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Abstract

Time Series Forecasting (TSF) has long been a challenge in time series analysis.
Inspired by the success of Large Language Models (LLMs), researchers are now
developing Large Time Series Models (LTSMs), universal transformer-based mod-
els that use autoregressive prediction to improve TSE. However, training LTSMs on
heterogeneous time series data poses unique challenges, including diverse frequen-
cies, dimensions, scalability, and patterns across datasets. Though recent efforts
have studied and evaluated various design choices aimed at enhancing LTSM train-
ing and generalization capabilities, these design choices are typically studied and
evaluated in isolation and are not compared collectively. In this work, we introduce
LTSM-Bundle, a comprehensive toolbox and benchmark for training LTSMs, span-
ning pre-processing techniques, model configurations, and dataset configurations.
Modularized and benchmarked LTSMs from multiple dimensions, encompassing
prompting strategies, tokenization approaches, training paradigms, base model
selection, data quantity, and dataset diversity. Our findings provide practical guid-
ance for configuring effective LTSMs in real-world settings. The source code is
available at https://anonymous.4open.science/r/LTSM-bundle-5B70/

1 Introduction

Time series forecasting (TSF) aims to predict future values from historical observations. Recent
advances in deep learning, especially Transformers [25], and the emergence of Large Time Series
Models (LTSMs) [2641104 18,1230 1701114 13L133L14]] promise strong performance across tasks and domains.
In particular, Transformer-based approaches have shown benefits for long-term horizons [29, 131 [15].
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Figure 1: System Overview of LTSM-Bundle library. LTSM-Bundle provides an end-to-end training
and evaluation pipeline constructed from data preprocessing to visualization.

However, unlike text, where tokens carry shared semantics, time series vary widely in frequency,
dimensionality, and temporal patterns, making universal training and generalization difficult. Prior
work has explored strategies in pre-processing (e.g., prompting and tokenization [33} [1]]), model
configuration (e.g., reusing or adapting LLM backbones [33])), and dataset design [10} 33} 3], but these
choices are typically evaluated in isolation. This fragmentation makes it hard to select components
and understand their interactions.

To address the challenge, we introduce LTSM-Bundle, a modular toolbox and benchmark that unifies
pre-processing, model, and dataset configurations into reproducible pipelines, covering prompting,
tokenization, training paradigms, backbone selection, and data settings. We provide a consistent
experimental protocol and systematically evaluate these components across eight datasets, identifying
effective configurations and trade-offs. Our findings indicate that full fine-tuning generally converges
faster and is more robust than training-from-scratch or LoRA in our setup; model size does not
monotonically improve forecasting—smaller or medium backbones can match or exceed larger ones
depending on horizon; and using roughly 5% of the training data often approaches full-data accuracy
while reducing cost, with dataset diversity remaining important.

2 LTSM-Bundle Package Design

We present the system overview of LTSM-Bundle in Figure [[] LTSM-Bundle is a modular and
extensible toolkit that supports the complete life cycle of large time series models (LTSMs), covering
raw data ingestion, model training, evaluation, and deployment. The framework is organized into four
tightly integrated subsystems, unified under a single API to eliminate boilerplate engineering and ac-
celerate experimentation. First, TS Tokenizing converts multivariate time series into token sequences
using both linear and dynamic schemes, preserving global trends and local temporal dynamics to
make the data directly consumable by Transformer-style backbones. Second, TS Prompting embeds
task instructions and statistical context through hard, soft, and statistics-aware prompts, enabling zero-
shot and few-shot adaptation for forecasting, anomaly detection, and classification tasks. Third, the
Data Processing layer provides scalable data loaders, windowing utilities, and feature-engineering
pipelines that abstract dataset idiosyncrasies and handle large-scale benchmarks seamlessly. Finally,
LTSM Training offers a unified optimization interface for fine-tuning or training from scratch across
diverse backbones and parameter scales, with built-in support for curriculum learning, transfer learn-
ing, and large-scale hyperparameter sweeps. These subsystems are orchestrated by a reproducible
workflow engine that integrates tokenizing, prompting, processing, and training into end-to-end
pipelines. The toolkit further includes a comprehensive library of loss functions, data-augmentation
routines, evaluation metrics, and visualization utilities, automatically generating publication-ready
reports and artifacts. Moreover, LTSM-Bundle seamlessly integrates with the time series vector



Table 1: Performance of learning from scratch, LoRA fine-tuning, and fully fine-tuning

Metric \ MSE \ MAE
Predictlength | 96 192 33 720 | 96 192 33 720
0325 0296 0323 0355 [ 0355 0375 0374 0.409

From scratch
TS prompt LoRA fine-tuning
Fully fine-tuning

0.343 0381 0399 0466 | 0374 0.403 0426 0.478
0.229 0.260 0.297 0.351 | 0.301 0.324 0.354 0.397

0.494 0434 0597 0485 | 0463 0438 0.512 0475
0.347 0379 0406 0473 | 0.373 0.404 0431 0484
0294 0286 0353 0.358 | 0.330 0.338 0.378 0.429

From scratch
Text prompt LoRA fine-tuning
Fully fine-tuning

Table 2: Average performance of different sizes of LLM backbones

Metric | MSE | MAE

| 96 192 336 720 | 96 192 336 720
Small 0.252 0306 0316 0352 | 0313 0363 0.367 0.400
Medium 0.229 0.260 0.297 0.351 | 0301 0.324 0.354 0.397
Large 0.224 0.257 0301 0.358 | 0.292 0.322 0.356 0.399

Extra Large | 0.222 0.236 0.302 0.361 | 0.288 0.325 0.369 0.416

database TDenginel enabling a automated pipeline from raw data storage to result visualization and
report. By reducing engineering overhead and simplifying experimentation, LTSM-Bundle lowers
the barrier to reproducible research and accelerates industrial adoption.

3 Benchmarking LTSM Training

We benchmark existing LTSM components by involving and coordinating them into four fundamental
components of LTSM-Bundle package. We aim to answer the following research questions: (1)
How do model sizes of LLMs impact time series forecasting performance?; 2) How do train-
ing paradigms affect time series forecasting performance?; 3) How does different training
components benefit to time series forecasting performance? and 4) How do different dataset
configurations impact model generalization? We follow the experimental settings outlined in
Timesnet [28]] and Time-LLM [14]], employing the unified evaluation framework under 8 different
datasets. The details of hyperparameter settings and datasets are in Appendix [A]and [B] respectively.

3.1 Model Configuration: Training Paradigm

Different training paradigms exhibit unique characteristics that influence how well LLMs fit a specific
training dataset. We explore three distinct training paradigms, fully fine-tuning, training from scratch,
and LoRA [12]], to identify the most effective approaches for training the LTSM framework.

Experimental Results. We assess the effectiveness of the training paradigm. Table [I] presents
the results of various training strategies using GPT-2-Medium as the backbone. In general, the
experimental results indicate that full fine-tuning is the most effective strategy for training the LTSM
framework, whether leveraging time series prompts or text prompts. Based on the results, we
summarize the observations as follows. (1) Although training-from-scratch achieves competitive
performance compared to full fine-tuning, the large number of trainable model parameters may
lead to overfitting, ultimately degrading performance. (2) Fully fine-tuning paradigm leads to the
best performance with up to 11% improvement in MSE and up to 17% of improvement on MAE
under the length of {96, 192, 336}, and performance competitive under the length of 720. Training
LTSM-bundle under the full fine-tuning paradigm is recommended, as it converges twice as fast as
training from scratch, ensuring efficient and effective forecasting.

3.2 Model Configuration: Model Size

Model Candidates To evaluate the impact of model size, we adopt four pre-trained LLM backbones:
GPT-2-small, GPT-2-medium, GPT-2-large [22]], and Phi-2 [13]. GPT-2 follows a transformer
architecture with up to 48 layers and model sizes of 124M, 355M, and 774M parameters. Phi-2, also


https://github.com/taosdata/TDengine

Table 3: Performance of linear and time series tokenization

Metric Tokenizer \ ETThl ETTh2 ETTml ETTm2 Traffic Weather Exchange Electricity Avg.
MSE Linear tokenizer 0.301 0.228 0.261 0.149 0.300 0.163 0.058 0.140 0.214
Time series tokenizer | 1.798 0.855 1.671 0.625 2.199 0.983 3.729 2.206 1.663
MAE Linear tokenizer 0.372 0.319 0.346 0.265 0.268 0.230 0.173 0.241 0.281
Time series tokenizer | 1.057 0.606 0.991 0.488 1.083 0.619 1.495 1.108 0.895

Table 4: Average performance with different downsampling under different domain LTSM-Bundle

(MAE/MSE) | 1dataset | 2datasets | 4 datasets | 8 datasets

2.5% 0.446/0.450 | 0.435/0.485 | 0.396/0.357 | 0.352/0.293
5% 0.416/0.380 | 0.415/0.436 | 0.383/0.341 | 0.344/0.283
10% 0.414/0.375 | 0.415/0.440 | 0.394/0.355 | 0.348/0.288

transformer-based, contains 2.7B parameters and is trained on high-quality (“textbook-quality”’) data
with improved scaling strategies. Unlike GPT-2’s absolute positional encoding, Phi-2 employs relative
positional encoding, capturing pairwise token distances for more robust position representations.
Following [33]], we utilize the top three self-attention layers from each pre-trained model as the
backbone in the LTSM-bundle framework.

Experimental Results We investigate the effect of different pre-trained backbones on LTSM models
for time series forecasting. Results are summarized in Table[2] Under a full fine-tuning paradigm,

we observe the following: (3) GPT-2-small achieves up to 2% higher accuracy than GPT-2-large

on long-term forecasting tasks (336, 720). @ GPT-2-medium outperforms GPT-2-large on short-
term forecasting tasks (96, 192), suggesting that larger models are more prone to overfitting, which
degrades performance. While Table 2] shows that parameter count within the same architecture
has limited impact, we further compare Phi-2 with GPT-2 models of varying sizes (small, medium,
large) under different prompting strategies. As detailed in Table [I5]and Table [I6]in Appendix [H}
GPT-2-small and GPT-2-medium consistently outperform Phi-2 across both time series prompts and
textual instruction prompts.

3.3 Model Configuration: Tokenizations

In addition to leveraging instructional prompts to enhance generalization in LTSM training, we
conduct a detailed analysis to identify the most effective tokenization strategy for LTSMs. We
compare two distinct approaches—Ilinear tokenization [33|] and time series tokenization [1]], to
determine which method better supports LTSM training across complex and multi-domain datasets.

Experimental Results We evaluate the impact of the two tokenization strategies using pre-trained
GPT-2-medium backbones and time series prompts, as reported in Table [3] Empirically, linear
tokenization leads to more effective LTSM training than time series tokenization, especially when
operating under limited-data regimes. This performance gap arises because time series tokenization
relies on a pre-trained vocabulary derived from a specific LTSM architecture and dataset, which
constrains its transferability across architectures and domains. In contrast, linear tokenization offers a
more architecture-agnostic and adaptive representation, enabling better generalization under diverse
LTSM configurations and low-resource settings. In summary, (5) linear tokenization emerges as a
more effective and robust strategy for LTSM training, particularly when training data is scarce.

3.4 Dataset configuration: Quantity

The quantity of datasets often plays a key role in LLM performance. In this section, we investigate
whether more training data consistently improves LTSMs. We apply down-sampling strategies to
study the impact of the quantity of data on prediction performance. Each time series in the training set
is periodically down-sampled along the timestamps to reduce granularity while maintaining general
patterns. We include 2.5%, 5%, and 10% of the training data.

Experimental Results Tablereports the results across datasets. (6) We observe that increasing the
amount of data does not always correlate with improved performance. Specifically, 5% of the data
achieves a favorable balance between performance and computational cost: while 10% of the data



slightly improves forecasting, it nearly doubles training time, and 2.5% loses too much information.
Thus, optimal performance requires carefully balancing data quantity and diversity.

4 Conclusion

We propose LTSM-Bundle, a unified toolbox and benchmark for large time series models (LTSMs).
Our benchmarking reveals four key insights: (1) full fine-tuning converges faster and is more
robust than training from scratch or LoRA; (2) forecasting accuracy does not scale monotonically:
smaller backbones can match or exceed larger ones depending on the forecasting horizon; (3) linear
tokenization offers more reliable cross-architecture transfer than time series tokenization, especially
under low-data regimes; and (4) Data efficiency is achievable: training with only ~5% of the data
can nearly match full-data performance when diversity is maintained.
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Appendix

A Details of Datasets

In this paper, the training datasets include ETT (Electricity Transformer Temperature) [3 1 Trafﬁ
Electricityﬂ Weathelﬂ and Exchange-Rate[16]. ETTE] [31] comprises four subsets: two with hourly-
level data (ETTh) and two with 15-minute-level data (ETTm). Each subset includes seven features
related to oil and load metrics of electricity transformers, covering the period from July 2016 to
July 2018. The traffic dataset includes hourly road occupancy rates from sensors on San Francisco
freeways, covering the period from 2015 to 2016. The electricity dataset contains hourly electricity
consumption data for 321 clients, spanning from 2012 to 2014. The weather data set comprises 21
weather indicators, such as air temperature and humidity, recorded every 10 minutes throughout 2020
in Germany. Exchange-Rate[16] contains daily exchange rates for eight countries, spanning from
1990 to 2016. We first train our framework on the diverse time series data collection and then assess
the abilities of LTSM-Bundle on jointly learning and zero-shot transfer learning to different domains
of time series knowledge.

B Hyper-parameter Settings of Experiments

The hyper-parameter settings of LTSM-Bundle training for all experiments are shown in Table [5}
Other training hyper-parameters follow the default values in the TrainingArguments class{Z] of the
huggingface transformers package.

Table 5: Hyperparameter settings of LTSM-Bundle training

Hyperparameter name \ Value
Number of Transformer layers NV 3

Training / evaluation / testing split 0.7/0.1/0.2
Gradient accumulation steps 64
Learning rate 0.001
Optimizer Adam

LR scheduler CosineAnnealingL.R
Number of epochs 10

Number of time steps per token 16

Stride of time steps per token 8
Dimensions of TS prompt 133
Transformer architectures GPT-2-{small, medium, large}, Phi-2
Length of prediction 96, 192, 336, 720
Length of input TS data 336

Data type torch.bfloat16
Downsampling rate of training data 20

C Computation Infrastructure

All experiments described in this paper are conducted using a well-defined physical computing
infrastructure, the specifics of which are outlined in Table [6] This infrastructure is essential for
ensuring the reproducibility and reliability of our results, as it details the exact hardware environments
used during the testing phases.

https://github.com/zhouhaoyi/ETDataset

*http://pems.dot.ca.gov

*https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014

Shttps://www.bgc- jena.mpg.de/wetter/

*https://github.com/laiguokun/multivariate-time-series-data

"https://github. com/huggingface/transformers/blob/main/src/transformers/training_
args.py
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https://www.bgc-jena.mpg.de/wetter/
https://github.com/laiguokun/multivariate-time-series-data
https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py
https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py

Table 6: Computing infrastructure for the experiments

Device attribute \ Value
Computing infrastructure GPU

GPU model Nvidia A5000 / Nvidia A100
GPU number 8 x A5000 /4 x A100
GPU memory 8 x24GB / 4 x 80GB

D Comparison with Other LTSM Packages

In this section, we highlight the difference and advantages of LTSM-Bundle comparing to other
existing open source LTSM packages, including OpenLT Time-LLMEl, and LLM-Tim Our
package involve more industrial-oriented and user-friendly features, such as database integration and
report visualization.

Table 7: Feature comparison with other LTSM open source packages

| LTSM-Bundle | OpenLTM | Time-LLM | LLM-Time

Support for multiple model architectures and prompting strategies Yes Yes No No
Integration with database Yes No No No
Data preprocessing and pipeline integration Yes No No No
Zero-shot Yes Yes Yes Yes
Visualization Yes No No Yes

E Comparison with Baselines

Based on the observations in Section 3] we identify a strong combination using LTSM-Bundle with
the settings as follows: (1) Base model backbone: GPT-2-Medium, (2) Instruction prompts: the time
series prompts, (3) Tokenization: linear tokenization, and (4) Training paradigm: fully fine-tuning.
We compare this combination against SOTA TSF models on zero-shot and few-shot settings.

E.1 Experimental Settings

We follow the same settings as in Time-LLM [14]]. Specifically, for zero-shot experiments, we test
the model’s cross-domain adaptation under the long-term forecasting scenario and evaluate it on
various cross-domain scenarios utilizing the ETT datasets. The hyperparameter settings of training
LTSM-Bundle are in Appendix [B] For the few-shot setting, we train our LTSM-Bundle on 5% of
the data and compare it with other baselines under the 5% as well. We cite the performance of
other models when applicable [33]. Furthermore, we compare LTSM-Bundle trained on 5% training
data against baselines trained on the full training set. Our findings in Appendix [H]indicate that
LTSM-Bundle achieves comparable results, further underscoring its superiority.

The baseline methods consist of various Transformer-based methods, including PatchTST [20],
ETSformer [27], Non-Stationary Transformer [19], FEDformer [32], Autoformer [4]], Informer [31],
and Reformer [[15)]. Additionally, we evaluate our model against recent competitive models like Time-
LLM [14]], TEST [24], LLM4TS [3]], GPT4TS [33]], DLinear [30], TimesNet [28]], and LightTS [2].
More details of the baseline methods can be found in Section[Gl

F Zero-shot and Few-shot Results of LTSM-bundle

Zero-shot Performance In the zero-shot learning experiments shown in Table |8 shows that the best
component combination from benchmarking LTSM-Bundle consistently delivers superior perfor-

8https ://github. com/thuml/OpenL.TM
https://github.com/KimMeen/Time-LLM
10https ://github.com/ngruver/llmtime
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Table 8: Zero-shot performance. “LTSM-Bundle” denotes the best combination of LTSM training
components

| LTSM-Bundle | TIME-LLM | GPT4TS | LLMTime | DLinear | PatchTST | TimesNet
Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
ETThl — ETTh2 ‘ 0.319  0.402 ‘ 0.353  0.387 ‘ 0.406 0.422 ‘ 0.992 0.708 ‘ 0.493 0.488 ‘ 0.380 0.405 ‘ 0.421 0431
ETThl — ETTm2 ‘ 0.312  0.406 ‘ 0.273  0.340 ‘ 0.325 0.363 ‘ 1.867 0.869 ‘ 0415 0452 ‘ 0.314  0.360 ‘ 0.327 0.361
ETTml — ETTh2 ‘ 0.306 0.391 ‘ 0.381 0412 ‘ 0.433 0439 ‘ 0.992 0.708 ‘ 0.464 0475 ‘ 0.439 0438 ‘ 0.457 0.454
ETTml — ETTm2 | 0217 0319 | 0268 0320 | 0.313 0348 | 1.867 0.869 | 0.335 0389 | 0296 0.334 | 0.322 0354
ETTm2 — ETTh2 ‘ 0.314  0.393 ‘ 0.354  0.400 ‘ 0.435 0443 ‘ 1.867 0.869 ‘ 0.455 0471 ‘ 0.409 0.425 ‘ 0.435 0.443
ETTm2 — ETTml | 0403 0430 | 0414 0438 | 0.769 0567 | 1933 0984 | 0.649 0.537 | 0.568 0492 | 0.769 0.567

Table 9: The average performance of Few-shot under (5% training data)

Dataset | LTSM-Bundle | TIME-LLM | DLinear
Metric ‘MSE MAE | MSE MAE | MSE MAE

\ \

ETThl | 0338 0403 | 0.627 0.543 | 0.750 0.611

ETTh2 0.303 0.387 | 0.382 0418 | 0.694 0.577

ETTml 0.362 0416 | 0425 0.434 | 0400 0417

ETTm2 0.239 0.335 | 0.274 0.323 | 0.399 0.426
Weather 0.251 0.305 | 0.260 0.309 | 0.263 0.308
Electricity | 0.175 0.276 | 0.179 0.268 | 0.173  0.266

Traffic 0.323  0.285 | 0423 0.298 | 0.450 0.317
1%t Count | 6 | 1 | 0

mance across various cross-domain scenarios using the ETT datasets. For example, in the ETTh1
to ETTh2 dataset transfer task, LTSM-Bundle achieves an MSE of 0.319 and an MAE of 0.402,
outperforming all other methods, including TIME-LLM, GPT4TS, and DLinear. Similarly, in the
ETTml to ETTm?2 dataset transfer scenario, LTSM-Bundle records the lowest MSE and MAE scores
of 0.217 and 0.319, showing its strong generalization capability across different domains. The
consistent improvements across transfer tasks of LTSM-Bundle in zero-shot learning.

Few-shot Performance Table 0] presents the performance of the best component combination from
benchmarking compared to the baseline models in the few-shot setting, utilizing 5% of the training
data. Notably, LTSM-Bundle exhibits a significant advantage over both traditional baselines and
existing LTSMs. Across the 7 datasets, LTSM-Bundle outperforms all baselines regarding MSE in 5
datasets and regarding MAE in 4 datasets. Moreover, LTSM-Bundle achieves the top rank 40 times
among the reported results. These findings underscore the effectiveness of our model in few-shot
scenarios, where it demonstrates high accuracy even with limited training data. Its capability to excel
with minimal data not only highlights its adaptability but also its potential for practical applications,
particularly in contexts where data availability is constrained. All further and full versions of results
on the full datasets are provided in Appendix [H]

G Related Works

In this work, we focus on benchmarking the training paradigms of LTSMs on top of decoder-only
single models. The other related works, as well as our benchmarking baselines, are illustrated as
follows. PatchTST [20] employs a patch-based technique for time series forecasting, leveraging
the self-attention mechanism of transformers. ETSformer [27] integrates exponential smoothing
with transformer architectures to improve forecast accuracy. The Non-Stationary Transformer [19]
addresses non-stationarity by adapting to changes in statistical properties over time. FEDformer [32]]
incorporates information in the frequency domain to handle periodic patterns. Autoformer [4]
introduces an autocorrelation mechanism to capture long-term dependencies and seasonality patterns.
Informer [31]] optimizes transformers for long sequence forecasting with an efficient self-attention
mechanism. Reformer [[15] uses locality-sensitive hashing and reversible layers to improve memory
and computational efficiency. Additionally, we also consider several competitive models in the pursuit
of time series foundation models. Time-LLM [14] leverages large language models for time series
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forecasting, treating data as a sequence of events. TEST [24]] handles complex temporal dependencies
with an enhanced transformer architecture. LLMA4TS [3] uses large language models adapted for
time series forecasting. GPT4TS [33]] adapts the Frozen Pretrained Transformer (FPT) for generating
future predictions. DLinear [30] that focuses on capturing linear trends with a linear layer model.
TimesNet [28] integrates neural network architectures to capture complex patterns. LightTS [2]
provides efficient and fast forecasting solutions suitable for real-time applications.

To the best of our knowledge, no prior art has provided a comprehensive benchmark to analyze the
effectiveness of each component in training LTSMs. Some works [[17, 18] maintain a fair platform
to compare different time series forecasting methods. The others [9, 21] analyze the forecasting
performance from the perspectives of time series patterns. This benchmark provides an accessible
and modular pipeline for evaluating a diverse set of training components in LTSM development,
leveraging a time series database and user-friendly visualization. With the debates on whether LLMs
can benefit from time series forecasting tasks, our toolbox offers a scikit-learn-like API interface to
efficiently explore each component’s effectiveness in training LTSMs.

H Additional Experimental Results on LTSM-Bundle

In this section, we show additional results regarding comparing LTSM-Bundle with other baselines
in Tables[I3]and [14] results of zero-shot transfer learning in Table[TT] results of different training
paradigms in Table [I5] results of different backbones in Table[I6] results of different downsampling
ratios in Table 7}

H.1 Impacts of different prompts for LTSM training

Instruction prompts enhance the effectiveness of LTSM training by providing auxiliary information.
This prompt helps the model adjust its internal state and focus more on relevant features in different
domains of the dataset, thereby improving learning accuracy. With the aid of prompts, LTSM aims
to optimize forecasting ability across diverse dataset domains. We explore two types of prompts:
the Text Prompts [14] written in task-specific information, and the time series prompts developed by
global features of time series data. This comparison determines the most effective prompt type for
LTSM training.

Time Series Prompts Time series prompts aim to capture the comprehensive properties of time
series data. Unlike instruct prompts, they are derived from a diverse set of global features extracted
from the entire training dataset. This approach ensures a robust representation of the underlying
dynamics, crucial for enhancing model performance. The time series prompts are generated by
extracting global features from each variate of the time series training data. The extracted global
features are specified in Appendix ??. After extracting the global features, we proceed to standardize
their values across all varieties and instances within the dataset. This standardization is crucial to
prevent the overflow issue during both training and inference stages. Let P = {p,,--- ,p,,} denote
the global features of Z after the standardization, where p, € R%. Subsequently, P serves as prompts,
being concatenated with each timestamp X derived from the Time series data. Consequently, the
large Time series models take the integrated vector X=PUX= {P1, " sPpr» 2ty Ztys -y Bty | @S
input data throughout both training and inference phases, as illustrated in Figure ??. The time series
prompts are generated separately for the training and testing datasets, without leaking the testing data
information to the training process. We leverage the packageE] to generate the time series prompts.

After extracting the global features, we proceed to standardize their values across all varieties and
instances within the dataset. This standardization is crucial to prevent the overflow issue during
both training and inference stages. Let P = {p,,--- ,p,,} denote the global features of Z after the
standardization, where p, € R%. Subsequently, P serves as prompts, being concatenated with each
timestamp X derived from the Time series data. Consequently, the LTSMs take the integrated vector
X=PUX={py, - , P> 2t Zts, .-, Zt» } @S input data throughout both training and inference
phases, depicted in Figure ??. The time series prompts are generated separately for the training and
testing datasets without leaking the testing data information to the training process.

https://github.com/thuml/Time-Series-Library
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Table 10: Performance of different prompting strategies

Metric Input \ ETThl ETTh2 ETTml ETTm2 Traffic Weather Electricity Avg.
No prompt 0.308 0.237 0.367 0.157 0.306 0.177 0.148 0.243
MSE TS prompt 0.307 0.234 0.285 0.155 0.305 0.172 0.145 0.229
Text prompt | 0.319 0.241 0.490 0.190 0.345 0.212 0.185 0.283
No prompt 0.375 0.325 0.411 0.258 0.272 0.232 0.246 0.303
MAE TS prompt 0.377 0.326 0.369 0.266 0.279 0.242 0.247 0.301
Text prompt | 0.386 0.329 0.476 0.289 0.326 0.269 0.299 0.339

Experimental Results We begin by evaluating the effectiveness of instruction prompts. Specifically,
we assess two distinct types of instruction prompts, both initialized by the same pre-trained GP2-
Medium weights within the context of commonly used linear tokenization. The experimental results
are shown in Table Our observations suggest that (D) statistical prompts outperform traditional text
prompts in enhancing the training of LTSM models with up to 8% lower MAE scores. Additionally,
(2) it is observed that the use of statistical prompts results in superior performance compared to
scenarios where no prompts are employed, yielding up to 3% lower MSE scores. The superiority
of statistical prompt is evident in the more effective leveraging of LTSM capabilities, leading to
improved learning outcomes across various datasets. Based on the above observations, we select time
series prompts as the focus in the following analysis and incorporate them into LTSM-bundle.

H.2 Performance Comparison with Additional Baselines

Extending the analysis presented in Section[F] we introduce full performance comparison with new
baselines. We evaluate the proposed LTSM-Bundle in zero-shot and few-shot settings to highlight its
efficacy and robustness in Table [T3]and

H.3 Zero-shot Transfer Learning Comparisons

In addition to the results in Section [F} this section introduces the full zero-shot transfer learning
comparisons. We evaluate the proposed LTSM-Bundle in the zero-shot transfer scenarios, detailed in
shown in Table 1]

H.4 Training Paradigm Comparisons

Expanding upon the results in Section [3.1] this section presents the full experimental results for the
training paradigms analysis, including different backbones and prompting strategies. The analytic
results are detailed in Table

H.5 Backbone Architecture Comparisons

We provide all the numbers of analytics on different backbone architectures. Results are in different
language model backbones, including GPT-2-Small, GPT-2-Medium, GPT-2-Large, and Phi-2, shown
in Table

H.6 Down-sampling Ratio Comparisons

We here present the full version of our experimental results on the different down-sampling ratios
in Section[A] We test LTSM-Bundle with GPT-Medium as backbones with the proposed TS prompt
under a fully tuning paradigm. The results in the ratio of {40, 20, 10} (i.e., downsample rate in {2.5%,
5%, 10% }) are all demonstrated in Table[I7]

H.7 Different Numbers of Layer Adaptation Comparisons

We compared the average performance among all datasets of a 3-layer model and a full 24-layer
model using GPT-medium as the backbone. Our results (in Table[I2Z) show that the 24-layer model
performs worse when trained with the same number of iterations. We believe this suggests that the
3-layer configuration is a reasonable strategy for benchmarking at this stage.
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Table 11: Results of zero-shot transfer learning. A time-series model is trained on a source dataset
and transferred to the target dataset without adaptation.

Methods | LTSM-Bundle | TIME-LLM | LLMTime | GPT4TS | DLinear | PatchTST | TimesNet Autoformer
Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

96 | 0.229 0.326 | 0.279 0.337 | 0.510 0.576 | 0.335 0.374 | 0.347 0.400 | 0.304 0.350 | 0.358 0.387 | 0.469 0.486
192 | 0.310 0395 | 0.351 0374 | 0.523 0.586 | 0.412 0.417 | 0417 0.460 | 0.386 0.400 | 0.427 0.429 | 0.634 0.567
ETThl — ETTh2 336 | 0.336  0.414 | 0.388 0.415 | 0.640 0.637 | 0.441 0.444 | 0.515 0.505 | 0.414 0.428 | 0.449 0.451 | 0.655 0.588
720 | 0.401 0474 | 0391 0420 | 2.296 1.034 | 0438 0.452 | 0.665 0.589 | 0.419 0.443 | 0448 0.458 | 0.570 0.549
Avg | 0319 0.402 | 0353 0.387 | 0.992 0.708 | 0.406 0.422 | 0.493 0.483 | 0.380 0.405 | 0.421 0.431 | 0.582 0.548

96 | 0.197 0318 | 0.189 0.293 | 0.646 0.563 | 0.236  0.315 | 0.255 0.357 | 0.215 0.304 | 0.239 0.313 | 0.352 0.432
192 | 0.314 0420 | 0237 0312 | 0934 0.654 | 0.287 0.342 | 0.338 0.413 | 0.275 0339 | 0.291 0.342 | 0.413 0.460
ETThl — ETTm2 336 | 0.313  0.405 | 0291 0.365 | 1.157 0.728 | 0.341 0.374 | 0.425 0.465 | 0.334 0373 | 0.342 0.371 | 0.465 0.489
720 | 0.425 0.483 | 0372 0.390 | 4730 1.531 | 0435 0.422 | 0.640 0.573 | 0.431 0424 | 0.434 0419 | 0599 0.551
Avg | 0.312  0.406 | 0.273  0.340 | 1.867 0.869 | 0.325 0.363 | 0.415 0.452 | 0.314 0360 | 0.327 0.361 | 0.457 0.483

96 | 0390 0.439 | 0450 0.452 | 1.130 0.777 | 0.732  0.577 | 0.689 0.555 | 0.485 0.465 | 0.848 0.601 | 0.693 0.569
192 | 0.417 0.460 | 0.465 0.461 | 1.242 0.820 | 0.758 0.559 | 0.707 0.568 | 0.565 0.509 | 0.860 0.610 | 0.760 0.601
ETTh2 — ETTh1 336 | 0.462 0.501 | 0.501 0.482 | 1.382 0.864 | 0.759 0.578 | 0.710 0.577 | 0.581 0.515 | 0.867 0.626 | 0.781 0.619
720 | 0.568 0.588 | 0.501 0.502 | 4.145 1.461 | 0.781 0.597 | 0.704 0.596 | 0.628 0.561 | 0.887 0.648 | 0.796 0.644
Avg | 0.459 0.497 | 0479 0474 | 1.961 0.981 | 0.757 0.578 | 0.703 0.574 | 0.565 0.513 | 0.865 0.621 | 0.757 0.608

96 | 0.200 0.316 | 0.174 0.276 | 0.646 0.563 | 0.253 0.329 | 0.240 0.336 | 0.226 0.309 | 0.248 0.324 | 0.263  0.352
192 | 0250 0.359 | 0.233  0.315 | 0.934 0.654 | 0.293 0.346 | 0.295 0.369 | 0.289 0.345 | 0.296 0.352 | 0.326 0.389
ETTh2 — ETTm2 336 | 0.327 0.416 | 0291 0337 | 1.157 0.728 | 0.347 0.376 | 0.345 0.397 | 0.348 0.379 | 0.353 0.383 | 0.387 0.426
720 | 0.573  0.563 | 0.392 0417 | 4730 1.531 | 0446 0.429 | 0.432 0442 | 0439 0427 | 0471 0.446 | 0487 0478
Avg | 0337 0413 | 0272 0.341 | 1.867 0.869 | 0.335 0.370 | 0.328 0.386 | 0.325 0.365 | 0.342 0.376 | 0.366 0.411

96 | 0246 0.342 | 0.321 0.369 | 0.510 0.576 | 0.353 0.392 | 0.365 0.415 | 0.354 0.385 | 0.377 0.407 | 0.435 0.470
192 | 0290 0.374 | 0.389 0.410 | 0.523 0.586 | 0.443 0.437 | 0.454 0.462 | 0.447 0434 | 0471 0453 | 0495 0.489
ETTml — ETTh2 336 | 0.326 0.406 | 0.408 0.433 | 0.640 0.637 | 0.469 0.461 | 0496 0.464 | 0.481 0.463 | 0472 0.484 | 0.470 0472
720 | 0.363  0.440 | 0.406 0.436 | 2.296 1.034 | 0466 0.468 | 0.541 0529 | 0.474 0.471 | 0.495 0482 | 0480 0.485
Avg | 0306 0.391 | 0.381 0.412 | 0.992 0.708 | 0.433 0.439 | 0.464 0475 | 0.439 0438 | 0457 0.454 | 0470 0.479

96 | 0.144 0.257 | 0.169 0.257 | 0.646 0.563 | 0.217 0.294 | 0.221 0.314 | 0.195 0.271 | 0.222 0.295 | 0.385 0.457
192 | 0.193  0.302 | 0.227 0.318 | 0.934 0.654 | 0.277 0.327 | 0.286 0.359 | 0.258 0.311 | 0.2838 0.337 | 0.433  0.469
ETTml — ETTm2 336 | 0.240 0.342 | 0.290 0.338 | 1.157 0.728 | 0.331 0.360 | 0.357 0.406 | 0.317 0.348 | 0.341 0.367 | 0.476 0.477
720 | 0292 0.379 | 0.375 0.367 | 4730 1.531 | 0429 0.413 | 0476 0476 | 0.416 0.404 | 0.436 0.418 | 0.582 0.535
Avg | 0217 0.320 | 0.268 0.320 | 1.867 0.869 | 0.313 0.348 | 0.335 0.389 | 0.296 0.334 | 0.322 0.354 | 0.469 0.484

96 | 0.257 0.346 | 0.298 0.356 | 0.510 0.576 | 0.360 0.401 | 0.333 0.391 | 0.327 0.367 | 0.360 0.401 | 0.353 0.393

192 | 0.309 0.382 | 0.359 0.397 | 0.523 0.586 | 0.434 0.437 | 0.441 0.456 | 0.411 0.418 | 0434 0.437 | 0432 0.437

ETTm2 — ETTh2 336 | 0.341  0.413 | 0.367 0.412 | 0.640 0.637 | 0.460 0.459 | 0.505 0.503 | 0.439 0.447 | 0.460 0.459 | 0.452 0.459
720 | 0.350 0.432 | 0.393 0.434 | 2.296 1.034 | 0485 0.477 | 0.543 0.534 | 0.459 0470 | 0.485 0.477 | 0.453 0.467

Avg | 0314 0.393 | 0354 0.400 | 0.992 0.708 | 0.435 0.443 | 0.455 0.471 | 0.409 0425 | 0435 0443 | 0423 0439

96 | 0364 0410 | 0359 0.397 | 1.179 0.781 | 0.747 0.558 | 0.570 0.490 | 0491 0.437 | 0.747 0.558 | 0.735 0.576

192 | 0.405 0.432 | 0390 0.420 | 1.327 0.846 | 0.781 0.560 | 0.590 0.506 | 0.530 0.470 | 0.781 0.560 | 0.753 0.586

ETTm2 — ETTml 336 | 0413 0433 | 0421 0.445 | 1.478 0.902 | 0.778 0.578 | 0.706  0.567 | 0.565 0.497 | 0.778 0.578 | 0.750 0.593
720 | 0.432  0.446 | 0.487 0.488 | 3.749 1408 | 0.769 0.573 | 0.731 0.584 | 0.686 0.565 | 0.769 0.573 | 0.782  0.609

Avg | 0403 0430 | 0414 0438 | 1.933 0.984 | 0.769 0.567 | 0.649 0.537 | 0.568 0.492 | 0.769 0.667 | 0.755 0.591

Table 12: Performance comparison between 3-layer and 24-layer of LTSM-Bundle.

| 3-layer | 24-layer
MAE ‘ 0.2003 ‘ 0.2439

MSE | 0.2770 | 0.3162
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Table 15

: Results of different backbones, training paradigms, and prompting strategies.

Datasets | ETTh1 | ETTh2 | ETTml | ETTm2 | Traffic | Weather | Exchange | ECL

Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

96 | 0.354 0.415 | 0.259 0.350 | 0.551 0.507 | 0.215 0.319 | 0.393 0.377 | 0.222 0.292 | 0.108 0.246 | 0.250 0.342

From scratch 192 | 0.364 0.421 | 0.537 0.505 | 0.231 0.331 | 0.235 0.335 | 0.373 0.356 | 0.246 0.309 | 0.143 0.288 | 0.231 0.331
+ GPT-Medium 336 | 0.359 0420 | 0.321 0.402 | 0423 0.454 | 0.267 0.360 | 0.357 0.329 | 0.283 0.335 | 0.207 0.344 | 0.217 0.323
+ TS prompt 720 | 0.357 0430 | 0.372 0.449 | 0.398 0.444 | 0.360 0.434 | 0.347 0.311 | 0.342 0.388 | 0.358 0.461 | 0.211 0.317
Avg | 0.358 0.421 | 0.372 0427 | 0401 0434 | 0.269 0.362 | 0.367 0.343 | 0.273 0.331 | 0.204 0.335 | 0.227 0.328

96 | 0453 0483 | 0.350 0.422 | 0.757 0.613 | 0.338 0.420 | 0.659 0.552 | 0.343 0.398 | 0.223 0.353 | 0.605 0.507

From scratch 192 | 0422 0.470 | 0.348 0.423 | 0.708 0.601 | 0.326 0.415 | 0.509 0.475 | 0.323 0.388 | 0.212 0.352 | 0.352 0.403
+GPT-Medium 336 | 0.481 0.502 | 0.449 0.487 | 0.938 0.701 | 0.483 0.506 | 0.562 0.496 | 0.457 0.474 | 0.430 0.502 | 0.729 0.456
+ Text prompt 720 | 0.437 0482 | 0.396 0461 | 0.634 0.563 | 0.408 0.459 | 0.536 0.463 | 0.415 0434 | 0457 0.517 | 0460 0.438
Avg | 0448 0484 | 0.385 0.448 | 0.759 0.619 | 0.389 0.450 | 0.566 0.496 | 0.384 0.423 | 0.330 0.431 | 0.537 0.451

96 | 0.323 0392 | 0.243 0341 | 0.394 0.437 | 0.185 0.301 | 0.334 0.321 | 0.200 0.279 | 0.098 0.236 | 0.197 0.291

From scratch 192 | 0.332 0399 | 0.275 0.362 | 0.369 0.426 | 0.204 0.313 | 0.333 0.306 | 0.219 0.286 | 0.127 0.268 | 0.195 0.290
+ GPT-Small 336 | 0.345 0405 | 0.317 0.394 | 0.352 0415 | 0.263 0.364 | 0.324 0.288 | 0.265 0.323 | 0.179 0.321 | 0.181 0.282
+ TS prompt 720 | 0362 0.432 | 0.364 0.447 | 0.389 0.439 | 0.324 0.402 | 0.341 0.300 | 0.339 0.377 | 0.333 0.457 | 0.207 0.309
Avg | 0.340 0.407 | 0.300 0.386 | 0.376 0.429 | 0.244 0.345 | 0.333 0.304 | 0.256 0.316 | 0.184 0.320 | 0.195 0.293

96 | 0.317 0.383 | 0.240 0.334 | 0.431 0.443 | 0.178 0.285 | 0.315 0.293 | 0.188 0.257 | 0.083 0.208 | 0.161 0.265

Fully tune 192 | 0.355 0413 | 0.285 0.370 | 0479 0.482 | 0.221 0.323 | 0.352 0.336 | 0.238 0.304 | 0.132 0.277 | 0.213 0.311
+ GPT-Small 336 | 0.357 0414 | 0.302 0.388 | 0.486 0.486 | 0.252 0.346 | 0.339 0.310 | 0.275 0.326 | 0.196 0.336 | 0.203 0.302
+ TS prompt 720 | 0.363 0.434 | 0361 0.442 | 0479 0.483 | 0.345 0.420 | 0.350 0.313 | 0.345 0.384 | 0426 0.496 | 0.224 0.326
Avg | 0.348 0411 | 0297 0.384 | 0469 0473 | 0.249 0.343 | 0.339 0.313 | 0.261 0.317 | 0.209 0.329 | 0.200 0.301

96 | 0.305 0.377 | 0.226 0.320 | 0.276 0.360 | 0.143 0.253 | 0.305 0.279 | 0.162 0.227 | 0.060 0.178 | 0.144 0.246

Fully tune 192 | 0.335 0.397 | 0.278 0.359 | 0.314 0.389 | 0.191 0295 | 0.315 0.283 | 0.212 0.275 | 0.118 0.253 | 0.161 0.261
+ GPT-Small 336 | 0.348 0.406 | 0.310 0.392 | 0.344 0.411 | 0.239 0.339 | 0.323 0.285 | 0.266 0.318 | 0.198 0.333 | 0.175 0.277
+ Text prompt 720 | 0.371 0.454 | 0.364 0.446 | 0404 0452 | 0.352 0.405 | 0.344 0.305 | 0.332 0.366 | 0.379 0.470 | 0.208 0.309
Avg | 0.340 0.409 | 0.294 0.379 | 0.334 0403 | 0.231 0.323 | 0.322 0.288 | 0.243 0.296 | 0.189 0.308 | 0.172 0.273

96 | 0.301 0.372 | 0.229 0.320 | 0.261 0.346 | 0.149 0.266 | 0.300 0.268 | 0.163 0.230 | 0.058 0.173 | 0.141 0.241

Fully tune 192 | 0.332 0397 | 0.290 0.368 | 0.288 0.370 | 0.204 0.303 | 0.316 0.282 | 0.215 0.282 | 0.133 0.277 | 0.158 0.258
+GPT-Medium 336 | 0.351 0412 | 0.316 0392 | 0.343 0413 | 0.294 0.376 | 0.328 0.295 | 0.281 0.332 | 0.224 0369 | 0.175 0.276
+ Text prompt 720 | 0.368 0.436 | 0.378 0.452 | 0.371 0431 | 0492 0494 | 0344 0303 | 0.350 0.385 | 0.321 0.442 | 0207 0.308
Avg | 0.338 0.404 | 0.303 0.383 | 0.316 0.390 | 0.285 0.360 | 0.322 0.287 | 0.252 0.307 | 0.184 0.315 | 0.170 0.271

96 | 0.320 0.387 | 0.242 0330 | 0.490 0477 | 0.191 0.290 | 0.346 0.326 | 0.212 0.270 | 0.134 0.269 | 0.185 0.300

Fully tune 192 | 0.342 0403 | 0270 0.352 | 0.376 0.423 | 0.196 0.287 | 0.355 0.327 | 0.236 0.286 | 0.173 0.305 | 0.204 0.316
+ GPT-Medium 336 | 0.348 0.409 | 0.284 0.367 | 0.530 0.501 | 0.253 0.335 | 0.379 0.345 | 0.298 0.331 | 0.311 0.421 | 0.224 0.334
+ Text prompt 720 | 0.368 0.433 | 0.424 0479 | 0.375 0429 | 0.361 0.423 | OOM OOM | OOM OOM | 0.333 0.457 | 0.206 0.307
Avg | 0.344 0408 | 0.305 0.382 | 0.443 0.458 | 0.250 0.334 | 0.360 0.333 | 0.249 0.295 | 0.238 0.363 | 0.205 0.314

96 | 0.296 0.371 | 0.234 0.328 | 0.309 0.381 | 0.150 0.263 | 0.299 0.278 | 0.175 0.248 | 0.073 0.204 | 0.145 0.249

Fully tune 192 | 0.318 0.386 | 0.273 0.355 | 0.301 0.381 | 0.190 0.293 | 0.311 0.278 | 0.212 0.279 | 0.129 0.271 | 0.164 0.266
+ Phi-2 336 | 0.337 0.402 | 0.311 0.389 | 0.346 0.419 | 0.283 0.381 | 0.323 0.290 | 0.282 0.345 | 0.233 0.374 | 0.179 0.281
+ TS prompt 720 | 0.372 0.445 | 0.317 0.407 | 0404 0.461 | 0439 0.484 | 0.347 0.305 | 0.354 0.382 | 0.404 0501 | 0.218 0.319
Avg | 0.331 0401 | 0.284 0.370 | 0.340 0411 | 0.265 0.355 | 0.320 0.288 | 0.256 0.313 | 0.210 0.337 | 0.176  0.279

96 | 0.296 0.371 | 0.234 0.328 | 0.309 0.381 | 0.150 0.263 | 0.299 0.278 | 0.175 0.248 | 0.073 0.204 | 0.145 0.249

Fully tune 192 | 0.319 0.385 | 0.269 0.355 | 0.309 0.383 | 0.188 0.295 | 0.307 0.275 | 0.212 0.283 | 0.134 0.281 | 0.161 0.262
+Pi-2 336 | 0.337 0.402 | 0.311 0.389 | 0.346 0.419 | 0.283 0.381 | 0.323 0.290 | 0.282 0.345 | 0.233 0.374 | 0.179 0.281
+ Text prompt 720 | 0.356 0.430 | 0.359 0442 | 0.392 0.454 | 0.383 0.451 | 0.345 0.302 | 0.345 0.377 | 0.561 0.606 | 0.212 0.315
Avg | 0.327 0397 | 0293 0.378 | 0.339 0.409 | 0.251 0.347 | 0.318 0.286 | 0.254 0.313 | 0.250 0.366 | 0.174 0.277

96 | 0.362 0.419 | 0.273 0.363 | 0.589 0.533 | 0.225 0.332 | 0.428 0.396 | 0.224 0.293 | 0.129 0.274 | 0.227 0.333

LoRA-dim-16 192 | 0.394 0.444 | 0312 0.397 | 0.582 0.531 | 0.259 0.361 | 0.502 0.437 | 0.339 0.280 | 0.200 0.345 | 0.257 0.358
+GPT-Medium 336 | 0403 0.457 | 0.321 0.413 | 0.560 0.532 | 0.293 0.392 | 0.547 0.457 | 0.320 0.369 | 0.266 0.409 | 0.291 0.386
+ TS prompt 720 | 0.444 0499 | 0366 0451 | 0.576 0.547 | 0.355 0.436 | 0.660 0.519 | 0.369 0.406 | 0.457 0.532 | 0.406 0479
Avg | 0401 0455 | 0.318 0.406 | 0.577 0.536 | 0.283 0.380 | 0.534 0.452 | 0.313 0.337 | 0.263 0.390 | 0.295 0.389

96 | 0.365 0.422 | 0.270 0.361 | 0.596 0.593 | 0.222 0.329 | 0.438 0.408 | 0.223 0.294 | 0.117 0.259 | 0.233 0.341

LoRA-dim-32 192 | 0401 0.449 | 0314 0.398 | 0.594 0.537 | 0.261 0.363 | 0.503 0.443 | 0.281 0.340 | 0.204 0.346 | 0.259 0.361
+ GPT-Medium 336 | 0.403 0.457 | 0.321 0.413 | 0.563 0.533 | 0.294 0.393 | 0.547 0.459 | 0.321 0.370 | 0.267 0.410 | 0.294 0.390
+ TS prompt 720 | 0.444 0.498 | 0.367 0452 | 0.572 0.545 | 0.357 0.437 | 0.647 0.513 | 0.369 0.406 | 0.454 0.530 | 0.399 0473
Avg | 0.403 0457 | 0.318 0.406 | 0.581 0.552 | 0.283 0.380 | 0.534 0.456 | 0.298 0.352 | 0.260 0.386 | 0.296 0.391

96 | 0.377 0.431 | 0.284 0.376 | 0.603 0.538 | 0.239 0.348 | 0.462 0423 | 0.244 0.313 | 0.154 0.302 | 0.242 0.348

LoRA-dim-16 192 | 0.394 0.445 | 0.313 0.400 | 0.578 0.530 | 0.263 0.367 | 0.511 0.441 | 0.284 0.344 | 0.203 0.351 | 0.262 0.363
+GPT-Medium 336 | 0412 0465 | 0.325 0.417 | 0.571 0.538 | 0.299 0.397 | 0.567 0.471 | 0.323 0.373 | 0.267 0.413 | 0.308 0.402
+ Word prompt 720 | 0.448 0.501 | 0.368 0.452 | 0.582 0.550 | 0.357 0.437 | 0.672 0.526 | 0.370 0.407 | 0.452 0.529 | 0416 0.486
Avg | 0408 0461 | 0322 0411 | 0.583 0.539 | 0.289 0.387 | 0.553 0.465 | 0.305 0.359 | 0.269 0.399 | 0.307 0.400

96 | 0.365 0.423 | 0.276 0.367 | 0.590 0.533 | 0.230 0.337 | 0.449 0410 | 0.234 0.305 | 0.133 0.277 | 0.237 0.343

LoRA-dim-32 192 | 0.400 0.449 | 0311 0.397 | 0.572 0.527 | 0.261 0.364 | 0.515 0.447 | 0.284 0.345 | 0.207 0.352 | 0.265 0.366
+GPT-Medium 336 | 0410 0.463 | 0.324 0.416 | 0.570 0.538 | 0.299 0.398 | 0.563 0.469 | 0.323 0.373 | 0.268 0.414 | 0.305 0.399
+ Word prompt 720 | 0.447 0.500 | 0.368 0.453 | 0.589 0.553 | 0.359 0.459 | 0.664 0.522 | 0.370 0.407 | 0.453 0.530 | 0.414 0.486
Avg | 0406 0.459 | 0.320 0.408 | 0.580 0.538 | 0.287 0.389 | 0.547 0.462 | 0.303 0.357 | 0.265 0.393 | 0.305 0.398
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Table 16: Results of different backbones.

Datasets | ETThl | ETTh2 | ETTml | ETTm2 | Traffic |  Weather | Exchange | ECL

Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.297 0.368 | 0.224 0.319 | 0.277 0.360 | 0.147 0.259 | 0.304 0.280 | 0.168 0.240 | 0.069 0.192 | 0.148 0.251

Fully tune 192 | 0.328 0391 | 0.279 0.362 | 0.300 0.377 | 0.207 0.311 | 0.315 0.279 | 0.212 0277 | 0.121 0.264 | 0.159 0.258
+ GPT-Large 336 | 0.347 0407 | 0.365 0.420 | 0.322 0397 | 0.284 0.364 | 0.324 0.287 | 0.291 0.341 | 0.356 0.461 | 0.174 0.276
+ TS prompt 720 | 0.358 0.427 | 0430 0478 | 0.358 0.421 | 0436 0.467 | 0.348 0303 | 0.370 0.388 | 0.424 0.525 | 0.207 0.308
Avg | 0.333 0398 | 0.325 0.395 | 0.314 0.389 | 0.269 0.350 | 0.323 0.287 | 0.260 0.311 | 0.242 0.360 | 0.172 0.273

96 | 0.307 0.377 | 0.235 0.326 | 0.285 0.369 | 0.156 0.266 | 0.305 0.278 | 0.172 0.242 | 0.065 0.186 | 0.145 0.247

Fully tune 192 | 0.329 0.391 | 0.283 0.365 | 0.319 0.393 | 0.203 0.307 | 0.313 0274 | 0.218 0.278 | 0.115 0.248 | 0.159 0.259
+ GPT-Medium 336 | 0.346 0.405 | 0.320 0.401 | 0.378 0.425 | 0.255 0.349 | 0.326 0.287 | 0.276 0.329 | 0.206 0.339 | 0.180 0.284
+ TS prompt 720 | 0.370 0.441 | 0.378 0.456 | 0.464 0.477 | 0.342 0417 | 0.346 0301 | 0.339 0.373 | 0409 0.487 | 0.215 0317
Avg | 0.338 0403 | 0.304 0387 | 0.362 0.416 | 0.239 0.335 | 0323 0.285 | 0.251 0.305 | 0.199 0315 | 0.175 0.276

96 | 0.317 0.383 | 0.240 0.334 | 0431 0.443 | 0.178 0.285 | 0.315 0.293 | 0.188 0.257 | 0.083 0.208 | 0.161 0.265

Fully tune 192 | 0355 0413 | 0285 0.370 | 0.479 0.482 | 0.221 0.323 | 0.352 0.336 | 0.238 0.304 | 0.132 0277 | 0.213 0311
+ GPT-Small 336 | 0.357 0.414 | 0302 0.388 | 0.486 0.486 | 0.252 0.346 | 0.339 0310 | 0.275 0326 | 0.196 0.336 | 0.203 0.302
+ TS prompt 720 | 0363 0434 | 0361 0442 | 0479 0483 | 0.345 0.420 | 0350 0313 | 0345 0.384 | 0426 0496 | 0.224 0.326
Avg | 0.348 0411 | 0.297 0384 | 0.469 0.473 | 0.249 0.343 | 0.339 0.313 | 0.261 0.317 | 0.209 0.329 | 0.200 0.301

96 | 0296 0371 | 0.234 0328 | 0309 0.381 | 0.150 0.263 | 0.299 0.278 | 0.175 0.248 | 0.073 0.204 | 0.145 0.249

Fully tune 192 | 0318 0.386 | 0273 0.355 | 0.301 0.381 | 0.190 0293 | 0.311 0278 | 0.212 0279 | 0.129 0.271 | 0.164  0.266
+ Phi-2 336 | 0.337 0402 | 0311 0.389 | 0.346 0.419 | 0.283 0.381 | 0.323 0.290 | 0.282 0.345 | 0.233 0.374 | 0.179 0.281
+ TS prompt 720 | 0.372  0.445 | 0.317 0.407 | 0.404 0.461 | 0439 0484 | 0347 0305 | 0.354 0.382 | 0.404 0.501 | 0.218 0.319
Avg | 0.331 0.401 | 0.284 0.370 | 0.340 0.411 | 0.265 0.355 | 0.320 0.288 | 0.256 0.313 | 0.210 0.337 | 0.176 0.279

Table 17: Results of different down-sampling ratios. Experiments with GPT-Medium as backbones,
TS prompt, and fully tuning paradigm.

Datasets | ETThl | ETTh2 | ETTml1 | ETTm2 | Traffic | Weather | ECL
Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
96 | 0.4536 0.4787 | 0.3395 0.4097 | 0.7441 0.6068 | 0.3229 0.4055 | 0.6619 0.5636 | 0.3538 0.3979 | 0.6118  0.499
Downsample 192 | 0.4648 0.4935 | 0.386  0.4507 | 0.7659 0.6336 | 0.3797 0.4604 | 0.6644 0.5537 | 0.4106 0.454 | 0.6756 0.4915
Ratio = 40p 336 | 0.6629 0.6167 | 0.5982 0.5916 | 1.1366 0.8212 | 0.6904 0.6455 | 1.0706 0.7785 | 0.7359 0.65 1.6485 0.7188
- 720 | 1.0518 0.8133 | 0.8802 0.7588 | 1.8609 1.1304 | 1.2011 0.9073 | 1.7276  1.062 | 1.3176 0.9268 | 3.9988 1.0223
Avg | 0.343 0.408 0307 0390 | 0353 0412 | 0234 0.331 0.344 0314 | 0.253 0.306 0210  0.330
96 0.307  0.3767 | 0.2349 0.3263 | 0.285 0.3687 | 0.1555 0.2657 | 0.3053 0.2778 | 0.1717 0.2416 | 0.1447 0.2468
Downsample 192 | 0.3288 0.3908 | 0.2826 0.3649 | 0.3193 0.3925 | 0.2032 0.3069 | 0.3132 0.2744 | 0.2177 0.2782 | 0.1587 0.2588
Ratio 20p 336 | 0346 0.405 | 0.3198 0.4005 | 0.3782 0.4254 | 0.2549 0.3492 | 0.3263 0.2869 | 0.2761 0.3287 | 0.1803 0.2835
- 720 | 0.3704 0.4405 | 0378  0.456 | 0.4638 0.4773 | 0.3422 0.4172 | 0.3456  0.301 | 0.3386 0.3732 | 0.2151 0.3167
Avg | 0338 0404 | 0303 0.383 0316 0390 | 0285 0360 | 0322  0.287 0.252 0307 0.184  0.315
96 | 0.2975 0.3698 | 0.2268 0.3175 | 0.2633  0.3462 | 0.1463 0.2583 | 0.2961 0.2626 | 0.2583 0.2247 | 0.1406 0.2411
Downsample 192 | 0.3293 0.3896 | 0.2848 0.3674 | 0.3286 0.3991 | 0.1995 0.3014 | 0.3089 2673 0.2151 0.2786 | 0.1568 0.2564
Ratio IOp 336 | 0.3461 0.4039 | 0.3097 0.3938 | 0.3593 0.4198 | 0.259 0.3505 | 0.3206 0.2785 | 0.2651 0.3155 | 0.1744 0.2747
- 720 | 0.3676 0.4333 | 0.4101 0.4738 | 0.4096 0.4505 | 0.3632 0.4242 | 0.3428 0.2983 | 0.3462  0.38 0.2099 0.3101
Avg | 0335 0.402 0.321 0.392 0.341 0.399 0.235 0.332 0.312 0.274 0.252 0.308 0.232 0.360
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