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Abstract
Accurate prediction of antibody structure is a cen-
tral task in the design and development of mon-
oclonal antibodies, notably to understand both
their developability and their binding properties.
In this article, we introduce ABodyBuilder3, an
improved and scalable antibody structure predic-
tion model based on ABodyBuilder2. We achieve
a new state-of-the-art accuracy in the modelling
of CDR loops by leveraging language model em-
beddings, and show how predicted structures can
be further improved through careful relaxation
strategies. Finally, we incorporate a predicted
Local Distance Difference Test into the model
output to allow for a more accurate estimation of
uncertainties.

1. Introduction
Immunoglobulin proteins play a key role in the active im-
mune system, and have emerged as an important class of
therapeutics (Lu et al., 2020). They are constructed from two
heavy and two light chains, separated into distinct domains.
The tip of each of the two antibody binding arms is defined
as the variable region, and contains six complementarity-
determining regions (CDRs) across the heavy and light
chains which make up most of the antigen-binding site.
As part of an immune response, B cells undergo clonal ex-
pansion, which, coupled with somatic hypermutations and
recombinations, leads to an accumulation of mutations in
the DNA encoding the CDR loops. The remaining domains
compose the constant region and are primarily involved in
effector function.

Understanding the three-dimensional structure of antibodies
is critical to assessing their properties (Chungyoun & Gray,
2023) and developability (Raybould et al., 2019; 2024). The
framework regions connecting the CDR loops are relatively
conserved and thus easily predicted from sequence similar-
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ity. Similarly, five of the CDR loops tend to cluster along
canonical forms (Adolf-Bryfogle et al., 2014; Wong et al.,
2019) and are thus relatively straightforward to model. The
third loop of the heavy chain (CDRH3), for which the cod-
ing sequence is created during the recombination of the V, D,
and J gene segments (Roth, 2014), is however more challeng-
ing due to its much larger sequence and length diversity. As
the CDRH3 loop often drives antigen recognition, e.g. (Nar-
ciso et al., 2011; Tsuchiya & Mizuguchi, 2016), improving
the accuracy with which its structure can be predicted from
sequence is a key component to advancing rational antibody
design.

Experimental protein structure determination remains a
costly and slow process (Slabinski et al., 2007), such that
only a small fraction of known antibody sequences have
experimentally resolved three-dimensional structural infor-
mation (Dunbar et al., 2013b; Schneider et al., 2022). One
approach to circumvent these experimental limitations is
through structure prediction methods, which have had im-
mense success in reaching experimental accuracy on general
protein structures (Jumper et al., 2021a; Baek et al., 2021;
Lin et al., 2023).

Structure models are also a necessary element to accu-
rately predict biophysical properties of proteins and advance
the field of rational therapeutic design. Several dedicated
tools have emerged to model specifically the variable re-
gion of antibodies. Among them are IgFold (Ruffolo et al.,
2023), which is based on a language model, DeepAb (Ruf-
folo et al., 2022), which uses an attention mechanism,
ABlooper (Abanades et al., 2022a), which predicts back-
bone atom positions using a graph neural network, ABody-
Builder (Leem et al., 2016), a homology modelling pipeline,
and ABodyBuilder2 (Abanades et al., 2022b), which uses
a modified version of the AlphaFold-Multimer architec-
ture (Evans et al., 2022). More recently, xTrimoPGLM-
Ab (Chen et al., 2023) has shown promising results on anti-
body structures by combining a General Language Model
framework (Zeng et al., 2023) with a modified AlphaFold2
architecture.

In this article, we introduce ABodyBuilder3, an an-
tibody structure prediction model based on ABody-
Builder2 (Abanades et al., 2022b). As shown in Figure 1,
ABodyBuilder2 consists of an embedding representation of



Figure 1. Left: Overview of an antibody structure, with the variable region and CDR loops shown. Right: Schematic representation of the
ABodyBuilder3 architecture, with 8 sequential and independent update blocks providing the final atomic coordinates and uncertainty
predictions from an embedding representation of the variable region sequence.

the variable region sequence, which is provided as input to
a sequence of eight structure modules that update the node
features and residue coordinates through an invariant point
attention layer and a backbone update layer, respectively.
We detail key changes to the implementation, data cura-
tion, sequence representation and structure refinement that
improve the scalability and accuracy of the model. Addition-
ally, we introduce an uncertainty estimation based on the
predicted local-distance difference test (pLDDT), which out-
performs the previous ensemble-based estimate. Together,
these enhancements provide a substantial improvement in
the quality of antibody structure predictions and open the
possibility of a scalable and precise assessment of large
numbers of therapeutic candidates.

2. Improved structure modelling and
evaluation

Rapid prototyping is paramount to generating insights and
improving the design of machine learning models. We
develop an efficient and scalable implementation of the
ABodyBuilder2 architecture which makes use of vectori-
sation to improve hardware utilisation, leveraging optimi-
sations from the OpenFold project (Ahdritz et al., 2022).
This is in contrast to the implementation of ABodyBuilder2,
which generates minibatch gradients by computing a gradi-
ent for each minibatch sample sequentially before averaging
(i.e. accumulated gradients). ABodyBuilder2 also uses dou-
ble precision which is not well optimised on modern GPU
hardware compared to lower precision data-types. We find
the model can be trained robustly using bfloat16 precision
for weights and use mixed precision for training, providing
faster computational throughput and an efficient memory
footprint. Our implementation is more than three times

faster, and can be scaled easily across multiple GPUs using
a distributed data parallel strategy.

We use the Structural Antibody Database (SAbDab) (Dun-
bar et al., 2014), a dataset of experimentally resolved anti-
body structures, to train our models on all available data up
to January 2024. We perform an initial filtering to remove
nanobodies, structures with resolution above 3.5Å, and out-
liers more than 3.5 standard deviations from the mean for
any of the six summary statistics given by ABangle (Dunbar
et al., 2013a). Furthermore, we filter out ultra-long CDRH3
loops, which predominantly come from bovine antibodies
(de Los Rios et al., 2015) by removing any sequence with a
CDRH3 of over 30 residues. We label residues using IMGT
numbering generated via ANARCI (Dunbar & Deane, 2016).
In an attempt to remove potential structural outliers, we also
remove antibodies from species which occur less than 15
times in SAbDab.

Following ABodyBuilder2, we train ABodyBuilder3 in two
stages. The first stage uses a dropout of 10%, whereas the
second stage has zero dropout and adds a structural viola-
tion loss component based on AlphaFold2. For both the
first and second stage of training we select weights based
on the lowest validation loss. We use a validation set of
150 structures and a test set of 100 structures, which are
significantly larger than those used in ABodyBuilder2 and
lead to a more robust assessment of model capabilities. We
retain the original ABodyBuilder2 test set of 34 structures
as a subset of our test set to allow for direct comparisons.
As a primary interest is the modelling of antibodies with
high humanness in the context of therapeutic antibody de-
velopment, we constrain the validation and additional test
structures to be annotated as human. We require a resolu-
tion below 2.5Å and a CDRH3 length of less than 22 for
the selection of our validation structures. Furthermore, we
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Figure 2. Left: Structure predicted by ABodyBuilder3, with colouring indicating the pLDDT uncertainty estimate. The ground truth
(7T0J) is shown in grey. Right: Distribution of CDRH3 RMSD across different bins of the CDRH3 pLDDT score.

remove any structures from the training data that share an
identical sequence in any of the CDR regions with any of
the validation or test sets.

We consider two physics-based refinement strategies,
OpenMM (Eastman et al., 2017) and YASARA (Krieger &
Vriend, 2015), to fix stereochemical errors and provide real-
istic structures. We find that minimization in the YASARA2
forcefield (Krieger et al., 2009) in explicit water leads to im-
proved accuracy of all regions, particularly in the framework.
Further details and comparisons between the minimization
methods are given in Appendix A.

In Table 1, the first three rows show a comparison of the
original ABodyBuilder2 model with our baseline model ob-
tained with our improved implementation and dataset cura-
tion. We give the root mean squared deviation (RMSD1) for
each region of the variable domain, and provide results with
both refinement strategies. Note here that ABodyBuilder2
predictions are obtained by taking the closest structure to
the mean of an ensemble of four models. This ensemble
of models is selected from ten distinct trainings of which
six models are then discarded. By comparison, our base-
line consists of a single model without any need for model
selection and ensemble prediction.

3. Language model representation
Inspired by the success of language model embeddings be-
ing used to model protein structure, e.g. (Lin et al., 2023;
Ruffolo et al., 2023), we experiment with replacing the
one-hot-encoding used as the residue representation in

1The RMSD is computed using backbone atoms after aligning
each chain independently.

ABodyBuilder2 with a language model embedding. We
use the ProtT5 model (Elnaggar et al., 2021), an encoder-
decoder text-to-text transformer model (Raffel et al., 2020)
pretrained on billions of protein sequences, to generate a
residue level embedding of each antibody. As this language
model was trained on single chains, we embed the heavy and
light chain separately by passing them through the ProtT5
model, and concatenate their residue representations to ob-
tain a per-residue embedding of the full variable region. We
also explored antibody-specific models such as the paired
IgT5 and IgBert models (Kenlay et al., 2024b), but ulti-
mately found that general protein language models achieved
higher performance. This might be because antibody lan-
guage models introduce potential dataset contamination and
overfitting during the language model pre-training. To train
our language model-based structure prediction model, all
parameters are kept identical to ABodyBuilder2, except for
a lower initial learning rate of 5 · 10−4, and a reduction of
the minimum learning rate to 0 in the scheduler, which we
found to improve stability on learning rate resets.

In Table 1, we show the performance of our ABodyBuilder3
model, comparing the one-hot encoding with the ProtT5 em-
bedding representation which we denote as ABodyBuilder3-
LM. One can observe a small reduction in RMSD using the
language model representation, notably in the modelling of
the CDRH3 and CDRL3 loops.

4. Uncertainty estimation
The ABodyBuilder2 model uses an ensemble of four mod-
els to provide a confidence score from the diversity be-
tween predictions. This approach has an increased com-
putational burden, as multiple models are required both at



CDRH1 CDRH2 CDRH3 Fw-H CDRL1 CDRL2 CDRL3 Fw-L

ABodyBuilder2 0.84 0.73 2.54 0.56 0.55 0.36 0.88 0.53
Baseline (OpenMM) 0.92 0.75 2.53 0.60 0.67 0.35 0.96 0.58
Baseline (Yasara) 0.90 0.74 2.49 0.59 0.58 0.37 0.92 0.57
ABodyBuilder3 0.87 0.70 2.42 0.58 0.61 0.39 0.93 0.58
ABodyBuilder3-LM 0.87 0.75 2.40 0.57 0.59 0.37 0.89 0.58

Table 1. Modelling accuracy as measured by mean RMSD in Angstroms, given for each CDR loop and framework region. Baseline
models refer to a single model with our optimised implementation of the ABodyBuilder2 architecture trained on our updated curated
dataset whereas ABodyBuilder2 refers to the original version which uses an ensemble of models and the prediction closest to the mean.

CDRH1 CDRH2 CDRH3 Fw-H CDRL1 CDRL2 CDRL3 Fw-L

ABodyBuilder2 0.41 0.38 0.57 0.50 0.47 0.48 0.72 0.40
ABodyBuilder3 0.58 0.26 0.61 0.48 0.60 0.20 0.68 0.67
ABodyBuilder3-LM 0.69 0.36 0.73 0.39 0.72 0.52 0.68 0.58

Table 2. Pearson correlation between average uncertainty prediction for a region and the corresponding mean RMSD. Uncertainties for
ABodyBuilder2 are derived from an ensemble of four models, while all ABodyBuilder3 uncertainties are directly predicted by a pLDDT
head.

training and inference time. We instead estimate the intrin-
sic model accuracy by predicting the per-residue lDDT-Cα
scores (Mariani et al., 2013), as implemented in the Al-
phaFold2 model (Jumper et al., 2021b). This introduces a
very small increase in the number of parameters, but circum-
vents the need for an ensemble of models. The pLDDT is
obtained from the final single representation of the structure
module and predicts a projection into 50 bins by a multilayer
perceptron with softmax activation. Training is achieved by
discretising the predicted structure with per-residue lDDT-
Cα against the ground truth structure and computing the
cross-entropy loss, which is added to the original ABody-
Builder2 loss with a weight of 0.01. A pLDDT score for the
full variable domain, or for specific regions, is obtained as
an average of the corresponding per-residue pLDDT scores.

In Table 2, we give the Pearson correlation between the
pLDDT score and the RMSD, averaged over each region of
the variable domain. The ABodyBuilder2 model, with an
uncertainty score obtained from the ensemble model, has
lower correlation with RMSD than our pLDDT score. It is
interesting to note here that the ABodyBuilder3-LM model,
which uses ProtT5 embeddings as input, achieves a higher
correlation than the one-hot encoding representation model,
notably in the modelling of the CDRH3 uncertainty. We note
however that when considering the Spearman correlation,
shown in Appendix A, the difference between models is less
marked. We provide a guideline for thresholding pLDDT
for modelling the CDRH3 region in Figure 2 (right), ap-
plied here on the full test set. Incorporating a threshold of
a pLDDT above 85, we retain approximately 32% of struc-
tures, with over 80% of those retained having a CDR-H3
RMSD below 2Å.

5. Conclusions
In this article, we present ABodyBuilder3, a state-of-the-
art antibody structure prediction model based on ABody-
Builder2. We incorporated several improvements to the
implementation, notably enhancing hardware acceleration
through vectorisation, which significantly improve the scal-
ability of our model. We also made changes to the data
processing and structure refinement that lead to more accu-
rate predictions.

In addition, we show how leveraging a language model
representation of the antibody sequence can improve the
modelling of CDRH3. Finally, we demonstrate how the use
of pLDDT head, combined with protein language model
embeddings, can be used as a substitute for an ensemble of
models approach, which require substantially more training
and inference compute.

It would be interesting to explore the use of self-distillation,
which has shown to improve accuracy in general protein
structure prediction models (Jumper et al., 2021a), by pre-
training our model on a large dataset of synthetic structures
predicted from the paired Observed Antibody Space (Ko-
valtsuk et al., 2018; Greenshields-Watson et al., 2023). To
even further improve the accuracy of the predictions and
of the uncertainty estimates, one could also consider com-
bining the pLDDT approach introduced in this article with
an ensemble of models, though this would be at the cost of
increased training and inference compute.

We release the code2 and model weights for ABody-
Builder3 (Kenlay et al., 2024a).

2github.com/Exscientia/ABodyBuilder3

https://github.com/Exscientia/ABodyBuilder3
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A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021b.

Kenlay, H., Dreyer, F., Cutting, D., Nissley, D., and Deane,
C. ABodyBuilder3: Improved and scalable antibody
structure predictions, May 2024a. URL https://doi.
org/10.5281/zenodo.11354577.

Kenlay, H., Dreyer, F. A., Kovaltsuk, A., Miketa, D., Pires,
D., and Deane, C. M. Large scale paired antibody lan-
guage models, 2024b.

Kovaltsuk, A., Leem, J., Kelm, S., Snowden, J., Deane,
C. M., and Krawczyk, K. Observed Antibody Space: A
Resource for Data Mining Next-Generation Sequencing
of Antibody Repertoires. The Journal of Immunology,
201(8):2502–2509, 10 2018. ISSN 0022-1767. doi: 10.
4049/jimmunol.1800708. URL https://doi.org/
10.4049/jimmunol.1800708.

Krieger, E. and Vriend, G. New ways to boost molecular
dynamics simulations. Journal of Computational Chem-
istry, 36(13):996–1007, 2015. doi: https://doi.org/10.
1002/jcc.23899. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/jcc.23899.

Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson,
J., Tyka, M., Baker, D., and Karplus, K. Improving phys-
ical realism, stereochemistry, and side-chain accuracy
in homology modeling: four approaches that performed

well in casp8. Proteins: Structure, Function, and Bioin-
formatics, 77(S9):114–122, 2009.

Leem, J., Dunbar, J., Georges, G., Shi, J., and Deane, C.
Abodybuilder: Automated antibody structure prediction
with data–driven accuracy estimation. mAbs, 8, 07 2016.
doi: 10.1080/19420862.2016.1205773.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W.,
Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos
Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Can-
dido, S., and Rives, A. Evolutionary-scale prediction
of atomic-level protein structure with a language model.
Science, 379(6637):1123–1130, 2023. doi: 10.1126/
science.ade2574. URL https://www.science.
org/doi/abs/10.1126/science.ade2574.

Lu, R.-M., Hwang, Y.-C., Liu, I.-J., Lee, C.-C., Tsai, H.-
Z., Li, H.-J., and Wu, H.-C. Development of therapeu-
tic antibodies for the treatment of diseases. Journal
of Biomedical Science, 27(1):1, 2020. doi: 10.1186/
s12929-019-0592-z. URL https://doi.org/10.
1186/s12929-019-0592-z.

Mariani, V., Biasini, M., Barbato, A., and Schwede,
T. lDDT: a local superposition-free score for
comparing protein structures and models using dis-
tance difference tests. Bioinformatics, 29(21):2722–
2728, 08 2013. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btt473. URL https://doi.org/10.
1093/bioinformatics/btt473.

Narciso, J. E., Uy, I., Cabang, A., Chavez, J., Pablo, J.,
Padilla-Concepcion, G., and Padlan, E. Analysis of the an-
tibody structure based on high-resolution crystallographic
studies. New biotechnology, 28:435–47, 04 2011. doi:
10.1016/j.nbt.2011.03.012.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), jan 2020. ISSN
1532-4435.

Raybould, M. I. J., Marks, C., Krawczyk, K., Tad-
dese, B., Nowak, J., Lewis, A. P., Bujotzek, A.,
Shi, J., and Deane, C. M. Five computational de-
velopability guidelines for therapeutic antibody profil-
ing. Proceedings of the National Academy of Sci-
ences, 116(10):4025–4030, 2019. doi: 10.1073/pnas.
1810576116. URL https://www.pnas.org/doi/
abs/10.1073/pnas.1810576116.

Raybould, M. I. J., Turnbull, O. M., Suter, A., Guloglu,
B., and Deane, C. M. Contextualising the developa-
bility risk of antibodies with lambda light chains us-
ing enhanced therapeutic antibody profiling. Com-
munications Biology, 7(1):62, 2024. doi: 10.1038/

https://www.biorxiv.org/content/early/2022/03/10/2021.10.04.463034
https://www.biorxiv.org/content/early/2022/03/10/2021.10.04.463034
https://www.biorxiv.org/content/early/2023/12/09/2023.12.08.570786
https://www.biorxiv.org/content/early/2023/12/09/2023.12.08.570786
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.5281/zenodo.11354577
https://doi.org/10.5281/zenodo.11354577
https://doi.org/10.4049/jimmunol.1800708
https://doi.org/10.4049/jimmunol.1800708
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23899
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23899
https://www.science.org/doi/abs/10.1126/science.ade2574
https://www.science.org/doi/abs/10.1126/science.ade2574
https://doi.org/10.1186/s12929-019-0592-z
https://doi.org/10.1186/s12929-019-0592-z
https://doi.org/10.1093/bioinformatics/btt473
https://doi.org/10.1093/bioinformatics/btt473
https://www.pnas.org/doi/abs/10.1073/pnas.1810576116
https://www.pnas.org/doi/abs/10.1073/pnas.1810576116


s42003-023-05744-8. URL https://doi.org/10.
1038/s42003-023-05744-8.

Roth, D. B. V(d)j recombination: Mechanism, er-
rors, and fidelity. Microbiology Spectrum, 2(6):
10.1128/microbiolspec.mdna3–0041–2014, 2014.
doi: 10.1128/microbiolspec.mdna3-0041-2014. URL
https://journals.asm.org/doi/abs/10.
1128/microbiolspec.mdna3-0041-2014.

Ruffolo, J. A., Sulam, J., and Gray, J. J. Antibody
structure prediction using interpretable deep learn-
ing. Patterns, 3(2):100406, 2022. ISSN 2666-3899.
doi: https://doi.org/10.1016/j.patter.2021.100406.
URL https://www.sciencedirect.com/
science/article/pii/S2666389921002804.

Ruffolo, J. A., Chu, L.-S., Mahajan, S. P., and Gray,
J. J. Fast, accurate antibody structure prediction from
deep learning on massive set of natural antibodies. Na-
ture Communications, 14(1):2389, 2023. doi: 10.1038/
s41467-023-38063-x. URL https://doi.org/10.
1038/s41467-023-38063-x.

Schneider, C., Raybould, M. I. J., and Deane, C. M.
SAbDab in the age of biotherapeutics: updates includ-
ing SAbDab-nano, the nanobody structure tracker. Nu-
cleic Acids Research, 50(D1):D1368–D1372, 02 2022.
ISSN 0305-1048. doi: 10.1093/nar/gkab1050. URL
https://doi.org/10.1093/nar/gkab1050.

Slabinski, L., Jaroszewski, L., Rodrigues, A. P., Rychlewski,
L., Wilson, I. A., Lesley, S. A., and Godzik, A. The chal-
lenge of protein structure determination—lessons from
structural genomics. Protein Science, 16(11):2472–2482,
2007. doi: https://doi.org/10.1110/ps.073037907. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1110/ps.073037907.

Tsuchiya, Y. and Mizuguchi, K. The diversity of h3 loops
determines the antigen-binding tendencies of antibody
cdr loops. Protein science : a publication of the Protein
Society, 25, 01 2016. doi: 10.1002/pro.2874.

Wong, W. K., Leem, J., and Deane, C. M. Comparative
analysis of the cdr loops of antigen receptors. Frontiers
in Immunology, 10, 2019. ISSN 1664-3224. doi:
10.3389/fimmu.2019.02454. URL https://www.
frontiersin.org/journals/immunology/
articles/10.3389/fimmu.2019.02454.

Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M., Yang,
Z., Xu, Y., Zheng, W., Xia, X., Tam, W. L., Ma, Z., Xue,
Y., Zhai, J., Chen, W., Zhang, P., Dong, Y., and Tang, J.
Glm-130b: An open bilingual pre-trained model, 2023.

https://doi.org/10.1038/s42003-023-05744-8
https://doi.org/10.1038/s42003-023-05744-8
https://journals.asm.org/doi/abs/10.1128/microbiolspec.mdna3-0041-2014
https://journals.asm.org/doi/abs/10.1128/microbiolspec.mdna3-0041-2014
https://www.sciencedirect.com/science/article/pii/S2666389921002804
https://www.sciencedirect.com/science/article/pii/S2666389921002804
https://doi.org/10.1038/s41467-023-38063-x
https://doi.org/10.1038/s41467-023-38063-x
https://doi.org/10.1093/nar/gkab1050
https://onlinelibrary.wiley.com/doi/abs/10.1110/ps.073037907
https://onlinelibrary.wiley.com/doi/abs/10.1110/ps.073037907
https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.02454
https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.02454
https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.02454


A. Structure refinement
Most approaches to protein or antibody structure prediction, including AlphaFold2 (Jumper et al., 2021a), AlphaFold2-
Multimer (Evans et al., 2022), and ABodyBuilder2 (Abanades et al., 2022b), that predominantly rely on deep learning also
use a final physics-based refinement step to fix stereochemical errors and provide realistic structures. In most cases, this
refinement takes the form of an in-vacuo minimization that may neglect important aspects of the real system in favor of
expediency. To test the influence of different types of minimization on the quality of ABodyBuilder3 output structures, we
compare an OpenMM refinement with a refinement using YASARA2, shown in Figure 3. These results confirm that while
minimization in vacuo is sufficient to improve many structures, a minimization in the YASARA2 forcefield (Krieger et al.,
2009; Krieger & Vriend, 2015) in explicit water allows for further improvements across all the regions, particularly in the
framework, whilst improving model quality according to the z-score produced by YASARA2.
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Figure 3. YASARA2 refinement (x-axis) compared to OpenMM refinement (y-axis).

B. Spearman correlation of uncertainties
We show the Spearman correlation between uncertainty predictions and RMSD in Table 3.

CDRH1 CDRH2 CDRH3 Fw-H CDRL1 CDRL2 CDRL3 Fw-L

ABodyBuilder2 0.45 0.30 0.75 0.50 0.56 0.21 0.73 0.42
ABodyBuilder3 0.48 0.23 0.63 0.50 0.37 0.01 0.59 0.59
ABodyBuilder3-LM 0.48 0.40 0.73 0.27 0.43 0.20 0.60 0.53

Table 3. Spearman correlation between average uncertainty prediction for a region and the corresponding mean RMSD.


