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Abstract

This paper addresses the problem of synthesizing the behav-
ior of an AI agent that provides proactive task assistance to
a human in settings like factory floors where they may coex-
ist in a common environment. Unlike in the case of requested
assistance, the human may not be expecting proactive assis-
tance and hence it is crucial for the agent to ensure that the
human is aware of how the assistance affects her task. This
becomes harder when there is a possibility that the human
may neither have full knowledge of the AI agent’s capabili-
ties nor have full observability of its activities. Therefore, our
proactive assistant is guided by the following three princi-
ples: (1) its activity decreases the human’s cost towards her
goal; (2) the human is able to recognize the potential reduc-
tion in her cost; (3) its activity optimizes the human’s overall
cost (time/resources) of achieving her goal. Through empir-
ical evaluation and user studies, we demonstrate the useful-
ness of our approach.

1 Introduction
While assisting the humans may be tricky for an AI agent
even when the humans explicitly request for assistance, it
is even more challenging for the agent to provide the as-
sistance when it has to do it proactively. Not only does it
have to reason over the human’s goals to synthesize an as-
sistive behavior that reduces the human’s costs, but it also
has to make sure that the assistance it provides can be rec-
ognized by the human, who may not be expecting it. Like
the proverbial justice, proactive assistance should not only
be provided, but should be seen to be provided. This fur-
ther becomes challenging in environments where the human
may have partial observability of the AI agent’s activities.
The agent thus needs to synthesize communicative behav-
iors – be they purely epistemic (speech acts) or ontic actions
with epistemic effects – which allow the human to recog-
nize the assistance. This requires it to control the human’s
observability by reasoning over her belief states.

This paper specifically looks at the problem of providing
proactive assistance to a human in an environment where
the AI agent and the human coexist, and have partial ob-
servability of each other’s activities. There are several real-
world workspaces like factory floors, warehouses, restau-
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rants, nursing homes for elderly, disaster response areas,
etc., where this problem of providing proactive task assis-
tance to the involved humans is important. Our formulation
considers a scenario where the AI agent is aware of the tasks
being allocated to the human by the ecosystem and may also
know the rules and protocols of the ecosystem. We assume
that the agent has access to an input that captures the hu-
man’s planning process for her goals. For instance, prior
works that study the problem of action model acquisition
(Zhuo and Yang 2014; Zhuo and Kambhampati 2013) can
be used to derive the human’s planning process. This allows
it to synthesize assistive plans and to reason over the impact
of those plan on the human’s goals and plans. This leads
us to the first principle: (1) A proactive assistant’s behavior
should only decrease the human’s optimal cost towards her
goal.

Further, since the agent is providing proactive assistance,
it is essential for it to ensure that the human recognizes the
assistance and modifies her original plan towards her goal.
Additionally, our formulation accommodates environments
where both the human and the AI agent may not have full
visibility of each other’s activities. For instance, the human
may not know what activities were performed by a robot in
another room. Therefore, it should be able to take into ac-
count the human’s perception limitations as well as the pos-
sible ways of communicating necessary information to her.
This leads us to the second principle: (2) A proactive assis-
tant should make the human aware of the potential reduction
in her cost as a result of its assistance.

Lastly, it is important to capture the cost of the assistance
to the human. For instance, if the human has to wait for a
really long time for the agent to provide assistance, then the
human may instead prefer to work by herself. Since, the hu-
man is actively involved in the overall plan, it is not only
necessary to reduce the human’s cost to her goal, but also
to reduce her overall effort resulting from processing the
agent’s behavior. Therefore, (3) A proactive assistant should
optimize for the overall cost incurred by the human in terms
of the time taken (or resources needed) to participate in the
overall plan. Together these principles guide our proactive
assistant. In the following sections, we propose a Monte
Carlo Tree Search (MCTS) based solution that modulates
the human’s belief by either communicating necessary infor-
mation or limiting irrelevant information (i.e. by controlling
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Figure 1: Illustration of an assistive joint plan in urban search and rescue domain. (a) The robot collects items required for a
side goal (fire extinguisher) and human’s goal (medkit) in a wagon, (b) makes the human aware of the items it is carrying by
showing them, (c) leaves the wagon in Room E. (d) The human collects the medkit from room E to accomplish her goal.

human’s observability) to communicate the potential cost re-
duction to the human. We perform an empirical evaluation
and a user study to assess the utility of our approach.

Running Example Let’s consider a concrete example in
an urban search and rescue domain. Here a human comman-
der and a robot are operating on a floor as shown in the Fig-
ure 1a. The human’s task is to find a medkit on this floor.
She has access to the floor map but does not know where the
medkit is. Hence, her cost for accomplishing the task is very
high (she has to search each room on the floor). The robot is
aware of the task allocated to the human. It is also working
on a non-urgent side goal of dropping a fire extinguisher to
room E (as shown in Figure 1c). The robot who is already
operating on that floor has more information about the lo-
cations of the items and is capable of assisting the human.
However, since the assistance is being provided proactively,
it is important for the robot to ensure that the human can
recognize how the assistance optimizes her task. The robot
assists as detailed in Figure 1a to 1c, where it first collects
the medkit in its wagon, and then it performs an action to
display the contents of the wagon to the human and then
transports it to room E. This allows the human to form a be-
lief that the medkit is in room E. She can now optimize her
goal, as shown in Figure 1d.

2 Related Work
The problem of synthesizing a proactive assistant is di-
rectly connected to the prior literature on modeling assistive
agents. Starting from the seminal work on SharedPlan the-
ory (Grosz and Kraus 1996) which discussed the notion of
“intentions-to” and “intentions-that” constructs to more re-
cent work on the development of a theory of assistance, there
has been a lot of research in this general direction. In the
SharedPlan theory (Grosz and Kraus 1996), the “intentions-
that” constructs refer to the acts that are performed by an
agent as a responsibility towards other agents. In our frame-
work, the AI agent’s assistive actions towards the human fall
under this category. In some of the more recent works (Fern
et al. 2014; Oh et al. 2010) the emphasis has been on learn-
ing the human’s goal first by performing information gath-
ering actions and following those with assistive actions to-
wards the goal. We build on these works by assuming the
human’s goal is known beforehand and emphasize on how

the agent can ensure the communication of its proactive as-
sistance. Further, work by (Yorke-Smith et al. 2012) delin-
eates desired properties like pertinence, competency, etc., of
a proactive assistant and proposes an operational framework.
Our concrete guidelines can be traced back to these general
guidelines. Other works (Kamar, Gal, and Grosz 2009; Un-
helkar and Shah 2016) have studied in a collaborative setting
with predefined roles for agents, whether an agent should
help others or not. In our case, the agent stops itself from as-
sisting proactively only when the assistance puts the human
in a worse-off situation.

More recently, the idea of planning for stigmergic collab-
oration in human-agent cohabitation scenarios (Chakraborti
et al. 2015; Buckingham and Scheutz 2017) has been ex-
plored. However, in these works, the agent does not rea-
son over human’s awareness of the assistance, in addition
human’s partial observability of the agent’s actions is not
considered. Further, unlike some decision support systems
(Sengupta et al. 2017) that tend to be proactively assistive
at planning time by providing plan suggestions, our system
provides proactive task assistance at execution time. Assis-
tance at execution time has additional challenges of manag-
ing human’s observability. Besides managing human’s ob-
servability, sometimes it might be necessary to manage her
attention. For instance, despite the agent’s attempt at making
the human aware of the assistance, she may voluntarily or
involuntarily be inattentive, thereby invalidating agent’s ef-
forts. This aspect of attention management (Horvitz, Jacobs,
and Hovel 2013) has been studied in the literature. However,
we do not consider the problem of human’s attention man-
agement here. Lastly, we borrow the notion of controlled
observability from (Kulkarni, Srivastava, and Kambhampati
2019). In that work, they use legible behaviors (Dragan and
Srinivasa 2013; MacNally et al. 2018; Miura and Zilberstein
2020) to communicate in cooperative scenarios and obfusca-
tory behaviors (Keren, Gal, and Karpas 2016; Masters and
Sardina 2017) to hide in adversarial scenarios. However, we
show in the upcoming sections that both legibility and ob-
fuscation can be used to communicate assistance.

3 Problem Framework
We consider two actors R (say, a robot) and H (say, a hu-
man). The objective of R is to proactively provide task level
assistance to H at execution time. As mentioned before, by



using H’s decision algorithm as an input to our system, we
can simulate H’s plans.

Planning We use the notations of planning problems
(Geffner and Bonet 2013) to define our framework. A plan-
ning problem can be defined as a tuple P = 〈F ,A, I,G, C〉,
where F , is a set of fluents,A, is a set of actions, and c is the
cost for each action. A state s of the world is an instantiation
of all fluents inF . Let S be the set of states. I ∈ S is the ini-
tial state, that is all the fluents are instantiated. G is the goal
where a subset of fluents in F are instantiated. Each action
a ∈ A is a tuple of the form 〈pre(a), add(a), del(a)〉 where
pre(a) ⊆ F is a set of preconditions, add(a) ⊆ F is a set of
add effects and del(a) ⊆ F is a set of delete effects of action
a. The transition function Γ(·) is given by Γ(s, a) |= ⊥ if
s 6|= pre(a); else Γ(s, a) |= s∪add(a)\del(a). The solution
to P is a plan or a sequence of actions π = 〈a1, a2, . . . , an〉,
such that, Γ(I, π) |= G, i.e., starting from the initial state
and sequentially executing the actions results in the robot
achieving the goal. The cost of the plan, C(π), is a sum of
the cost of all the actions in it, C(π) =

∑
ai∈π C(ai).

3.1 MA-COPP

In our setting, R is aware of both its own model and H’s
model. Whereas, H is only aware of its own model. Both the
agents have full observability of their own activities. How-
ever, they both have partial observability of certain actions
performed by the other agent. R is also aware of H’s per-
ception limitations of its actions1 and is capable of choos-
ing among multiple actions to modulate H’s observability of
its actions. We call this framework as multi-agent controlled
observability planning problem (or MA-COPP).

Definition 1. A multi-agent controlled observability plan-
ning problem is a tuple, MA-COPP = 〈PH,MR,ΩH,OH〉,
• PH = 〈F ,AH,B0,GH, CH〉 is H’s planning problem. B0

is its initial belief, which is a set of states inclusive of ac-
tual initial state I.

• MR = 〈F ,AR, I, CR〉 is R’s action model. R has full
observability of its actions and states.

• ΩH is the set of observation symbols received by H, when
it acts or when R acts.

• OH : AR∪AH×S → ΩH is H’s sensor model. Further,
∃a, a′ ∈ AR, s, s

′ ∈ S, a 6= a′ ∧ s 6= s′ : OH(a, s) =
OH(a′, s′), i.e., OH gives coarse-grained observations
for at least some actions of R, making some of R’s ac-
tions seem indistinguishable.

From the definition of MA-COPP, we can see that al-
though both the agents have independent action models, ac-
tion costs, they share the same state space. Moreover, H’s
initial belief consists of R’s initial state. To select a spe-
cific behavior that modulates H’s information in the envi-
ronment, R requires access to H’s prior knowledge, its per-
ception limitations as well as its task. In the running exam-
ple, this involves modeling the fact that the human does not

1We consider a single-interaction assistive setting and therefore
do not model R’s partial observability of H’s actions.

know the location of the items, as well as that she cannot see
the actions performed in other rooms, and that her goal is to
find a medkit on that floor.

In MA-COPP, R executes an assistive behavior from the
initial state followed by H’s execution from the updated be-
lief towards its goal. For instance, in the running example,
the robot displays the wagon and leaves it in room E fol-
lowed by the human commander’s execution of her plan.
Due to H’s partial observability of R’s actions, it operates
in a belief space. For instance, the human didn’t know the
contents of the wagon before they are displayed. In solving
MA-COPP, the challenge lies in choosing the right amount of
information to reveal to H. R can select actions that reveal
the missing information to H. It can also select actions that
hide away unnecessary complexities from H. Therefore, in
solving MA-COPP, R has to carefully choose what informa-
tion to reveal versus what to hide from H.

R’s Modeling of H’s Belief Update. After an action a ∈
AR ∪ AH changes the current state of world resulting in a
new state s ∈ S, R simulates H’s belief update by using
the observationOH(a, s) emitted by H’s sensor model. The
definition of H’s sensor model also allows for actions with
null observations. That is, a dummy observation, ω∅ ∈ ΩH,
that makes all R’s 〈a, s〉 pairs seem indistinguishable, where
a ∈ AR, s ∈ S. At any time step, t ∈ {1, . . . , T }, Bt rep-
resents H’s belief. Here a belief essentially is a set of states,
and T is the last time step of the joint execution. If |Bt| = 1,
then H has full observability of the state at time step t. The
belief update is defined as follows: (1) at time step t = 0,
B0 = {s | ∃s ∈ S, s = I}, (2) at time step t ∈ {1, . . . , T },
let ωH

t ∈ ΩH \ ω∅ be the observation received by H, then
Bt = {s′ | ∃s ∈ Bt−1, a ∈ AR ∪ AH : Γ(a, s) |=
s′∧OH(a, s′) = ωH

t }. If ωH
t = ω∅ then Bt = Bt−1. This is

because practically the null observation does not reveal any
new information in H’s belief update. H starts its execution
from an intermediate belief state. Let t = k be an intermedi-
ate time step and Bk be H’s starting belief for its execution.
R maintains H’s belief state from initial belief until t = k.

Formal Guidelines for a Proactive Assistant An implicit
objective of R is to ensure that H’s cost of achieving its
goal is less than that of achieving its goal by itself. We can
formalize this intuition about loss/gain in terms of cost ex-
perienced by H when it participates in a joint execution
by using the notion of cost differential. Given a joint plan,
πMA-COPP, that solves a planning problem for the goal, GH,
let C∆

H(πMA-COPP) represent the cost differential between the
cost incurred by H when πMA-COPP is executed, versus the
minimum cost it incurs when it achieves the goal by itself,
i.e., C∆

H(πMA-COPP) = CH(πMA-COPP)− CH(π∗H).
For H to participate in an assistive joint plan with R, it

only makes sense if and only if the assistance provides a
reduction in her total cost. Otherwise, H may be better off
executing its own plan to its goal. Therefore, for R to be an
assistive agent, the first constraint is to ensure that it only
produces a joint plan where the assistance decreases H’s
minimum cost (given by H’ decision algorithm). That is,



for a joint plan πMA-COPP, C∆
H(πMA-COPP) < 0. In addition,

R should keep track of the belief updates that H may go
through before the start of its execution phase. Given that,
R is aware of H’s sensor model, by simulating the belief it
can choose its actions to either limit or increase the amount
of information being shared with H. R can achieve this in
multiple ways: (1) by either making certain part of the cur-
rent state legible (collapsing the states in H’s belief) to re-
veal particular information to H, or (2) by obfuscating the
current state completely thereby keeping some unnecessary
complexities hidden from H’s belief. This belief modula-
tion allows H to participate in the joint plan. As without any
awareness about the assistance, H may tend to follow her
original plan. Thus by controlling H’s observability, R can
not only assist H but also guide it towards a cheaper plan to
GH. As a result of this belief modulation, H’s planning prob-
lem gets modified to PkH = 〈F ,AH,Bk,GH, CH〉, where k
represents the number of actions executed by R. Let πPk

H
be

a minimum cost plan (as per H’ decision algorithm) for this
modified problem, then CH(πPk

H
) = C∆

H(πMA-COPP). There-
fore, the second constraint for R is that, H should be aware
of the reduction in its cost in the modified planning problem.

Finally, the overall effort needed from H’s end to partic-
ipate in πMA-COPP should be minimized while accounting for
both the prior constraints. This is important because, even
though H only starts executing after R, H’s active involve-
ment in the joint plan itself starts from the beginning of
the plan. This involves the additional overhead experienced
by H in updating its belief as a result of R’s actions. This
penalty incurred by H can be formulated in different ways
(for e.g., the cost associated with belief update during R’s
execution, etc). We approximate this penalty as the overall
length (time steps) of R’s part of the joint execution2 in ad-
dition to H’s execution cost. Let L be the maximum cost
that H is willing to accommodate in the first part of the joint
execution, i.e., k < L. Therefore, a proactive assistant opti-
mizes:

min α k + (1− α) C∆
H(πMA-COPP) (1)

subject to C∆
H(πMA-COPP) < 0 (2)

CH(πPk
H

) = C∆
H(πMA-COPP) (3)

k < L (4)

where α is a parameter. By setting α appropriately, we can
choose joint plans that H may prefer in terms effort required.

4 Solution Methodology
Although, the overall objective here is to find a joint plan
that satisfies equation 1, we can only synthesize behavior
of the autonomous agent, R. We assume that H is an in-
dependent agent capable of planning towards its own goal.
Given that H has partial observability of some of the actions
performed by R and operates in a belief space, we assume
that H is capable of computing a conformant plan (Hoff-
mann and Brafman 2006b; Palacios and Geffner 2009) from

2Instead of using the entire length of R’s part of the joint plan,
we can choose to use only the length of observable time steps, i.e.
we can choose to ignore the time steps with null observations.

the belief at the beginning of its execution phase. A con-
formant plan solves the task by accounting for the relevant
uncertainties and does not rely upon being able to get further
information from R.

Therefore, a solution to equation 1 involves finding a plan
for R from the initial state to a desirable belief state, Bk
considering the best response of H at time step k. Prac-
tically, this is a nested search process, where in the outer
search loop, the algorithm searches for a desirable belief
state by performing a sequence of actions consistent with
R’s action model. While in the inner search loop, the algo-
rithm searches for satisfaction of the goal by performing a
sequence of actions consistent with H’s action model. How-
ever, since H operates in a belief space, for each node we
need to maintain H’s belief consistent with that node. And
this nested search is essentially a search over a belief space
that not only achieves the goal, but also reaches an interme-
diate partially legible or obfuscatory belief. Since it is not
known beforehand, what a desirable belief state would look
like for a given problem, it is not that straightforward to de-
sign a goal-directed heuristic function to expand the search
space. Instead, we use Monte Carlo tree search (MCTS) as a
possible way of quickly sampling states and building a util-
ity based tree by performing simulations using a conformant
planner for the inner search loop. Once we have access to
such a tree, we can then perform search on it by expanding
only the high utility search nodes in the tree.

In our approach, we only synthesize for a single agent in
a serialized manner. Therefore, there is no need to wait for
the moves of the second actor and we can use a single-player
version of MCTS (Schadd et al. 2008). By running numer-
ous quick simulations on the solution space, we can build
a sufficiently good utility tree starting from initial state of
R. The single player MCTS approach for constructing the
utility tree is outlined in Algorithm 1. For n iterations, the
selection of nodes to be expanded in the tree is done using
UCT (upper confidence bound 1 applied to trees) given by

node utility
node visits+ε + C ∗

√
ln elapsed iterations

node visits (Kocsis and Szepesvári
2006). The depth of the tree is expanded until R’s budget L
(from Equation 4) runs out. For each of the expanded nodes,
we simulate using a conformant plan generated from node’s
belief to solve GH. The satisfaction of the goal and the length
of the plan, determines the overall reward to be backpropa-
gated.

The utility tree thus constructed is then used to compute
the actual joint plan. In this utility tree, we can consider n
best children for each node (i.e. nodes with higher utility
and/or higher number of visits). This helps in reducing the
solution space with paths that have now been sampled to en-
sure the satisfaction of all the constraints listed out in equa-
tions 2 through 4. On this reduced search space, we can now
perform a simple search to find a node that minimizes the
equation 1 as well as satisfies the goal. The path to the best
such node is then the part of the joint plan that is executed
by R. This secondary search on the utility tree is only to
ensure that the solution minimizes the equation 1. Addition-
ally, n can be increased to ensure completeness. Depending
on the number of iterations m of MCTS, the value of n can



Algorithm 1 Generation of utility tree
1: Input: MA-COPP, CH(π∗H),L,m (number of iterations), β (reward constant),
2: φ (cost constant)
3: Output: tree (utility tree)
4: tree← node(I,B0, utility = 0)

5: form iterations do
6: /* select a leaf node using UCT to evaluate nodes */
7: node, tnode = select(tree)

8: /* expand a child node */
9: child, tchild = expand(node, tnode)

10: if tchild < L then
11: /* create conformant planning problem */
12: πH = planner(child.Bt)

13: /* simulate using conformant plan */
14: if πH 6= ∅ & CH(πH) < CH(π∗H) & BT |= GH then
15: reward = β

16: cost = α tchild + (1− α) CH(πH)

17: else
18: reward = 0

19: cost = φ

20: end if
21: /* Backpropagate reward and cost */
22: backpropagate(child, reward− cost ∗ ε)
23: end if
24: end for

be modulated.

5 Evaluation
We conducted a user study to validate the underlying hy-
pothesis of our framework, that the human only recog-
nizes the reduction in her own cost to the goal when the
agent takes into account the human’s awareness of the as-
sistance. For the user study, we use urban search and res-
cue (USAR) domain presented in the running example. We
also perform an empirical evaluation to analyze the perfor-
mance of our approach using USAR domain and modified
IPC Driverlog domain.

Domain Setup For both Driverlog and USAR, we cre-
ate two versions of the domain: for R and H respectively.
R’s version consists of actions that are partially observable
as well as non-observable to H. Further, for each action,
there are two action definitions in the domain: one to cap-
ture R’s state transition with full observability as well as the
other annotated with keyword “belief” to perform the corre-
sponding belief update for H. A parser is used to apply ei-
ther the belief version of the action (for actions without full
observability to H) or the regular version of the action (for
actions with full observability to H). In the “belief” version
of the actions, to represent uncertainty over some fluents,
we use the standard semantics used in conformant planning
benchmarks like “unknown”, “oneof” clause to mark a flu-
ent as uncertain. For H’s version of the domain, some action
definitions that depend on uncertain fluents have conditional
effects, written using the standard “when” clause consisting
of the condition followed by the effect.

Empirical Evaluation We use the approach discussed in
Section 3 to generate solutions. We use Conformant-FF
planner3 (Hoffmann and Brafman 2006a) to simulate H’s
plans given a belief state. For both domains, we keptL = 15,
i.e., maximum length of R’s part of the joint plan. We ran
our experiments on 3.5 GHz Intel Core i7 processor with
16 GB RAM. In Figure 4b, we report for each problem H’s
optimal cost without any assistance from R, H’s cost from
participation in joint plan, percentage decrease in H’s cost,
length of the joint plan, number of iterations used to con-
struct the utility tree and the time taken to generate the solu-
tions. By setting α parameter, we can see how the joint plans
prioritize task load vs processing load. We varied n best chil-
dren from 1 to 5 during the search but the solutions were
not impacted thus indicating that the optimal solutions had
been found for those problems for n = 1. As shown in the
table, a steep percentage decrease is obtained for both do-
mains (specifically for USAR). Additionally, the joint plan
itself is not too long even when R is assisting. This is be-
cause R has more information and is capable of guiding H
in a way that reduces H’s cost.

User Study We conducted two user studies each with a
within-subject design to validate the underlying hypothesis.
The participants for the studies were recruited from Amazon
Mechanical Turk (Crowston 2012). For each study, we col-
lected 34 submissions. For the first user study after filtering,
we had 31 submissions, and for the second we had 27 sub-
missions. Each participant was paid at the rate of $15/hour
for 10 minutes.

Hypothesis 1 Without legible (revealing information) ac-
tions, H is not aware of the assistance provided by R.

Hypothesis 2 Both legible (revealing information) and ob-
fuscating (hiding information) actions allow H to experi-
ence reduction in task load and processing load.

The format of our studies was as follows: the subjects
read through the rules of the USAR domain. Then they were
shown two scenarios one after another illustrating the robot’s
behavior. After seeing each scenario they were asked how
they would solve the task (without any interference from the
robot). This was also the filter question to make sure they
understood the scenario. The submissions which passed the
filtering were used to calculate the results. The two scenar-
ios were different in only one action. One scenario satisfied
equation 3 (scenario involving proactive assistant), the other
did not (baseline scenario). The scenarios that satisfy 3 have
been discussed in Figure 4b. The order of the scenarios was
flipped for half of the participants to account for sequential
bias. In user study 1, Figure 2 with and without the display
action (action number 3 in Figure 2b) was shown, while in
user study 2, they were shown the illustration in Figure 3
with and without the explanation that the rooms are cleared
(action number 3 in Figure 3b). After the filter question,
they were asked to answer a survey: (1) rate the scenarios

3Source code for Conformant-FF: https://fai.cs.uni-saarland.de/
hoffmann/cff.html
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Figure 2: Illustration of assistive plan used in first user study. The goal of the human commander is to find a medkit. She does
not know what items are present in each room (indicated by blue regions) (a) The robot goes into room B, (b) comes out with a
wagon and shows her the items of the wagon. It then proceeds to room E, (c) comes out without the wagon and exits the floor.

(a) (b) (c)

Figure 3: Illustration of assistive plan used in the second user study. Human’s goal is to find all the medkits. She does not know
what items are present in each room (indicated by blue regions) (a) The robot goes into room B, (b) comes out with a wagon
and declares all rooms A, B, C, D are empty. It then proceeds to room E, (c) comes out and exits the floor with the wagon.

in terms of workload (2) rate the scenarios in terms of the
effort needed to come up with a plan (3) what they thought
the robot was doing scenario 1 (4) same for scenario 2. For
questions (1) and (2), they had to rate the scenarios on a 7
point Likert scale “1 – very hard” to “7 – very easy”. For
questions (3) and (4), they were given the following 4 op-
tions - (a) working on its task (b) assisting them (c) working
on its task and assisting them (d) cannot say.

For the first user study, we used the illustration in Fig-
ure 2. This is the same problem as the one explained in the
running example, except the participants were not aware of
the actions performed by the robot within the rooms. In this
scenario, the robot’s behavior hides unnecessary details like
initial location of the kit from the human, but important de-
tails like final location of medkit are revealed. While for the
second user study, we used the illustration in Figure 3. Here
the human’s goal is to find all the medkits on the floor. In
this case, the robot while picking up items necessary for its
goal, also picks up the medkits in rooms A and B (recall
that the robot knows the item locations). Further, it reveals
to the human that rooms A to D are empty. The robot then
drops one medkit in room E and takes the other medkit by it-
self. Thereby, hiding complexities like existence of multiple
medkits, their initial locations, while revealing information
that rooms A to D are empty allowing the human to deduce
that the medkits (if any) would be in room E.

In hypothesis 1, our aim is to check whether the legible
actions allow the robot to ensure human’s awareness of the
assistance. From results of questions (3) and (4) shown in
Figure 4a, we can see that for the baseline behaviors, only
6 (combining both options (b) and (c) referring to assistive
behavior) out of 31 participants and 6 out of 27 participants
attributed assistive behavior to the robot in study 1 and 2
respectively. In contrast, for behaviors with one extra legi-
ble action, 25 out of 31 participants and 24 out of 27 par-
ticipants attributed assistive behavior to the robot in study
1 and 2 respectively. Since the only difference between the
two scenarios is a single legible action, the results confirm
our hypothesis that legible actions make H aware of R’s as-
sistance.

In hypothesis 2, our aim is to check whether the assistance
provided by R allows H to experience potential reduction
in task load and the overhead of processing robot’s behav-
ior and coming with a plan to solve the task. For first study,
the average score for workload for the baseline behavior was
3.22 (recall that 1 denotes “very hard”) in contrast to that of
5.96 for PA (proactive assistant), with a statistical signifi-
cance (p-value = 0.0000001, p-value < 0.05) obtained by
running a two tailed paired t-test, an effect size of 1.89 by
running Cohen’s d test. While the average score for process-
ing robot’s behavior was 3.45 for baseline and 6.06 for PA,
with a p-value < 0.05 and effect size of 1.62. For second



(a)
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Figure 4: (a) Results for Hypothesis 1. The four colors stand for 4 options in questions (3) and (4). Here PA refers to Proactive
Assistant, and 1 and 2 denote the user study numbers. (b) Empirical evaluation results for two domains with for different α
values (shows human prioritizing between processing load vs task load).

study, the average score for workload was 2.74 for baseline
in contrast to that of 5.55 for PA, with a p-value < 0.05 and
effect size of 1.95. The average score for processing robot’s
behavior was 3.55 for baseline in contrast to 5.85 for PA,
with a p-value< 0.05 and effect size of 1.67. All effect sizes
suggest each of the two conditions differ by a large standard
deviation. This confirms our hypothesis that the legible and
obfuscating actions reduce the overall task and processing
load by hiding unnecessary complexities and revealing nec-
essary information.

6 Conclusion
We proposed a framework for settings where an AI agent can
proactively assist a human. We discussed how an AI agent
can reason over the human’s awareness of the assistance by
modulating her belief states to reveal necessary information
and hide irrelevant information. Specifically, we propose a
set of guidelines that allow the agent to play the role of a
proactive assistant. We then discuss a solution approach for
quickly sampling partial joint plans and constructing a utility
tree to synthesize desired assistive behaviors. Through user
study and empirical evaluations we validate our hypotheses
and analyze the performance of our approach.
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