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Abstract

Convolutional Neural Networks (CNNs) inherently encode strong inductive biases,
enabling effective generalization on small-scale datasets. In this paper, we propose
integrating this inductive bias into ViTs, not through an architectural intervention
but solely through initialization. The motivation here is to have a ViT that can enjoy
strong CNN-like performance when data assets are small, but can still scale to ViT-
like performance as the data expands. Our approach is motivated by our empirical
results that random impulse filters can achieve commensurate performance to
learned filters within a CNN. We improve upon current ViT initialization strategies,
which typically rely on empirical heuristics such as using attention weights from
pretrained models or focusing on the distribution of attention weights without
enforcing structures. Empirical results demonstrate that our method significantly
outperforms standard ViT initialization across numerous small and medium-scale
benchmarks, including Food-101, CIFAR-10, CIFAR-100, STL-10, Flowers, and
Pets, while maintaining comparative performance on large-scale datasets such as
ImageNet-1K. Moreover, our initialization strategy can be easily integrated into
various transformer-based architectures such as Swin Transformer and MLP-Mixer
with consistent improvements in performance.

1 Introduction

Despite their success on large-scale training datasets, Vision Transformers (ViTs) often suffer a
notable drop in performance when trained on small-scale datasets. This limitation is primarily
attributed to their lack of architectural inductive biases, which are crucial for generalization with
insufficient data. In contrast, Convolutional Neural Networks (CNNs) possess strong inductive biases
that allow them to perform well even with limited training data.

To bridge this performance gap, several strategies have been proposed. These include self-supervised
pretraining on large-scale datasets [8, 26], advanced data augmentation techniques [36, 6], and hybrid
architectures that incorporate convolutional layers into Vision Transformers [32, 16, 35, 15, 7]. More
recently, Zhang et al. [37] explored the use of pretrained weights to initialize ViTs. Building on
this idea, subsequent works have shown that carefully designed network initialization strategies can
enhance ViT performance on small-scale datasets without modifying the model architecture. In
particular, Trockman and Kolter [28] introduced mimetic initialization that replicates the weight
distribution of pretrained ViTs. Similarly, Xu et al. [33] proposed directly sampling weights from
large pretrained models.

While effective, these methods come with three notable limitations: (1) they focus on replicating the
distribution of pretrained attention weights rather than structuring attention maps; (2) they rely on
access to pretrained models trained on large-scale data, which is often impractical in domain-specific
scenarios; and (3) their effectiveness is often tied to specific model architectures.
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Figure 1: Illustration of conventional generative initialization and structured initialization (ours)
strategies for the weights Q and K of the attention map in transformers. Conventional generative
initialization involves sampling Q and K from certain distributions, such as Gaussian or Uniform,
resulting in unstructured attention maps. In contrast, our structured initialization imposes constraints
on the structure of the initial attention maps, specifically requiring them to be random impulse filters.
The initialization of Q and K is computed based on this requirement. Note that in both attention
maps and random impulse filters, the pink cells indicate ones, while the gray cells represent zeros.

To overcome the limitations of existing approaches, we propose a novel “structured initialization”
strategy for ViTs that imposes convolutional structures on attention maps without requiring any
pretrained models. Our approach is grounded in our theoretical insights, aligned with the findings of
recent work [3], that randomly initialized depthwise convolution filters can match the performance of
their trained counterparts in models such as ConvMixer [27] and ResNet [11]. Inspired by this, we
develop an initialization strategy for ViTs based on random impulse convolution kernels, which impart
locality and structure directly into the attention maps, as shown in Fig. 1. This structured initialization
yields inductive biases characteristic of CNNs, enabling ViTs to generalize effectively on small-scale
datasets, while preserving their adaptability for large-scale applications. Unlike prior methods that
modify ViT architectures by integrating convolutional components, our method preserves the original
transformer structure, making it broadly applicable across a variety of ViT variants.

To conclude, our paper makes the following contributions:

• We establish a conceptual link between the structural inductive bias of CNNs and initializa-
tion in ViTs, and provide a theoretical justification for using random convolution filters to
initialize attention maps.

• To the best of our knowledge, we are the first to introduce the initialization strategy that
explicitly structures attention maps in ViTs, embedding convolutional inductive biases
without modifying model architecture, enabling compatibility across diverse ViT variants.

• We demonstrate state-of-the-art performance on small-scale and medium-scale datasets,
including Food-101, CIFAR-10, CIFAR-100, STL-10, Flowers, and Pets, while maintaining
competitive results on large-scale datasets such as ImageNet-1K, and achieving improved
performance across various ViT architectures, such as Swin Transformers and MLP-Mixer.

2 Related Work

Introducing inductive bias of CNN to ViT through architecture. Many efforts have aimed
to incorporate a convolutional inductive bias into ViTs through architectural modifications. [7]
proposed to combine convolution and self-attention by mixing the convolutional self-attention layers.
[21, 15]introduced hybrid models wherein the output of each layer is a summation of convolution and
self-attention. [32] explored using convolution for token projections within self-attention, while [35]
showed promising results by inserting a depthwise convolution before the self-attention map. [9]
introduced gated positional self-attention to imply a soft convolution inductive bias. Although these
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Figure 2: Illustration of why random spatial convolution filters are effective. Patch embeddings
X∈RN×D are typically rank-deficient and can be approximately decomposed to k basis. Meanwhile,
a linear combination of f2 linearly independent filters h can express any arbitrary filter in the filter
space Rf×f . Based on these two observations, we derive the inequality D≥ kf2 from Proposition 1.

techniques have been proven effective, they aim to introduce the inductive bias of convolution through
architectural choices. Our approach, on the other hand, stands out by not requiring any modifications
to the architecture, retaining the generalizability to be seamlessly applied to different settings.

Initializating ViTs from pretrained weights. The exploration of applying inductive bias through
initialization within a transformer is limited to date. [37] posited that the benefit of pretrained
models in ViTs can be interpreted as a more effective strategy for initialization. [28, 29] recently
investigated the empirical distributions of self-attention weights, learned from large-scale datasets,
and proposed a mimetic initialization strategy. While this approach lies between structured and
generative initialization, it relies on the pretraining results of large models. [23, 24, 33, 14] directly
sampled weights from pretrained large-scale models as initialization for smaller models. While
effective, the sampled weights must follow the distribution of these pretrained weights. A key
difference in our approach is that our method does not require offline knowledge of pretrained models.
Instead, our initialized structure is derived from a theoretical analysis of convolution layers.

Convolution as attention. Since their introduction [30, 8], the relationship between transformers
and CNNs has been a topic of immense interest. [1] studied the structural similarities between
attention and convolution, bridging them into a unified framework. Building on this, [5] demonstrated
that self-attention layers can express any convolutional layers through a careful theoretical construc-
tion. While these studies highlighted the functional equivalence between self-attention in ViTs and
convolutional spatial mixing in CNNs, they did not delve into how the inductive bias of ViTs could
be adapted through this theoretical connection. In contrast, our work offers a theoretical insight: a
random convolutional impulse filter can be effectively approximated by softmax self-attention.

3 Why Random Impulse Filters Work?

It is well established that both ConvMixer and ViTs use alternating blocks of spatial and channel
mixing, where ViTs replace the spatial convolutions in ConvNets with attention mechanisms. A fun-
damental difference, except for the receptive field, lies in their parameterization: spatial convolutions
with hundreds of channels typically use distinct kernels for each channel, whereas self-attention relies
on a shared mechanism with only a limited number (∼ 10) of attention heads. By introducing a key
observation that input embeddings are often rank-deficient, we demonstrate that as long as the spatial
kernels or attention patterns sufficiently span the kernel space, the uniqueness or repetition of individ-
ual kernels becomes less critical. This insight, supported by a recent empirical observation [3], offers
a new perspective on the relationship between ViTs and CNNs, motivating the use of impulse-based
structures to embed convolutional inductive biases into the attention map initialization.

In recent work [3], Cazenavette et al. demonstrated a remarkable performance of randomly initialized
convolution filters in ConvMixer and ResNet when solely learning the channel mixing parameters.
However, they failed to offer any insights into the underlying reasons. In this section, we provide a
theoretical analysis of how solely learning channel mixing can be sufficient for achieving reasonably
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good performance. Our theoretical findings are significant as they establish a conceptual link between
the architecture of ConvMixer and the initialization of ViT, offering a deeper understanding of desired
properties for spatial mixing matrices. Without losing generality, we have omitted activations (e.g.,
GeLU, ReLU, etc.), bias, batch normalization, and skip connections in our equations for clarity.

Remark 1 Let us define the patch embeddings or intermediate layer outputs in ConvMixer as
X= [x1,x2, . . . ,xD], where D is the number of channels and N is the number of pixels in the
vectorized patch x∈RN . An interesting observation is the rank (stable rank, defined as

∑
σ2 / σ2

max)
of X is consistently much smaller than the minimum dimension min(N,D) of X, indicating a
significant amount of redundancy in patch embeddings or intermediate layer outputs in deep networks.
This rank deficiency is common in various deep neural networks [10], especially in ViTs [20, 18, 12].

Let us define a 2D convolution filter as h∈Rf×f . In general, this kernel can be represented
as a circulant matrix H∈RN×N , such that h ∗x=Hx, where ∗ denotes convolution operator.
The relation between the convolutional matrix and convolution filters is explained in detail in
the appendix. A ConvMixer block TConv :RN×D→RN×D is composed of a spatial mixing layer
TConv

S :RN×D→RN×D and a channel mixing layer TConv
C :RN×D→RN×D, where TConv

S is defined
by a sequence of convolution filters H= [H1,H2, . . . ,HD]∈RD×N×N , Hi ∈RN×N , and TConv

C is
defined by a weight matrix W∈RD×D. With input X= [x1,x2, . . . ,xD]∈RN×D, TConv is

TConv
S (X;H) = [H1x1,H2x2, . . . ,HDxD], (1)

TConv
C (X;W) = XW, (2)

TConv(X) = TConv
C (TConv

S (X;H);W) = [H1x1,H2x2, . . . ,HDxD]W. (3)

Definition 1 (M–k Spanned Set): Let V = {v1,v2, . . . ,vN} ⊂ Rd be a finite set of vectors. We say
that V is M–k spanned (on W ) if there exists a partition of V into at least k non-overlapping subsets:

V = V1 ∪ V2 ∪ . . . ∪ Vk, (4)

such that there exist a M–dimensional subspace W ⊂ Rd in the span of each subset Vi
W ⊆ Span(Vi) ∀i = 1, 2, . . . , k. (5)

Proposition 1 A ConvMixer block T consists of a spatial mixing layer TS( · ;H) with convolution
filters H and a channel mixing layer TC . T′ is another ConvMixer block composed of T′

S( · ;H′)
and T′

C . Let k be the rank of input X. If H is M–k spanned on W , then for any set of filters H′ ⊂W
and any T′

C , there always exists a TC such that T(X)=T′(X).

For simplicity, we include the full proof in the appendix. Note that since H are convolution matrices,
their span lies in Rf×f instead of RN×N , where f is the kernel size. In practice, the fact that
D≥ kf2 indicates that randomly initialized spatial convolution kernels are f2–k spanned and satisfy
Proposition 1, as illustrated in Fig. 2. Consequently, any trained results of T′

C and T′
S can be achieved

by solely training the TC , while keeping a fixed spatial mixing layer TS . Hence, the following
corollaries can be obtained, and Corollary 1 explains the phenomenon found in [3], mentioned at
the beginning of the section. Corollary 2 inspires our proposed structure initialization for ViTs. The
related experimental evidence of these corollaries and our proposition is given in the appendix.

Corollary 1 Randomly initialized spatial convolution filters perform as well as trained spatial
convolution filters since the f2–k spanned condition in Proposition 1 is satisfied.

Corollary 2 Random impulse spatial convolution filters perform as well as trained spatial convolu-
tion filters since the f2–k spanned condition in Proposition 1 is satisfied.

Corollary 3 Spatial convolution filters with all ones (referred to as “box” filters) will not perform
well since they are 1–k spanned and can produce only averaging values.

4 Structured Initialization for Attention Map

4.1 Expected Initialized Attention Map Structure

ConvMixer and ViT share most of the components in their architectures. The gap in their performance
on small-scale datasets stems from their architectural choices regarding the spatial mixing matrix.

4



Although depthwise convolution (ConvMixer) and multi-head self-attention (ViT) may appear distinct
at first glance, their underlying goal remains the same: to identify spatial patterns indicated by the
spatial mixing matrix. As defined in Sec. 3, similar to the spatial mixing step in ConvMixer defined
in Eq. (1), the spatial mixing step of multi-head attention can be expressed as

TViT
S (X;M) = [M1x1, . . . ,M1xd,M2xd+1, . . . ,M2x2d,

. . . ,Mhx(h−1)d+1, . . . ,Mhxh∗d], (6)

where d represents the feature dimension in each head, typically set to D/h, with h being the number
of heads, and the matrices Mi for multi-head self-attention can be expressed as follows:

Mi = softmax(XQi K
T
i X

T ), (7)

where Qi ,Ki ∈RD×d are attention weight matrices.

It is worth noting that in Eq. (1), the spatial matrices H are in convolutional structure, resulting in a
span of Rf×f instead of RN×N , despite each Hi having a size of N ×N . This structural constraint
ensures that CNNs focus on local features but struggle to capture long-range dependencies. In
contrast, the span of spatial matrices M in Eq. (6) is RN×N , allowing for greater learning capacity
without these limitations. However, a randomly initialized Q and K contain no structural information,
resulting in random matrices as depicted in the bottom left of Fig. 1.

Leveraging this insight, we propose to initialize the attention map for each head in ViT to a con-
volutional structure as denoted in the bottom right of Fig. 1. Our initialization strategy preserves
both the advantage of locality and the capacity to learn long-range information. For clarity and
brevity, the following discussions will focus only on one head of multi-head self-attention. Therefore,
from Eq. (6) and Eq. (1), our structured initialization strategy can be represented as

TViT
S (X;M)

init←−− TConv
S (X;M) ⇒ Minit = softmax(XQinitK

T
initX

T ) ≈ H. (8)

Why using impulse filters? Any random convolution filters that satisfy proposition 1 could be a
choice of initialization of attention maps to introduce inductive bias. However, random convolution
filters H usually contain both positive and negative values, while the output of the softmax function
is always positive, making Eq. (8) unreachable. One straightforward option is to use random positive
convolution filters with a normalized sum of one, following the property of softmax. However, this
approach often proves inefficient as the patterns are too complicated for a softmax function to handle
with QK being of low rank. In [25], the authors found that the softmax attention map serves as a
feature selection function, which typically tends to select a single related feature. In convolution
filters, this selection can be parameterized as impulse filters. According to Corollary 2, random
impulse filters are also f2–k spanned. In conclusion, when initializing a softmax attention map, the
most straightforward and suitable choice is random impulse convolution filters.

Pseudo input. The advantage of self-attention is that its spatial mixing map is learned from data.
The real input to an attention layer is P+X for the first layer and X (the intermediate output from the
previous layer) for the following layers. However, during initialization, there is no prior information
about the input. To address this problem, we simply use the initialization of positional encoding
P as the pseudo input in the initialization of Q and K, replacing the actual input data P + X or
intermediate outputs. Remember that this only happens when we solve the initialization to avoid
data-dependent initialization, while in the training stage, we make no change to the ViT architecture.

With the use of impulse filters and the pseudo input, Eq. (8) becomes

Minit = softmax(PQinitK
T
initP

T ) ≈ Himpulse. (9)

4.2 Solving Qinit and Kinit

There exist numerous approaches to solve Eq. (9) for Qinit and Kinit with known Himpulse and P.
Here, we apply an SVD-based method. First, we change Eq. (9) to exclude the Softmax function as

PQinitK
T
initP

T = αHimpulse + βZ , (10)

where Z ∼ N (0, 1
D I). Then to solve for Qinit and Kinit, we put P to the right-hand side of the

equation using the pseudo inverse Pinv = (PTP)−1PT —since P is randomly initialized, it will be

5



of full rank. Therefore, we get

QinitK
T
init = Pinv(αHimpulse + βZ)PT

inv . (11)
With Eq. (11), we do SVD on the right-hand side and get a low-rank approximation of Qinit and Kinit:

U, s,VT = SVD
(
Pinv

(
αHimpulse + βZ

)
PT

inv

)
, (12)

Q̃init = U
√
s [:, :d], K̃init = V

√
s [:, :d] . (13)

Finally, we do a normalization to get the final Qinit and Kinit as

Qinit =
γ

∥Q̃init∥F )
Q̃init, Kinit =

γ

∥K̃init∥F
K̃init . (14)

In ViT models with d=64, we use a 3× 3 convolution filters by setting f =3. We find that the
random values in Z are not decisive for our initialization strategy. To ensure a clear impulse structure,
the initialization is primarily governed by selecting an appropriate ratio of α to β. Empirically, we
choose a large ratio such that α:β=40:1 with γ=2. Notably, the exact values of α and β are not
strictly constrained due to the normalization step, which scales these parameters. The pseudo code
for our initialization strategy can be found in the appendix.

5 Experiments and Analysis

In this section, we show that our impulse initialization can improve the performance of ViT on
small-scale datasets in Sec. 5.1, while it does not limit the learning flexibility of ViT models on
large-scale datasets in Sec. 5.2. In Sec. 5.6, we show that even for a pretrained method like weight
selection [33], the pretrained model initialized with our impulse structure can provide better pretrained
weights with a relatively smaller-scale dataset. Finally, in Sec. 5.4, we show that besides ViTs, the
concept of introducing architectural bias into initializations can also be generalized to other models
like Swin Transformers and MLP-Mixer. Note that all experiments were conducted on a single
node with 8 Tesla V100 SXM3 GPUs, each with 32GB of memory, if not specified. Specifically, all
the experiments on the small-scale datasets took about three hours to train each model, while the
experiments on the ImageNet-1K took about two days. Please note that all results were reported
based on our experiments with retrained models. As a result, minor discrepancies may exist between
our reported results and those in published papers. However, the key focus of this analysis remains
on the improvements achieved through different initialization strategies.

5.1 Small and Medium-Scale Datasets

In this section, we compare the performance of ViT-Tiny under three initialization strategies: the
default [31], mimetic [28], and our impulse initialization. Experiments are conducted on medium-
scale datasets (∼50K training images), including Food-101 [2], CIFAR-10, and CIFAR-100 [13], as
well as small-scale datasets (∼5K training images), such as STL-10 [4], Flowers [19], and Pets [22].
We follow the training recipe from [33], which is proven to be useful in training ViT-Tiny on small and
medium-scale datasets. Their codes are based on the timm library [31]. By default, all the weights are
initialized with a truncated normal distribution. For a fair comparison, all the experiments were run
with identical codes except for the choice of initialization methods. Please also note that although [33]
initializes the model weights from large pretrained models, we did not adopt any pretraining step for
this experiment. In contrast, we apply default, mimetic, and our impulse initialization methods to
ViT-Tiny models and training these models from scratch.

The experimental results are presented in Tab. 1. For simplicity, we keep the statistical results on
using different seeds with stochastic filter generations with 5 different runs in Appendix F and Fig. 6.
Our method consistently yields substantial improvements over the default initialization across all
evaluated datasets. On medium-scale datasets, it achieves performance gains of 2%∼5%, while on
small-scale datasets, improvements can reach approximately 8%, and in some cases, up to 20%.
While mimetic initialization also improves the performance, our impulse initialization shows superior
efficacy, attributed to the convolutional structure integrated in the attention initialization. Notably,
as the dataset size decreases, the performance gap between our method and the default (or mimetic)
initialization gets larger. This observation validates that the convolutional inductive bias introduced
by our initialization becomes increasingly important when there is less data for the model to learn the
spatial dependencies.
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Table 1: Classification accuracy of ViT-Tiny with different initialization methods on different datasets.
Green number indicates an increase in accuracy. Note that we compare the performance to the
default initialization method (shaded in gray). • represents small-scale datasets, and ▲ represents
medium-scale datasets. The datasets are ranked based on their training scales.

Method Data↓ ▲ Food-101 ▲ CIFAR-10 ▲ CIFAR-100 • STL-10 • Flowers • Pets

Default [31] 77.95 92.29 71.67 61.86 64.60 26.58
Mimetic [28] 81.78 3.83↑ 93.50 1.21↑ 75.16 3.49↑ 68.54 6.68↑ 71.62 7.02↑ 47.63 21.05↑
Ours (impulse) 81.85 3.90↑ 94.67 2.38↑ 77.02 5.35↑ 70.21 8.35↑ 73.18 8.58↑ 50.84 24.26↑

Table 2: Classification accuracy of ViT-Tiny, ViT-Small and ViT-Base on ImageNet-1K dataset with
different initialization methods. ■ indicates large-scale datasets. Please note that for the last column
(shaded in yellow), we report the experimental results on ViT-Base with specific settings to make the
default initialization-based ViT comparable to the results reported in concurrent papers.

Method Model ■ ViT-Tiny ■ ViT-Small ■ ViT-Base ■ ViT-Base∗

Default [31] 72.71 79.68 81.24 81.89
Mimetic [28] 72.90 0.19↑ 80.26 0.58↑ 80.56 0.68↓ 80.56 1.33↓
Ours (impulse) 72.76 0.05↑ 80.40 0.72↑ 81.83 0.59↑ 82.13 0.24↑

5.2 Large-Scale Datasets

In this section, we compare the performance of ViT-Tiny, ViT-Small, and ViT-base with default,
mimetic, and our impulse initialization on a large-scale dataset—ImageNet-1K (over 1M training
images). We follow the training recipe from DeiT [26]—a classic and efficient training recipe for
training ViT models on ImageNet-1K. We directly use the original ViT structure and training codes in
the timm library, except for adding our implementation of initialization. All the models were trained
with the same hyperparameters starting from scratch without any pretraining or distillation.

We show the comparison results on the ImageNet-1K dataset in Tab. 2. Detailed training hyperpa-
rameters and training curves can be found in Appendix E. In particular, we find that the rapid update
for the baseline ViT codebase (i.e., timm library) and the difference in GPU hardware settings result
in a small discrepancy in the default initialization-based ViT-Base model between our main result
(∼81.24) and the results reported in concurrent papers (∼81.89). Therefore, we have included an
additional column (shaded in yellow) in Tab. 2 for ViT-Base∗ model that uses 16 Tesla V100 GPUs
with an extra 0.3 color jittering data augmentation for a clearer comparison.

Despite different training settings and comparisons, our method maintains comparable performance
with default initialization, demonstrating that the convolutional inductive bias introduced during
initialization does not hinder the model’s flexibility in learning data-driven dependencies. This
indicates that while the transformer architecture begins training with structurally imposed spatial
priors, the attention mechanism retains full capacity to learn optimal feature representations when
sufficient training data is available. Furthermore, the convolutional structure we introduced in the
attention map initialization not only accelerates early convergence but also improves the robustness
to variations in training hyperparameters. We provide more quantitative results in Appendix E.

5.3 Training Curves and Analysis

In Fig. 3, we show the training accuracy curves across 300 epochs for different initialization methods
of ViT-Tiny on CIFAR-10 and ViT-Base on ImageNet-1K. For the small model on medium-scale
dataset, our impulse initialization consistently outperforms the default or mimetic initialization
throughout the entire training process. On the large-scale dataset with training large ViT-Base model,
our impulse initialization method and the mimetic initialization have shown faster convergence rate
than the default initialization at the beginning of the training. However, the mimetic initialization
shows degraded performance even to the default initialization at the last 100 training epochs, indi-
cating limited ability in large-scale model training. On the contrary, our method does not limit the
learning ability of the large-scale ViT models, showing a significant advantage in the final training
stage where the performance surpass both the default and the mimetic initialization methods.
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Figure 3: Training curves of ViT-Tiny on CIFAR-10 and ViT-Base on ImageNet-1K using default,
mimetic, and impulse initialization. The zoomed-in box shows the training curve in the final training
stage from epoch 200 to epoch 300.

Table 3: Classification accuracy of different Swin Transformers and MLP-Mixer on different datasets
with different initialization methods. Red/green number indicates accuracy decrease/increase. We
compare the performance to the default initialization method (shaded in gray).

Method
Model&Data Swin-B on

■ ImageNet-1K
Swin-T on
▲ CIFAR-10

MLP-Mixer on
▲ CIFAR-10

Default [31] 83.14 89.85 87.00
Mimetic [28] 83.14 — 89.24 0.61↓ —
Ours (impulse) 83.55 0.41↑ 91.19 1.34↑ 88.78 1.78↑

In summary, experiments on both small-scale and large-scale datasets show that our initialization
method effectively balancing prior architectural knowledge integration with data adaptability—
incorporating a convolutional inductive bias during initialization provides structural guidance to
capture dependencies when training data is limited, while still allowing the attention mechanism to
retain full learning flexibility in scenarios with abundant data.

5.4 ViT Variants

Beyond the original ViT architectures, we extend a simplified version of our initialization strategy to
the Swin Transformer. Notably, Swin Transformers incorporate relative positional encoding within
each attention block—a design choice that aligns with our core objective of instilling convolutional
structure into attention maps. For these models, we achieve this by directly initializing the relative
positional embeddings with our impulse pattern.

We evaluated our approach with Swin Transformer-Base (Swin-B) architecture on the ImageNet-1K
following the training recipe in the original Swin Transformer paper [17]. To further demonstrate the
flexibility of our approach, we applied our impulse initialization to the MLP-Mixer. For experiments
with Swin Transformer-Tiny (Swin-T) and MLP-Mixer, we follow training settings in [34], which is
specifically designed for training different models on CIFAR-10.

The results are summarized in Tab. 3. For models with strong learning capacity but limited inher-
ent inductive biases at initialization, introducing a structured initialization consistently enhances
performance without compromising the model’s capacity to learn complex data dependencies. In
particular, while Swin Transformer incorporates convolutional inductive bias through windowed
self-attention, applying our structured initialization further improves the performance by 1.34% on
smaller-scale datasets such as CIFAR-10, with no degradation on large-scale datasets like ImageNet-
1K. MLP-Mixer, which replaces the spatial convolutions in ConvMixer with MLP layers, typically
struggles to train effectively on small-scale datasets. However, initializing the spatial MLPs with
a convolutional structure leads to a 1.78% performance gain on CIFAR-10. In contrast, mimetic
initialization—designed to replicate empirical weight distributions from pretrained ViTs—shows
negligible benefits or degrades performance, highlighting its limited generalizability outside the
specific pretrained ViT structures.
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Figure 4: Visualization of attention maps in ViT-T using ours, mimetic [28], and default [33]
initializations. Red boxes highlight zoomed-in details of the 16× 16 upper left corner in attention
maps. White boxes indicate the 8× 8 sub-blocks of the zoomed-in attention maps. Our structured
initialization method offers distinct attention peaks aligned with the impulse structures across different
heads. Head 1 offers a peak at +1 offset from the main diagonal. Head 2 offers a peek at −8 offset
(equivalent to−image_size) from the main diagonal. Both mimetic and random initialization methods
initialize all the attention heads identically. Specifically, mimetic initialization primarily strengthens
the main diagonal of the attention map for each head, while random initialization shows minimal
structural patterns with flatter peak values.

5.5 Attention Maps

The initialized attention maps produced by default, mimetic, and our impulse initializations are shown
in Fig. 4. For better visualization, we use 32×32 CIFAR-10 images as input with a 4×4 patch size,
yielding the token size as 8×8=64. We observe that the default initialization generates near-identical
attention values with little distinguishable spatial structure, while the mimetic initialization introduces
diagonally dominant values by adding an identity matrix during initialization. Notably, these two
initialization methods initialize all the attention heads in the same way. In contrast, our initialization
assigns different impulse patterns to each attention head, producing spatially diverse activations with
off-diagonal peaks on specific impulse positions.

5.6 Pre-trained Model

In this section, we demonstrate that our initialization method remains compatible with existing
pretraining pipelines. Building on the work of Xu et al. [33], who showed that weight selection from
ImageNet-21K-pretrained ViT-Small models effectively initializes ViT-Tiny architectures, we extend
this approach to ImageNet-1K pertaining. We pretrained three ViT-Small models on ImageNet-1K
using three initialization strategies: default, mimetic, and our proposed impulse initialization. From
these, we derived three ViT-Tiny initialization variants—termed “1K-default”, “1K-mimetic”, and
“1K-impulse”—using the same weight selection methodology on smaller-scale datasets. When training
these initialized ViT-Tiny models on small and medium-scale datasets (results shown in Tab. 4), we
observed that: (1) Switching from ImageNet-21K to ImageNet-1K—less training data—pretraining
with default initialization typically incurs a performance drop of∼1%. (2) Mimetic initialization fails
to mitigate this data degradation, (3) The ImageNet-1K pretraining model with our impulse-based
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Table 4: Classification accuracy of ViT-Tiny on small-scale datasets with the weight selection method.
Here, the weights selected for the experiments were pretrained on the ImageNet-1K (shortened as
1K, shown above the purple dashed line) and ImageNet-21K (shortened as 21K, shown below the
purple dashed line) datasets with different initialization methods. Please note that pretraining on
ImageNet-21K with default initialization is the original weight selection method [33]. We compare
the performance to the default initialization method pretrained on ImageNet-1K (shaded in gray).

Method+Model
Data↓

▲ Food-101 ▲ CIFAR-10 ▲ CIFAR-100 • STL-10

1K+Default [33] 85.42 96.61 79.64 82.58
1K+Mimetic [28] 86.32 0.90↑ 96.37 0.24↓ 79.86 0.22↑ 82.39 0.19↓
1K+Ours (impulse) 87.43 2.01↑ 97.19 0.58↑ 80.92 1.28↑ 83.89 1.31↑
21K+Default [33] 87.14 1.72↑ 97.07 0.46↑ 81.07 1.43↑ 83.23 0.65↑

initialization achieves performance parity with ImageNet-21K pretrained baselines. This highlights
the robustness of our method even under reduced pretraining data regimes.

6 Limitations and Broader Impacts

There exist several limitations in our initialization method: (1) Positional encoding. Although
positional encoding is a natural and effective choice for pseudo-inputs—due to its simplicity and
data-independent nature—even simpler alternatives may exist for initializing the Q and K matrices.
In this work, we focus solely on the initialization of Q and K, but a more comprehensive initialization
strategy that also considers patch embeddings and positional encodings could offer greater control
over the structure of attention maps. Notably, since positional encoding is only added at the input
layer, the influence on attention maps may diminish with increasing network depth, as illustrated
in Fig. 4. (2) Hard constraints. Our Corollary 2 of Proposition 1 is based on the presumption that
the filters are f2–k spanned, which is usually a characteristic inherent in CNNs. However, in ViTs,
the limited number of heads may be inadequate to span the filter space of a small kernel. Finding
better adaptations in this scenario remains a challenge. (3) Value initialization. Our method does not
consider the initialization for the value weights V and the projection matrix.

Broader impacts. This work advances the understanding of how structured initialization influences
the performance of transformers, particularly in resource-constrained settings. Our research findings
enables more efficient training of neural networks on small-scale datasets, which may benefit domains
such as medical imaging, environmental monitoring, robotics, or education, where data is limited or
expensive to collect. Furthermore, improving initialization strategies can reduce computational costs,
contributing to more sustainable AI practices.

However, as with most advances in artificial intelligence, these techniques carry a risk of misuse or
harmful societal applications. For example, by applying our initialization method to more powerful
models with fewer resources could make larger models more easily accessible for malicious purposes.
These concerns further remind us to carefully consider the broader societal impacts of our research
and make sure its benefits outweigh potential harms.

7 Conclusion

In this paper, we propose a structured initialization method with convolutional impulse filters for
attention maps in ViTs. Our method preserves both the advantage of locality within CNNs and
the capacity to learn long-range dependencies inherited from ViTs. We also provide a thorough
theoretical explanation of the spatial and channel mixing in ConvMixer and ViT, building connections
between the structural bias in CNNs and the initialization of ViTs. Our results on small-scale
datasets validate the effectiveness of the convolutional structural bias, while on-par performance
on large-scale datasets indicates the preservation of architectural flexibility. Our initialization also
accelerates early-stage convergence but also enhances the model’s robustness to variations in training
hyperparameters. Furthermore, we demonstrate that our method consistently provides benefits across
a range of architectures and even under pre-training strategies.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly summarized the contributions of our paper at the end of the
introduction section. The theoretical and experimental results shown in the paper accurately
reflect the contributions of our proposed method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have clearly stated the limitations of our proposed method and the broader
impact in the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have provided the complete, correct, detailed proof and the full set of
assumptions for every theoretical result in both the main paper and the appendix. And we
have numbered and cross-referenced all the theorems, formulas, and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided sufficient experiments and the detailed initialization strate-
gies to validate the effectiveness of our proposed method in the main paper and the appendix.
We have also released the full code to the public.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the data used in the paper are open-sourced datasets. We have provided the
implementation details and have released the code to reproduce the results claimed in our
paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided all the training and testing details, including datasets,
hyperparameters, hardware settings etc. in the main paper and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We have reported the error bars for the main results in the appendix. For larger
model training, we skip the error bar report due to the expensive computation. Nevertheless,
we have set the experimental seed for all the experiments and have ensured accurate and
the same experimental settings and hyperparameters for different methods on the same
experiment. We have also provided the detailed implementation strategies and have released
the full code for reproducing the main results in the paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the computing resources we used in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our research, in every respect, conforms with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We have discussed both potential positive and negative societal impacts in the
broader impact section in the main paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets, codes, and models used in the paper are open-sourced. And
we have clearly referenced these assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not introduce any new assets in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve any crowdsourcing or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve any crowdsourcing or research with human
subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix: Structured Initialization for Vision Transformers

A Frequently Asked Questions

Q: Does introducing CNN structural biases to Transformer contradict the advantage of its
structure?

A: Our method focuses on introducing the architectural inductive bias from CNNs to initialize the
attention map without changing the Transformer architectures. We have emphasized this argument
in the abstract and introduction, stating that unlike previous arts [35, 15, 7, 32, 16] that directly
introduce convolutions into attention, potentially damaging the structural advantages of Transformers,
our method only introduces architectural inductive bias in attention map initialization, maintains the
inherent structural flexibility in ViTs. Therefore, our method preserves the Transformer architectures
and still allows the ViTs to learn flexible, dynamic global relationships. This is also one of the central
innovations of our method. In addition, we have also provided experiments on large-scale applications
to validate the stable performance of our method that preserves the architectural flexibility of ViTs.

Q: Why is the proposed method better than transfer learning on large-scale pretrained models
or a hybrid architecture combining CNN and attention?

A: As stated in Sec. 1, we would like to emphasize the advantages of our proposed structured
initialization method: 1) Unlike previous methods that do transfer learning on large-scale pre-trained
ViTs, our method involves no pre-training of large-scale models on large-scale datasets, which may
not be readily available; 2) Our method shares the advantages of both CNNs and ViTs.

In general, introducing inductive bias in CNNs for initializing the attention map helps ViTs begin
learning from a more reasonable/stable starting point, while the default random initialization can lead
to a noisy starting point, especially when training on small-scale datasets. Notably, our initialization
method does not alter the ViT structure, maintaining the advantages of the Transformer architectures
in learning dynamic, long-dependent global features. In contrast, methods that directly combine
the architectures of CNNs and ViTs alter the Transformer architectures, potentially compromising
its architectural advantages. Please also refer to the theoretical analysis of random filters in Sec. 3
and the convolutional representation matrix in Appendix C of the main paper for more theoretical
explanations.

For pretrained models, we noted in the introduction section that their reliance on access to pretrained
models makes them impractical for domain-specific scenarios. For example, pretraining a large model
on extensive datasets only to deploy a smaller model on limited data is inefficient and often unrea-
sonable. Furthermore, their effectiveness heavily depends on the performance of the specific model
architectures, offering no inherent advantages from using pretrained weights. Nevertheless, even
on pretrained models, our initialization still outperforms other methods. For additional quantitative
evidence, please refer to the experimental analysis in Sec. 5.1 and Sec. 5.6.

Q: Why use an impulse filter? Does enforcing a strict structure in initialization degrade
performance?

A: While one might expect that a rigid initialization could limit the model’s flexibility, our exper-
imental results in Sec. 5 demonstrate that the impulse structure does not hurt the training. On the
contrary, it consistently improves the performance, particularly on small and medium-scale datasets.
This is attributed to the structured initialization introducing a beneficial inductive bias, which guides
the model toward learning useful representations in the early stage of training.

Moreover, the hyperparameters α, β, and γ control the norms of Q and K, ensuring that the attention
maps exhibit a well-defined convolutional structure at initialization, while maintaining sufficiently
flexible to adapt and learn from data during training. This design shows a central innovation of
our method, and its effectiveness is consistently supported by experiments across both small and
large-scale datasets.

Although, as suggested by Proposition 1, any set of random convolutional filters can be used to
initialize attention maps, it is difficult to obtain both a clear attention map structure and sufficient
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training flexibility from random non-impulse filters, especially when analyzed through low-rank
approximation via singular value decomposition (SVD) and the Softmax operation. Thus, when
aiming to initialize attention maps with a convolutional prior, impulse filters remain the most
straightforward and robust choice.

B Proof for Proposition 1

Let w= [w1, w2, . . . , wD]T ∈RD×1 be the channel mixing weights for one output channel and
H1,H2, . . . ,HD are the corresponding spatial convolution filters for each channel. Therefore, the
result y∈RN after spatial and channel mixing can be represented as,

y =

D∑
i=1

wiHixi, (15)

With Remark 1, we can suppose the rank of X≈ZA is k, where Z= [z1, . . . , zk] and k≪D, as
illustrated in Fig. 2. We then obtain

y ≈
D∑
i=1

k∑
j=1

wiajiHizj =

k∑
j=1

H̃jzj , (16)

where aji refers to the row j, column i element of A, and H̃j =
∑D

i=1 wi aji Hi.

Remember that a linear combination of f2 linearly independent filters h can express any arbitrary
filter in filter space Rf×f , where h serves as the basis. Consequently, any desired H̃1, H̃2, . . . , H̃D

can be achieved by only learning the channel mixing weights w. Therefore, we obtain the following
proposition.

C Convolutional Represetation Matrix

In Sec. 3, we interchangeably use the terms convolution filter h and convolution matrix H. Addition-
ally, we represent the impulse filter as a convolutional matrix. Here, we offer a detailed explanation
of the relationship between the convolutional filters and the convolutional matrices.

Let us define a 2D convolution filter as h∈Rf×f with elements

h =

h11 · · · h1f

...
. . .

...
hf1 · · · hff

 . (17)

When h is convolved with an image x∈RH×W , this convolution operation is equivalent to a matrix
multiplication

vec(h ∗x)=H vec(x), (18)
where H is composed from the elements in h and zeros in the following format:

H =


F1 F2 · · · Ff 0 0 · · · 0
0 F1 F2 · · · Ff 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 F1 F2 · · · Ff 0
0 · · · 0 0 F1 F2 · · · Ff

 , (19)

where

Fi =


hi1 hi2 · · · hif 0 0 · · · 0
0 hi1 hi2 · · · hif 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 hi1 hi2 · · · hif 0
0 · · · 0 0 hi1 hi2 · · · hif

 , (20)

for i=1, 2, . . . , f . Fis are circulant matrices and H is a block circulant matrix with circulant block
(BCCB). Note that convolutions may employ various padding strategies, but the circulant structure
remains consistent. Here, we show the convolution matrix without any padding as an example.
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Table 5: Ablation study on training settings of ViT-Base on ImageNet-1K dataset. Note that we
compare the performance to the default initialization method (shaded in gray).

Scaled
LR

Repeated
Augment Default Mimetic Ours (impulse)

7e-4 1.0 76.25 79.12 2.87↑ 80.48 4.23↑
1e-3 1.0 80.09 80.17 0.08↑ 81.55 1.07↑
1e-3 3.0 81.24 80.56 0.68↓ 81.83 0.59↑

D Pseudo Code for Solving Qinit and Kinit

Algorithm 1 Convolutional Structured Impulse Initialization for ViT

Input: P ▷ Input positional encoding
Input: d, f, α, β, γ ▷ Hyperparameters
Output: Qinit, Kinit ▷ Initialized attention parameters

1: N,D ← shape(P)
2: Himpulse ← ImpulseConvMatrix(N, f) ▷ Build 2D impulse convolution matrix
3: M̃← αHimpulse + βZ ▷ Get ideal map
4: X̃← LayerNorm(P) ▷ Get pseudo input
5: Pinv ← (X̃⊤X̃)−1X̃ ▷ Get pseudo inverse of P
6: M̂← PinvM̃P⊤

inv ▷ Get patterns QKT

7: U, s,V⊤ ← SVD(M̂) ▷ SVD of M̂
8: Q̃init ← U

√
s, K̃init ← V

√
s

9: Q̃init ← Q̃init[:, : d], K̃init ← K̃init[:, : d]

10: Q̃init ← Q̃init/norm(Q), K̃init ← K̃init/norm(K)

11: Qinit ← γQ̃init, Kinit ← γK̃init
12: return Qinit, Kinit

E Training Details and Training Curves for ViT-Base

At first, we found it challenging to reproduce the ViT-Base performance reported in DeiT [26],
even when strictly following their specified training settings. Upon a careful examination of code
differences across various versions of the timm [31] library, we identified two critical discrepancies
that likely contributed to the performance gap: (a) Learning rate scaling strategy: In DeiT, the
learning rate is linearly scaled with respect to the batch size: lrscaled = lrbase× batch size

512 . In contrast,
the current version of timm uses a square root scaling rule as the default for the AdamW optimizer:

lrscaled = lrbase×
√

batch size
512 . This discrepancy in the default setting leads to different effective learning

rates, even when all the other hyperparameters are identical, and can substantially affect performance.
(b) Repeated data augmentation setting: DeiT emphasizes the importance of the repeated data
augmentation strategy, stating a drop in top-1 accuracy from 81.8% to 76.5% when it is disabled.
However, they did not specify the exact augmentation weighting value in their original paper. After
inspecting their specific version of code, we discovered that the default value for the repeated data
augmentation was set to 3, whereas we used 1 in our main experiments, which may partially explain
the performance discrepancy. We also aligned several other minor settings, such as the minimum
learning rate during warm-up and at the end of training, as well as an additional 10 epochs for cool-
down. However, we believe that these factors have only a marginal effect on the final performance,
while the two aforementioned reasons remain the primary contributors to the observed discrepancy.

We present an ablation study on these two main settings difference in Tab. 5. In Fig. 5, we also
present the training accuracy curves across epochs for different initialization methods with three
different training configurations. Our impulse initialization consistently outperforms the default
initialization throughout the entire training process, with a particularly significant advantage in the
final training stage. While the mimetic initialization shows relatively faster initial convergence, it
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Figure 5: Training curves of ViT-Base using default, mimetic, and impulse initialization under three
different training configurations. The zoomed-in box shows the training curve in the final training
stage from epoch 200 to epoch 300.

Table 6: Detailed scale of all the datasets used in the paper. ■ represents large-scale datasets, ▲
represents medium-scale datasets, and • represents small-scale datasets. The datasets are ranked
based on their scales following [33]. A ’+’ means we use both train and validation dataset in training.
Note for Flowers and Pets datasets, we use both training and validation data for training.

Dataset ↓ #Classes #Train images
in each class

#Train images
in total

#Images
in total

■ ImageNet-1K 1K ∼ 1K 1.3M 1.4M
▲ Food-101 101 750 75K 101K
▲ CIFAR-10 10 5K 50K 60K
▲ CIFAR-100 100 500 50K 60K
• STL-10 10 500 5K 13K
• Flowers 102 10+10 2K 8K
• Pets 37 50+50 3.7K 7.3K

ultimately degrades performance in the final training stage. Our structured initialization method
demonstrates robustness across different training configurations, consistently yielding over 80%
accuracy in all cases.

F Additional Results for Small and Medium-Scale Datasets

F.1 Dataset Scale

For completeness, we provide the detailed dataset scales used in the main paper in Tab. 6. The
ordering of the datasets follows that in [33].

F.2 Additional Statistical Results

Here we provided the mean and standard deviation of 5 runs for ViT-Tiny with different initialization
methods on small and medium-scale datasets in Fig. 6, which serves as additional statistical results
of Tab. 1 in the main paper. Notably, our initialization method still outperforms other methods across
small and medium-scale datasets. Especially for the smaller-scale datasets, our methods shows larger
performance improvements, aligning with our findings in the main paper.

F.3 Model Convergence Rate

We would like to clarify that while impulse filters mimic convolutional locality, they do not reuse
weights like CNNs do—which may explain the fast convergence of CNNs. Interestingly, we did
observe a faster convergence when using the mimetic or impulse initialization to replace the vanilla
ViT model. We give an example of the training accuracy of ViT-Tiny with different initialization
methods on CIFAR-10 during the optimization stage, as shown in Tab. 7. We can clearly see a faster
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Figure 6: Classification accuracy of ViT-Tiny with different initialization methods on different datasets
(mean of 5 runs). Our method consistently outperforms the default and the mimetic initializations.
Except for the smallest-scale dataset Pets, all the methods show robust performance across different
datasets with small error bars. Note that from left to right, the dataset scale decreases.

Table 7: Comparison of performance when training ViT-Tiny on CIFAR-10 at different epochs. Our
method consistently achieves higher accuracy than both default and mimetic initialization baselines.

Epoch Default Mimetic Ours (Impulse)

10 47.95 49.05 54.62
50 61.51 63.62 69.51

100 76.87 77.64 81.87

convergence of mimetic and our impulse initialization methods compared to the default initialization
used in vanilla ViTs. One intuitive explanation is that the mimetic initialization yields ∼4× the norm
values of the default initialization, while our initialization method has ∼2× the norm values of the
default initialization. Different norm values will affect the gradient magnitudes and early training
dynamics.

F.4 Performance Improvement Increases as the Model Size Increases.

In the main paper Tab. 2, we also observe that as the model scale increase (i.e., the number of heads
increases), our method becomes relatively more expressive. Theoretically, as explained in Sec. 3, to
replace the spatial kernels with fixed filters, the initialized attention heads must span the spatial filter
basis. Therefore, for a 3×3 filter used in the experiments, this requires at least 9 independent heads to
span the kernel space. Please note that in ConvMixer, each channel uses an independent filter, which
satisfies this criterion. However, ViT models share the same filters within each head, which need
a separate discussion: 1) ViT-Tiny has 3 heads, ViT-Small has 6 heads—insufficient to span to the
kernel space; 2) ViT-Base has 12 heads—sufficient for replacing the spatial kernels. This analysis
fully supports this performance improvement increase observation. However, as the motivation of the
paper also suggested, training even larger ViT models on small datasets is notoriously challenging
due to optimization instability and is out of the scope of this paper.

G Experimental Validation of the Propositions and Corollaries in Sec. 3

In this section, we conduct a series of preliminary experiments on CIFAR-10 to validate the propo-
sitions and corollaries in Sec. 3 of the main paper, with particular focus on demonstrating that in
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Table 8: Classification accuracy(%) of ConvMixer (depth 8) with different filter sizes, embedding
dimensions on CIFAR-10.

Kernel
Size

Embedding Dimension = 256 Embedding Dimension = 512

Trained Random Impulse Box Trained Random Impulse Box

3 91.76 90.72 90.68 81.70 92.82 92.15 92.20 81.90
5 92.69 90.87 90.41 80.57 93.90 92.72 91.91 81.19
8 92.34 88.12 87.82 78.95 92.96 90.09 89.61 80.10

ConvMixer, fixed random impulse spatial filters can achieve comparable performance to learned
filters. All experiments adhere to the training protocol proposed in [34], which is specifically tailored
for evaluating diverse architectures on small-scale datasets such as CIFAR-10.

To support our theoretical findings in Sec. 3 concerning the effectiveness of random filters, we
train ConvMixer [27] models with an embedding dimension of 256, a depth of 8, and a patch size
of 2 on the CIFAR-10 dataset, using spatial filter sizes of 3, 5, and 8. We also include a variant
with an embedding dimension of 512 to examine the impact of feature width. We evaluate the
end-to-end trained ConvMixer alongside three initialization strategies: random (Corollary 1), impulse
(Corollary 2), and box (Corollary 3). Note that in all three cases, only the spatial convolution filters
are initialized—the models are evaluated without any training. The box filters use all-one values,
effectively performing average pooling. The results are summarized in Tab. 8.

In conclusion, these experimental results reveal several key insights. First, comparing across columns
(i.e., initialization methods), both random and impulse initializations achieve performance comparable
(≥90%) to that of fully trained models, whereas the box initialization leads to significantly worse
performance (∼80%). This discrepancy can be attributed to the deficient rank of the box filters, which
fail to span the full f2-dimensional filter space, unlike random and impulse filters that are capable of
forming a complete basis.

Second, when comparing across rows (i.e., kernel sizes) with an embedding dimension of 256,
the performance gap between trained and untrained (random or impulse) filters grows with kernel
size, from 1% (size 3) to 2% (size 5) and 5% (size 8). This occurs because larger kernels require
more distinct filters to effectively span the filter space. However, the fixed embedding dimension
constrains the number of such filters, reducing their ability to match the input rank as shown in
Proposition 1. Notably, when the embedding dimension is doubled to 512, this performance gap
narrows. In particular, for a kernel size of 3, the random and impulse initializations nearly match the
performance of the trained filters, suggesting that sufficient embedding width compensates for the
limitations of fixed filters.

H Attention Maps

Here we provide additional visualization of the attention maps for all 12 layers in Fig. 7. In particular,
our structured initialization method offers different attention peaks on various heads, showing
alignment with the impulse structures, while the mimetic initialization only presents main-diagonal
peaks, and the default initialization shows little to no patterns. As stated in the main paper, both
mimetic and default initialization methods use identical initialization for all attention heads.
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Figure 7: Visualization of attention maps in ViT-T using our impulse initialization method,
mimetic [28], and default [31] initializations.
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