scenarios.

Statement 3 (Stability under Noise): Let each edge be perturbed independently with probability q.

(1) GAT’s attention changes satisfy: E||αGAT − α̃GAT ||1 ≤ CGAT qn.

(2) BoostGCN’s changes satisfy: E||wBoost − w̃Boost||1 ≤ CBoostqlnn.

Proof.

GAT: Attention weight change grows linearly with the expected number of noisy edges qn.

BoostGCN: The estimation error of the weight only depends on the degree. By Hoeffding’s inequality,
E|logβ(|Nv|)− logβ(|Ñv|)| ≤ lnn√

m
(where m refers to the total number of observed edges), yielding

sub-logarithmic total error ∝ qlnn.

d) Overall Positioning

· Sparse graphs, scarce features, or high noise: GAT’s “learning” becomes a burden; BoostGCN
offers parameter-free, sample-efficient, noise-robust weighting.

· Dense graphs with rich features: GAT remains complementary; BoostGCN can be freely combined
with GAT.

A.4 The Proofs of BoostGCN’s Properties

Proposition A.1 (Smaller aggregation error) With BoostGCN’s aggregation in Eq.(12), the error
bound decays at the rate of O(logβ(|Ni|)+1) as the neighbor cardinality |Ni| increases, guaranteeing
diminishing aggregation error even for highly interactive nodes.

Proof.

Let Nu be the 1-hop neighbors of user u, wi =
logβ(|Ni|)+1

|Nu| be the amplified weight, etrui be

the ground-truth embedding of item i, and e
(k)
i be the embedding after k layers. Therefore, the

aggregation error can be defined as ε(k+1)
u = ||e(k+1)

u − etruu ||, with etruu =
∑

i∈Nu
wie

tru
i .

23

· First, we can get error propagation as follows: e
(k+1)
u =

∑
i∈Nu

wie
(k)
i ⇒ ε

(k+1)
u =

||
∑

i∈Nu
w2

i (e
(k)
i − etrui)|| ≤

∑
i∈Nu

wiε
(k)
i

· Next, we can assume that layer-wise error satisfies ε(k)i ≤ C · δ(k) (consistent with LightGCN-style
linear-GCN convergence analysis, δ < 1 and C is general constant).

· Then, because wi =
logβ(|Ni|)+1

|Nu| and logβ(|Ni|) ≤ logβ(maxj |Nj |), we have
∑

i∈Nu
wi ≤

logβ(maxj |Nj |)+1
|Nu| · |Nu| = logβ(maxj |Nj |) + 1.

· Finally, we combine the bounds ε(k+1)
u ≤

∑
i∈Nu

wiε
(k)
i ≤ (logβ(maxj |Nj |) + 1) · C · δ(k) =

O(logβ(|Ni|) + 1) · δ(k).
Hence, the aggregation error bound decays at the rate of O(logβ(|Ni|)+1) as the neighbor cardinality
|Ni| increases. □

Proposition A.2 (Near-optimal provable linear convergence rate) By using the logarithmic amplifier
in Eq.(8), BoostGCN can achieve a spectral-radius bound arbitrarily close to the infimum of the
sub-linear family and yield a near-optimal provable linear convergence rate.

Let node degree be d and the information weight be w(d), among the sub-linear family F =
{w|w(d) = dα, 0 < α < 1}, the logarithmic function w(d) = logβ(d) exhibits the same asymptotic
growth order as the limiting behavior of F (α → 0), thereby achieving a spectral-radius bound
arbitrarily close to the infimum of the family and yielding near-optimal provable linear convergence
rate.

Proof.

· Consider the family of functions F = {w|w(d) = dα, 0 < α < 1}.

· For wα(d) = dα, the corresponding aggregation matrix Wα = D−1 · diag(dαi) ·A.

· Its infinite norm ||Wα||∞ = maxi

∑
j d

α
j /di ≤ dαmax.

· For wα(d) = dα, the spectral radius satisfies ρ(Wα) ≤ ||Wα||∞ ≤ dαmax (Gershgorin’s direct
inference), which is monotonically increasing in α.

· When α → 0, dαmax → 1 is at its minimum. When α → 1, dαmax → dmax is at its maximum.

· The logarithmic weight w(d) = logβ(d) at the limit of α → 0 satisfies w(d) = limα→0+(d
α −

1)/α · 1/lnβ ≈ (dα − 1)/α (first-order Taylor expansion, β → e), hence it inherits the minimal
growth rate of the family F in the limit.

Among the sub-linear family F , the bound ρ(Wα) is minimized as α → 0. The logarithmic function
exhibits the same growth order as this limit, thus achieving the tightest bound. □

Theorem A.3 Under independent and identically distributed (i.i.d.) mini-batch sampling, bounded
gradients and L-smoothness, BoostGCN’s expected error bound is

E[||H(K) −Htru||2F] ≤ (1− 2ηλ)K∆0 + ηG2/(2λ) (19)

And BoostGCN’s high-probability bound is

||H(K)−Htru||F = O((logβ(maxj |Nj |)+1)K+

√
log 1

δ

K
), with probability at least 1−δ. (20)

where H(K) is the current embedding matrix of all users and items after K rounds update of random
training and Htru is the ideal embedding when the loss function converges to the minimum value,
where H(K), Htru ∈ R(|U|+|I|)×d; η is the learning rate and λ is the regularization term; G is the
boundary of gradients, where G > 0 and ||∇L|| ≤ G for any mini-batch; ∆0 = E[||H(0)−Htru||2F]
and δ ∈ (0, 1) is confidence parameter.

Explicit assumptions:

24

A1. Independent and identically distributed (i.i.d.) mini-batch sampling: The positive and
negative samples in each mini-batch are independently and identically distributed from the true
distribution;

A2. Bounded gradients: there exists G > 0 such that ||∇L|| ≤ G for any mini-batch;

A3. L-smoothness: the loss function is L-Lipschitz continuous in the embedding space.

Notation:

· The embedding matrix is H ∈ R(|U|+|I|)×d.

· The regularization loss is L(H) = Lrec(H) + λ||H||2F , where λ > 0 makes loss λ-strongly convex.

· Suppose A1-A3: i.i.d. sampling, gradient norm ≤ G, L-Lipschitz continuous gradient.

· The learning rate η is ≤ 1/L.

· The amplification matrix W satisfies ρ(W) ≤ (logβ(maxj |Nj |) + 1) (previously proved).

· Zk represents the martingale difference gradient noise generated by the k-th mini-batch.

·MK represents the cumulative random error matrix at the end of the K iteration, which is the sum
of all the mini-batch noises weighted by the amplification matrix W .

· J stands for identity matrix.

Proof.

First, we prove the BoostGCN’s expected error bound:

· Single-step update H(k+1) = H(k) − η∇LBk
(H(k)), where Bk is the mini-batch corresponding to

the k-th iteration.

· Under assumptions A1–A3 and λ-strongly convexity, one step yields

E[||H(k+1) −Htru||2F |Hk]

= ||H(k) −Htru||2F − 2η < H(k) −Htru,∇L(H(k)) > +η2E[||∇LBk
(H(k))||2F]

≤ (1− 2ηλ)||H(k) −Htru||2F + η2G2

(21)

· Let ∆k = E[||H(k) −Htru||2F], then ∆k+1 ≤ (1− 2ηλ)∆k + η2G2.

· For k = 0, 1, ...,K − 1,

∆K ≤ (1− 2ηλ)K∆0 + η2G2
K−1∑
t=0

(1− 2ηλ)t

= (1− 2ηλ)K∆0 + η2G2(1− 2ηλ)K/(2ηλ)

≤ (1− 2ηλ)K∆0 + η2G2/(2ηλ)

= (1− 2ηλ)K∆0 + ηG2/(2λ)

(22)

Therefore, the expected error bound of BoostGCN is E[||H(K) − Htru||2F] ≤ (1 − 2ηλ)K∆0 +
ηG2/(2λ).

Next, we prove the BoostGCN’s high-probability bound:

· Martingale Difference Sequence:

Zk = ∇LBk
(H(k))−∇L(H(k)), E[Zk] = 0, |Zk|F ≤ G (23)

· Cumulative Error:

MK =

K−1∑
k=0

(J − ηW)K−k−1Zk (24)

25

· Norm Bound:

||(J − ηW)K−k−1Zk||F ≤ (ρ(W))K−k−1G ≤ (logβ(maxj |Nj |) + 1)K−k−1G (25)

· Vector Azuma–Hoeffding Inequality:

P(||MK ||F ≥ t) ≤ 2exp(− t2

2KG2
) (26)

· Total Error Decomposition:

||H(K) −Htru||F ≤ (logβ(maxj |Ni|) + 1)K ||H(0) −Htru||F + ||MK ||F (27)

· Final High-Probability Bound: Let t = G
√
2Klog 2

δ , then

P(||H(K) −Htru||F ≤ (logβ(maxj |Ni|) + 1)K ||H(0) −Htru||F +G

√
2Klog

2

δ
) ≥ 1− δ (28)

Therefore, ||H(K) −Htru||F = O((logβ(maxj |Ni|) + 1)K +

√
log 1

δ

K), w.p. ≥ 1− δ. □

A.5 Baselines

We compare some representative models, ranging from traditional matrix factorization models to
state-of-the-art GCN-based models.

• MF-BPR [33] is a matrix factorization model optimized by a pairwise ranking loss in a
Bayesian way.

• MMGCN [29] is a classic multimodal recommendation model. In the experiment, we only
employ ID embedding as its input, denoted by MMGCNid.

• NGCF [11] leverages collaborative signals from high-order connectivity of the user-item
graph via feature transformation and nonlinear activation functions.

• LightGCN [12] is a linear GCN framework that uses only linear aggregation without feature
transformation and nonlinear activation functions between neighbors. As it is the most basic
GCN model, it serves as the main baseline for our comparison.

• UltraGCN [13] with additional constraint loss further simplifies LightGCN by removing
the stacking of many graph convolution layers in GCN.

• IMP-GCN [34] categorizes users into unique subgroups aligned with their particular inter-
ests, conducting advanced graph convolution operations exclusively within these subgroups.

• NSE-GCN [35] employs a neighborhood structure embedding technique that relies on
first-order adjacency information to generate structural embeddings.

• LayerGCN [25] is state-of-the-art GCN model with the DegreeDrop mechanism, which
refines layer representations during information propagation and node updating.

• LTGNN [36] performs linear-time graph convolution, scaling GNN-based recommendation
to the efficiency of classic MF while preserving high-order connectivity modeling.

• TransGNN [37] alternates Transformer and GNN layers to globally enlarge the receptive
field while disentangling edge-based aggregation.

• GAT-LightGCN combines LightGCN with Graph Attention Network.

In order to make a fair comparison, we carefully tune the hyper-parameters of each model based on
their respective published papers and hyper-parameter studies. All baselines compared in this paper
can be obtained directly from the corresponding literature.

26

A.6 Datasets

To comprehensively demonstrate the effectiveness of BoostGCN, we evaluate our model on four
distinct datasets, including MovieLens-100k (denoted by 100k) [29], MovieLens-1M (denoted by
1M) [29], Gowalla (denoted by Gowa.) [30] and Yelp2018 (denoted by Yelp) [11], as detailed in
Table 2. The datasets utilized in this paper are all publicly available and can be directly downloaded
from their respective sources.

The descriptions of these datasets are given below:

• MovieLens Dataset [29]: This dataset has been widely used for the recommendation
evaluation, and it contains a series of subsets such as MovieLens-100k and MovieLens-1M.

• Gowalla Dataset [30]: This dataset is a check-in dataset obtained from Gowalla, in which
users share their locations through checking-in.

• Yelp2018 Dataset [11]: This dataset is adopted from the 2018 edition of the Yelp challenge.
The local businesses like restaurants and bars are considered as items.

100 101 102 103 104

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 It

em
s

Yelp

100 101 102 103

0

10

20

30

40

Movielens-1M

Item Interactions

Figure 9: Long-tail items on Yelp and ML-1M
datasets.

100 101 102 103 104

0

250

500

750

1000

1250

1500

1750

2000

N
um

be
r

of
 U

se
rs

Yelp

100 101 102 103

0

20

40

60

80

Movielens-1M

User Interactions

Figure 10: Long-tail users on Yelp and ML-1M
datasets.

The reason why we chose these four datasets is that they vary greatly in size and sparsity, which is
more conducive to demonstrating that our method is effective in different scenarios. For example, it
can be seen from Figure 9 and Figure 10 that the long-tail problem of Yelp is much more severe than
that of ML-1M. However, as shown in Table 3 and Table 4 of our paper, our performance on Yelp
has improved the most, indicating that our performance can still be excellent when faced with the
long-tail problem.

A.7 Discussion on the Potential Applications of BoostGCN

A.7.1 The Effect of Logarithmic Amplification Function on Non-linear GCN

100k 1M Gowalla Yelp2018
0.24

0.32

0.40

0.48

0.56

R
ec

al
l@

15

NGCF(Log-amplification)
NGCF(Non-linear)

Figure 11: The performance comparison between
NGCF and NGCF with our log-amplification on
four datasets.

Since BoostGCN’s log-amplification is a lin-
ear re-weighting scheme, it can be grafted onto
any non-linear GCN without structural changes-
simply replace the original Laplacian weights
with the BoostGCN weights, while keeping all
non-linear activations, feature transformations
and residual connections intact. To validate this,
we conduct new experiments, as shown in Figure
11. We take NGCF (with Leaky-ReLU and fea-
ture transformation) and substitute its Laplacian
weights with BoostGCN weights. The value of
the amplification function β is searched from e
to 4e, and other settings remain consistent with
NGCF. We can find that adding our amplification
function to the four datasets will all improve the
model performance. Thus, BoostGCN is read-
ily compatible with non-linear GCNs and yields
consistent gains.

27

A.7.2 Discussion on Dynamic Graph Scenarios

Remaining purely static in highly dynamic scenarios (real-time recommender systems, traffic forecast-
ing) risks: 1) Concept drift: user interests or item popularity can shift abruptly, causing performance
drops. 2) Stale recommendations: outdated interactions are over-amplified, degrading user experi-
ence. Therefore, we can extend BoostGCN to dynamic graphs via two complementary mechanisms:

• Time-aware amplification function: we plan to incorporate the interaction timestamp t into
saliency:

SAmp
(i→u,t) = logβ(|Ni(t)|) · exp(−λ(t− tlast)) + ∆log (29)

where |Ni(t)| counts interactions up to time t, λ controls temporal decay, and ∆log retains the offset.
This lets recent interactions dominate while older ones gradually fade.

• Dynamic adjacency caching & incremental updates: upon each new interaction (u, i, t), we
perform a rank-1 update on the local adjacency matrix and reuse the incremental-propagation
framework of LightGCN [41] to avoid full-graph re-computation, maintaining efficiency on par with
the static version.

A.7.3 BoostGCN: From Recommendation to General Graph Representation

• Generalizing the assumption: we show that the amplification weight wi ∝ log(|Ni|) is mathemat-
ically a smooth re-scaling of node degree. Degree is a universal structural cue independent of the
“item-selection” semantics. Hence, in other domains one can simply replace |Ni| with any relevant
structural count (e.g., number of friends in social networks, entity frequency in knowledge graphs)
without changing the framework.

• Robustness when the assumption is relaxed: Figure 7 reports a ablation where we randomly
increase noise interactions by 5% to 20% in the 100k dataset, breaking the original correspondence
between high interaction and high saliency. The performance of BoostGCN is still superior to that of
LightGCN, which indicates that our proposed method is resilient to violations of the behavioral prior.

• Future extension: we now state in the conclusion that if domain priors are unavailable, one can
substitute log(|Ni|) with parameter-free alternatives such as PageRank [42] scores or self-supervised
edge-importance estimates without altering the BoostGCN pipeline or complexity.

A.7.4 Future Work

Although our work focuses on recommendation, the core idea of BoostGCN—amplifying salient
first-order interactions via a logarithmic weighting function—is a general graph-aggregation principle.
Consequently, the method is directly applicable to any task that requires node representation learning
with edge-importance weighting, such as:

• influence maximization in social networks (up-weighting trust edges) [43];

• molecular property prediction (emphasizing bonds directly connected to functional groups) [44, 45];

• traffic flow forecasting (amplifying interactions with frequently used neighboring road segments)
[46, 47].

28

	Introduction
	Preliminaries
	BoostGCN
	Significant Interactions
	Significant Interaction Amplification
	GCN with Information Amplification

	Theoretical Analysis of BoostGCN
	Experiments
	Experimental Settings
	Experimental Results
	Parameter Analysis (RQ3)
	Visualization Analysis (RQ4)
	Analysis of Popularity Debiasing and Noise Resistance (RQ5)
	Limitations

	Conclusion
	Appendices for BoostGCN
	Detailed Explanation for Related Concepts
	The Selection and Advantages of Logarithmic Amplification Functions
	Advantages of BoostGCN’s Aggregation over the Aggregation using GAT
	The Proofs of BoostGCN's Properties
	Baselines
	Datasets
	Discussion on the Potential Applications of BoostGCN
	The Effect of Logarithmic Amplification Function on Non-linear GCN
	Discussion on Dynamic Graph Scenarios
	BoostGCN: From Recommendation to General Graph Representation
	Future Work

