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ABSTRACT

Continuous-time event sequences, in which events occur at irregular intervals, are
ubiquitous across a wide range of industrial and scientific domains. The contem-
porary modeling paradigm is to treat such data as realizations of a temporal point
process, and in machine learning it is common to model temporal point processes
in an autoregressive fashion using a neural network. While autoregressive models
are successful in predicting the time of a single subsequent event, their perfor-
mance can be unsatisfactory in forecasting longer horizons due to cascading errors.
We propose EventFlow, a non-autoregressive generative model for temporal
point processes. Our model builds on the flow matching framework in order to
directly learn joint distributions over event times, side-stepping the autoregressive
process. EventFlow is likelihood-free, easy to implement and sample from, and
either matches or surpasses the performance of state-of-the-art models in both
unconditional and conditional generation tasks on a set of standard benchmarks.

1 INTRODUCTION

Many stochastic processes, ranging from consumer behavior (Hernandez et al., 2017) to the occur-
rence of earthquakes (Ogata, 1998), are best understood as a sequence of discrete events which occur
at random times. Any observed event sequence, consisting of one or more event times, may be viewed
as a draw from a temporal point process (TPP) (Daley & Vere-Jones, 2003) which characterizes the
distribution over such sequences. Given a collection of observed event sequences, faithfully modeling
the underlying TPP is critical in both understanding and forecasting the phenomenon of interest.

While multiple different parametric TPP models have been proposed (Hawkes, 1971; Isham &
Westcott, 1979), their limited flexibility limits their application when modeling complex real-world
sequences. This has motivated the use of neural networks (Du et al., 2016; Mei & Eisner, 2017) in
modeling TPPs. To date, most neural network based TPP models are autoregressive in nature (Shchur
et al., 2020a; Zhang et al., 2020), where a model is trained to predict the next event time given an
observed history of events. However, in many tasks, we are interested not only in the next event, but
in the entire sequence of events which is to follow. While these models can achieve high likelihoods,
their performance in many-step forecasting tasks can be unsatisfactory due to compounding errors
arising from the autoregressive sampling procedure (Xue et al., 2022; Lüdke et al., 2023).

Moreover, existing models are typically trained via a maximum likelihood procedure (see Section
3) which involves computing the CDF implied by the learned model. When using a neural model,
computing this CDF necessitates techniques such as Monte Carlo estimation to properly compute the
loss (Mei & Eisner, 2017). In addition, sampling from intensity-based models (Du et al., 2016; Mei
& Eisner, 2017; Yang et al., 2022) is nontrivial, requiring an expensive and difficult to implement
approach based on the thinning algorithm (Lewis & Shedler, 1979; Ogata, 1981; Xue et al., 2024).

Motivated by these limitations, we propose EventFlow, a generative model which directly learns
the joint event time distributions, thus allowing us to avoid autoregressive sampling altogether. Our
proposed model extends the flow matching framework (Lipman et al., 2023; Albergo & Vanden-
Eijnden, 2023; Liu et al., 2023) to the setting of TPPs, where we learn a continuous flow from
a reference TPP to our data TPP. At an intuitive level, samples from our model are generated by
drawing a collection of event times from a reference distribution and flowing these events along a
learned vector field. The number of events is fixed throughout this process, decoupling the event
counts and their times, so that the distribution over event counts can be learned or otherwise specified.
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Figure 1: All illustration of forecasting with our EventFlow method. The horizontal axis indicates
the flow time s, and the vertical axis indicates the support of the TPP T = [0, T ]. We first encode the
observed historyH into an embedding eH = fθ(H). At s = 0, we independently draw n events in
the forecasting window [T0, T0 +∆T ] from a fixed reference distribution, constituting a sample γ0
from a mixed-binomial TPP. Each event can be thought of as a particle, which is assigned a velocity
by a neural network vθ(γs, s, eH). Each particle flows along its corresponding velocity field until
reaching its terminal point at s = 1, whereby we obtain a forecasted sequence γ1.

See Figure 1 for an illustration. As our primary contribution regards the modeling of the event times
themselves, we focus on unmarked point processes in this work. More specifically,

• We propose EventFlow, a novel generative model for temporal point processes. Our
model is suitable for both unconditional generation tasks (i.e., generating draws from the
underlying data TPP) and conditional generation tasks (e.g., forecasting future events given
a history), and is able to forecast multiple events simultaneously.

• Our model provides a new perspective on modeling TPPs and sidesteps common pitfalls
in existing approaches. In particular, the key idea of EventFlow is to decompose the
generative process into a learned event count distribution and a generative model for the joint
distribution of event times. Our model is likelihood-free during training, non-autoregressive,
easy to sample from, and straightforward to implement.

• On standard benchmark datasets, EventFlow obtains uniformly strong performance on
a multi-step forecasting task, and matches or exceeds the performance of state-of-the-art
models for unconditional generation.

2 RELATED WORK

Temporal Point Processes The statistical modeling of temporal point processes (TPPs) is a classical
subject with a long history (Daley & Vere-Jones, 2003; Hawkes, 1971; Isham & Westcott, 1979). The
contemporary modeling paradigm, based on neural networks (Du et al., 2016), typically operates
by learning a history encoder and an event decoder. The history encoder seeks to learn a fixed-
dimensional vector representation of the history of a sequence up to some given time, and the decoder
seeks to model a distribution over the subsequent event(s).

Numerous models have been proposed for both components. Popular choices for the history encoder
include RNN-based models (Du et al., 2016; Shchur et al., 2020a; Mei et al., 2019) or attention-based
models (Zhang et al., 2020; Zuo et al., 2020; Yang et al., 2022). While attention-based encoders can
provide longer-range contexts, this benefit typically comes at the cost of additional memory overhead.
Similarly, a wide range of forms for the event decoder have also been proposed. The most common
approach is to parametrize a conditional intensity function via a neural network. For instance, several
authors (Mei & Eisner, 2017; Zuo et al., 2020; Zhang et al., 2020) model the conditional intensity
using a parametric form inspired by the Hawkes process (Hawkes, 1971), and Du et al. (2016) model
the (log-)conditional intensity through an affine function of the history embedding. Similarly, Okawa
et al. (2019) model the conditional intensity using a mixture of Gaussian kernels.
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Most closely related to our work are approaches which use generative models as decoders. These
models often do not assume a parametric form for the decoder, enhancing their flexibility. For
instance, Xiao et al. (2017b) propose the use of W-GANs to generate new events. Similarly, Shchur
et al. (2020a) learn the distribution over the next inter-arrival time via a normalizing flow. Lin et al.
(2022) benchmark several choices of generative models, including diffusion, GANs, and VAEs.
Despite the flexibility of these models, these approaches are all autoregressive in nature, making them
ill-suited for multi-step forecasting tasks. In contrast, Lüdke et al. (2023) propose a diffusion-style
model which is able to avoid autoregressive sampling via an iterative refinement procedure.

Our work can be viewed as a novel approach for building flexible decoders for TPPs, extending
flow matching to the setting of continuous-time event sequences. In contrast to prior work using
generative models, our model is likelihood-free and non-autoregressive, achieving strong performance
on long-term forecasting tasks. The work of Lüdke et al. (2023) is perhaps most closely related to
ours, but we emphasize that the method of Lüdke et al. (2023) requires an involved training and
sampling procedure. In contrast, our method is straightforward to both implement and sample from,
while simultaneously outperforming existing approaches.

Flow Matching The recently introduced flow matching framework (or stochastic interpolants)
(Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) describes a class of generative
models which are closely related to both normalizing flows (Papamakarios et al., 2021) and diffusion
models (Ho et al., 2020; Song et al., 2021). Intuitively, these models learn a path of probability
distributions which interpolates between a fixed reference distribution and the data distribution. These
models are a popular alternative to diffusion, providing greater flexibility in model design, with recent
applications in image generation (Ma et al., 2024; Dao et al., 2023), DNA and protein design (Stark
et al., 2024; Campbell et al., 2024), and point cloud generation (Buhmann et al., 2023; Wu et al.,
2023). To the best of our knowledge, our work is the first to explore flow matching for TPPs.

3 AUTOREGRESSIVE TPP MODELS

We first provide a brief review of autoregressive point process models and discuss their shortcomings.
Informally, one may think of an event sequence as a set {tk}nk=1 of increasing event times. We will
use Ht to represent the history of a sample up to (and including) time t, i.e., Ht = {tk : tk ≤ t}.
Similarly, we use Ht− = {tk : tk < t} to represent the history of a sample prior to time t. In the
autoregressive setting, the time of a single future event t is modeled conditioned on the observed
history of a sequence. This is typically achieved by either directly modeling a distribution over t
(Shchur et al., 2020a), or equivalently by modeling a conditional intensity function (Du et al., 2016).

In the first approach, a conditional probability density of the form p(t | Htn) is learned, al-
lowing us to specify a joint distribution over event times p(t1, . . . , tn) autoregressively via
p(t1, . . . , tn) = p(t1)

∏n
k=2 p(tk | Htk−1

). Alternatively, we may define the conditional intensity
λ∗(t) := λ(t | Ht−) = p(t | Htn)/(1 − F (t | Htn)), where F (t | Htn) =

∫ t

tn
p(s | Htn) ds is

the CDF associated with p(t | Htn). Informally, the conditional intensity λ∗(t) can be thought of
(Rasmussen, 2011) as the instantaneous rate of occurrence of events at time t given the previous n
events and given that no events have occurred since tn. By integrating λ∗(t), one can show that

F (t | Htn) = 1− exp

(
−
∫ t

tn

λ∗(s) ds

)
p(t | Htn) = λ∗(t) exp

(
−
∫ t

tn

λ∗(s) ds

)
(1)

and thus one may recover the conditional distribution from the conditional intensity under mild
additional assumptions (Rasmussen, 2011, Prop 2.2).

The Likelihood Function Suppose we observe an event sequence {tk}nk=1 on the interval [0, T ].
The likelihood of this sequence can be seen loosely as the probability of seeing precisely n events at
these times. The likelihood may be expressed in terms of either the density or intensity via

L ({tk}) = p(t1, . . . , tn) (1− F (T | Htn)) =

(
n∏

k=1

λ∗(tk)

)
exp (−Λ∗(T )) (2)

3
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where the CDF term is included to indicate that no events beyond tn have occurred and Λ∗(T ) =∫ T

0
λ∗(s) ds is the total intensity. Autoregressive models are typically trained by maximizing this

likelihood (Du et al., 2016; Mei & Eisner, 2017; Shchur et al., 2020a). We emphasize that this
likelihood is not simply the joint event-time density pn(t1, . . . , tn), as the likelihood measures the
fact that no events occur after tn.

It is worth noting that evaluating L({tk}) can be non-trivial in practice. For models which parametrize
λ∗(t) via a neural network (Du et al., 2016; Mei & Eisner, 2017), computing the total intensity Λ∗(T )
is often done via a Monte Carlo integral, requiring several forward passes of the model to evaluate
λ∗(t) at different values of t. Models which directly parametrize the density p(t | Ht) suffer from
the same drawback when computing the corresponding CDF in Equation (2). Moreover, some
approaches, such as the diffusion-based approach of Lin et al. (2022), are only trained to maximize
an ELBO of p(t | t1, . . . , tn), and are thus unable to compute the proper likelihood in Equation (2).

Sampling Autoregressive Models In many tasks, we are interested not only in an accurate model
of the intensity (or distribution), but also sampling new event sequences from the corresponding
distribution. For instance, when forecasting an event sequence, we may want to generate several
forecasts in order to provide uncertainty quantification over these predictions. However, sampling
from existing autoregressive models can be difficult.

For instance, the flow-based model of Shchur et al. (2020a) requires a numerical approximation to the
inverse of the model to perform sampling. Similarly, the diffusion-based approach of Lin et al. (2022)
can require several hundred forward passes of the model to generate a single event time, rendering
it costly when generating long sequences. Moreover, the predictive performance of autoregressive
models is often unsatisfactory on multi-step generation tasks due to the accumulation of errors over
many steps (Lin et al., 2021; Lüdke et al., 2023). This difficulty is particularly pronounced for
intensity-based models (Du et al., 2016; Mei & Eisner, 2017; Zhang et al., 2020), where naively
computing the implied distribution in Equation (1) is prohibitively expensive. Instead, sampling
from intensity-based models is typically achieved via the thinning algorithm (Ogata, 1981; Lewis
& Shedler, 1979). However, this algorithm has several hyperparameters to tune, is challenging to
parallelize, and can be difficult for practitioners to implement (Xue et al., 2024).

4 EVENTFLOW

Motivated by the limitations of autoregressive models, we propose EventFlow, which has a
number of distinct advantages over existing approaches. First, EventFlow directly models the
joint distribution over event times, thereby avoiding autoregression entirely. Second, our model is
likelihood-free, avoiding the Monte Carlo estimates needed to estimate the likelihood in Equation
(2) during training. Third, sampling from our model amounts to solving an ordinary differential
equation. This is straightforward to implement and parallelize, allowing us to avoid the difficulties of
thinning-based approaches used in existing models. We build upon the flow matching (or stochastic
interpolant) framework (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) to
develop our model. We begin below by focusing on the unconditional setting, and later discuss how
to extend our method for conditional generation as necessary.

4.1 PRELIMINARIES

We first introduce some necessary background and notation. Let T = [0, T ] be a finite-length
interval. The set Γ denotes the configuration space of T (Albeverio et al., 1998), i.e., the set of
all finite counting measures on the set [0, T ]. A point γ ∈ Γ corresponds to a measure of the form
γ =

∑n
k=1 δ[t

k], i.e., a finite collection of Dirac deltas located at event times tk ∈ T . A temporal
point process (TPP) on T is a probability distribution µ over the configuration space Γ. Informally,
µ represents a distribution over sequences γ living in the configuration space Γ which constitutes
the set of valid sequences. We use N : Γ→ Z≥0 to denote the counting functional, i.e., N(γ) is the
number of events in the TPP realization γ.1 While it is common to represent TPPs as distributions

1This can be thoughts of in terms of the counting process, i.e., N(γ) corresponds to the value of the associated
counting process at the ending time T , or the total number of events in γ that have occurred in the interval [0, T ].
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over random sets of event times, in our approach it will be more convenient to represent TPPs as
random measures (Kallenberg et al., 2017).

We assume all TPP distributions are atomless (Kallenberg et al., 2017, Ch. 1), i.e., the probability of
observing an event at any singleton is zero. In addition, we assume all TPPs are simple (Kallenberg
et al., 2017, Ch. 2), i.e., no more than one event can occur simultaneously. Under these assumptions,
a TPP µ can be fully characterized (Daley & Vere-Jones, 2003, Prop. 5.3.II) by a probability
distribution which specifies the number of events and a collection of joint densities corresponding to
the event times themselves. In a slight abuse of notation, we will write µ(n) for the corresponding
distribution over event counts, and {µn(t1, . . . , tn)}∞n=1 for the collection of joint distributions. In
other words, for any given n ∈ Z≥0, the probability of observing n events in the interval T is µ(n),
and µn(t1, . . . , tn) describes the corresponding joint distribution of event times. We further restrict
each µn to be supported only on the ordered sets, so that we may assume t1 < t2 < · · · < tn.

Let µ1 represent the data distribution and µ0 represent a reference distribution. That is, both
µ0, µ1 ∈ P(Γ) are TPP distributions. To construct our model, we will define a path of TPPs
ηs ∈ P(Γ) which approximately interpolates from our reference distribution to our data distribution.
Throughout, we use s ∈ [0, 1] to denote a flow time and t ∈ [0, T ] to denote an event time. These
two time axes are in a sense orthogonal to one another (see Figure 1).

4.2 BALANCED COUPLINGS

Our first step is to define a useful notion of couplings (Villani et al., 2009), allowing us to pair event
sequences drawn from µ0 with those drawn from µ1. A coupling between two TPPs µ, ν ∈ P(Γ) is a
joint probability measure ρ ∈ P(Γ× Γ) over pairs of event sequences (γ0, γ1) such that the marginal
distributions of ρ are µ and ν. We say that the coupling ρ is balanced if draws (γ0, γ1) ∼ ρ are such
that N(γ0) = N(γ1) almost surely. In other words, balanced couplings only pair event sequences
with equal numbers of events. While we will later see how to interpolate between any two given
event sequences, this coupling will allow us to decide which sequences to interpolate. In particular, a
balanced coupling will allow us to pair sequences such that they always have the same number of
events, allowing us to avoid the addition or deletion of events during both training and sampling and
thus simplifying our model. We will use Πb(µ, ν) to denote the set of balanced couplings of µ, ν,
and the following proposition shows Πb(µ, ν) is nonempty if and only if the event count distributions
of µ and ν are equal, placing a structural constraint on the suitable choices of a reference measure.

Proposition 1 (Existence of Balanced Couplings).
Let µ, ν ∈ P(Γ) be two TPPs. The set of balanced couplings Πb(µ, ν) is nonempty if and only if
µ(n) = ν(n) have the same distribution over event counts.

We provide a proof in Appendix B. In practice, we follow a simple strategy for choosing both the
reference TPP µ0 and the coupling ρ. Suppose q is any given density on our state space T , e.g., a
uniform distribution. We take µ0 to be a mixed binomial process (Kallenberg et al., 2017, Ch. 3)
whose event count distribution is given by that of the data µ1(n) and joint event distributions given
by independent products of q (up to sorting). That is, to sample from µ0, one can simply sample
n ∼ µ1(n) from the empirical event count distribution followed by sampling and sorting n i.i.d.
points tk ∼ q. To draw a sample from our coupling ρ, we first sample a data sequence γ1 ∼ µ1,
followed by sampling N(γ1) events independently from q and sorting to produce a draw γ0 ∼ µ0.
We call this coupling the independent balanced coupling of µ and ν.

4.3 INTERPOLANT CONSTRUCTION

We now proceed to construct our interpolant ηs ∈ P(Γ). We will construct this path of TPPs via a
local procedure which we then marginalize over a given balanced coupling. Here, we adapt standard
flow matching techniques (Lipman et al., 2023; Tong et al., 2024) to design our sequence-level
interpolants, but we emphasize that this is only possible under a balanced coupling as the number
of events is fixed. To that end, let ρ be any balanced coupling of the reference measure µ0 and the
data measure µ1, and suppose z := (γ0, γ1) ∼ ρ is a draw from this coupling. As ρ is balanced, we
have γ0 =

∑n
k=1 δ[t

k
0 ] and γ1 =

∑n
k=1 δ[t

k
1 ] are both a collection of n events. As TPPs are fully

characterized by their joint distributions over event times, we will henceforth describe our procedure

5
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for a fixed (but arbitrary) number of events n. First, we the define measure γz
s ∈ Γ via

γz
s =

n∑
k=1

δ[tks ] tks = (1− s)tk0 + stk1 0 ≤ s ≤ 1 (3)

where we use the superscript z to denote the dependence on the pair z = (γ0, γ1). In other words,
γz
s linearly interpolates each corresponding event in γ0 and γ1. This defines a path (γz

s )
1
s=0 in the

configuration space Γ which evolves the reference sample γ0 into the data sample γ1.

In order to perform the marginalization step, we now lift this deterministic path (γz
s )

1
s=0 ⊂ Γ to

a path of TPP distributions (ηzs )
1
s=0 ⊂ P(Γ). We define the point process distribution ηzs ∈ P(Γ)

implicitly by adding independent Gaussian noise to each of the events in γz
s . That is, a draw γ̂z

s ∼ ηzs
may be simulated via

γ̂z
s =

n∑
k=1

δ
[
tks + ϵk

]
ϵk ∼ N (0, σ2). (4)

In principle this means that the support of ηzs is larger than T , but in practice we choose σ2 sufficiently
small such that this is not a concern. The addition of noise ϵk is instrumental in obtaining a well-
specified model, but in practice the noise variance σ2 is not a critical hyperparameter. We note that
this noising step is typical in flow matching models (Lipman et al., 2023; Tong et al., 2024).

Finally, for any s ∈ [0, 1], we define the marginal TPP measure ηs via ηs =
∫
ηzs dρ(z). Observe that,

by construction, the event count distribution ηs(n) is given by µ1(n) for all s ∈ [0, 1]. This path of
TPP distributions ηs approximately interpolates from the reference TPP µ0 at s = 0 to the data TPP
µ1 at s = 1, in the sense that at the endpoints, the joint event time distributions ηn0 (t

1, . . . , tn) and
ηn1 (t

1, . . . , tn) are given by a convolution of µn
0 (t

1, . . . , tn) and µn
1 (t

1, . . . , tn) with the Gaussian
N (0, σ2In). As σ2 ↓ 0, it is clear that we recover a genuine interpolant (Tong et al., 2024).

We now shift our attention to the transport of a single event tks for a fixed k. Through the addition
of Gaussian noise, we have constructed a path of Gaussian distributions N (tks , σ

2) whose mean is
determined by the location of the kth event at the flow time s. This transport of a Gaussian can be
achieved infinitesimally through the constant vector field vks : [0, T ]→ R given by vks (t) = tk1 − tk0
(Tong et al., 2024). Thus, the evolution in (4) is generated by the vector field vzs : T n → Rn given by

vzs (γ) =
[
v1s , . . . , v

n
s

]T
=
[
t11 − t10, . . . , tn1 − tn0

]T
0 ≤ s ≤ 1. (5)

Informally, we view vzs : T n → Rn as prescribing a constant (but different) velocity to each of
the n events. For a fixed pair z = (γ0, γ1) and a given sample γ′

0 ∼ ηz0 , solving the system of
ordinary differential equations dγ′

s = vzs (γ
′
s) ds with initial condition γ′

0 will result in a collection of
events which is concentrated around the true event times γ1. Note that here, we view this differential
equation as an ODE in T n. If we draw many samples γ0 ∼ ηz0 and solve the corresponding ODE, the
distribution over events at any intermediate time s will be given by ηzs .

In other words, the vector field vzs generates the path of distributions ηzs . However, this path is
conditioned on z, and we would like to find the vector field vs which generates the unconditional
path ηs. As is standard in flow matching (Lipman et al., 2023; Tong et al., 2024; Albergo &
Vanden-Eijnden, 2023), the unconditional vector field vs : T n → Rn may be obtained via

vs(γ) =

∫
vzs (γ)

dηzs
dηs

(γ) dρ(z). (6)

We have thus far described a procedure for interpolating between a given reference distribution µn
0

and the data distribution µn
1 for a given, fixed number of events n. As n was arbitrary, we have

successfully constructed a family of interpolants which will enable us to sample from the joint event
distribution for any n. However, to fully characterize the TPP distribution, we need to also specify
the event count distribution. For unconditional generation tasks, this is straightforward – we simply
follow the empirical event count distribution see in the training data. We describe our approach for
modeling the event count distribution in conditional tasks in the following section.

6
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Algorithm 1: Training Step for EventFlow
1 Sample γ1 ∼ µ1, s ∼ U [0, 1], and ϵ ∼ N (0, 1)
2 eH = ∅ /* Null history */
3 if forecast then
4 Sample split time T0 ∈ [∆T, T −∆T ]
5 Construct historyH ← {t ∈ γ1 : t ≤ T0}
6 Embed history eH ← fθ(H)
7 Construct future γ1 ← {t ∈ γ1 : T0 < t ≤ T0 +∆T}
8 Set n← N(γ1)
9 Sample t10, . . . , t

n
0 ∼ q and sort to construct γ0

10 Compute γz
s via tks = (1− s)tk0 + stks

11 Take a gradient step on ∥γ1 − γ0 − vθ (γ
z
s + ϵ, s, eH)∥2

4.4 TRAINING, PARAMETRIZATION, AND SAMPLING

To train the model, we would like to perform regression on the vector fields vs in Equation (6). If
we knew this vector field vs, we could draw samples from the data TPP by drawing a sample event
sequence γ0 ∼ µ0 from the reference TPP, and flowing each event along the vector field vs.

Training Foremost, although the marginal vector field in Equation (6) admits an analytical form, it
is intractable to compute in practice as the marginal measure ηs is not available. To overcome this,
we may instead perform regression on the conditional vector fields vzs . Here, vθ(γs, s) will represent
a neural network with parameters θ which takes in a sequence γs of N(γs) = n event times, along
with the flow time s. That is, we seek to minimize the loss

J(θ) = Es,(γ0,γ1),γ̂z
s

[
∥γ1 − γ0 − vθ(γ̂

z
s , s)∥

2
]

(7)

which previous works on flow matching have shown to be equal to MSE regression on the uncon-
ditional vs up to an additive constant not depending on θ (Lipman et al., 2023; Tong et al., 2024).
We note here that, although the regression target vzs is linear, the unconditional vector field vs will in
general be nonlinear. In practice, this loss is estimated by uniformly sampling a flow time s ∈ [0, 1],
a pair z = (γ0, γ1) ∼ ρ from our balanced coupling and drawing a noisy interpolant γ̂z

s ∼ ηzs .

To train the model on a forecasting task, where the goal is to predict a future sequence of events
conditioned on a historyH, we embedH into a fixed-dimensional vector representation eH = fθ(H)
via a learned encoder fθ before providing this to the model vθ(γs, s, eH) and minimizing Equation
(7). Note that we jointly train the encoder fθ and vector field vθ. See Algorithm 1.

Parametrization The second challenge is that we must learn a vector field vθ(γ, s) in n dimensions
for arbitrary values of n. In other words, vθ is a neural network which takes in a flow time s ∈ [0, 1]
and a sequence of events γ, and must produce N(γ) scalar outputs. We achieve this through an
attention-based architecture, which we detail in Appendix D. At a high level, the flow time s is
transformed via a learnable embedding into a fixed-dimensional vector. Similarly, each event in γ
is transformed into fixed-dimensional vector via a learned embedding (which is shared across the
events, but not the flow time). The flow-time embedding is then added to each event embedding,
and the resulting sequence is passed through a standard transformer architecture (Yang et al., 2022;
Vaswani, 2017), resulting in a sequence of N(γ) vectors. Finally, each of these vectors is projected
into one dimension via a linear layer to produce the sequence of N(γ) velocities.

For conditional tasks, we must also compute an encoding eH = fθ(H) of the historyH. This is done
by a separate transformer encoder, which operates in the same fashion as described in the previous
paragraph, but without the use of the flow-time s as an input and without the final linear projection
layer. This embedding is fed into the intermediate layers of our velocity network via cross-attention.

Lastly, for forecasting tasks we must also learn a model of the event count distribution pϕ(n | H).
We treat this as a classification problem, where the goal is to predict the number of events n occurring
in the forecast window given the historyH. We again use an attention-based model, analogous to our
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Algorithm 2: Sampling Step for EventFlow
1 Choose a flow time discretization 0 = s0 < s1 < · · · < sK = 1
2 eH = ∅ /* Null history */
3 if forecast then
4 Embed history eH ← fθ(H)
5 Sample n ∼ pϕ(n | H)
6 else
7 Sample n ∼ µ1(n)
8 Sample t10, . . . , t

n
0 ∼ q and sort to construct γ0

9 for k = 1, 2, . . . ,K do
10 hk ← sk − sk−1

11 γsk ← γsk−1
+ hkvθ(γsk−1

, sk−1, eH)

velocity model, but where we aggregate the final sequence embedding by averaging and passing this
through a small MLP. The model pϕ(n | H) is trained by minimizing the cross-entropy loss.

Sampling Once vθ is learned, we may sample from the model by drawing a reference sequence
γ0 ∼ µ0 and solving the corresponding ODE parametrized by vθ. More concretely, we first fix a
number of events n. When seeking to unconditionally generate new sequences from the underlying
data TPP µ1, we simply sample n from the empirical event count distribution µ1(n). For conditional
tasks, we draw n ∼ pϕ(n | H) from the learned conditional distribution over event counts. Next, we
draw n initial events, corresponding to s = 0, by sampling and sorting t10, . . . , t

n
0 ∼ q. In practice, we

use q = N (0, In) as we normalize our sequences into the range [−1, 1] during training and sampling
(followed by renormalization to the data scale). Since we have fixed n, we may view this initial draw
as a vector γ0 = [t10, . . . , t

n
0 ] ∈ T n. This event sequence γ0 then serves as the initial condition for

the system of ODEs dγs = vθ(γs, s) ds which can be solved numerically. In our experiments, we
use the forward Euler scheme, i.e., we specify a discretization {0 = s0 < s1 < · · · < sK = 1} of
the flow time (in practice, uniform) and recursively compute

γsk = γsk−1
+ hkvθ(γsk−1

, sk−1) k = 1, 2, . . . ,K (8)

where hk = sk − sk−1 represents a scalar step size. While other choices of numerical solvers are
certainly possible, we found that this simple scheme was sufficient as the model sample paths are
typically close to linear. See Algorithm 2 for the full procedure.

5 EXPERIMENTS

We study our proposed EventFlow model under two settings. The first is a conditional task, where
we seek to forecast both the number and times of future events given a history. The second is an
unconditional task, where we aim to learn a representation of the underlying TPP distribution from
empirical observations and generate new sequences from this distribution. In a sense, this second
task can be viewed as a special case of the first with no observed history. Our overall experimental
procedure is inspired by that of Lüdke et al. (2023). We evaluate our model across a diverse set of
datasets encompassing a wide range of possible point process behaviors. First, we use a collection of
six synthetic datasets produced by Omi et al. (2019). We additionally evaluate our model on seven
real-world datasets, which are a standard benchmark for modeling unmarked TPPs (Shchur et al.,
2020b; Bosser & Taieb, 2023; Lüdke et al., 2023). See Appendix A.

Baseline Models Our baselines were selected as they constitute a set of diverse and highly per-
formant models. For an intensity-based method, we compare against the Neural Hawkes Process
(NHP) (Mei & Eisner, 2017). We additionally compare against two intensity-free methods, namely
the flow-based IFTPP model (Shchur et al., 2020a) and the diffusion-based model of Lin et al.
(2022). Lastly, our strongest baseline is the recently proposed Add-and-Thin model of Lüdke et al.
(2023), which can be loosely viewed as a non-autoregressive diffusion model. These models use an
RNN-based history encoder, with the exception of Add-and-Thin which uses a CNN-based encoder.
See Appendix E for additional details.
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Table 1: Sequence distance (9) between the forecasted and ground-truth event sequences on a held-out
test set. Lower is better. We report the mean ± one standard deviation over five random seeds. The
best mean distance on each dataset is indicated in bold, and the second best by an underline.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp-A Yelp-M

IFTPP 4.2±0.7 25.6±2.3 61.2±3.2 5.1±0.4 2.9±0.2 2.1±0.2 3.4±0.2

NHP 2.8±0.1 31.0±1.4 95.7±0.7 4.5±0.3 3.4±0.5 1.8±0.1 3.0±0.2

Diffusion 5.4±1.2 25.7±0.9 80.3±11.4 4.6±0.7 2.4±0.2 1.8±0.1 3.3±0.7

Add-and-Thin 2.5±0.04 22.2±4.6 34.3±0.4 3.7±0.1 3.1±0.2 1.8±0.1 3.0±0.2

EventFlow (25 NFEs) 2.8±0.7 22.6±2.7 21.5±0.4 3.7±0.1 1.7±0.1 1.4±0.04 2.1±0.1

EventFlow (10 NFEs) 2.8±0.7 22.6±2.7 21.3±0.4 3.5±0.2 1.7±0.1 1.4±0.04 2.1±0.1

EventFlow (1 NFE) 2.7±0.7 22.6±2.7 21.1±0.3 3.7±0.4 1.8±0.1 1.6±0.2 2.1±0.1

EventFlow (25 NFEs, true n) 1.2±0.01 5.5±0.3 8.8±0.2 1.8±0.02 0.7±0.01 0.7±0.02 1.1±0.02

Metrics Evaluating generative TPP models is challenging, as one must take into account both
the variable locations and numbers of events. This is particularly challenging for the unconditional
setting, where unlike forecasting, we do not have a ground-truth sequence to compare against. Our
starting point is a metric (Xiao et al., 2017a) on the space of sequences Γ, allowing us to measure
the distance between two sequences γ =

∑n
k=1 δ[t

γ
k ] and η =

∑m
k=1 δ[t

η
k] with possibly different

numbers of events. Without loss of generality, we assume n ≤ m, so the distance is given by

d(γ, η) =

n∑
k=1

|tγk − tηk|+
m∑

k=n+1

(T − tηk) (9)

where we recall that sequences are supported on T = [0, T ]. This distance can be understood either
as an L1 distance between the counting processes of γ, η or as a generalization of the 1-Wasserstein
distance to measures of unequal mass, allowing us to compare two sequences of any lengths.

For our unconditional experiment, we require a metric which will capture the distance between the
TPP distributions themselves. To do so we use the distance in Equation (9) to calculate an MMD
(Gretton et al., 2012; Shchur et al., 2020b). The MMD between TPPs µ, ν ∈ P(Γ) is given by

MMD(µ, ν) = Eγ,γ′∼µ[k(γ, γ
′)]− 2Eγ∼µ,η∼ν [k(γ, η)] + Eη,η′∼ν [k(η, η

′)] (10)

where k is a specified kernel. We use an exponential kernel k(γ, η) = exp
(
−d(γ, η)/(2σ2)

)
with σ

chosen to be the median distance between all sequences (Shchur et al., 2020b; Lüdke et al., 2023).

5.1 FORECASTING EVENT SEQUENCES

We first evaluate our model on a multi-step forecasting task. We set a forecast horizon ∆T for each
of our real-world datasets, and generate event sequences in the range [T0, T0 +∆T ] for some given
T0, conditioned on the history of eventsHT0 . Up to a shift, this means we are taking T = [0,∆T ] as
the support for our model TPP. The forecast horizon ∆T is chosen such that the window typically
contains multiple events. At training time, we uniformly sample T0 ∈ [∆T, T −∆T ] and split a
given data sequence γ1 into a history on [0, T0] and a future [T0, T0 +∆T ]. We encode the history
HT0

before training the model to fit the events occurring in the future. At testing time, we perform
the same splitting procedure, sampling 50 values of T0 for each test set sequence. We then forecast
the sequence in [T0, T0 +∆T ] via the model and compute the distance (9) between the ground-truth
and generated sequences. Importantly, we note that the distance in Equation (9) is computed using
T0 +∆T rather than T as the maximum event time, as using T would result in a distance which is
sensitive to the location of the forecasting window within the support [0, T ]. We further normalize
Equation (9) by ∆T to allow for comparison across different window lengths.

We report the results of this experiment in Table 1. Our proposed EventFlow method obtains the
lowest average forecasting error on 5/7 of the datasets, and closely matches the performance of Add-
and-Thin on the remaining 2/7 datasets. Given that the non-autoregressive models (EventFlow,
Add-and-Thin) consistently outperform the autoregressive baselines, this is clear evidence that
autoregressive models can struggle on multi-step predictions. This is especially true on the Reddit-C
and Reddit-S datasets, which exhibit long sequence lengths. In Appendix C, we provide additional
evaluations of the event count distributions and one-step prediction performance in terms of MSE.
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Table 2: MMDs (1e-2) between the test set and 1, 000 generated sequences averaged over five random
seeds. Lower is better. The lowest and second lowest MMD distances are bolded and underlined.

H1 H2 NSP NSR SC SR PUBG Red.C Red.S Taxi Twitter YelpA YelpM

Data 1.3 1.3 1.8 3.0 5.7 1.1 1.3 0.6 0.4 3.1 2.6 3.6 3.1

IFTPP 1.5 1.4 2.3 6.2 5.8 1.3 5.7 1.3 1.9 5.8 2.9 8.2 5.1
NHP 1.9 5.2 3.6 12.6 25.4 5.0 7.2 2.2 22.5 5.0 7.3 6.7 6.1
Diffusion 4.8 5.5 10.8 15.0 9.1 5.1 14.3 3.9 6.2 11.7 12.5 10.9 10.5
Add-Thin 1.9 2.5 2.6 7.4 22.5 2.2 2.8 1.2 2.7 5.2 4.8 4.5 3.0
EventFlow (25 NFEs) 1.9 2.2 3.8 4.2 8.3 1.7 1.5 0.7 0.7 3.5 4.9 6.6 3.0

Ablations We additionally perform two ablations. First, we vary the number of function evaluations
(NFEs) used at sampling time, i.e., steps in Equation (8). We find that 10 NFEs is sufficient, and
increasing the NFEs further does not result in significant gains. Interestingly, with only one step,
we observe only a small drop in forecasting performance. This is enabled by our carefully designed
interpolant construction (Equation (3)). We emphasize that Add-and-Thin uses 100 NFEs at genera-
tion time and the diffusion model uses 1000 NFEs per generated event. The autoregressive baselines
(NHP, IFTPP) require one NFE per generated event. Thus, our method is able to simultaneously
obtain strong forecasting performance while only requiring a small number of model evaluations.
In our second ablation, we do not sample n ∼ pϕ(n | H), but rather set n to be the true number of
events in the forecast window. While this is not practical, this serves to ablate the effect of errors in
the event counts. We see that the forecasting error improves significantly, indicating that designing
stronger techniques for modeling pϕ(n | H) can lead to improved forecasts.

5.2 UNCONDITIONAL GENERATION OF EVENT SEQUENCES

Next, we evaluate our model on an unconditional generation task, where we aim to generate new
sequences from the underlying data distribution. This task serves as a benchmark to evaluate the
methods in terms of how well they are able to fit the underlying TPP. Moreover, learning a general-
purpose TPP prior could enable downstream tasks, such as data augmentation (Graikos et al., 2022).
In Table 2 we report MMD values (10) for each of the synthetic and real-world datasets. Model tuning
and selection is based on the validation set MMD. MMDs are calculated by sampling 1,000 sequences
from each trained model, and estimating Equation (10) using the generated and test set samples. The
first row (“data”) is the MMD calculated between samples in the training and validation sets, giving
us a sense of the best-case performance. See Appendix C for results with standard deviations.

Overall, we find that our EventFlow method (mean rank: 1.8) exhibits uniformly strong perfor-
mance, obtaining either the best or second best MMD on 11 of the 13 datasets. This is particularly
pronounced on the real-world datasets, where we obtain the lowest MMD on 5 of the 7 datasets. We
see that IFTPP (mean rank: 2.1) is a strong baseline, obtaining results which are competitive with
our method. The Add-and-Thin method (mean rank: 2.4) is often similarly strong, but struggles
on the SC dataset. While the NHP (mean rank: 3.7) can obtain good fits, this appears to be dataset
dependent, with weak results on the NSR, SC, and Reddit-S datasets. The diffusion baseline (mean
rank: 4.8) is our weakest baseline, which is perhaps unsurprising as this model can only be trained to
maximize the likelihood of a subsequent event and not the overall sequence likelihood.

6 CONCLUSION

In this work, we propose EventFlow, a non-autoregressive generative model for temporal point
processes. We demonstrate that EventFlow is able to achieve state-of-the-art results on a multi-step
forecasting task and strong performance on unconditional generation. There are several directions
in which our work could be extended. First, we do not explicitly enforce that the support of our
model TPP is [0, T ], which would necessitate moving beyond the Gaussian setting. Second, more
sophisticated approaches to learning the event count distribution pϕ(n | H) could lead to improved
performance. Our work lays a foundation for flow-based TPPs, and exploring applications in tasks
like imputation, marked TPPs, and querying (Boyd et al., 2023) are exciting directions.
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spaces. Journal of functional analysis, 154(2):444–500, 1998.

Tanguy Bosser and Souhaib Ben Taieb. On the predictive accuracy of neural temporal point process
models for continuous-time event data. Transactions on Machine Learning Research, 2023.

Alex Boyd, Yuxin Chang, Stephan Mandt, and Padhraic Smyth. Probabilistic querying of continuous-
time event sequences. In International Conference on Artificial Intelligence and Statistics, pp.
10235–10251. PMLR, 2023.

Erik Buhmann, Cedric Ewen, Darius A Faroughy, Tobias Golling, Gregor Kasieczka, Matthew Leigh,
Guillaume Quétant, John Andrew Raine, Debajyoti Sengupta, and David Shih. Epic-ly fast particle
cloud generation with flow-matching and diffusion. arXiv preprint arXiv:2310.00049, 2023.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
In Proceedings of the 41st International Conference on Machine Learning, pp. 5453–5512, 2024.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume I:
elementary theory and methods. Springer, 2003.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp.
1555–1564, 2016.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
plug-and-play priors. Advances in Neural Information Processing Systems, 35:14715–14728, 2022.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13:723–773, 2012.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58
(1):83–90, 1971.

Sergio Hernandez, Pedro Alvarez, Javier Fabra, and Joaquin Ezpeleta. Analysis of users’ behavior in
structured e-commerce websites. IEEE Access, 5:11941–11958, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Valerie Isham and Mark Westcott. A self-correcting point process. Stochastic processes and their
applications, 8(3):335–347, 1979.

Olav Kallenberg et al. Random measures, theory and applications, volume 1. Springer, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Represenations, 2015.

Peter AW Lewis and Gerald S Shedler. Simulation of nonhomogeneous poisson processes with
degree-two exponential polynomial rate function. Operations Research, 27(5):1026–1040, 1979.

Haitao Lin, Cheng Tan, Lirong Wu, Zhangyang Gao, and Stan Z. Li. An empirical study: extensive
deep temporal point process. arXiv preprint arXiv:2110.09823, 2021.

Haitao Lin, Lirong Wu, Guojiang Zhao, Liu Pai, and Stan Z. Li. Exploring generative neural temporal
point process. Transactions on Machine Learning Research, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2023.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.
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A DATASETS

In this section, we provide some additional details regarding the datasets used in this work. In Table
3, we report the number of sequences in each dataset, some basic statistics regarding the number of
events in each sequence, and their support [0, T ] and chosen forecast window ∆T . In all datasets, we
use 60% of the data for training, 20% for validation, and the remaining 20% for testing.

Synthetic Datasets Our synthetic datasets are adopted from those proposed by Omi et al. (2019).
Each of these datasets consists of 1, 000 sequences supported on T = [0, 100]. These synthetic
datasets are chosen as they exhibit a wide range of behavior, ranging from i.i.d. inter-arrival times to
self-correcting processes which discourage rapid bursts of events. We refer to Section 4 of Omi et al.
(2019) for details.

Real-World Datasets We use the set of real-world datasets proposed in Shchur et al. (2020b),
which constitute a set of standard benchmark datasets for unmarked TPPs. We refer to Appendix
D of Shchur et al. (2020b) for additional details. With the exception of PUBG, these datasets are
supported on T = [0, 24], i.e. each sequence corresponds to a single day. For the PUBG dataset,
T = [0, 38] corresponds to the maximum length (in minutes) of an online game of PUBG. We note
that PUBG has the largest number of sequences (which can lead to slow training), and the Reddit-C
and Reddit-S datasets have long sequences (which can lead to slow training and high memory costs).

Table 3: Some basic summary statistics of the datasets we consider in this work.
Sequences Mean length Std length Range length Support ∆T

Hawkes1 1000 95.4 45.8 [14, 300] [0, 100] −
Hawkes2 1000 97.2 49.1 [18, 355] [0, 100] −
Nonstationary Poisson 1000 100.3 9.8 [71, 134] [0, 100] −
Nonstationary Renewal 1000 98 2.9 [86, 100] [0, 100] −
Stationary Renewal 1000 109.2 38.1 [1, 219] [0, 100] −
Self-Correcting 1000 100.3 0.74 [98, 102] [0, 100] −
PUBG 3001 76.5 8.8 [26, 97] [0, 38] 5
Reddit-C 1356 295.7 317.9 [1, 2137] [0, 24] 4
Reddit-S 1094 1129 359.5 [363, 2658] [0, 24] 4
Taxi 182 98.4 20 [12, 140] [0, 24] 4
Twitter 2019 14.9 14 [1, 169] [0, 24] 4
Yelp-Airport 319 30.5 7.5 [9, 55] [0, 24] 4
Yelp-Miss. 319 55.2 15.9 [3, 107] [0, 24] 4

B PROOFS

Proposition 2 (Existence of Balanced Couplings).
Let µ, ν ∈ P(Γ) be two TPPs. The set of balanced couplings Πb(µ, ν) is nonempty if and only if
µ(n) = ν(n) have the same distribution over event counts.

Proof. Let A1, A2 ⊆ Γ be Borel measurable (Daley & Vere-Jones, 2003, Prop. 5.3) subsets of the
configuration space Γ, i.e. each of A1, A2 is a measurable collection of event sequences. Observe
that for i = 1, 2, each Ai can be written as a disjoint union

An
i =

∞⋃
n=0

T n ∩Ai (11)

i.e. An
i ⊆ Ai is the subset of Ai containing only sequences with n events. Note each An

i is a Borel
measurable subset of T n.

Now, suppose that µ(n) = ν(n) have equal event count distributions. We define the coupling
ρ ∈ P(Γ× Γ) by

ρ(A1 ×A2) =

∞∑
n=0

µ(n)µn(An
1 )ν

n(An
2 ). (12)
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Here, in a slight abuse of notation, we use µn, νn to denote the corresponding joint probability
measures over n events, i.e., both are Borel probability measures on T n. Since the n-dimensional
projection of Γ in Equation (11) is simply T n, it is immediate that ρ(A1 × Γ) = µ(A1) and
ρ(Γ×A2) = ν(A2), so that ρ is indeed a coupling. Moreover, it is clear that the coupling is balanced.

Conversely, suppose ρ ∈ Πb(µ0, µ1) is a balanced coupling. Let N : Γ→ Z≥0 be the event counting
functional and let π1, π2 : Γ×Γ→ Γ denote the canonical projections of Γ×Γ onto its components.
That is, π1 : (γ0, γ1) 7→ γ0 and π2 : (γ0, γ1) 7→ γ1. Furthermore, let (N,N) : Γ× Γ→ Z≥0 ×Z≥0

denote the product of the counting functional, i.e. (N,N)(γ0, γ1) = (N(γ0), N(γ1)). Note that the
pushforward N#µ yields the event count distribution µ(n) of µ (and analogously for ν).

Now, observe that composing the projections and counting functionals yields

π1 ◦ (N,N) = N ◦ π1 π2 ◦ (N,N) = N ◦ π2. (13)

As ρ is a coupling, we have that µ = π1
#ρ and ν = π2

#ρ. From these observations, it follows that

N#µ = N#

(
π1
#ρ
)

(14)

= (N ◦ π1)#ρ (15)

= (π1 ◦ (N,N))#ρ (16)

= π1
# ((N,N)#ρ) (17)

= π2
# ((N,N)#ρ) (18)

= N#ν (19)

where the equality in the penultimate line follows from the fact that ρ is balanced. Thus, we have
shown that the existence of a balanced coupling implies that N#µ = N#ν, i.e. the event count
distributions are equal.

C ADDITIONAL EXPERIMENTS

This section contains additional empirical evaluations of our proposed method. First, in Tables 4 and
5, we report the MMD values appearing in the unconditional experiment (i.e., Table 2 in the main
paper) with standard deviations. These are omitted from the main paper for the sake of space.

Next, we provide additional evaluations on our forecasting experiment, where we follow the same
training and generation procedure described in Section 5.1. In Table 6, we evaluate the performance
of the various models only in terms of the predicted number of events in the forecast. To do so, we
measure the mean absolute relative error (MARE) given by

MARE = En,n̂

∣∣∣∣ n̂− n

n

∣∣∣∣ (20)

where n represents the true number of points in a sequence, n̂ represents the predicted number of
points, and the expectation is estimated empirically on the testing set. As our method directly predicts
the number of events n by sampling from the learned distribution pϕ(n | H), this serves as a direct
evaluation of this component of our model. Here, we find that Add-and-Thin has strong performance
(mean rank: 1.3), whereas our method (mean rank: 3), diffusion (mean rank: 3.1) perform comparably,
while IFTPP (mean rank: 3.6) and NHP lag slightly behind (mean rank: 4). While our method has
room for improvement, we note that even though our approach to learning p(n | H) is quite simple it
still achieves competitive results. Designing better techniques for predicting the event counts is an
exciting direction for future work. However, we emphasize that our model shows clear gains on the
forecasting metric (Table 1) which measures both the event counts and their times, and this is the
primary relevant metric for the problem we address in this paper.

In Table 7, we evaluate the performance of our model when forecasting only a single subsequent
event. That is, given a historyH, we evaluate the MSE between the first true event time following this
history and the first event time generated by each model conditioned onH. The results are reported
in Table 7. Generally, all of the methods show similar results on this metric, despite there being clear
differences between methods on the multi-step task. We believe this serves to further highlight the
necessity of moving beyond single-step prediction tasks.
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Table 4: MMDs (1e-2) between the test set and 1, 000 generated sequences on our real-world datasets.
Lower is better. We report the mean ± one standard deviation over five random seeds. The lowest
MMD distance on each dataset is indicated in bold, and the second lowest is indicated by an underline.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp-A Yelp-M

Data 1.3 0.6 0.4 3.1 2.6 3.6 3.1

IFTPP 5.7±1.8 1.3±1.2 1.9±0.6 5.8±0.9 2.9±0.6 8.2±4.7 5.1±0.7

NHP 7.2±0.2 2.2±1.6 22.5±0.3 5.0±0.1 7.3±0.7 6.7±1.5 6.1±2.3

Diffusion 14.3±6.5 3.9±1.2 6.2±3.3 11.7±1.8 12.5±1.9 10.9±3.8 10.5±5.2

Add-and-Thin 2.8±0.5 1.2±0.27 2.7±0.3 5.2±0.6 4.8±0.4 4.5±0.2 3.0±0.5

EventFlow (ours) 1.5±0.2 0.7±0.1 0.7±0.1 3.5±0.1 4.9±0.7 6.6±1.2 3.0±0.5

Table 5: MMDs (1e-2) between the test set and 1, 000 generated sequences on our synthetic datasets.
Lower is better. We report the mean ± one standard deviation over five random seeds. The lowest
MMD distance on each dataset is indicated in bold, and the second lowest is indicated by an underline.

Hawkes1 Hawkes2 NSP NSR SC SR

Data 1.3 1.3 1.8 3.0 5.7 1.1

IFTPP 1.5±0.4 1.4±0.5 2.3±0.7 6.2±2.1 5.8±0.5 1.3±0.3

NHP 1.9±0.3 5.2±1.6 3.6±1.3 12.6±1.8 25.4±11.5 5.0±0.7

Diffusion 4.8±2.7 5.5±3.3 10.8±7.5 15.0±3.6 9.1±1.8 5.1±2.8

Add-and-Thin 1.9±0.5 2.5±0.3 2.6±0.5 7.4±1.2 22.5±0.5 2.2±0.8

EventFlow (ours) 1.9±0.2 2.2±0.1 3.8±1.2 4.2±0.5 8.3±0.4 1.7±0.3

Table 6: MARE values evaluating the predicted number of events when forecasting. Mean values ±
one standard deviation are reported over five random seeds. The lowest MARE on each dataset is
indicated and bold, and the second lowest is indicated by an underline.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp-A Yelp-M

IFTPP 1.05±0.14 1.69±0.39 0.79±0.20 0.60±0.11 0.88±0.08 0.76±0.07 0.76±0.05

NHP 1.02±0.08 0.95±0.01 1.00±0.0004 0.67±0.11 2.48±0.40 0.80±0.22 1.07±0.34

Diffusion 1.95±0.48 1.28±0.09 1.12±0.56 0.49±0.07 0.66±0.04 0.65± 0.07 0.72±0.07

Add-and-Thin 0.43±0.01 0.99±0.10 0.38±0.01 0.33±0.02 0.60±0.02 0.42±0.01 0.46±0.03

Ours 0.69±0.17 2.01±0.40 0.26±0.01 0.47±0.03 1.23±0.07 0.66±0.03 0.80±0.05

Table 7: MSE values evaluating one-step-ahead forecasting performance. Mean values± one standard
deviation are reported over five random seeds. The lowest MSE on each dataset is indicated and bold,
and the second lowest is indicated by an underline.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp-A Yelp-M

IFTPP 0.85±0.05 0.32±0.03 0.0047±0.0006 0.22±0.03 1.74±0.10 1.24±0.16 1.11±0.17

NHP 0.89±0.09 0.53±0.24 0.0022±0.0007 0.31±0.12 2.00±0.30 1.30±0.26 1.03±0.35

Diffusion 0.61±0.10 0.33±0.04 0.0037±0.0012 0.23±0.14 1.30±0.21 0.86±0.18 0.92±0.20

Add-and-Thin 0.86±0.05 0.30±0.04 0.0043±0.0007 0.21±0.03 1.53±0.14 1.16±0.16 1.20±0.14

Ours (25 NFEs) 0.75±0.08 0.62±0.09 0.0137±0.0015 0.17±0.02 2.00±0.08 0.95±0.07 1.05±0.02

Ours (10 NFEs) 0.69±0.07 0.59±0.09 0.0113±0.0017 0.15±0.01 1.76±0.07 0.81±0.08 0.94±0.03

Ours (1 NFE) 0.64±0.16 0.82±0.32 0.0472±0.0098 0.17±0.03 1.40±0.09 0.83±0.09 0.88±0.18

D EVENTFLOW ARCHITECTURE AND TRAINING DETAILS

Here, we provide additional details regarding the parametrization and training of our EventFlow
model. In general, our model is based on the transformer architecture (Vaswani, 2017; Yang et al.,
2022), due to its general ability to handle variable length inputs and outputs, high flexibility, and
ability to incorporate long-range interactions. In all settings, our reference measure µ0 is specified
with q = N (0, I).
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Model Parametrization For our unconditional model, we first embed the sequence times γs, the
flow-time s, and the sequence position indices using sinusoidal embeddings followed by an additional
linear layer. There are three linear layers in total – one for the flow time, one shared across the
sequence times, and one for the position indices. These embeddings are added together to create a
representation of the sequence, and we apply a standard transformer to this sequence to produce a
sequence of vectors of length N(γs). Finally, each of these vectors is projected to one dimension via
a final linear layer with shared weights to produce the vector field vθ(γs, s). See Figure 2.

For the conditional model, we use a standard transformer encoder-decoder architecture. We first
embed the history sequence timesH and the sequence position indices in a manner analogous to the
above. In addition, the model was provided the start of the prediction window T0 by concatenating it
as the final event inH. This yielded better results than encoding the start of the prediction window
separately. We feed these embeddings through the transformer encoder produce an intermediate
representation eH.

For the decoder, we provide the model with the current state γs (corresponding to the generated event
times at flow-time s), the flow-time s, and the corresponding positional indices. These are embedded
as previously described, before being passed into the transformer decoder. The history encoding eH
is provided to the decoder via cross-attention in the intermediate layer. This produces a sequence
of N(γs) vectors, which we again pass through a final linear layer to produce the final conditional
vector field vθ(γs, s, eH). See Figure 3.

Our architecture for predicting the number of future events given a history, i.e. p(n | H), is again
based on the transformer decoder, sharing the same overall architecture as our unconditional model.
However, the key difference is that we instead take a mean of the final sequence embeddings before
passing this through a small MLP to produce the final logit. See Figure 4.

Training and Tuning We normalize all sequences to the range [−1, 1], using the overall min/max
event time seen in the training data. All sequences are generated on this normalized scale, prior to re-
scaling the sequence back to the original data range before evaluation. Our model is trained with the
Adam (Kingma & Ba, 2015) optimizer with β1 = 0.9 and β2 = 0.999 for 30, 000 steps with a cosine
scheduler (Loshchilov & Hutter, 2017), which cycled every 10, 000 steps. Final hyperparameters
were selected by best performance on the validation dataset achieved at any point during the training,
where models were evaluated 10 times throughout their training.

To tune our model, we performed a grid search over learning rates in {5× 10−3, 10−3, 5× 10−4}
and dropout probabilities in {0, 0.1, 0.2}. Overall, we found that learning rates of 10−2 or larger
often caused the model to diverge, and a dropout of 0.1 yielded the best results across all settings. We
use 6 transformer layers, 8 attention heads, and an embedding dimension of 512 across all settings,
except for the Reddit-C and Reddit-S datasets where we use 4 heads and an embedding dimension of
128 due to the increased memory cost of these datasets.
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Figure 2: Overview of our model architecture for unconditional generation. The model takes as input
the flow time s and current sequence state γs =

∑n
k=1 δ[t

k
s ]. Each input is projected to a fixed-length

vector via a learnable embedding. The resulting embeddings are added and passed to the transformer
model, which produces a sequence of output velocities vθ(γs, s) with N(γs) components.
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Figure 3: Overview of our model architecture for conditional generation. The encoder (left) takes as
input the observed historyH, which is embedded in a fashion analogous to our unconditional model.
The decoder (right) takes as input the flow time s and current state γs =

∑
k=1 δ[t

k
s ]. These are

embedded and passed through the decoder, which applies cross attention to produce the conditional
velocities vθ(γs, s, eH).
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Figure 4: Overview of our architecture modeling the event count distribution pϕ(n | H). The model
takes as input an observed history H. As in our other architectures, the events are embedded and
passed through a transformer. Here, the final sequence embedding output by the transformer is
averaged and passed through an additional residual MLP with three layers to produce the logit
corresponding to p(n | H).
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Table 8: The best hyperparameter settings found for the vector field vθ in our EventFlow method on
the unconditional generation task.

Learning Rate Emb. Dim. MLP Dim Heads Transformer Layers

Hawkes1 10−3 512 2048 8 6
Hawkes2 10−3 512 2048 8 6
Nonstationary Poisson 10−3 512 2048 8 6
Nonstationary Renewal 10−3 512 2048 8 6
Stationary Renewal 10−3 512 2048 8 6
Self-Correcting 10−3 512 2048 8 6

PUBG 5× 10−4 512 2048 8 6
Reddit-C 10−3 128 256 4 6
Reddit-S 5× 10−3 128 256 4 6
Taxi 5× 10−4 512 2048 8 6
Twitter 10−3 512 2048 8 6
Yelp-Airport 5× 10−4 512 2048 8 6
Yelp-Miss. 10−3 512 2048 8 6

Table 9: The best hyperparameter settings found for the vector field vθ in our EventFlow method on
the forecasting task.

Learning Rate Emb. Dim. MLP Dim. Heads Transformer Layers

PUBG 10−3 512 2048 8 6
Reddit-C 10−3 128 256 4 6
Reddit-S 10−3 128 256 4 6
Taxi 10−3 512 2048 8 6
Twitter 5× 10−4 512 2048 8 6
Yelp-Airport 10−3 512 2048 8 6
Yelp-Miss. 10−3 512 2048 8 6

Table 10: The best hyperparameter settings found for the event count predictor p(n | H) in our
EventFlow method on the forecasting task.

Learning Rate Emb. Dim. MLP Dim. Heads Transformer Layers

PUBG 5× 10−4 512 2048 8 6
Reddit-C 10−3 128 256 4 6
Reddit-S 10−3 128 256 4 6
Taxi 5× 10−4 512 2048 8 6
Twitter 5× 10−4 512 2048 8 6
Yelp-Airport 5× 10−4 512 2048 8 6
Yelp-Miss. 5× 10−4 512 2048 8 6
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E ADDITIONAL DETAILS ON BASELINES

In this section, we provide additional details regarding our baseline methods. All methods are trained
at a batch size of 64 for 1, 000 epochs, using early stopping on the validation set loss. In early
experiments, we also evaluated AttNHP (Zuo et al., 2020), a variant of the NHP which uses an
attention-based encoder, but found it to be prohibitively expensive in terms of memory cost (requiring
more than 24 GB of VRAM) and, as a result, do not include it in our results.

IFTPP Our first baseline is the intensity-free TPP model of Shchur et al. (2020a). This model
uses an RNN encoder and a mixture of log-normal distributions to parametrize the decoder. We
directly use the implementation provided by the authors.2. We train for 1, 000 epochs with early
stopping based on the validation set loss. To tune this baseline, we performed a grid search over
learning rates in {10−4, 10−3, 10−2}, weight decays in {0, 10−6, 10−5, 10−4}, history embedding
dimensions {32, 64, 128}, and mixture component counts {8, 16, 32, 64}. Our best hyperparameters
can be found in Table 11 and Table 12.

Table 11: The best hyperparameter settings found for IFTPP on the unconditional generation task.
Learning Rate Weight Decay Embedding Dimension Mixture Components

Hawkes1 10−3 10−4 32 8
Hawkes2 10−2 0 32 8
Nonstationary Poisson 10−3 10−6 128 8
Nonstationary Renewal 10−2 10−6 64 16
Stationary Renewal 10−3 10−4 32 8
Self-Correcting 10−3 10−6 32 64

PUBG 10−2 0 128 32
Reddit-C 10−3 10−4 64 16
Reddit-S 10−2 10−4 64 16
Taxi 10−2 10−5 128 64
Twitter 10−3 10−4 64 6
Yelp-Airport 10−2 10−6 64 64
Yelp-Miss. 10−3 10−4 32 8

Table 12: The best hyperparameter settings found for IFTPP on the forecasting task.
Learning Rate Weight Decay Embedding Dimension Mixture Components

PUBG 10−4 10−6 32 32
Reddit-C 10−2 0 64 8
Reddit-S 10−2 0 64 16
Taxi 10−3 10−6 128 8
Twitter 10−2 10−5 32 8
Yelp-Airport 10−2 10−6 128 32
Yelp-Miss. 10−2 10−6 32 8

NHP We additionally compare against the Neural Hawkes Process of Mei & Eisner (2017). This
model uses an LSTM encoder and a parametric form, whose weights are modeled by a neural network,
to model the conditional intensity function. In practice, we use the implementation proved by the
EasyTPP benchmark (Xue et al., 2024), as this version implements the necessary thinning algorithm
for sampling.3 We perform a grid search over learning rates in {10−4, 10−3, 10−2} and embedding
dimensions in {32, 64, 128}. These hyperparameters are chosen as the EasyTPP implementation
allows these to be configured easily. Our best hyperparameters are reported in Table 13 and Table 14.

2URL: https://github.com/shchur/ifl-tpp
3URL: https://github.com/ant-research/EasyTemporalPointProcess
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Diffusion Our diffusion baseline is based on the implementation of Lin et al. (2022), and our
decoder model architecture is taken directly from the code of Lin et al. (2022).4 At a high level, this
model is a discrete-time diffusion model (Ho et al., 2020) trained to generate a single inter-arrival
time given a history embedding. Note that as the likelihood is not available in diffusion models, the
CDF in the likelihood in Equation (2) is not tractable. Instead, the model is trained by maximizing an
ELBO of only the subsequent inter-arrival time.

In preliminary experiments, we found that the codebase provided by Lin et al. (2022) often produced
NaN values during sampling, prompting us to make several changes. First, we use the RNN encoder
from Shchur et al. (2020a), i.e. the same encoder as the IFTPP baseline, to reduce the memory
requirements of the model. Second, we do not log-scale the inter-arrival times as suggested by Lin
et al. (2022), as we found that this often led to overflow and underflow issues at sampling time. Third,
we do not normalize the data via standardization (i.e., subtracting off the mean inter-arrival time and
dividing by the standard deviation), but rather, we scale the inter-arrival times so that they are in the
bounded range [−1, 1]. This is aligned with standard diffusion implementations (Ho et al., 2020),
and allows us to perform clipping at sampling time to avoid the accumulation of errors. With these
changes, our diffusion baseline is competitive, and able to obtain stronger results than previous work
has reported (Lüdke et al., 2023).

We use 1000 diffusion steps and the cosine beta schedule (Nichol & Dhariwal, 2021), and we train
the model on the simplified ϵ-prediction loss of Ho et al. (2020). We train for 1, 000 epochs with
early stopping based on the validation set loss. To tune this baseline, we performed a grid search over
learning rates in {10−4, 10−3, 10−2}, weight decays in {0, 10−6, 10−5, 10−4}, history embedding
dimensions {32, 64, 128}, and layer numbers {2, 4, 6}. Our best hyperparameters can be found in
Table 15 and Table 16.

Add-and-Thin We compare to the Add-and-Thin model of Lüdke et al. (2023) as a recently
proposed non-autoregressive baseline. We directly run the code provided by the authors without
additional modifications.5 We do, however, perform a slightly larger hyperparameter sweep than
Lüdke et al. (2023), in order to ensure a fair comparison between the methods considered. We train
for 1, 000 epochs with early stopping on the validation loss. Tuning is performed via a grid search
over learning rates in {10−4, 10−3, 10−2} and number of mixture components in {8, 16, 32, 64}. We
choose to tune only these hyperparameters in order to follow the implementation provided by the
authors. Our best hyperparameters can be found in Table 17 and Table 18.

4URL: https://github.com/EDAPINENUT/GNTPP
5URL: https://github.com/davecasp/add-thin
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Table 13: The best hyperparameter settings found for NHP on the unconditional generation task.
Learning Rate Embedding Dimension

Hawkes1 10−3 64
Hawkes2 10−3 64
Nonstationary Poisson 10−3 64
Nonstationary Renewal 10−4 64
Stationary Renewal 10−3 64
Self-Correcting 10−3 64

PUBG 10−4 64
Reddit-C 10−2 64
Reddit-S 10−2 64
Taxi 10−2 64
Twitter 10−4 64
Yelp-Airport 10−3 128
Yelp-Miss. 10−2 64

Table 14: The best hyperparameter settings found for NHP on the forecasting task.
Learning Rate Embedding Dimension

PUBG 10−3 128
Reddit-C 10−2 64
Reddit-S 10−2 64
Taxi 10−2 128
Twitter 10−2 128
Yelp-Airport 10−3 64
Yelp-Miss. 10−2 64

Table 15: The best hyperparameter settings found for diffusion on the unconditional generation task.
Learning Rate Weight Decay Embedding Dimension Layers

Hawkes1 10−3 10−6 64 2
Hawkes2 10−2 10−5 64 4
Nonstationary Poisson 10−3 10−5 128 2
Nonstationary Renewal 10−3 10−4 64 2
Stationary Renewal 10−2 0 32 6
Self-Correcting 10−3 0 32 6

PUBG 10−3 0 64 2
Reddit-C 10−3 10−6 128 4
Reddit-S 10−3 0 64 4
Taxi 10−2 0 128 4
Twitter 10−3 10−4 64 6
Yelp-Airport 10−2 0 32 2
Yelp-Miss. 10−2 10−5 128 2
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Table 16: The best hyperparameter settings found for diffusion on the forecasting task.
Learning Rate Weight Decay Embedding Dimension Layers

PUBG 10−4 10−5 32 6
Reddit-C 10−2 10−6 64 6
Reddit-S 10−3 0 64 4
Taxi 10−3 10−6 32 2
Twitter 10−4 10−5 64 6
Yelp-Airport 10−4 10−5 64 6
Yelp-Miss. 10−3 10−5 32 4

Table 17: The best hyperparameter settings found for Add-and-Thin on the unconditional generation
task.

Learning Rate Mixture Components

Hawkes1 10−3 32
Hawkes2 10−2 32
Nonstationary Poisson 10−2 16
Nonstationary Renewal 10−2 8
Stationary Renewal 10−2 8
Self-Correcting 10−4 8

PUBG 10−3 8
Reddit-C 10−2 32
Reddit-S 10−2 16
Taxi 10−2 8
Twitter 10−4 32
Yelp-Airport 10−4 8
Yelp-Miss. 10−2 64

Table 18: The best hyperparameter settings found for Add-and-Thin on the forecasting task.
Learning Rate Mixture Components

PUBG 10−2 64
Reddit-C 10−2 16
Reddit-S 10−2 64
Taxi 10−2 8
Twitter 10−3 8
Yelp-Airport 10−2 32
Yelp-Miss. 10−3 16
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