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ABSTRACT

Much of the research on the interpretability of deep neural networks has focused on
studying the visual features that maximally activate individual neurons. However,
recent work has cast doubts on the usefulness of such local representations for
understanding the behavior of deep neural networks because individual neurons
tend to respond to multiple unrelated visual patterns, a phenomenon referred to
as “superposition”. A promising alternative to disentangle these complex patterns
is learning sparsely distributed vector representations from entire network layers,
as the resulting basis vectors seemingly encode single identifiable visual patterns
consistently. Thus, one would expect the resulting code to align better with human-
perceivable visual patterns, but supporting evidence remains, at best, anecdotal. To
fill this gap, we conducted three large-scale psychophysics experiments collected
from a pool of 560 participants. Our findings provide (i) strong evidence that
features obtained from sparse distributed representations are easier to interpret by
human observers and (ii) that this effect is more pronounced in the deepest layers
of a neural network. Complementary analyses also reveal that (iii) features derived
from sparse distributed representations contribute more to the model´s decision.
Overall, our results highlight that distributed representations constitute a superior
basis for interpretability, underscoring a need for the field to move beyond the
interpretation of local neural codes in favor of sparsely distributed ones.

1 INTRODUCTION

One of the goals of explainable AI (XAI) in computer vision is to identify the visual features and
characterize the representations used by deep neural networks (DNNs) to categorize images (Ribeiro
et al., 2016; Sundararajan et al., 2017; Smilkov et al., 2017; Petsiuk et al., 2018; Selvaraju et al.,
2017; Linsley et al., 2019; Fel et al., 2021; 2023c;a; Novello et al., 2022; Zhou et al., 2016; Bau et al.,
2017; Cammarata et al., 2020b; Kim et al., 2018; Ghorbani et al., 2019). In general, identifying these
features requires uncovering the visual patterns that drive the activation of units within a network.

This goal is shared with the study of biological vision, where there is extensive research over the last
several decades focused on identifying the “preferred stimulus” of individual neurons in the visual
cortex (Hubel & Wiesel, 1959; Lettvin et al., 1959; Tsunoda et al., 2001; Wang et al., 1996; Pasupathy
& Connor, 2001; Quiroga, 2005). This approach to visual neuroscience reflected the dominant theory
at the time, known as the “grandmother (cell)” theory , which postulates that information in the
visual system is stored locally – at the level of single neurons – and that the visual system contains
specific neurons that respond to particular objects or people (including one’s own grandmother).
Early XAI advances inspired by neuroscience research similarly focused on understanding local
representations (Zhou et al., 2016; Bau et al., 2017). This led to the development of more sophisticated
optimization methods to synthesize maximally activating images for individual neurons (Erhan et al.,
2009; Zeiler & Fergus, 2014a; Yosinski et al., 2015; Olah et al., 2017; 2020; Nguyen et al., 2016a;b;
Cammarata et al., 2020b).

This parallelism between XAI and neuroscience extends beyond vision as recent work has found
neurons in multi-modal systems that respond to very high-level concepts beyond simple image
appearance, including hand-drawing and text (Goh et al., 2021). Interestingly, the authors identified a
“Halle Berry” neuron in CLIP, reminiscent of the neuroscience finding reported two decades ago in
the human brain (Quiroga, 2005).
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Figure 1: (a) • Local (neuron) versus • Distributed (sparsely distributed vector) visual represen-
tations. The activation of individual neurons may be driven by multiple unrelated visual elements
(depicted in the images at the bottom) whereas distributed representations, obtained via dictionary
learning methods, break down complex patterns into simpler ones corresponding to single visual
features. (b) In practice, dictionary learning methods “disentangle” local activations to yield a new
vector basis whose activation is driven by single features. The hope for interpretability is that those
features align better with the set of features that humans can interpret S = {f1, f2, ..., fn}.

At the same time, a paradigm shift is taking place in neuroscience, where the study of neural
populations is quickly superseding the study of single neurons (for a review see Ebitz & Hayden
(2021)) because the neural code is believed to be sparse and distributed rather than local (Haxby et al.,
2001; Quiroga et al., 2008; 2013). Interestingly, a similar shift is emerging in XAI, because local
representations are known to suffer from the “superposition” problem (Arora et al., 2018; Cheung
et al., 2019; Olah et al., 2020; Elhage et al., 2022; Fel et al., 2023b): the number of features captured
by DNNs might be larger than the number of neurons. Therefore, the neurons’ activations might
be driven by multiple unrelated features. To address this challenge, the XAI community has started
using dictionary learning methods (Fel et al., 2023c;b; Bricken et al., 2023; Templeton et al., 2024) to
project the activations of DNNs onto a new basis of vectors, each activated by a single distinct feature.
From an interpretability perspective, representations driven by single features are more desirable
because they are expected to be easier to understand by a human, i.e., a unit responding to a single
visual pattern –compared to multiple patterns– is inherently easier to interpret. An implicit hypothesis
is that applying dictionary learning methods to network activations helps break down complex visual
patterns into simpler ones corresponding to single features (Fig. 1.a), which, in turn, might be
easier for humans to interpret (Fig. 1.b). Scaling up standard interpretability evaluations to study
representations poses significant challenges (Colin et al., 2022). A practical alternative is to assess
the ambiguity—or perplexity—of the visual features derived from these representations (Borowski
et al., 2021) (see 3.2.1 for a more thorough elaboration on this point).

Despite the growing consensus that distributed representations constitute a stronger basis for inter-
pretability compared to local ones (single neurons), empirical evidence remains scarce. This paper
aims to fill this gap. Specifically, we contend that a representation can be considered superior if the
features derived from it are more intelligible, i.e., easier for humans to make sense of while being
demonstrably used by the model in its decision-making process. By means of computational and
psychophysics experiments, we set out to find which of the local vs. distributed representations better
meets these two conditions.

In sum, the main contributions of this paper are as follows:

• We conduct three large-scale psychophysics experiments for a total of 15,720 responses
from a pool of 560 participants, to evaluate the visual ambiguity of the features derived
from local vs distributed representations (see Fig 1). In the process, we identify a potential
semantic bias in the experimental protocols commonly used in the field (Borowski et al.,
2021; Zimmermann et al., 2023), and provide an approach to at least partially mitigate it.

• Our findings provide strong evidence that (i) features derived from distributed represen-
tations are significantly easier for humans to interpret than features derived from local
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representations, and (ii) this effect is even more pronounced in the deepest layers of a neural
network.

• Additionally, we observe that (iii) models rely significantly more on features derived from
distributed representations compared to those derived from local representations. Overall,
our results suggest that distributed representations provide a substantially better foundation
for the interpretability of models than local representations.

2 RELATED WORK

From local to distributed representations in XAI. Early research on explainable AI (XAI)
in computer vision developed attribution methods (Zeiler et al., 2011; Zeiler & Fergus, 2014a;b;
Sundararajan et al., 2017; Smilkov et al., 2017; Fong & Vedaldi, 2017; Ancona et al., 2018; Shrikumar
et al., 2017; Chattopadhay et al., 2018; Fel et al., 2021; Novello et al., 2022) to understand specific
model predictions. These methods predominantly aimed to identify ”where” are the most important
pixels of an image, given a specific model prediction. Unfortunately, these methods fell short in
explaining the ”what” (Kim et al., 2018; 2022; Taesiri et al., 2022; Colin et al., 2022), i.e., the
visual features that the models rely on to make their predictions. As a result, new XAI methods,
including Feature Visualization approaches (Nguyen et al., 2016b; Olah et al., 2017), were developed
to provide insights into the features that neurons or model layers respond to. These efforts revealed
that the neurons’ activations can be driven by visually distinct features (Nguyen et al., 2016b; 2019;
Cammarata et al., 2020a; Bricken et al., 2023). A similar behavior was observed in other fields, and
notably in Natural Language Processing (NLP) (Elhage et al., 2022).

The neurons’ tendency to respond to multiple unrelated visual elements indicates that single neurons
might not align well with the model’s internal representations. This phenomenon, known as super-
position (Arora et al., 2018; Cheung et al., 2019; Olah et al., 2020; Elhage et al., 2022; Fel et al.,
2023b) or feature collapse (Fel et al., 2023c), suggests that there could be significantly more features
than neurons in a model. Consequently, interpreting neurons might be no more meaningful than
interpreting arbitrary directions in the feature space. To achieve effective model interpretation, it
is, therefore, essential to identify an interpretable basis that facilitates the extraction of meaningful
features. This observation has led to increased interest, over the past five years, towards examining
deep learning models by considering the distributed nature of latent space representations. More
specifically, it spurred the development of concept extraction methods (Ghorbani et al., 2019; Zhang
et al., 2021; Fel et al., 2023c;b; Graziani et al., 2023; Vielhaben et al., 2023) that leverage dictionary
learning, especially overcomplete dictionaries. In NLP, sparse autoencoders (SAEs) (Elhage et al.,
2022; Bricken et al., 2023; Cunningham et al., 2023; Tamkin et al., 2023) are extensively studied
and regarded as a promising direction for discovering interpretable bases. In this paper, we are
interested in comparing the suitability of local vs distributed representations to serve as a basis for
the interpretability of deep learning models in computer vision.

Human-evaluation of interpretability. Since the ultimate goal of XAI is to make complex models
understandable to humans, it is essential to incorporate human evaluation in measuring interpretability
through psychophysics experiments. Human evaluation serves as a critical benchmark for assessing
whether the explanations provided by XAI systems are comprehensible, useful, and actionable for
end-users. This human-centric approach ensures that interpretability methods are not just theoretically
sound but also practically effective in real-world applications.

To the best of our knowledge, Borowski et al. (2021) were the first to quantify the interpretability
of features through psychophysics experiments. Their approach involved visualizing unit responses
by contrasting maximally and minimally activating stimuli. Specifically, Borowski et al. (2021)
focused on studying features from local representations (i.e., single unit activations) of an Inception
V1 (Szegedy et al., 2015) trained on ImageNet (Deng et al., 2009; Russakovsky et al., 2015). In their
experiments, participants were shown maximally and minimally activating images from the ImageNet
ILSVRC 2012 validation set (Russakovsky et al., 2015) to illustrate a specific feature. They were then
asked to select which of two query images also activated the feature (see Fig. 2 for an example trial).
As a proxy for interpretability, they measured the visual coherence of maximally activating stimuli of
a given feature. It is maximal when the visual feature is unambiguous. The main conclusion from
these experiments is that, from a human-centric perspective, maximally activating natural images
are more effective for studying features than synthetically generated feature visualizations (Olah
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et al., 2017). Zimmermann et al. (2021) proposed a variation of this task to investigate if humans
gained causal insights from those visualizations. They tested the participants’ ability to predict
the effect of an intervention, such as occluding a patch of the image, on the activation of the unit.
Both by means of a large-scale crowdsourced psychophysics experiment and measurements with
experts, they found that synthetic feature visualizations (Olah et al., 2017) helped humans perform
the task successfully. However, these visualizations did not provide a significant advantage over
other visualizations, such as exemplary images. Finally, Zimmermann et al. (2023) extended the
work of Borowski et al. (2021) to a broader set of deep learning architectures used for computer
vision tasks, including a ResNet50 (He et al., 2016). Their main conclusion is that increasing the
scale of the model does enhance the interpretability of the features. While both our work and that
of Zimmermann et al. (2023) build upon the experimental protocol of Borowski et al. (2021), they
focus on scaling Borowski et al. (2021)’s insights, whereas we adapt the protocol to generate insights
into a different and novel research question: comparing the suitability of features derived from local
vs distributed representations for interpretability.

Interestingly, in a similar vein but within the context of NLP, (Bricken et al., 2023) compare the
interpretability of 162 features extracted from both local and distributed representations. One of
the authors scored each feature using samples drawn uniformly across the spectrum of activation.
Their findings indicate that features obtained from distributed representations are substantially more
interpretable than those from single neurons. The research presented in this paper differs from this
work in the application domain, the experimental design, single participant in their study vs 15,720
responses from a pool of 560 participants in our study.

3 METHODOLOGY

In this section, we first provide an overview of the technical methods used to create the conditions for
the three psychophysics experiments described below.

3.1 TECHNICAL METHODS

Model All the experiments described in this paper were performed on a ResNet50 (He et al., 2016)
from the Torchvision (Marcel & Rodriguez, 2010) library, pre-trained on ImageNet-1k (Deng et al.,
2009).

Sparse Distributed Representations To compute sparse distributed representations for the dis-
tributed condition in our psychophysics experiments (see Section 3.2), we employed CRAFT (Fel
et al., 2023c), an off-the-shelf dictionary learning method. Specifically, given a model f : X → A
that maps from an input space X ⊆ Rd to an activation space A ⊆ Rp (e.g., any layer of the network),
we compute the activations A = f(X) ∈ Rn×p, where X = [x1, . . . ,xn]

⊤ ∈ Rn×d represents a
set of n input data points. Each row ai ≥ 0 of A contains the non-negative activations for a given
data point xi, due to the use of ReLU activations. To obtain the sparse distributed representations,
Non-negative Matrix Factorization (NMF) is applied to approximate A as:

(Z⋆,D⋆) = argmin
Z≥0, D≥0

∥∥A− ZD⊤∥∥
F
,

where ∥·∥F denotes the Frobenius norm. Here, Z ∈ Rn×k are the codes (or concept coefficients),
and D ∈ Rp×k forms the dictionary (or concept bank). Both Z and D are constrained to have non-
negative entries and tend to be sparse due to the properties of NMF. The dictionary matrix D provides
a new set of basis vectors (concepts) aligned with the activation patterns of the neural network, while
Z contains the coefficients representing the original activations A in terms of these concepts. CRAFT
is particularly well suited for our purposes as it has been shown to extract interpretable features from
deep neural networks (Fel et al., 2023c).

Feature importance For an image xi, let vc be the vector it activates most strongly from an
intermediate representation—it can be a sparse distributed vector in D or a neuron in A—, and
let yi be the logit score for xi. To assess vc’s importance, we perform an ablation by setting the
activation along this dimension to zero for xi, resulting in modified activations a′i. These modified
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Figure 2: Illustration of a trial. Example of a trial in our study corresponding to Experiment I,
distributed representation condition of a unit located in layer2.0.bn2. Two panels of 9 reference
images are located on the left and right-hand side of the display, separated by 2 query images in
the center. Participants were asked to select the query image they believed shared the same visual
elements as the reference images displayed on the right panel, corresponding to maximally activating
stimuli. The less ambiguous this shared visual element is—the more visually coherent the set of
images—the more likely participants are to select the correct query. In this case, the correct query is
the bottom image depicting a yellow tram.

activations are then propagated to the output layer to compute a new logit score, y′
i. One can assess

the importance of vc by measuring as the difference in logit scores:

∆yi = yi − y′
i (1)

The more important the feature driving the activation of vc is for the model, the higher the drop in
logit score.

3.2 PSYCHOPHYSICS STUDIES

3.2.1 EXPERIMENTAL PROTOCOL

Interpretability is a human-centric attribute. Hence, to shed light on how well local vs distributed
representations serve as a basis for the interpretability of deep neural networks, we performed
three large-scale online psychophysics experiments. The three experiments focus on evaluating
the interpretability of features extracted from both types of representations. In practice, given the
challenges of scaling up standard interpretability evaluations to study representations (Colin et al.,
2022), we adapt the experimental protocol of Borowski et al. (2021) to measure the ambiguity, or
perplexity, of the visual feature as a proxy for its interpretability. More precisely, given a feature and
a set of images that illustrate it—e.g., maximally activating images—, this protocol measures how
visually coherent humans find this set of images. The more visually coherent it is, the more likely
they are to correctly identify another member of this set, namely the correct query image. Hence, in
our results, we report the visual coherence of a feature as the proportion of participants that correctly
identified the query image. This visual coherence should be maximal when the feature represents a
single visual pattern that people can interpret.

Each participant was assigned to one of two conditions: local or distributed representation. After
successfully finishing a practice session composed of 9 trials, participants were asked to sequentially
perform 40 different trials of the same task, where each trial corresponded to a different network unit.
For each selected network unit and trial, participants were shown on the left and right-hand side of
the screen two panels of 9 reference images each, separated by 2 images in the center, which were
denoted as queries, as illustrated in Figure 2. The task across all experiments consisted of selecting
the query image that participants believed shared the same visual elements as the 9 reference images
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displayed on the right panel. The selection of the reference images shown in each panel differed
depending on the experiment, as explained below.

3.2.2 NEURON AND STIMULI SELECTION

Neuron selection In line with the literature (Zimmermann et al., 2023), we aimed to obtain a
representative sample of units within the different layers of the ResNet50. As a starting point, we
selected the 80 units reported in (Zimmermann et al., 2023) for a ResNet50 (He et al., 2016) model.
Given that CRAFT requires positive activations, we replaced the neurons from the convolutional
layers (which could have non-positive activations) to their equivalent in the following batchnorm
layer (layer1.1.conv1 neuron 53 -> layer1.1.bn1 neuron 53). As a result, we selected 80 neurons
distributed across 43 layers that are grouped in four blocks. Thus, the names of the layers used in
this paper (layer1 through layer4) are directly obtained from the modules of the ResNet50 Pytorch
implementation.

Stimuli selection for the local representation condition For each of the selected neurons, we
identified 2, 900 images from the validation set of ImageNet ILSVRC 2012 (Russakovsky et al.,
2015) obtained as follows: the 2, 500 most strongly activating images and the 400 least strongly
activating images. Following the procedure described by Borowski et al. (2021), we illustrated a
visual feature through both maximally activating (images that possess the feature, see Fig. 2 right
panel) and minimally activating (images that do not possess the feature, see Fig. 2 left panel) stimuli.
Again, like in previous work (Borowski et al., 2021), for the former, we selected a random sample of
9 images from the top 150 images; for the latter, we uniformly sampled 9 images from the bottom
20 images. We created 10 different trials per feature following this procedure to ensure image
independence in the results. When participants were assigned to a feature, we randomly sampled one
of those 10 trials to illustrate the feature.

Stimuli selection for the distributed representation condition Our hypothesis is that applying
dictionary learning methods to local representation allows us to disentangle the superposition of
features that might drive the activation of a neuron. Hence, to test this hypothesis, all the distributed
representations studied in this work are obtained from the local representation. In practice, for
each neuron in the local condition, we selected the top 300 maximally activating images, i.e., those
that most strongly led to the activation of the neuron. We used CRAFT to identify a new basis of
distributed vectors through which their activations can be expressed. Following the recommended
procedure in (Fel et al., 2023c), we constrained the dimensionality of this new basis to d = 10. From
these 10 directions, we selected the one that was the most frequently the most activated across the
300 images. Once a direction was chosen, we ranked the 2, 900 images according to their activation
in that direction to obtain the images that illustrate a visual feature in the distributed representation.

3.2.3 EXPERIMENTS

In this section, we present the details of each of the three psychophysics experiments conducted in
this work.

Experiment I This experiment is an adaption of the methodology proposed by (Borowski et al.,
2021) with two conditions: local vs distributed representations. An illustration of a trial belonging to
Experiment I can be found in Figure 2. In this experiment, we performed a total of 1,600 trials (80
neurons × 2 conditions × 10 trials per unit).

Experiment II The main objective of Experiment II was to control for potential semantic con-
founding variables present in Experiment I. If the reference images that possess/do not possess the
feature of interest belong to very different semantic groups (classes), then it could be possible to solve
the task through simple semantic grouping. Figure 3 illustrates this phenomenon: in the example
depicted in the figure, it is easier to solve the trial by inferring that the feature of interest is not about
a monkey than it is to infer the actual visual feature present in the reference images. The goal of
Experiment II is to control for this potential semantic confound as follows: given a set of reference
images that possess the feature of interest, we extract their semantic labels from ImageNet and aim to
find within the 400 minimally activating images a set of 10 images that share the same distribution
of semantic labels. We define four levels of semantic similarity (level 0 to level 3). In level 0, the
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Figure 3: Illustration of the role of semantics. Example of a trial from Experiment I in the local
representation condition. In this case, the task can be trivially solved by simply relying on semantics.
By observation of the minimally activating stimuli (left panel), it is easy to conclude that the neuron
of interest is not a monkey detector, yet, it is hard to articulate what is the visual feature captured by
the neuron (images in the right panel).

labels from ImageNet are used to determine the semantic similarity, whereas in levels 1 through 3 we
obtain the labels by moving up one branch in the WordNet (Fellbaum, 2010) hierarchy. In practice,
we performed an iterative search for each trial starting from level0. If there are not 10 images in the
400 minimally activating set that share labels with the reference images at a given level of semantics,
the process is restarted, this time using labels from the next and broader level of semantics. We
continued this process until 10 images from the minimally activating set shared the distribution of
semantic labels with the reference images. In cases where it was impossible to identify 10 images,
the feature was excluded from the experiment. Only one feature was fully excluded for both the local
and distributed conditions due to this factor.

Experiment III Finally, recognizing that the adopted experimental protocol was originally designed
to assess whether features are better understood using natural or synthetic visualizations, we devised
Experiment III to explore the impact of combining natural images with feature visualizations (See
more details in Section D).

3.2.4 PARTICIPANTS

A total of 560 participants were recruited to take part in Experiments I, II, and III through the online
platform Prolific 1. All participants were native English speakers who reported not being visually
impaired and completed the study on a laptop or desktop computer (not a mobile phone). They
provided informed consent electronically and were compensated $2.75 for their time (∼ 10−13 min).
The protocol was approved by the University IRB. Based on the power analysis of (Zimmermann
et al., 2023), a minimum of 60 participants per condition (120 participants per Experiment) was
needed to obtain statistically robust results. Furthermore, participants were required to (1) succeed in
at least 5 of the 9 practice or instruction trials and (2) correctly answer at least 4 of the 5 attentiveness
tests (catch trials) that were randomly inserted in the experiment. As a result, we analyzed the data
corresponding to 138, 133, and 122 participants from Experiments I through III, respectively.

1www.prolific.com
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(a) (b)

Figure 4: Per-layer results for Experiment I (a) and II (b). Given a feature and a set of images to
illustrate it, we assess how visually coherent participants find this set of images—or how unambiguous
the feature is. More precisely, we measure the proportion of participants that are able to identify
the query image which is also part of this set of images. In both experiments, a clear trend emerges
where features appear significantly less ambiguous in the distributed representation than in the local
representation condition, particularly in the deeper layers of the network.

4 RESULTS

In this section, we summarize the results obtained from analyzing the responses from the 138, 133,
and 122 participants who successfully completed Experiments I, II, and III, as well as the results
from our feature importance analysis.

Unless stated otherwise, all of our behavioral data analyses consist of generalized logistic mixed-
effects regressions (GLMER), with trial accuracy (1 vs. 0) as the dependent variable. The random-
effects structure included both a by-participant and a by-unit 2 random intercept, as well as a by-unit
random slope for the condition variable. We used the lme4 (Bates et al., 2015) package in R (R
Core Team, 2021) to fit the models and lmerTest to obtain p-values for the fixed effects, with an
α-level of 0.05 for statistical significance.

Reproduction of previous results. Given that the experimental protocol used in Experiment I,
with the local representation condition, is the same as the one described in (Zimmermann et al.,
2023), we first evaluate to which degree our results corroborate previous research. For the ResNet50,
Zimmermann et al. (Zimmermann et al., 2023) report an average task performance of 83.0%± 2.03.
In our experiment, we obtain an average performance of 78.8%± 1.5. Given the results’ similarity
and that the selected units are not exactly the same (as described in Section 3), we conclude that
Experiment I reproduces previously reported findings regarding local representations. This result
also serves as an external validation of our experimental protocol.

Human performance is superior in the distributed representation condition. Based on our main
hypothesis that a distributed representation constitutes a better basis for interpretability than a local
representation, we predicted that participants would be better at selecting the maximally activating
query image in the distributed condition. In Experiment I, the average performance across participants
in the distributed condition was 83.5%±1.4 4, when compared to 78.8%±1.5 in the local condition. A
GLMER with condition as a predictor revealed a statistically significant disadvantage for the local
condition: βcondition = −0.47, SE = 0.23, z = −2.04, p = 0.04. This result was corroborated
both in Experiments II (see examples of trials in Fig 8, 9, 10) and III, with a mean performance
of participants in the distributed condition of 85.1% ± 1.4 vs. 76.2% ± 1.6 in the local condition,
βcondition = −0.93, SE = 0.24, z = −3.93, p =< .001 and a mean performance of 80.0% ± 1.6
(distributed) vs. 74.1% ± 1.7 (local), βcondition = −0.42, SE = 0.17, z = −2.47, p = 0.01,
respectively.

2Here, a unit refers to either a neuron in the local representation condition or to a specific direction of the
dictionary in the distributed representation condition.

3Values inferred from Figure 3 in their paper.
4The values reported correspond to a 95% confidence interval.
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Semantic control matters, but not significantly. Figures 4a and 4b depict the results obtained
without (Experiment I) and with (Experiment II) a semantic control applied to the stimuli, re-
spectively. At first glance, the results seem consistent in both scenarios, except for the results
corresponding to neurons in layer 4 where the performance of participants in the local condition
suffers a drastic decrease in Experiment II. This result is coherent with the intuitive observation that
the model aggregates class-specific information the closer the layer is to the output layer. Hence,
neurons located in deeper layers are more likely to respond highly to features that correspond to
certain classes and not at all to features belonging to other classes, i.e., the semantic confounds
are expected to be higher for those neurons. To investigate further the role of controlling the se-
mantics, we pooled the data from Experiments I and II and included both experiment and an
interaction term condition:experiment as predictors in a GLMER. We found a significant
main effect for condition, βneuron = −0.47, SE = 0.23, z = −2.04, p = 0.04, but not for
experiment. Interestingly, we did not obtain evidence for a significant interaction between
experiment and condition, βneuron:Exp2 = −0.46, SE = 0.30, z = −1.53, p = 0.13. As
it was not possible to semantically control all trials in Experiment II to the same extent, we also
tested for an interaction between condition and semantic control instead of the variable
experiment. Semantic control was coded as a categorical variable with 4 levels: no con-
trol, 1, 2, and 3, corresponding to the previously described levels in Section 3.2.3. We compared
two GLMERs: one including only the main effects of condition and semantic control,
and another also considering the interaction between these two variables. Based on the Akaike
Information Criterion, the model without the interaction was preferred (9116 vs. 9120). In sum,
while the nominal disadvantage of the neuron condition is larger in Experiment II (semantic con-
trol) than in Experiment I (no semantic control), none of the performed statistical tests yielded
a significant difference between these two experiments. This result can be partially explained
by the unequal distribution of trials across semantic levels (see fig 11) and by the quality of the
semantic control achieved once getting to a certain level in the Word-Net hierarchy. We leave
to future work a finer-grained study of the role of semantics in the interpretability of features.

Figure 5: Feature importance. We measure the
importance of a feature as the average drop in logit
score ∆y for the 300 most activating images when
the feature is occluded. Except for layer1, we find
that the model relies significantly more on features
derived from the distributed representation than on
features from local representations, z = −5.86,
p < .001 (Mann-Whitney U test).

The deeper the layer, the more prominent
the benefits of the distributed representation.
Figures 4a, 4b and 7 illustrate the per-layer re-
sults obtained in Experiments I, II and III, re-
spectively. We find evidence to suggest that
the benefits of the distributed representation in-
crease with the depth of the layer from which
we select the unit that the participants were in-
terpreting. Indeed, we identified a significant
main effect for unit and also for an interaction
term unit:condition, i.e., the advantage of
the distributed condition increases as the units
belong to deeper layers. This result is consistent
across the 3 experiments: βdepth = 0.08, SE =
0.02, z = 3.92, p < .001 and βdepth:Exp1 =
−0.06, SE = 0.03, z = −2.22, p = 0.03
for Experiment I; βdepth = 0.07, SE =
0.02, z = 3.27, p = 0.001 and βdepth:Exp2 =
−0.09, SE = 0.03, z = −3.6, p < .001 for
Experiment II; and βdepth = 0.05, SE =
0.02, z = 2.6, p = 0.01 and βdepth:Exp3 =
−0.06, SE = 0.03, z = −2.59, p = 0.01 for
Experiment III.

The model relies more on features derived from the distributed representation. We evaluate
the importance of every feature used in our psychophysics experiment by measuring the average drop
in logit score for the 300 most activating images when the feature is occluded (see Eq. 1). Overall,
we find that the model relies significantly more on features derived from distributed representations
than from local representations: z = −5.86, p < .001 (Mann-Whitney U Test), the only exception
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being layer1 (Fig 5). Interestingly, and in line with the rest of our results, the deeper the layer, the
larger the difference between the local vs distributed representations.

5 DISCUSSION

Conclusion In this work, we have investigated and compared the suitability of local and distributed
representations to serve as a basis for the interpretability of deep neural networks. We contend that
the best-suited basis possesses a dictionary of features that is (a) more aligned with the set of features
that human observers can interpret while (b) being demonstrably more important for decision-making
by the model. Through psychophysics experiments, we consistently find that features derived from
distributed representations are easier for humans to interpret, particularly when features are derived
from deeper layers in the network. Equally important, we find that the model relies significantly
more on those features to make its decisions. To the best of our knowledge, our results provide
the first empirical evidence of the superiority of distributed representations over local ones for the
interpretability of deep neural networks.

Limitations Our study is not exempt from limitations. First, the methodology proposed
by Borowski et al. (2021) and followed by Zimmermann et al. (2023) utilizes the entire ImageNet
validation set with the goal of studying a broad range of stimuli and thereby increasing the likelihood
of identifying stimuli that are representative of neurons’ selectivity. While such motivation is sound, it
poses a significant challenge when performing psychophysics experiments: neurons that are selective
to class-specific features (e.g., fish scale) will be maximally activated when presented with stimuli
that belong to the corresponding classes (e.g., fish) and minimally activated when provided with
stimuli that belong to other classes (e.g., dogs). In those cases, the task can be solved trivially using
semantics. The design of Experiment II reflects an initial attempt to mitigate this confounding factor.
However, both quantitative results and a manual exploration of the trials by the authors hint at only a
partial success of the adopted methodology to address this challenge. We leave to future research a
further refinement of the experimental protocol.

Second, while the original work (Borowski et al., 2021) this manuscript builds on aimed at measuring
the interpretability of features, we have been more conservative with the terminology employed
in this paper as we believe that the current experimental protocol only measures a loose proxy
of interpretability. Interpretability, or understanding, of a complex visual pattern usually requires
procedural learning with feedback (Ashby & Maddox, 2005). Given that, in practice, this protocol
measures a score based on a set of images presented in a single trial, it seems unreasonable to expect
this score to capture interpretability. In contrast, it seems more reasonable to expect this score to
characterize something more visual, like the ambiguity of the features, i.e., how complex it might
be to interpret the features if one had to. Such ambiguity can be inferred, at least in part, by the
visual coherence of the set of images. Zimmermann et al. have indeed shown that responses from
participants can be accurately predicted based on visual coherency—or perceptual similarity—of a
trial.

While we believe that these metrics are useful proxies and that features achieving a high score at
them are desirable for interpretability, we want to emphasize that we do not claim that it means that
they are interpretable. Perceptual similarity differs from interpretability; being able to group images
correctly does not necessarily imply a deep understanding of the underlying factors driving those
groupings or the ability to explain why the images belong together based on intrinsic features or
causal relationships.

Nevertheless, we believe that the adopted experimental protocol serves as a solid foundation for
developing a scalable and robust paradigm to measure the interpretability of features in deep learning
models. We leave to future work the development of such a paradigm.
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APPENDIX

A PRACTICE TRIALS

All participants were shown 9 practice trials to help them understand the core idea of the task. The
images for these trials did not overlap with the images used in any of the experiments, preventing
them from influencing our results. They were selected to represent specific features on the maximum-
activating grid: checkerboard, veiny, green, round, blue, rough fur, yellow, straight lines, and magenta.
Images on the left side of the grid in practice trials had no coherent pattern, and were randomly
sampled without replacement from a set of images with features including whiskers, spikes, droplets,
and liquid flow.

Practice trials were customized for each experiment, to keep all variables controlled. For the
feature visualization psychophysics, practice trials were generated using the same methods as the
experimental images. They were chosen from neurons in convolutional layers to show the same
features that were included in the practice trials for other experiments.

B ATTENTIVENESS TESTS

Attentiveness tests were included at random points in the study. Following the methodology adopted
in previous work (Borowski et al., 2021), they were based on a simple premise: if the query image
is also present in the grid of maximum-activating images, participants paying attention should
get near-perfect accuracy. We generated attentiveness tests for each experiment using the same
procedure as was used for the experimental trials. To ensure that the attentiveness tests did not overlap
with experimental trials, we chose maximum- and minimum-activating images from neurons from
convolutional layers. Rather than sampling 10 maximum-activating images, we sampled 9 and put the
query in a random position in the maximum-activating grid. The attentiveness tests were generated
for all experiments using the same neurons from the model to guarantee consistency.

C IMAGE SECTION FOR THE DISTRIBUTED REPRESENTATION CONDITION.

We originally tested 2 ways to select the direction from the distributed representation obtained by
CRAFT to be kept for the main experiment. The first one is the one explained in the main section
of the paper, namely: from the 10 directions, we selected the direction that was the most often the
most activating one across the 300 images. However, we considered a second alternative where we
selected the direction that was the most often the most activating one across the 2900 images. We
ran the psychophysics experiments on both alternatives. The average performance obtained on this
alternative was of 81%± 1.4 and we find no effect of the condition variable between this distributed
condition vs the local condition describe in the main paper: βcondition = −0.34, SE = 0.25, z =
−1.39, p = 0.164. Further quantitative and qualitative analysis done on both alternatives have led us
to keep the first alternative for the reminder of the experiments.
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D SUPPLEMENTARY INFORMATION ABOUT EXPERIMENT III

Experimental protocol Given that the adopted experimental protocol was originally designed to
evaluate the informativeness of feature visualizations, we devised Experiment III to shed light on
the value that a state-of-the-art feature visualization method (MACO) would add to the task. We
subscribe to the idea that feature visualizations are more suitable to complement natural images
than to replace them. Thus, Experiment III implements a protocol similar to the mixed condition
reported by Zimmermann et al. (Zimmermann et al., 2021). In practice, Experiment III was based on
Experiment II, but in each trial, 4 of the natural images displayed both on the left and right panels
were replaced by 4 feature visualizations, as depicted in Figure 6.

Method To synthesize feature visualizations for Experiment III (see Section 3.2), we used
MACO (Fel et al., 2023a), inspired by the method by Olah et al. (Olah et al., 2017). MACO
generates feature visualizations with a natural Fourier amplitude spectrum by fixing the amplitude
spectrum to the empirical mean derived from natural images. Specifically, MACO optimizes directly
in the Fourier domain F(x) by modifying the phase φ of the target image while keeping the magni-
tude r of the spectrum fixed. This constraint on the magnitude helps prevent high-frequency artifacts
and ensures that the resulting images remain visually coherent. Formally, let r denote the average
amplitude spectrum computed across the ImageNet dataset, and let d be a target concept direction to
be maximized. MACO solves the following optimization problem:

φ⋆ = argmax
φ

(
f
(
F−1

(
r ◦ eiφ

))
· d

)
, and x⋆ = F−1

(
r ◦ eiφ

⋆
)
.

where x⋆ is the feature visualization obtained after optimization, F denotes 2-D Discrete Fourier
Transform (DFT) on X , F−1 its inverse and ◦ represents element-wise multiplication. Additionally,
MACO introduces an attribution-based transparency mask to highlight spatially important regions in
the visualizations, enhancing interpretability.

The value of feature visualization remains unclear. Finally, Figure 7 depicts the results obtained
from Experiment III, which combined natural images with synthetic images corresponding to feature
visualizations using MACO. Similarly to (Zimmermann et al., 2021), we do not find that mixing
stimuli from feature visualization with natural images helped participants perform better at the task.
In fact, participants performed overall significantly worse in Experiment III than in Experiment II:
βdepth:Exp3 = −0.63, SE = 0.19, z = −3.3, p < 0.001. Interestingly, the worst performance was
observed in the local condition for units located in the deepest layers of the network, with a drop in
performance from 80.2% in Experiment I to 68.3% in Experiment III. Furthermore, the difference
in the per-layer task performance obtained in layer 4 in each condition is 8.2%, 17.1%, and 18.9%,
respectively. We leave to future work the investigation into the specific factors that contributed to
this decline in performance. Potential avenues for future research include exploring the cognitive
load imposed by mixed stimuli and identifying optimal conditions under which feature visualization
might enhance rather than hinder task performance.
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Figure 6: Illustration of a trial from Experiment III. Example of a trial from layer4.2.bn3 in the
distributed representation condition from Experiment III. Note how the reference images on the left
and right panels contain a mix of feature visualizations using MACO and natural images.

Figure 7: Per-layer results for Experiment III. Given a feature and a set of images to illustrate it,
we assess how visually coherent participants find this set of images—or how unambiguous the feature
is. More precisely, we measure the proportion of participants that are able to identify the query image
which is also part of this set of images. Similarly to the results from experiment I and II, a clear trend
emerges where features appear significantly less ambiguous in the distributed representation than in
the local representation condition, particularly in the deeper layers of the network.
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E FURTHER ILLUSTRATION OF LOCAL VS DISTRIBUTED TRIALS

(a) Local representations (b) Distributed representations

Figure 8: Layer2. This figure illustrates a trial used to assess the features encoded in layer2.0 either
by the neuron 52 (a) or at least partially through the neuron 52 (b).

(a) Local representations (b) Distributed representations

Figure 9: Layer3. This figure illustrates a trial used to assess the features encoded in layer3.1 either
by the neuron 957 (a) or at least partially through the neuron 957 (b).

(a) Local representations (b) Distributed representations

Figure 10: Layer4. This figure illustrates a trial used to assess the features encoded in layer4.2 either
by the neuron 259 (a) or at least partially through the neuron 259 (b).
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Figure 11: Number of trials per semantic control level, for both local and distributed representation.
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Figure 12: Per-layer results for Experiment IV (VGG16). Given a feature and a set of images to
illustrate it, we assess how visually coherent participants find this set of images—or how unambiguous
the feature is. More precisely, we measure the proportion of participants that are able to identify the
query image which is also part of this set of images. Similarly to the results from experiments I, II,
and III, a trend emerges where features appear less ambiguous in the distributed representation than
in the local representation condition. Nevertheless, the effect of depth appears more nuanced than in
the ResNet50.

F LOCAL VS DISTRIBUTED: RESULTS FROM A VGG16

We extend the experiments to a VGG16 from the Torchvision (Marcel & Rodriguez, 2010) library,
pre-trained on ImageNet-1k (Deng et al., 2009). We randomly select 80 neurons across the VGG16,
and we follow the same methodology as previously for the selection of stimuli for the local and
distributed conditions. For the psychophysics experiment, we follow the experimental protocol of
Experiment II where we control for semantic confounds. We analyze the data corresponding to 132
participants from Prolific.

Human performance is superior in the distributed representation condition. Based on our
main hypothesis that a distributed representation constitutes a better basis for interpretability than
a local representation, we predicted that participants would be better at selecting the maximally
activating query image in the distributed condition. In Experiment IV, the average performance
across participants in the distributed condition was 81.5%± 1.5, when compared to 77.1%± 1.6 in
the local condition. A GLMER with condition as a predictor revealed a statistically significant
disadvantage for the local condition: βcondition = −0.45, SE = 0.22, z = −2.04, p = 0.04.

The benefit of the distributed representation does not increase systematically with depth.
Figures 12 illustrates the per-layer results obtained in Experiments IV (VGG16). While the superiority
of distributed representation appears again here in the deeper layer, we do not see a systematic
trend between depth and the performance of participants in our psychophysics experiments. This
observation is reflected in our analysis as we do not find that the advantage of the distributed condition
increases as the units belong to deeper layers: βdepth:Exp4 = −0.06, SE = 0.05, z = −1.27, p =
0.20.

Takeaway. In general, we expect deeper layers to contain more information, and we expect a model
to rely more on superposition to encode information in those layers. Based on those assumptions, we
expected participants to systematically benefit more from distributed representation when exposed to
features from deeper layers. Yet, while our new results strengthen our claim that there appears to
be no downside to studying features using distributed representation, they portray a more complex
picture as to when they become necessary.
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G DO FEATURES FROM local VS. distributed REPRESENTATIONS DIFFER IN
OBVIOUS WAYS?

Following the useful suggestions of a reviewer we use existing metrics to probe if features from local
vs. distributed representations differ in obvious ways.

G.1 COMPLEXITY

Kolmogorov complexity. The first hypothesis we test is whether features from distributed repre-
sentation are easier to interpret than features from local conditions because they are less complex.
While we do not have access to the feature per se, we have access to the images that possess the
features as a proxy. While measuring the complexity of images is still an open research question,
there are works that show that the Kolmogorov complexity of images (Li et al., 2004) correlate well
with human-derived ratings for the complexity of natural images (Forsythe et al., 2008; Forsythe,
2009). In practice, we follow previous works (Li et al., 2004; de Rooij & Vitányi, 2006) and use a
standard compression technique (JPEG) to approximate the Kolmogorov complexity of images. The
hypothesis is that the more an image can be compressed, the less complex the features that compose
the images.

Methodology For a given target feature, we conducted T trials T ∈ [1, 10], based on how many
trials can be semantically controlled). In each trial, we had access to 10 images that possess the target
feature. We measured the average Kolmogorov complexity of these 10 images by recording their
compressed file sizes after JPEG compression. We then averaged these complexities across all trials
for each feature, resulting in a measure of Kolmogorov complexity for that feature. This methodology
is applied to every feature.

Results. We did not find a significant correlation between the Kolmogorov complexity of the images
and the visual coherency scores from Experiments II (ResNet50) (Fig. 13 and IV (VGG16) (Fig 14).
This suggests that while complexity might be a factor, the superiority of features from distributed
representations cannot be explained by complexity alone.

(a) Local representations (b) Distributed representations

Figure 13: Kolmogorov complexity of features from a ResNet50 (Exp II).

G.2 SIMILARITY

Structural similarity Index The second hypothesis we test is if the images used to illustrated
distributed features are more similar to the ones used to illustrate local features. The intuition behind
this hypothesis is that the more ambiguous the features, the more dissimilar the images used to
illustrate it, the worse people will perform in our experiment. To test this hypothesis we used an
existing similarity measure, namely the structural similarity index measure (Wang et al., 2004; Wang
& Bovik, 2009). This measure quantifies the similarity of 2 images based on luminance, constrast
and change in structural information.
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(a) Local representations (b) Distributed representations

Figure 14: Kolmogorov complexity of features from a VGG16 (Exp IV).

Methodology. For a given target feature, we have access to T ∈ [1, 10], based on how many trials
can be semantically controlled). In each trial, we have 10 images that possess the target feature. We
measure the structural similarity index across every possible pair of these 10 images and calculate
the average SSIM for that trial. We apply this methodology for every trial of a given feature and
then average the SSIM values across all trials to obtain a measure of similarity for that feature. This
process is applied to every feature.

Results. In both cases, we do not find a significant correlation between the structural similarity
Index and the visual coherency scores from both Experiments II (ResNet50) (Fig. 15) and IV
(VGG16) (Fig 16) suggesting that the visual coherency is driven by more complex factors that only
luminance, constrast and the structure of the images.

(a) Local representations (b) Distributed representations

Figure 15: Structural Similarity of images used to illustrate features from a ResNet50 (Exp II).
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(a) Local representations (b) Distributed representations

Figure 16: Structural Similarity of images used to illustrate features from a VGG16 (Exp IV).
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Figure 17: What types of features are more or less interpretable.

H WHAT TYPE OF FEATURES ARE MORE INTERPRETABLE?

To address the reviewer’s suggestion, we attempt to provide intuition about which types of features are
more or less interpretable by manually categorizing them into four categories: color, shape, texture,
and unclear. For the definitions of shape and texture, we follow those from Gatys et al. (2017) and
Geirhos et al. (2018). They define shape as "the set of contours that describe the 3D form of an
object," and texture as "an image (region) with spatially stationary statistics. Note that on a very
local level, textures (according to this definition) can have non-stationary elements (such as a local
shape): e.g., a single bottle clearly has non-stationary statistics, but many bottles next to each other
are perceived as a texture: ’things’ become ’stuff’." The results are presented in Figure 17.
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Figure 18: Per-layer results for Experiment I

Figure 19: Per-layer results for Experiment II

I ADDITIONAL PLOTS

As suggested by a reviewer, we replot in Fig 18-19-20 the results from Experiment I, II, and III in a
way that can foster a more truthful appreciation of the effects.
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Figure 20: Per-layer results for Experiment III
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