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Abstract

Functional Distributional Semantics (FDS)001
models the meaning of words by truth-002
conditional functions. This provides a natural003
representation for hypernymy but no guaran-004
tee that it can be learnt when FDS models are005
trained on a corpus. In this paper, we probe006
into FDS models and study the representations007
learnt, drawing connections between quantifica-008
tions, the Distributional Inclusion Hypothesis009
(DIH), and the variational-autoencoding objec-010
tive of FDS model training. Using synthetic011
data sets, we reveal that FDS models learn hy-012
pernymy on a restricted class of corpus that013
strictly follows the DIH. We further introduce a014
training objective that both enables hypernymy015
learning under the reverse of the DIH and im-016
proves hypernymy detection from real corpora.017

1 Introduction018

Functional Distributional Semantics (FDS; Emer-019

son and Copestake, 2016; Emerson, 2018) suggests020

that the meaning of a word can be modelled as a021

truth-conditional function, whose parameters can022

be learnt using the distributional information in a023

corpus (Emerson, 2020a; Lo et al., 2023). Aligning024

with truth-conditional semantics, functional rep-025

resentations of words are logically more rigorous026

than vectors (e.g., Mikolov et al., 2013; Pennington027

et al., 2014; Levy and Goldberg, 2014; Czarnowska028

et al., 2019) and distributions (e.g., Vilnis and Mc-029

Callum, 2015, Bražinskas et al., 2018) as concepts030

are separated from their referents (for a discussion,031

see: Emerson, 2020b, 2023). On top of its theo-032

retical favour, Lo et al. (2023) also demonstrate033

FDS models in action and show that they are very034

competitive in the semantic tasks of semantic com-035

position and verb disambiguation.036

Hypernymy is also known as lexical entailment.037

It is formally defined as the subsumption of exten-038

sions between two word senses, which can be mod-039

elled with truth-conditional functions. Although040

FDS provides the basis for embedding hypernymy, 041

it is not obvious whether hypernymy can be learnt 042

by training an FDS model on a corpus, and if so, 043

what kind of corpus it can successfully learn from. 044

To acquire hypernymy automatically from a cor- 045

pus, one way is through the use of distributional 046

information. In this class of methods, hypernymy 047

is learnt in an unsupervised manner given certain 048

hypotheses about the distributional properties of 049

the corpus. One such hypothesis is the Distribu- 050

tional Inclusion Hypothesis (DIH; Weeds et al., 051

2004; Geffet and Dagan, 2005), which relates lexi- 052

cal entailment of words to the subsumption of the 053

typical contexts they appear with in a corpus. 054

In §2, we first highlight that while existential 055

quantifications support the DIH, universal quan- 056

tifications reverse it. In §3, we discuss how FDS 057

can embed hypernymy, formulate our hypothesis 058

that FDS learns hypernymy under the DIH, and 059

introduce a training objective that handles simple 060

universal quantifications. In §4, using synthetic 061

data sets, we show that FDS learns hypernymy un- 062

der the DIH, and under the reverse of DIH when the 063

new objective is used. In §5, we show that the new 064

objective encodes word generality and improves 065

hypernymy detection by FDS on real corpora. 066

2 Distributional Inclusion Hypothesis and 067

Quantifications 068

The Distributional Inclusion Hypothesis (DIH) as- 069

serts that the typical characteristic features (con- 070

texts) of rh are expected to appear with rH if and 071

only if rH is a hypernym of rh. Although Geffet 072

and Dagan (2005) report that the DIH is largely 073

valid on a real corpus, it is not deemed fully correct 074

in general as a hyponym can appear in exclusive 075

contexts due to collocational (Rimell, 2014) and 076

pragmatic reasons (Pannitto et al., 2018), and fea- 077

ture inclusion has been found to be selective (Roller 078

et al., 2014). In this section, we describe how quan- 079

tifications can also be pivotal to the hypothesis. 080
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animal { ARG1←−−− grow}

mammal { ARG1←−−− furry}

bat { ARG1←−−− fly}dog { ARG1←−−− bark}

Figure 1: A taxonomic hierarchy of nouns. Next to
each noun is the set of contexts that are applicable to
the extension of it and those of its descendants (e.g., all
dogs are furry, but not all animals.).

Corpus 1 (DIH)

a dog barks
a mammal barks
an animal barks
a bat flies
a mammal flies
an animal flies
a mammal is furry
an animal is furry
an animal grows

Corpus 2 (rDIH)

every dog barks
every dog is furry
every dog grows
every bat flies
every bat is furry
every bat grows
every mammal is furry
every mammal grows
every animal grows

Table 1: Corpora generated from the hierarchy in Fig. 1.
Existential and universal quantifications result in two
corpora that follow the DIH and rDIH respectively.

While Geffet and Dagan (2005) consider syntax-081

based context, we suggest that contexts based on082

semantic representation are more suitable since syn-083

tactic differences do not necessarily contribute to084

semantic ones (e.g., passivizations and inversions),085

and the subject of concern should be semantics.086

We use Dependency Minimal Recursion Seman-087

tics (DMRS; Copestake et al., 2005; Copestake,088

2009) as the semantic representation, which is de-089

rived using the English Resource Grammar (ERG;090

Flickinger, 2000, 2011). Fig. 2 shows the predicate–091

argument structure of an example DMRS graph. If092

ri
ARG[a]←−−−− rj exists in the DMRS graph of a sen-093

tence in the corpus, we can say that ri appears in094

the context ARG[a]←−−−− rj .095

Consider a corpus as a partial description of a096

world. Distributional properties would depend on097

how the world is described. Here, we consider a098

corpus of simple sentences in the form ‘[quanti-099

fier] [noun] [context word]’. Take the taxonomic100

hierarchy in Fig. 1 as an example, where each noun101

has a set of applicable contexts. If we want to102

generate existentially quantified statements that are103

true, then: (1) a noun can appear in its hypernyms’104

contexts, e.g., ‘a dog grows’, where ARG1←−−− grow105

is applicable to animal; and (2) a noun can appear106

in its hyponyms’ contexts, e.g., ‘an animal barks’,107

where ARG1←−−− bark is applicable to dog. If we only 108

generate (2) and restrict (1) so that contexts that are 109

broadly applicable are not used with more specific 110

nouns, this creates a corpus that follows the DIH. 111

Corpus 1 of Table 1 shows an example.1 112

In contrast, generating sentences with universal 113

quantifications results in a corpus that follows the 114

reverse of the DIH (rDIH), as in Corpus 2, where 115

the set of contexts of mammal is a subset of that of 116

dog. Consequently, methods that rely on the DIH 117

as a cue for hypernymy would be undermined. 118

In §5, we use these processes to generate corpora 119

which strictly align with the DIH or rDIH. Corpora 120

with more complex sentence structures would re- 121

quire a richer world model than can be encoded 122

in a taxonomic hierarchy like Fig. 1. For instance, 123

with a restricted relative clause, ‘every dog that is 124

trained is gentle’ does not entail ‘every Chihuahua 125

is gentle’ even if Chihuahua is a hyponym of dog, 126

as the universal quantifier applies only to trained 127

dogs. We also disregard negations because they 128

can co-occur nearly freely, effectively making a 129

context word in the negated scope uninformative. 130

For example, ‘a dog does not ’ is much less 131

selective than ‘a dog ’. 132

3 Functional Distributional Semantics 133

In this section, we introduce Functional Distribu- 134

tional Semantics (FDS), discuss hypernymy rep- 135

resentation in FDS and explain how FDS can be 136

adapted to handle quantifications. We follow Lo 137

et al. (2023)’s FDS implementation which is briefly 138

described here. 139

3.1 Model-Theoretic Semantics 140

FDS is motivated by model-theoretic semantics, 141

which sees meaning in terms of an extensional 142

model structure that consists of a set of entities, and 143

a set of predicates, each of which is true or false of 144

the entities. In parallel, FDS represents an entity 145

by a pixie which is taken to be a high-dimensional 146

feature vector, and represents a predicate by a truth- 147

conditional semantic function which takes pixie(s) 148

as input and returns the probability of truth. 149

3.2 Probabilistic Graphical Models 150

The framework is formalized in terms of a family 151

of probabilistic graphical models. Each of them 152

1Without the restriction on (1), exhaustively generating
true assertions generates a corpus where the DIH does not hold
between nouns in a unary chain (e.g., animal and mammal in
Fig. 1), which would appear in the same set of contexts.
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postman deliver
ARG1 ARG2

mail

Figure 2: Probabilistic graphical model of FDS for gen-
erating words in an SVO triple ‘postman deliver mail’.
Only R1 = postman, R2 = deliver, and R3 = mail are
observed.

describes the generative process of predicates in153

the semantic graph of a sentence. Fig. 2 illustrates154

the process of generating the words given the ar-155

gument structure R1
ARG1←−−− R2

ARG2−−−→ R3. First, a156

pixie Zj ∈ Rd is generated for each node in the157

graph, together representing the entities described158

by the sentence. Then, for each pixie Zj , a truth159

value T
(ri,0)
Zj

is generated for each predicate ri in160

the vocabulary V; and for each pair of nodes con-161

nected as Rj
ARGa−−−→ Rk whose corresponding pix-162

ies are Zj and Zk, a truth value T (ri,a)
Zj ,Zk

is generated163

for each predicate ri in the vocabulary. Finally, a164

single predicate Rj is generated for each pixie Zj165

conditioned on the truth values.166

3.3 Semantic Functions167

As mentioned in §3.1, instead of treating a predi-168

cate as an indicator function, FDS models the prob-169

ability that it is true of the pixie(s) with unary (in170

(1)) and binary semantic functions (in (2)). This171

allows the model to account for vagueness.172

P
(
T
(ri,0)
Zj

=⊤
∣∣∣ zj) = t(ri,0)(zj) (1)173

P
(
T
(ri,a)
Zj ,Zk

=⊤
∣∣∣ zj , zk) = t(ri,a)(zj , zk) (2)174

The functions are implemented as linear classifiers:175

t(ri,0)(zj) = S
(
v(ri,0)

⊤
zj + b(ri,0)

)
(3)176

t(ri,a)(zj , zk) =

S

(
v
(ri,a)
1

⊤
zj + v

(ri,a)
2

⊤
zk + b(ri,a)

)
(4)177

where S denotes the sigmoid function.178

3.4 Representing Hypernymy 179

In truth-conditional semantics, for a set of entities 180

D, rH is a hypernym of rh if and only if 181

∀x∈D : rh(x) =⇒ rH(x) (5) 182

Although FDS provides truth-conditional inter- 183

pretations of words, it is not straightforward 184

to define hypernymy in FDS where predicates 185

are probabilistic and work over high-dimensional 186

pixies. One way is to translate (5) to prob- 187

abilistic counterpart for a score on hypernymy 188

P
(
T
(rH ,0)
Z =⊤

∣∣∣T (rh,0)
Z =⊤

)
. However, this con- 189

ditional probability is unavailable since only 190

P
(
T
(rH ,0)
Z =⊤

∣∣∣ z) and P
(
T
(rh,0)
Z =⊤

∣∣∣ z) are 191

modelled by FDS. 192

Another way is to interpret the probability model 193

from a fuzzy set perspective and use fuzzy set 194

containment (Zadeh, 1965) for representing hyper- 195

nymy: 196

∀z : t(rH ,0)(z) > t(rh,0)(z) (6) 197

Note that if we consider all z ∈ Rd, (6) can only be 198

true when v(rh,0) = kv(rH ,0) where k ̸= 0, which 199

is impossible to be obtained in practice from model 200

training. Therefore, we restrict the pixie space 201

and only consider pixies in a unit hypersphere or 202

hypercube to be meaningful. With (3) and (4), rH 203

is considered the hypernym of rh if and only if 204

s(rh, rH) > 0 in (7), where p ∈ {1, 2} (derivation 205

in Appendix A). Cheng et al. (2023) also use this 206

score for hypernymy. 207

s(rh, rH) = b(rH ,0) − b(rh,0)

−
∥∥∥v(rH ,0) − v(rh,0)

∥∥∥
p

(7) 208

Note that the transitivity of (5) is paralleled (deriva- 209

tion in Appendix B): 210

s(r1, r2) > 0 ∧ s(r2, r3) > 0

=⇒ s(r1, r3) > 0
(8) 211

Having hypernymy representation built into a 212

distributional model allows generalization out of 213

missing information. For example, when the 214

(r)DIH does not hold between dog and mammal 215

in a corpus, knowing that both dog and fox share 216

the same contexts in a corpus (e.g., { ARG1←−−− bark}) 217

is indicative that they share common hypernyms, 218

e.g., mammal. This also applies to hyponymy, e.g., 219

machine and system sharing { ARG1←−−− complex} and 220

sharing computer as their hyponym. Such general- 221

ization power is largely absent in models based on 222

strict contexts subsumption. 223
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3.5 Original Training Objective224

FDS models are trained using the variational-225

autoencoding method on simplified DMRS graphs226

where quantifiers and scopal information are re-227

moved from the graphs before training, leaving us228

with just the predicate–argument structure. The229

approximate posterior distribution of pixies qϕ is230

taken to be n spherical Gaussian distributions, each231

with mean µZi and covariance σ2
Zi
I . Given an ob-232

served DMRS graph G with n pixies Z1 . . . Zn,233

we maximize (9), reformulated from the β-VAE234

(Higgins et al., 2017).235

L =
n∑

i=1

Ci +
∑

ri
ARG[a]−−−−→rj in G

Ci,j,a

− d

2

n∑
i=1

β1µ
2
Zi

+ β2
(
σ2
Zi
− lnσ2

Zi

) (9)236

The last term in (9) is the regularization term for the237

approximate posterior, and the first two terms aim238

to maximize the truthness of observed predicates239

and the falsehood of K negatively sampled ones r′k240

over the inferred pixie distribution qϕ, by241

Ci = lnEqϕ

[
t(ri,0)(zi)

]
+

K∑
k=1

lnEqϕ

[
1− t(r

′
k,0)(zi)

] (10)242

Ci,j,a = lnEqϕ

[
t(ri,a)(zi, zj)

]
+

K∑
k=1

lnEqϕ

[
1− t(r

′
k,a)(zi, zj)

] (11)243

Both the local predicate–argument structure of244

each predicate and global topical information in245

the graph are used for variational inference. For in-246

stance, the approximate posterior distribution of the247

pixie Z1 of postman in Fig. 2 is inferred from the248

direct argument information, ARG1←−−− deliver, and249

the indirect topical predicate, ̸←− mail.250

Our Hypothesis. If the training corpus strictly251

follows the DIH, hypernymy can be learnt by FDS252

models. The intuition behind our hypothesis is253

elaborated in Appendix C.254

3.6 Proposed Objective for Universal255

Quantifications256

FDS assumes that each observed predicate refers257

to only one point in the pixie space and offers258

no tools for dealing with regions. We propose a 259

method to allow optimizations of semantic func- 260

tions with respect to a region in the pixie space, 261

thus enabling FDS to handle simple sentences with 262

universal quantifications. Essentially, we add the 263

following ∀-objective to the original objective in 264

(9): 265

L∀ =
∑

rj
ARG[a]←−−−−ri in G

sa(ri, rj) + Ui,j,a
(12) 266

where rj is a predicate whose referent is universally 267

quantified, and 268

sa(ri, rj) = b(ri,a) − b(rj ,0)

−
∥∥∥v(ri,a)2 − v(rj ,0)

∥∥∥
p

(13) 269

Ui,j,a =
K∑
k=1

min
(
0,−s0(ri, r′k)

)
+

K∑
k=1

min
(
0,−sa′′k (r

′′
k , rj)

) (14) 270

Note that (13) is modified based on (7), previously 271

defined for classifying hypernymy. 272

To explain (12), consider the sentence ‘every 273

dog barks’ as an example. The first term inside the 274

summation in (12) enforces that extension of rj is 275

a subset of that of prototypical argument a of ri, 276

i.e., the set of dogs should be contained in the set 277

of agents that barks. The second term, described 278

in (14), incorporates K randomly generated neg- 279

ative samples. r′k is a noun, which is a negative 280

sample for rj . r′′k is a verb or adjective and a′′k is 281

an argument role, together form a negative sample 282

for ri and a. Then, (14) requires that it is false 283

to universally quantify the referents of the noun 284

r′k in r′k
ARG[a]←−−−− ri and rj in rj

ARG[a′′k ]←−−−−− r′′k . For 285

the example, both of the following sentences are 286

considered false: ‘every dog is owned’ and ‘every 287

cat barks’, where r′k = cat, r′′k = own and a′′k = 2. 288

4 Experiments on Synthetic Data Sets 289

Testing our hypothesis in §3.5 and the effectiveness 290

of the new objective for universal quantifications 291

in §3.6 requires corpora that strictly follow the 292

DIH or rDIH, which is impractical for real corpora. 293

Therefore, we create a collection of synthetic data 294

sets and perform experiments on them. 295
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r1 {c1}

r2 {c2}

r3 {c3}

r4 {c4}

r5 {c5}

r6 {c6}

r7 {c7}

r8 {c8}

r9 {c9}

r10 {c10}

r11 {c11}

r12 {c12}

(a) Four chains (Hchains)

r1 {c1}

r3 {c3}

r6 {c6}

r2 {c2}

r5 {c5}r4 {c4}

(b) Tree (Htree)

r1 {c1}

r3 {c3}

r6 {c2}

r2 {c2}

r5 {c5}r4 {c4}

(c) Tree with overlap-
ping contexts (under-
lined) (H ′

tree)

r1 {c1}

r3 {c3}

r6 {c6}

r2 {c2}

r5 {c5}r4 {c4}

(d) DAG (HDAG)

r1 {c1}

r3 {c3}

r6 {c2}

r2 {c2}

r5 {c5}r4 {c4}

(e) DAG with overlap-
ping contexts (under-
lined) (H ′

DAG)

Figure 3: Examples of the topologies of the synthetic taxonomic hierarchies.

4.1 Synthetic Data Sets under the (r)DIH296

Each of the synthetic data sets consists of a tax-297

onomic hierarchy of nouns and a corpus, created298

using the following procedure:299

1. Create a taxonomic hierarchy. Define a set300

of nouns, the hypernymy relations of them,301

and the contexts applicable to its extension302

and those of its hyponyms (as in Fig. 1).303

2. Choose a hypothesis. The DIH or rDIH.304

3. Create a corpus. Create sentences in the form305

‘[quantifier] [noun] [context word]’ following306

the chosen hypothesis and the defined hierar-307

chy (as in Table 1).308

4.1.1 Topology of Hierarchy309

Different topologies of hierarchy lead to different310

distributional usage of words, thus possibly varying311

representations learnt for hypernymy. For example,312

a noun can have multiple hypernyms (e.g., dog is313

the hyponym of both pet and mammal), or share314

overlapping contexts with another noun far in the315

hierarchy (e.g., both bat and airplane ARG1←−−− fly).316

To test the robustness of FDS models for learning317

hypernymy, we experiment with a range of topolo-318

gies. Fig. 3 exemplifies the five classes of topolo-319

gies used. We expect that directed acyclic graphs320

(HDAG and H ′
DAG) be harder topologies than trees321

(Htree and H ′
tree), and topologies with overlapping322

contexts (H ′
tree and H ′

DAG) be harder than those323

without (Htree and HDAG). In addition, we test324

Hchains with pixie dimensionality d = 2. A 2-D325

pixie space allows lossless visualization of the se-326

mantic functions. To test hypernymy learning at327

scale on an actual hierarchy, we make use of Word-328

Net (Miller, 1995; Fellbaum, 1998) and test our329

models on the WordNet’s hierarchy (HWN).330

Every node in the hierarchy consists of a noun331

and a semantic context. The topology of the Hchains332

used in the experiment is exactly as depicted in333

Fig. 3. HWN is created out of the synset entity.n.01334

in WordNet, which is the root, and its hyponymic335

synsets. This results in 74,374 nodes with 663,492 336

hypernymy pairs. We randomly sample 663,492 337

pairs from the remaining pairs as negative instances 338

for evaluation. For the remaining hierarchies, each 339

of them consists of 153 nodes with a height of 340

5. For Htree, the first level is a root node, and a 341

node at the hth level has (h + 1) direct children. 342

Htree′ is created from Htree by choosing 5 pairs of 343

nodes and making each pair share a context set. 344

HDAG and H ′
DAG are created from Htree and Htree′ 345

respectively by choosing 5 pairs of nodes, where 346

the nodes of each pair are at different levels, and 347

make the higher level node the direct parent of the 348

lower level one. 349

4.2 FDS Models Training 350

We experiment with two variations of FDS train- 351

ing: FDS is trained using the original objective in 352

(9) whereas FDS∀ incorporates the ∀-objective fol- 353

lowing §3.6. The hypernymy score of each model, 354

given by (7), is averaged over two runs of differ- 355

ent random seed. We empirically find that setting 356

p = 1 in (13) and p = 2 in (7) almost always give 357

the best performances, and we only report the re- 358

sults in this setup. Other than the newly introduced 359

training objective, training of the models largely 360

follows that of Lo et al. (2023). No hyperparame- 361

ter search is conducted due to the large number of 362

experiments (details described in Appendix D). 363

4.3 Evaluation on Hypernymy Detection 364

We test if a model trained on the corpus learns to 365

identify hypernymy defined in the hierarchy that 366

generates the corpus. Concretely, a model is asked 367

to give a score of hypernymy between every pair 368

of nouns using (7). Performance is then measured 369

by the area under the receiver operating character- 370

istic curves (AUC). Unlike average precision, AUC 371

values do not reflect changes in the distribution 372

of classes, which is favourable since we are com- 373

paring models’ performances across varying class 374

distributions generated from different topologies. 375
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We include two distributional methods for hy-376

pernymy detection based on the DIH in the experi-377

ments, namely WeedsPrec (Weeds et al., 2004) and378

invCL (Lenci and Benotto, 2012):379

WeedsPrec(r1, r2) =

∑
i u

(r1)
i 1

u
(r2)
i >0∑

i u
(r1)
i

380

381
invCL(r1, r2) =

√
CL(r1, r2)(1− CL(r2, r1))

where CL(r1, r2) =

∑
imin

(
u
(r1)
i , u

(r2)
i

)
∑

i u
(r1)
i

382

They measure the context inclusion of r1 by r2 and383

invCL measures also the non-inclusion of r2 by384

r1. Their distributional space is constructed by first385

counting co-occurrences of adjacent predicates in386

the preprocessed DMRS graphs, then transform-387

ing the resulting matrix using positive pointwise388

mutual information. Each row vector u(ri) in the389

transformed matrix represents a predicate ri.390

Model Hchains Htree H ′
tree HDAG H ′

DAG HWN

FDS .990 .994 .995 .995 .995 .940
FDS∀ .925 .206 .210 .214 .221 .788
WeedsPrec 1.000 1.000 1.000 1.000 1.000 1.000
invCL 1.000 1.000 1.000 1.000 .999 1.000

Table 2: AUC of models trained on the DIH corpora.

Model Hchains Htree H ′
tree HDAG H ′

DAG HWN

FDS .876 .842 .793 .752 .688 .444
FDS∀ .988 .983 .978 .981 .977 .675
WeedsPrec .900 .675 .619 .613 .556 .809
invCL .900 .355 .280 .236 .276 .564

Table 3: AUC of models trained on the rDIH corpora.

Table 2 and Table 3 show the results of FDS391

models when trained on the DIH and rDIH corpora392

respectively (a visualization of results on Hchains is393

provided in Appendix E). As expected, FDS, Weed-394

sPrec and invCL are shown to work on the DIH395

corpora, and only FDS∀ works on the rDIH corpora.396

Reversing the FDS models on respective corpora397

yields substantially worse performances. In particu-398

lar, FDS∀ attains AUCs of about 0.2 on the DIH cor-399

pora means hypernymy predictions are even mostly400

reversed, which in turn reflects the effectiveness401

of the universal objective when FDS∀ interprets402

the subsumption of contexts reversely based on the403

rDIH. Moreover, hierarchies with overlapping con-404

texts and multiple direct hypernyms are not harder405

for FDS than those without. Scaling up to the huge 406

WordNet hierarchy HWN results in a slight drop in 407

AUC for FDS on the DIH corpus, and markedly 408

worse performances for FDS∀. While our preset 409

hyperparameters work nicely on all other settings, 410

it is possible that FDS∀ requires a different set of 411

hyperparameters to perform optimally on the rDIH 412

corpora generated from huge hierarchies. 413

Model Hchains Htree HDAG HWN

FDS .947 .991 .990 .946
FDS∀ .956 .358 .378 .183
FDS(∀) .999 .986 .984 .992
WeedsPrec .950 .996 .993 .993
invCL .958 .891 .864 .868

Table 4: AUC of models trained on combined corpora.

We further produce new corpora by combining 414

the DIH and rDIH corpus of each topology. The 415

resulting corpora still follow the DIH. In this setup, 416

instead of applying the same FDS training objec- 417

tive across the whole corpus, the ∀-objective can 418

be added only when there is a universal quantifier 419

(e.g., every). We name this FDS model FDS(∀). Ta- 420

ble 4 shows the results. The DIH methods (FDS, 421

WeedsPrec, and invCL) perform well as expected, 422

whereas invCL performs worse since it also mea- 423

sures non-inclusion which is undermined by the 424

rDIH half. There are several interesting insights 425

into FDS models. First, FDS still works on the 426

corpora with an rDIH half because it is still valid 427

to say ‘a dog grows’, as mentioned in §2. Sec- 428

ond, FDS(∀) is as good as FDS across topologies 429

and even better on Hchains and HWN. This implies 430

that the ∀-objective indeed captures simple uni- 431

versal quantifications and can be used compatibly 432

with the original training method on a corpus with 433

varying quantifications. Third, on HWN, FDS(∀) 434

performs better than FDS on the DIH corpora and 435

much better than FDS∀ on the rDIH corpora. This 436

reflects that the ∀-objective is more effective when 437

mixed with the original mode of training. 438

4.4 Evaluation on Distributional 439

Generalization 440

We also test if the distributional generalization 441

power mentioned in §3.4 exists in FDS. We con- 442

struct a new corpus from a hierarchy with removed 443

hypernymy information. Fig. 4 illustrates the idea 444

with an example hierarchy of nouns and the con- 445

texts that would appear with the nouns in the new 446

corpora obtained. If upward (downward) distri- 447

6



r1 {c1}

r3 {c3}

r6 {c6}

r2 {c2}

r5 {c5}

r8 {c8}

r4 {c5}

r7 {c7}

(a) An example taxonomy
with missing relations. The
siblings r4 and r5 have the
same context c5. Dashed
lines show the relations to
be removed from training.

Hyp. Noun Contexts

DIH r4 {c5, c7}
r5 {c5, c8}

rDIH r4 {c1, c3, c5}
r5 {c1, c2, c5}

(b) Contexts that r4 and r5
in a would appear with in the
new (r)DIH corpora.

Figure 4: Illustration of the setup for testing distribu-
tional generalization.

butional generalization exists in a model, based448

on that r4 and r5 share c5 as their contexts, it449

should identify the hypernyms (hyponyms) of r5450

(r4) as the candidate hypernyms (hyponyms) of451

r4 (r5) after training on the new corpus. That452

is, we expect ∀rj ∈ {r5, r6, r7, r8} : s(r4, r2) >453

s(r4, rj) if upward generalization exists, and ∀rj ∈454

{r1, r2, r3, r4, r6} : s(r7, r5) > s(rj , r5) if down-455

ward exists in FDS.456

In our experiments, we sample five nouns from457

the H ′
DAG hierarchy. Then, for each of these nouns458

r̃, we equate the contexts set of r̃ to that of one of its459

siblings and remove the hypernymy (hyponymy) in-460

formation of their common parent (daughter) from461

r̃ when creating the new corpora.462

Model Hypothesis Upward Downward

FDS DIH .922 .742
FDS∀ rDIH .976 .998

Table 5: Mean AUC for distributional generalizations.

For each r̃, we compute the hypernymy score of463

between r̃ and each of the candidate hypernyms,464

and between r̃ and a random noun. We measure465

the performance with mean AUC, averaged over466

the five chosen r̃. Table 5 shows that both upward467

and downward distributional generalizations exist468

when the corpus follows either the DIH or rDIH,469

and to a larger extent on the rDIH corpus.470

4.5 Summary471

The experimental results confirm that: (1) the orig-472

inal FDS models learn hypernymy under the DIH,473

(2) the proposed ∀-objective captures universal474

quantifications and enables hypernymy learning475

under the rDIH, and (3) FDS models can gener-476

alize about nouns with incomplete contexts in a477

corpus using distributional information. 478

5 Experiments on Real Data Sets 479

Seeing how FDS performs on restricted synthetic 480

data sets is helpful for understanding models’ be- 481

haviour but it does not immediately tell us more 482

about hypernymy learning from open classes of sen- 483

tences. Therefore, we perform further experiments 484

using a real corpus and data sets for hypernymy. 485

5.1 FDS Models Training 486

Training Data. FDS models are trained on Wiki- 487

woods (Flickinger et al., 2010; Solberg, 2012), 488

which provide linguistic analyses of 55m sentences 489

(900m tokens) in English Wikipedia. Each of the 490

sentences was parsed by the PET parser (Callmeier, 491

2001; Toutanova et al., 2005) using the 1212 ver- 492

sion of the ERG, and the parses are ranked by 493

a ranking model trained on WeScience (Ytrestøl 494

et al., 2009). We extract the DMRS graphs from 495

Wikiwoods using Pydelphin2 (Copestake et al., 496

2016). After preprocessing, there are 36m sen- 497

tences with 254m tokens. 498

Model Configurations. Although quantifica- 499

tions are annotated in Wikiwoods, neither of the 500

proposed training objectives is entirely applicable 501

in general. For example, even for a sentence of 502

modest complexity like ‘every excited dog barks’, 503

it requires a universal quantification over the in- 504

tersection of the set of dogs and excited entities. 505

However, set intersection is not modelled by FDS. 506

In our experiments, we apply either FDS or FDS∀ 507

described in §4.2 to every training instance. We 508

also test an additional model FDS∀/2 where the ∀- 509

objective is scaled by 0.5. Each model is trained for 510

1 epoch and the results of each model are averaged 511

over two random seeds as discussed in §4.2. 512

5.2 Evaluation Method 513

We test the trained models on four English hyper- 514

nymy data sets for nouns, namely Kotlerman2010 515

(Kotlerman et al., 2010), LEDS (Baroni et al., 516

2012), WBLESS (Weeds et al., 2014), and EVA- 517

Lution (Santus et al., 2015). Each of them consists 518

of a set of word pairs, each with a label indicating 519

whether the second word is a hypernym of the first 520

word. We removed the out-of-vocabulary instances 521

from all data sets, and non-nouns from EVALution 522

during the evaluation. Table 6 reports the statistics 523

of the test sets data. We report the AUC as in §4. 524

2https://github.com/delph-in/pydelphin
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Test Set # Positive # Negative

Kotlerman2010 880 [831] 2058 [1919]
LEDS 1385 [1344] 1385 [1342]
WBLESS 834 [830] 834 [813]
Evalution 1592 [1352] 4561 [3241]

Table 6: Class distributions of test sets. In brackets
are the numbers after removal of OOV instances and
non-nouns.

In addition, we use WBLESS for further per-525

formance analysis, which provides categorizations526

of the negative instances. Each of the negative in-527

stances is either a hyponymy pair, co-hyponymy528

pair, meronymy pair, or random pair.529

5.3 Baselines530

Following Roller et al. (2018), we implement five531

distributional methods and train them on Wiki-532

woods using the distributional space described in533

§4.3. Apart from the two DIH measures in §4.3,534

we use SLQS (Santus et al., 2014), a word gen-535

erality measure that rests on another hypothesis536

that general words mostly appear in uninformative537

contexts:538

SLQS(r1, r2) = 1− Er1

Er2

where Eri = medianNj=1[H(cj)]

539

For each word ri, the median of the entropies of540

N most associated contexts (as measured by lo-541

cal mutual information) is computed, where H(cj)542

denotes the Shannon entropy of the associated con-543

text cj . Then, SLQS compares the generality of544

two words by their medians. N is chosen to be545

50 following Santus et al. (2014). We also include546

cosine similarity (Cosine) of u(r1) and u(r2), and547

SLQS–Cos, which multiplies the SLQS measure548

by Cosine since the SLQS measure only considers549

generality but not similarity.550

5.4 Results551

Table 7 shows the results on the four test data sets.552

The DIH baselines are competitive and nearly out-553

perform all models across the test sets. FDS∀ and554

FDS∀/2 both outperform FDS considerably across555

the test sets. This reflects that including the pro-556

posed ∀-objective in training is useful for extracting557

hypernymy information in a corpus. Compared to558

the 2.7-billion-token corpus used by Santus et al.559

(2014) in training SLQS, we suggest that the Wiki-560

woods corpus is too small for SLQS to obtain mean-561

ingful contexts of the median entropy: setting N562

Model Kotlerman2010 LEDS WBLESS Evalution

Cosine .701 .782 .620 .526
WeedsPrec .674 .897 .709 .650
invCL .679 .905 .707 .620
SLQS .491 .480 .568 .532
SLQS–Cos .489 .477 .557 .532
FDS .473 .650 .508 .459
FDS∀/2 .558 .759 .660 .583
FDS∀ .550 .735 .655 .554

Table 7: AUC on the test sets.

to be small results in frequent contexts that are 563

not representative of the nouns, whilst setting it 564

large would require a disproportionate number of 565

contexts for the infrequent words. 566

Model Hyponymy Co-hyponymy Meronymy Random

Cosine .511 .369 .683 .924
WeedsPrec .754 .615 .631 .843
invCL .745 .568 .652 .872
SLQS .606 .551 .590 .524
SLQS–Cos .581 .525 .574 .547
FDS .596 .288 .561 .587
FDS∀/2 .783 .612 .549 .704
FDS∀ .783 .625 .527 .691

Table 8: AUC on the sub-categories of WBLESS.

Table 8 shows the results on the WBLESS sub- 567

categories. It is shown that FDS∀ is stronger than 568

the DIH baselines in distinguishing between hy- 569

ponymy and hypernymy pairs, and between co- 570

hyponymy and hypernymy pairs, while weaker for 571

meronymy or random pairs. FDS∀ and FDS∀/2 out- 572

perform FDS in three out of the four sub-categories, 573

with much higher distinguishing power for co- 574

hyponymy and hyponymy. These imply that the 575

∀-objective makes FDS more sensitive to the rela- 576

tive generality than the similarity of word pairs. 577

6 Conclusion 578

We have discussed how Functional Distributional 579

Semantics (FDS) can provide a truth-conditional 580

representation for hypernymy and demonstrate that 581

it is learnable from the distributional information 582

in a corpus. On synthetic data sets, we confirm that 583

FDS learns hypernymy under the Distributional In- 584

clusion Hypothesis (DIH), and under the reverse 585

of the DIH if the proposed objective for univer- 586

sal quantifications is applied. On real data sets, 587

the proposed objective substantially improves FDS 588

performance on hypernymy detection. We hope 589

that this work provides insights into FDS models 590

and hypernymy learning from corpora in general. 591
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Limitations592

The proposed representation of hypernymy in FDS593

compares the semantic functions of DMRS pred-594

icate pairs. Following previous implementations595

of Functional Distributional Semantics, a semantic596

function is a linear classifier. Consequently, each597

DMRS predicate is assumed to have only one sense.598

Modelling polysemy would require more expres-599

sive parametrizations of semantic functions, which600

can pose additional challenges to model training,601

and the hypernymy representation would possibly602

need to be revised. Such an approach is considered603

out of the scope of this work.604

Ethics Statement605

We anticipate no ethical issues directly stemming606

from our experiments.607
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A Derivation of Hypernymy Conditions833

Consider (6). ∀z:834

t(rH ,0)(z) > t(rh,0)(z)835

S
(
v(rH ,0)⊤z + b(rH ,0)

)
> S

(
v(rh,0)

⊤
z + b(rh,0)

)
836

S is monotonic, so ∀z:837

v(rH ,0)⊤z + b(rH ,0) > v(rh,0)
⊤
z + b(rh,0)838

b(rH ,0) − b(rh,0) >
(
v(rh,0) − v(rH ,0)

)⊤
z839

For z on a unit hypercube, this is equivalent to840

b(rH ,0) − b(rh,0) > max
∥z∥∞=1

(
v(rh,0) − v(rH ,0)

)⊤
z841

Note that argmaxzi
(
v(rh,0) − v(rH ,0)

)⊤
z =842

sgn(v(rh,0)i − v
(rH ,0)
i ) where sgn is the sign func-843

tion. Hence, we have844

b(rH ,0) − b(rh,0) >
∥∥∥v(rH ,0) − v(rh,0)

∥∥∥
1

845

For z on a unit hypersphere, this is equivalent to846

b(rH ,0) − b(rh,0) > max
∥z∥2=1

(
v(rh,0) − v(rH ,0)

)⊤
z847

Note that argmaxz
(
v(rh,0) − v(rH ,0)

)⊤
z =848

v(rh,0)−v(rH,0)

∥v(rh,0)−v(rH,0)∥
2

. Hence, we have849

b(rH ,0) − b(rh,0) >
∥∥∥v(rH ,0) − v(rh,0)

∥∥∥
2

850

B Derivation of Transitivity 851

s(r1, r2) + s(r2, r3) 852

= b(r2,0) − b(r1,0) −
∥∥∥v(r2,0) − v(r1,0)

∥∥∥
p

853

+ b(r3,0) − b(r2,0) −
∥∥∥v(r3,0) − v(r2,0)

∥∥∥
p

854

= b(r3,0) − b(r1,0)− 855(∥∥∥v(r2,0) − v(r1,0)
∥∥∥
p
+
∥∥∥v(r3,0) − v(r2,0)

∥∥∥
p

)
856

By the Minkowski inequality, the last term is 857

greater than
∥∥v(r3,0) − v(r1,0)

∥∥
p
. Besides, when 858

s(r1, r2) > 0 and s(r2, r3) > 0, s(r1, r2) + 859

s(r2, r3) > 0. Hence, 860

b(r3,0) − b(r1,0) −
∥∥∥v(r3,0) − v(r1,0)

∥∥∥
p
> 0 861

s(r3, r1) > 0 862

C Intuition behind Hypernymy Learning 863

by FDS under the DIH 864

We hypothesize that the way that FDS models are 865

trained allows hypernymy learning under the DIH. 866

During training described in §3.5, the approximate 867

posterior distributions of pixies are first inferred 868

from the observed graph. After variational infer- 869

ence, the semantic functions of the observed predi- 870

cates are optimized to be true of the inferred pixie 871

distributions. This process is analogous to the fol- 872

lowing process under a model-theoretic approach: 873

the entities described by a sentence are first identi- 874

fied, and then the truth conditions of predicates over 875

the entities are updated as asserted by the sentence. 876

Under the DIH, the contexts of nouns are also 877

contexts of their hypernyms. The local predicate– 878

argument information of nouns, i.e. contexts, is 879

thus repeated for their hypernyms for inference dur- 880

ing training. Consequently, the semantic functions 881

of hypernyms are trained to return values at least 882

as high as those of their hyponyms over the pixie 883

distributions inferred from the same contexts. The 884

additional contexts appearing exclusively with the 885

hypernyms will further increase the probability of 886

truths of the hypernyms over the pixie space. By 887

(6), hypernymy should thus be learnt under the 888

DIH. 889

D Training Details 890

D.1 Hyperparameters and Tuning 891

For all the experiments, the hyperparameters of the 892

FDS models largely follow that of FDSASid in Lo 893

11

https://arxiv.org/pdf/1412.6623v4
https://arxiv.org/pdf/1412.6623v4
https://arxiv.org/pdf/1412.6623v4
https://aclanthology.org/C14-1212
https://aclanthology.org/C14-1212
https://aclanthology.org/C14-1212
https://aclanthology.org/C04-1146
https://aclanthology.org/C04-1146
https://aclanthology.org/C04-1146
http://www.delph-in.net/wescience/tlt09.pdf
http://www.delph-in.net/wescience/tlt09.pdf
http://www.delph-in.net/wescience/tlt09.pdf
http://www.delph-in.net/wescience/tlt09.pdf
http://www.delph-in.net/wescience/tlt09.pdf
https://www.sciencedirect.com/science/article/pii/S001999586590241X


1 11

1

r1

r4r7

r2
r5

r8

r3

r6

r12

r9r11r10

(a) FDS on DIH corpus

1 11

1

r1

r4

r7

r10

r2

r11

r3

r6

rr8
9

r12r5

(b) FDS∀ on DIH corpus

1 11

r31
r6

r9

r12

r2r5

r8

r11

r1r4

r7

r10

(c) FDS∀ on rDIH corpus
1 11

1
r3

r6

r2

r5

rr12
11

r1

r4 r7

r10

(d) FDS on rDIH corpus

Figure 5: Visualization of semantic functions of a run
trained on Hchains. Each plot shows a pixie space in
a unit square (unit circle in grey). Each line plots
t(ri,0)(z) = 0 and the arrow points to the pixie sub-
space where t(ri,0)(z) > 0.

et al. (2023) except that we set β1 to 0.5 instead of894

0. The consequence is that the inferred pixie distri-895

butions during VAE training will be centred closer896

to the origin. This is motivated by our decision in897

§3.4 that pixies are only meaningful within the unit898

hypersphere or hypercube.899

Here are the changes exclusive to the experi-900

ments on the synthetic data sets. We set K to 1 and901

perform random negative sampling without weigh-902

ing by unigram distribution, which trains models903

maximally using information from the data with904

minimal assumptions needed for the negative sam-905

ples. We set the learning rate to 0.01. For experi-906

ments on Hchains, d is set to 2. For HWN, d is set907

to 50. For the remaining topologies, d is set to 10.908

The models are trained for 2 epochs for HWN, and909

5000 epochs for the rest.910

D.2 Computational Configurations911

All models are implemented in PyTorch (Paszke912

et al., 2019) and trained with distributed data par-913

allelism on three NVIDIA GeForce GTX 1080 Ti.914

Training a run of FDS or FDS∀ on Wikiwoods takes915

about 360 GPU hours.916

E Visualization of Semantic Functions 917

A visualization of results on Hchains is provided in 918

Fig. 5. As seen in Figs. 5a and 5c, training FDS on 919

the DIH corpus and FDS∀ on the rDIH corpus both 920

result in four nicely divided pixie subspaces, each 921

for one of the four hypernymy chains, as shown in 922

the plots on the left column. In contrast, applying 923

the other models sometimes gives badly learnt se- 924

mantic functions, as shown in Figs. 5b and 5d. For 925

example, t(r12,0) points to the opposite direction of 926

t(r10,0) and t(r11,0) in Fig. 5b. 927
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