Under review as a conference paper at ICLR 2026

JOHNSON-LINDENSTRAUSS LEMMA GUIDED NET-
WORK FOR EFFICIENT 3D MEDICAL SEGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Lightweight 3D medical image segmentation remains constrained by a funda-
mental “efficiency / robustness conflict”, particularly when processing complex
anatomical structures and heterogeneous modalities. In this paper, we study
how to redesign the framework based on the characteristics of high-dimensional
3D images, and explore data synergy to overcome the fragile representation of
lightweight methods. Our approach, VeloxSeg, begins with a deployable and ex-
tensible dual-stream CNN-Transformer architecture composed of Paired Window
Attention (PWA) and Johnson-Lindenstrauss lemma-guided convolution (JLC).
For each 3D image, we invoke a “glance-and-focus” principle, where PWA rapidly
retrieves multi-scale information, and JLC ensures robust local feature extraction
with minimal parameters, significantly enhancing the model’s ability to operate
with low computational budget. Followed by an extension of the dual-stream ar-
chitecture that incorporates modal interaction into the multi-scale image-retrieval
process, VeloxSeg efficiently models heterogeneous modalities. Finally, Spatially
Decoupled Knowledge Transfer (SDKT) via Gram matrices injects the texture
prior extracted by a self-supervised network into the segmentation network, yield-
ing stronger representations than baselines at no extra inference cost. Experimen-
tal results on multimodal benchmarks show that VeloxSeg achieves a 26% Dice
improvement, alongside increasing GPU throughput by 11x, CPU by 48x, and
reducing training peak GPU memory usage by 1/20, inference by 1/24.

1 INTRODUCTION

3D medical image segmentation serves as a cornerstone of contemporary clinical workflows (Wu
et al, 2025; Peiris et al., [2023)), driving rapid advances in semantic segmentation models (Liu
et al., [2024a; |Shaker et al., 2024; He et al., 2025 [Yu et al., 2025a; [Wald et al., [2025). However,
translating these advances into clinical practice faces significant obstacles, including limited hard-
ware resources, stringent latency requirements, and the need to achieve multi-organ generalization
while handling heterogeneous multimodal data in deployment environments. These challenges have
spurred the development of lightweight 3D medical segmentation methods, leading to lightweight
approaches with fewer than 5 million parameters (Perera et al., 2024; |Pang et al.| [2024} Yu et al.,
2025b; |Li et al., [2025; [Ye et al., 2025). Yet, the pursuit of smaller parameter counts and lower com-
putational costs has revealed a fundamental and increasingly prominent trade-off: these lightweight
models struggle to maintain both efficiency and robust performance when handling heterogeneous
data and complex lesions, which we term “efficiency / robustness conflict”. We address this problem
from two key perspectives:

Insufficient consideration of the high-dimensional complexity of 3D data. Recent sequence
models, such as Mamba (Gu & Dao, [2023} [Xing et al., 2025) and RWKV (Peng et al.| 2023} |Ye
et al., [2025), have achieved remarkable progress in segmentation, owing to their linear complexity
and long-range modeling capabilities. However, due to the lack of more efficient scanning strategies
suitable for 3D data, these methods have not yet supplanted CNN-Transformer architectures in the
domain of efficient medical segmentation. Our model is built on a dual-stream CNN-Transformer
architecture, synergizing the complementary strengths of both components: the inductive bias (lec}
1989; Mansour et al.,[2019) and training stability (He et al.l 2016} loffe & Szegedyl 2015}, |[Ulyanov
et al |2016) of convolutions with the global modeling power (Vaswani et al 2017 and extensibil-
ity (Lu et al.. 2019} (Chen et al.,|2020; |Dosovitskiy et al.;, 2020) of Transformers. Pruning is the most
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Figure 1: Comparison of our proposed VeloxSeg with recent methods on the AutoPET-II test set.
Basic models, multimodal models, lightweight models, and our model are marked with circles,

, triangles, and stars, respectively. GPU and CPU Throughput are measured on an NVIDIA
RTX3090 GPU and a single-core Intel(R) Xeon(R) Gold 5320 CPU, respectively.

common approach to model lightweighting (Molchanov et al., 2019; Fang et al., 2023)), but its final
configuration relies on dataset-specific importance metrics and hand-tuned sparsity schedules, which
limit generalizability and lead to expensive retraining. Therefore, developing lightweight and effi-
cient components is essential. Constructing relationships among tokens is the core of feature model-
ing. In principle, self-attention (Dosovitskiy et al.l|2021)) can represent arbitrary dependencies, but in
practice it is constrained by computation and memory. Window-based attention (Hatamizadeh et al.,
2021} |Du et al.,2025)) performs fine-grained relation modeling within local windows, but it relies on
cascaded operations to capture cross-window interactions, leading to substantial redundancy. Axial
attention (Liu et al.,|2024a)) and downsampled attention (Pang et al., 2024; |Perera et al.,2024;|Kuang
et al.,|2025) accelerate the construction of relationships between a token and distant tokens by con-
straining attention paths or operating at lower resolutions, but they tend to weaken the representation
of critical local dependencies. We propose paired window attention (PWA), which builds parallel
multi-scale feature streams and coordinates short- and long-range attention to capture global token
relations while maintaining sufficient focus on local information, at a computational cost compara-
ble to axial or downsampled attention. Convolution with its inductive bias remains indispensable for
detailed local modeling. However, common depthwise-separable designs (Chollet, 2017; Ma et al.,
2018 Roy et al.l 2023; Muhammad et al.| [2025) suffer from a key limitation: aggressive channel
decoupling disrupts the original geometric adjacency among tokens, making them harder to distin-
guish and fragmenting the information. This issue is particularly severe for complex anatomical
structures and heterogeneous modalities. To address this, we introduce a Johnson-Lindenstrauss
(JL) lemma-—guided lightweight convolution (Lindenstrauss & Johnson, [1984), which enforces a
minimum number of channels per group in each convolution layer to preserve geometric adjacency
among tokens. This design keeps the model lightweight while ensuring that fine-grained details can
be robustly captured.

Insufficient exploration of data synergy, including multimodal cooperation and data priors.
Exploiting multimodal complementary information is crucial for robust model representation (Mu
et al.,[2020; |[Zheng et al., [2025} |Zou et al., 2025). However, it is often ignored by lightweight meth-
ods due to the potential increase in computational cost, even when training on multimodal datasets.
As discussed in Appendix [C} bridging multimodal information across multiple scales is vital for
extracting complementary information from heterogeneous modalities. Therefore, we extend our
dual-stream architecture, using PWA to facilitate efficient modal interaction at the additional cost
of only 0.27 MParams and 0.09 GFLOPs. Besides, exploring prior knowledge from existing data
to enhance a model’s detailed representation holds practical significance for efficient segmentation
methods. These methods often achieve higher efficiency by performing segmentation in a com-
pressed space, which comes at the cost of exploring small lesions and complex boundaries (Perera
et al.,|2024; He et al.,2023;Rahman et al.,[2024} Pang et al.| 2024). Although establishing cross-task
knowledge transfer from reconstruction to segmentation appears to be a solution (Sun et al., [2020;
Rui et al.,[2025; Zhang et al.| [ 2020; Wang et al.,2025b), the significant differences in their regions of
interest (ROIs) often lead to negative knowledge transfer (Q1u et al.,2023). To this end, our proposed
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Figure 2: Overview of VeloxSeg. VeloxSeg employs an encoder-decoder architecture with Paired
Window Attention (PWA) and Johnson-Lindenstrauss lemma-guided convolution (JLC) on the left,
using 1 x 1 convolution as modal mixer. GC: group convolution; GA: multimodal grouped attention.

Spatially Decoupled Knowledge Transfer (SDKT) is a simple yet effective solution, motivated by
the observation that a common upsampling operation in reconstruction and super-resolution tasks,
“Conv+PixelShuffle (Su et al., [2025), essentially unfolds the channel relationships at each voxel
position into the spatial details of the surrounding image patch. This suggests that the guidance pro-
vided by a texture teacher to a segmentation task should be based on the channel relationships within
its features. The Gram matrix, commonly used to represent style in the field of image style transfer,
characterizes feature channel relationships in a spatially-invariant manner (Gatys et al., | 2016;[2015).
Based on it, we establish a positive knowledge transfer path from a self-supervised texture teacher
to the segmentation network with no inference overhead (Zhu et al.l|2021; Akiva et al.,|2022).

Inspired by the above insights, we propose VeloxSeg that systematically alleviates the “efficiency /
robustness conflict” during model lightweighting. Extensive experiments thoroughly explored the
rationale for the design choices and demonstrated the model’s excellent clinical applicability and
generalization capabilities. Figure [T| shows a comparison of VeloxSeg’s performance with other
methods on the AutoPET-II (Gatidis S| 2022) dataset, demonstrating strong competitiveness. In
summary, we develop:

* A Paired Window Attention to ensemble multi-scale attention groups, capturing local-
global information simultaneously, improving localization capabilities with less cost, and
achieving low-cost but effective modal interaction at multiple scales.

* A Johnson-Lindenstrauss lemma-guided convolution that theoretically determines a min-
imum group size to preserve spatial adjacency, ensuring robust local feature extraction
without costly and data-specific pruning.

* A Spatially Decoupled Knowledge Transfer strategy that uses Gram matrices to distill rich
textural details from a self-supervised teacher during training, enhancing model fidelity
with zero inference overhead.

2 METHODOLOGY

2.1 OVERVIEW OF VELOXSEG

As shown in Figure 2] VeloxSeg employs two 4-stage encoders, a modal-fusion convolution en-
coder and a modal-cooperative Transformer encoder, along with a segmentation decoder and a de-
tail texture teacher. The Paired Window Attention (PWA), a key component of the transformer
encoder, is designed to capture multi-scale and cross-modal context with low enough cost. The
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Figure 3: (a) Overview of Paired Window Attention (PWA). (b) Intuitive difference between depth-
wise (DW) convolution and Johnson-Lindenstrauss (JL) guided Convolution in the feature space.

Johnson-Lindenstrauss lemma-guided Convolution (JLC), a key component of the convolution en-
coder, consists of 3 parallel JLCs at different scales to fuse modal information and model local
features. Separating these two avoids a parameter explosion as the number of modalities increases,
while maximizing the advantages and parallelism of both. In training, the Spatially Decoupled
Knowledge Transfer (SDTK) strategy is used to enhance texture representation, which is also of
great significance for super-resolution and segmentation tasks.

2.2  PAIRED WINDOW ATTENTION

To achieve sufficiently strong clue-capturing capabilities with minimal computational cost, PWA
ensembles parallel feature streams to capture key multimodal information at multiple scales. No-
tably, our approach differs significantly from conventional parallel multi-attention approaches (Liu
et al., 2024a; Shaker et al., 2024), aiming to create a faster, lower-cost, more effective, and more
elegant feature stream. Given M modal features from k-th stage EX, . m = 1,--- | M, they are first
projected into Q’ﬁn, K,’j“ Vﬁl. As shown in Figure |3[(a), we (i) partition the features into a set of
big windows, collecting a salient token for each small window; (ii) synchronously expand window
pairs to obtain multimodal sequences X* . X € {Q, K, V} of different scales but equal length,
where i is the number of the paired window; (iii) gather all sequences and compute attention across
all scales and modalities at once; and (iv) use a lightweight mixer to simply and efficiently blend

features from all scales. The attention A%, is obtained by the following formula:

AF =PWA (E! | E},--- Ef)). (1)

For more information about PWA, please see the Appendix [D} including PyTorch code, detailed
formula flow, and complexity analysis. We also provide a detailed analysis of the necessity of multi-
scale modeling of medical modalities. Notably, PWA requires only log(size), size € {H, W, D}
paired windows to capture global context, while the minimum window ensures the preservation of
local details. PWA achieves near-linear complexity, with a linear coefficient of approximately 7.87%
of Swin Transformer (Liu et al., 2021)).

2.3  JOHNSON-LINDENSTRAUSS LEMMA-GUIDED CONVOLUTION

Lemma 1 (Johnson-Lindenstrauss). For any finite set X C R? with |X| = N and ¢ € (0,1), there
exists a linear map f : R — RY with d' > ¢y 2 log N, all z,y € X satisfy (1 —e)||z — yll2 <

1f(@) = FW)ll2 < (1 + )]z — yll2.

As shown in Figure 3] (b), depth-wise convolution destroys the adjacency relationship between data
in the feature space, making it difficult to connect the current clues with the key information of
the case. Inspired by [Likhosherstov et al| (2021) derivation of the minimum attention head size
via the Johnson-Lindenstrauss (JL) lemma, we build our lightest but robust convolution upon the
above theory framework. In particular, we extend it to the 3D segmentation, exploring the lower
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bound on group size while preserving spatial adjacency. The JL lemma states that for N points
in high-dimensional space, we need at least O(log N) embedding dimensions to preserve pairwise
distances. The volume ratio of the input image of M modalities to the intermediate feature is v, and
each voxel of the feature must retain information from at least v input voxels. Due to anatomical
constraints and the boundedness of the normalized input values, the manifold M of segmentation-
related information of the input image patch can be covered by a finite number of samples, with
a coverage count of N (M, v). Substituting N = N(M,v) into the lemma yields the size of the
convolution group:

C(group =d > CJLS_2 log N(M, 1}), 2
where Cyroup is the number of channels per group.

Due to the lack of N in the vision domain, we empirically approximate N (M, v) using N (M, v) =
(M - v)®, where « is related to the difficulty of the segmentation task at hand. We conduct ab-
lation studies on datasets with the richest modality heterogeneity and data distribution to identify
the most generalizable scaling factor, which we use to obtain a lower bound on the group size
of the convolution layers in each network stage. As analyzed in the Appendix [E] we will use

{Cgroup}i: . = {n,2n,2n,4n} as the group size for each stage of our network, where n € N
is determined from the most challenging AutoPET-II (Gatidis S, 2022) dataset to ensure multi-organ

generalization capability.

2.4 SPATIALLY DECOUPLED KNOWLEDGE TRANSFER

To strengthen the representation of the lightweight model, we transfer the rich texture details ex-
tracted by the self-supervised texture teacher to the segmentation network via the Gram matrix.
Specifically, we start with learning M self-supervised detail texture teachers T),,,m = 1,--- , M,
who are optimized by M reconstruction tasks. The Gram matrix is commonly used to represent
image style and can capture feature channel relationships in a spatially invariant manner. For feature

maps X € REX(HWD) with C channels, the Gram matrix is:
1
GM(X) = ——— (XXT) e R*C. 3
(X) = crwp XXT) € ®)

SDKT is implemented by matching Gram matrices, which is mathematically equivalent to minimiz-
ing the maximum mean difference (MMD) using a second-order polynomial kernel (Li et al.} 2017}
Gupta et al., |2017). This naturally avoids a series of issues caused by excessive ROI discrepancies
between the reconstruction/super-resolution features and the segmentation features. Specifically, a
Gram-based consistency constraint serves as a positive knowledge transfer path between the seg-
mentation features D4 and the M teacher features D77, Final loss L is:

M
L= (Edice + Ece) + )\rcﬁrc + )\sdk:t Z ||GM (Drjr}) - GM (Dseg)HQa (4)

m=1

For information about L, please see Appendix Aseg» Are and Agqp are the loss weights.

3 EXPERIMENTS

3.1 DATASETS & METRICS

We validate the effectiveness of VeloxSeg on four public datasets: AutoPET-1I (Gatidis S| 2022)),
Hecktor2022 (Oreiller et al., 2022), BraTS2021 (Baid et al., [2021), and BraTS2016 (Menze et al.,
2014a)) (details in Appendix[G)). Unlike typical medical segmentation datasets, the modality hetero-
geneity of PET/CT and the complex anatomical structures of multiple organs, and even the whole
body, pose unique challenges to all models. We adopt comprehensive evaluation metrics suitable
for clinical settings: Model Size (MParams), Computational Complexity (GFLOPs), Efficiency
(GPU/CPU Throughput), and Segmentation Performance measured by Dice similarity coefficient
(Dice) as the primary indicator, alongside 95% Hausdorff distance (HD95), Precision, and Recall.
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Method Venue AutoPET-II Hecktor2022

Dice T HD95 | Prec. T Rec. 1 Dicet HD95 | Prec. T Rec. T
UNet MICCAI’16 59.41 241.31 62.32 70.74 50.25 65.03 72.13 41.50
VNet 3DV’15 53.21 242.78 53.21 60.85 55.61 41.46 78.21 46.01
MedNeXt-S MICCATI'23 53.94 180.83 60.63 60.25 4722 79.82 64.89 40.38
UNETR WACV’22 5149 257.30 51.49 61.03 48.10 73.27 70.71 39.11
Swin UNETR MICCATI'21 62.24 242.07 6291 73.30 44.56 103.02 62.43 37.55
VSmTrans MIA’24 62.46 223.88 65.19 70.92 5291 78.03 61.91 50.97
UNETR++ TMI'24 36.50 178.57 36.50 60.16 29.95 27.74 61.84 21.75
U-KAN AAAI’25 60.67 70.91 62.03 7294 55.89 23.48 T77.72 46.89
Nestedformer MICCATI'22 61.38 265.51 61.38 64.29 40.17 72.95 63.22 32.59
A2FSeg MICCAI'23 60.86 131.48 60.86 76.10 40.90 32.95 77.02 30.57
H-DenseFormer MICCAI’'23 61.50 252.98 61.41 75.76 46.79 34.84 78.33 35.31

SAM-Med3D (CT) TNNLS’25 13.13 101.24 19.82 16.70 27.52 18.84 43.94 24.46
SAM-Med3D (PET) TNNLS’25 26.59 101.94 31.92 31.86 31.94 18.03 69.69 24.35

DINOv3-L (PET) Arxiv’25 10.87 — 6.85 64.96 9.43 — 9.40 25.93
DINOv3-L (CT+PET) Arxiv’25 12.17 — 7.50 71.16 30.86 — 34.99 39.98
SegFormer-3D CVPRW’24 40.44 174.43 56.73 38.19 4847 54.29 73.63 38.35
Slim UNETR T™MI'24 52.53 310.53 53.99 66.55 49.40 56.55 69.53 41.20
SuperLightNet CVPR’25 48.35 59.09 60.82 47.61 50.03 34.36 75.29 40.65
HCMA-UNet ICME’25 43.40 146.11 43.32 62.46 42.06 146.11 67.68 33.18
U-RWKV MICCAI’'25 57.18 61.12 66.69 59.40 4597 56.83 64.52 39.71
VeloxSeg Ours 62.51 241.08 67.76 66.28 56.48 47.66 74.81 49.24

i) Due to the small object and camouflage recognition involved, DINOv3-L (CT) cannot recognize tumors.
ii) “—” means that the value is out of range.

Table 1: Comparisons of segmentation performance on PET/CT datasets. The best performance is
highligted by red, followed by blue. VeloxSeg is highlighted in green .

3.2 IMPLEMENTATION DETAILS & BASELINES

Our implementation is based on PyTorch 2.4.1. Training is performed on an NVIDIA GeForce RTX
3090 GPU, while inference is run on an Intel(R) Xeon(R) Gold 5320 CPU. All datasets are stan-
dardized and partitioned into training, validation, and testing subsets in a 6:2:2 ratio. For training,
we use a batch size of 4 with a 1:1 positive-to-negative sample ratio. Data augmentation involves
random z-axis flipping with a 0.5 probability. We train the model for 300 epochs using the AdamW
optimizer (Loshchilov & Hutter, [2017) with an initial learning rate of 2.5e-4 and a weight decay of
0.01. The learning rate is managed by a linear warmup and cosine annealing scheduler (Liul 2022).

To ensure a convincing evaluation, we benchmark our method against a diverse set of models, in-
cluding 8 basic models, 3 multimodal models, and 5 lightweight models, which are categorized
accordingly in Tables [6] Furthermore, our analysis covers five distinct architectural paradigms:
CNN-based models (UNet (Cicek et al., 2016), VNet (Milletari et al., 2016), MedNeXt (Roy et al.,
2023), A2FSeg (Wang & Hongl [2023)); CNN-Transformer hybrids (UNETR (Hatamizadeh et al.,
2022), Nestedformer (Xing et al.,2022), SuperLightNet (Yu et al.,[2025b))); CNN-KAN hybrids (U-
KAN (Liu et al} 2024b)); CNN-Mamba hybrids (HCMA-UNet (Li et al., 2025))); and CNN-RWKV
hybrids (U-RWKYV (Ye et al., [2025)). The comparison is extended to include 2 advanced vision
foundation models: SAM-Med3D (Wang et al.l [2025a), which is evaluated in a zero-shot setting,
and DINOv3 (Siméoni et al., [2025)), for which the linear head is fine-tuned (Liu et al., [2025). Our
comparison conforms to the fair comparison principle outlined in Isensee et al.| (2024).
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Modules Ablation Hyper-Parameters Params FLOPs Thr. GPU Dice
Conv. Trans. SDKT. (M) (G) (Pat./s) (%)
v X X Width (32,64, 128, 256) 2.65 5.31 145.63 48.96
v X (16, 32, 64, 128) 0.73 241 616.53 50.10
v X X Kernel Size (7) 0.73 241 616.53  50.10
v X X (1,3,5) 0.66 2.30 295.02 53.65
v X X (1,1,1,1) 0.66 2.30 295.02 53.65
v X X (1,2,2,4) 0.75 2.33 291.18 53.95
v X X Group Size (2,4,4,8) 0.89 2.44 284.83  54.40
v X X P (4,8,8,16) 1.18 2.66 282.13 55.84
v X X (8,16, 16, 32) 1.75 3.11 279.48 55.14
v X X (16, 32,64, 128) 4.76 4.18 290.72  56.20
v v X . (2,2,2,2) 2.37 3.07 137.87 59.56
VY x  Adention Depth 7" y7 "4 188 290 18508 61.03
v v X Expansion Ratio (4,4,4,4) 1.88 2.90 331.56  61.03
v v X P (3,3,2,2) 1.61 2.84 336.94 6143
v v v Teacher + Texture Teacher 1.61 2.84 336.94 59.64
v v v Up Unify Upsampling 1.66 1.79 39091 59.71
v v v Gram + Gram Supervision  1.66 1.79 39091 62.51

Table 2: Module ablation experiments on AutoPET-II. “Conv.”: convolution encoder; “Trans.”:
transformer encoder; “SDKT.”: spatially decoupled knowledge transfer. The best performance is in
red and the second is in blue. Final setting is highlighted in green .

3.3 CLINICAL CAPABILITIES EVALUATION

Figure [T| provides a more intuitive comparison of the trade-offs between Dice and parameter count,
and between Dice and GPU throughput. Specifically, regarding segmentation performance, Table
shows the segmentation performance for PET/CT. Appendix [K] shows the qualitative results of all
models. Detailed computational costs are provided in the Appendix [H| Furthermore, we report
the GPU memory usage of all models on the three datasets, including training and inference, in
Appendix [l To release the model’s potential, we train VeloxSeg on the nnUNet (Isensee et all
2021; |Huang et al., 2023)) training framework and compare it with the nnUNet baseline, as shown
in Appendix [J} In addition, to verify the modality adaptation ability of the method, we test the
performance of MRI segmentation on BraTS2021.

Comparison with Basic Models. Against established basic architectures, including CNN-based,
CNN-Transformer-based, and CNN-KAN-based methods, VeloxSeg demonstrates superior perfor-
mance, with significantly lower computational cost. On the AutoPET-II dataset, VeloxSeg achieves
a 62.51% Dice. This result marginally outperforms the best basic model, VSmTrans, using only
13.30% of its parameters and 1.96% of its GFLOPs. On Hecktor2022, VeloxSeg still surpasses all
other models. These demonstrate that VeloxSeg is an efficient model in medical segmentation.

Comparison with Multimodal Models. When compared to specialized multimodal architectures,
VeloxSeg demonstrates its effectiveness and efficiency in cross-modal feature integration. On the
AutoPET-II dataset, VeloxSeg’s Dice of 62.51% outperformed H-DenseFormer, Nestedformer, and
A2FSeg by 1.01%, 1.13%, and 1.65%, respectively, while achieving GPU throughput improve-
ments of 2.80x to 7.75x and a significant reduction of computational complexity. Furthermore,
on Hecktor2022, due to reduced data size, other multimodal models exhibit overfitting and overly
conservative predictions, while VeloxSeg’s Dice score remains stable.

Comparison with Lightweight Models. Against other lightweight methods, VeloxSeg is clearly
superior. It leads in Dice on both datasets by a significant margin of over 5%. While some com-
petitors have fewer parameters, they are computationally expensive or lack CPU support for clinical
use. VeloxSeg offers the best balance, achieving 1.66 MParams and 1.79 GFLOPs. It also achieves
a high GPU throughput of 599.06 patches/s and supports CPU-only devices, making it the most
clinically practical solution.
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Comparison of Peak GPU Memory Usage. As shown in Appendix[[] VeloxSeg achieves the lowest
or second lowest peak GPU memory usage among all methods. Compared to basic CNN/CNN-
Transformer baseline models, VeloxSeg reduces memory usage by up to 20x during training and up
to 24 x during inference. Even among lightweight models, VeloxSeg is close to the most compact
model (Slim UNETR), reducing memory usage by up to 10x compared to other lightweight models.

Train on nnUNet Training Framework. As analyzed in Appendix [J} VeloxSeg achieves a 14.2%
Dice improvement with only 1.87% of nnUNet’s MParams and 0.058% of its GFLOPs (Isensee
et al.| 2021)), accompanied by a 4.8 x improvement in GPU throughput and a 52.5x on CPU.

Modality Adaptation Evaluation. On the BraTS2021 dataset, which contains 4 MRI modalities,
our early fusion strategy VeloxSeg-C achieves superior performance, surpassing the second-best
method by 1.72% Dice. This demonstrates that our VeloxSeg can adapt to diverse multimodal
segmentation tasks. Details can be found in Appendix [

3.4 MODULE ABLATION

We evaluate the performance of three model designs on AutoPET-II: JLC, PWA, and SDKT (Ta-
bleZ). When using JLC alone, Params and Dice have the lowest performance. Although the frame-
work is the simplest, the FLOPs/throughput is suboptimal due to the use of transposed convolution
for upsampling. After adding the attention mechanism, the accuracy increased by 5.59%, but the
throughput decreased by 233.6 Patches/s. After changing the upsampling strategy, FLOPs are signif-
icantly reduced from 2.84 G to 1.79 G, and the GPU throughput is increased from 336.94 to 599.06
Patches/s. The last three rows in the table show that it is not enough to just optimize the encoder’s
detail representation after adding the texture teacher. Only through the SDKT strategy based on
Gram matrices can the representation ability be improved. For more specific reasons and analysis
of hyper-parameter selection, please see Appendix [M]

PWA Effect Evaluation. To verify the robustness of PWA, we conduct three experiments:

Reduce computational redundancy through multi-scale windows. VolexSeg utilizes PWA to par-
allelize the computation of multi-scale relationships and reduce redundancy. Experimental details
of Figure []can be found in Appendix [N} The inter-group differences in PWA are significant and
positively correlated with the window size, indicating that redundant information is reduced and
long-distance modeling is efficient. Regarding the fourth attention stage, its design is more similar
to multi-head attention, retaining some redundancy.

Changes in features after adding PWA. We visualize the model’s decoding and its t-SNE projection,
as shown in Figure [5| The results indicate that PWA helps distinguish tumor regions from high-
metabolic regions while producing a more compact feature distribution.
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Effectiveness in handling heterogeneous modalities. We test various modal input combinations,
whose details could be found in Appendix [O} Notably, introducing modal interaction into PWA
improves the Dice score by 5.75%, significantly enhancing performance robustness without signifi-
cantly increasing computational costs.

JLC Effect Evaluation. To verify the robustness of JLC, we conduct four experiments:

Comparison of segmentation performance between the JL setting and the standard setting with sim-
ilar parameter sizes, as shown in Figure []] We use a uniform kernel size of 3 to ensure a gen-
eral setup. The JL-guided configuration, {n,2n,2n,4n}, consistently surpasses the larger setup,
{2n,2n,2n,2n}, in all cases. The best performance is a 54.14% Dice score, achieved when n = 4.
This suggests the JL-guided group size arrangement enables more robust feature extraction in a
lightweight model.

Comparison of external test performance between the JL setting and the pruned setting with similar
parameter sizes, as shown in Table [3] It verifies the generalization advantage of our lightweight
convolution over the pruning method. The model with ¢5 pruning (Filters’Importancel [2016)) on full
convolution performs significantly worse than JLC on BraTS2015 TCIA cases, even after a cycle of
training, pruning, and retraining.

Testing the segmentation performance of JLC on two other datasets, as detailed in the Appendix [P}
We test the segmentation performance of pure convolution networks. The convolution with JL-
guided group sizes consistently outperforms the depth-wise convolution, achieving performance
gains of 6.25% on Hecktor2022 and 1.16% on BraTS2021, with only a marginal increase of 0.091
million parameters. Notably, on the Hecktor2022 dataset, the JLC even surpasses the segmentation
performance of the full convolution while using 0.63 million fewer parameters.

Comparison of the t-SNE projection visualizations of JLC and depth-wise convolution is shown in
Figure [7] We test the depth-wise convolution and JLC in Figure[6|and Appendix [P} providing direct
visual evidence that depth-wise convolution disrupts the geometric adjacency between tokens.

Gram-Based Transfer Effect Evaluation. Our method is the only one to demonstrate positive
knowledge transfer, as shown in Table[d] This is due to our method’s avoidance of irrelevant features
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ROI, and we use SDKT. “Ours”’: backbone with the teacher and SDKT.

from the texture teachers, leading to better convergence. To further evaluate the effectiveness of
SDKT, we analyze Dice across varying lesion volumes, as shown in Figure[8] VeloxSeg outperforms
other lightweight models in segmentation mask fineness across all lesion volumes. Notably, for
lesion volumes between 1000 and 5000, “MM.”, “MM.+RC.”, and “Ours” show a significant upward
trend. We attribute this to the increased influence of complex textures in tumor segmentation at
these sizes. The above experiments show that there is potential for optimization in small lesion
segmentation. The loss weight hyperparameter experiment can be found in Appendix

4 CONCLUSION

In this paper, we propose VeloxSeg, a lightweight, theory-based framework that systematically al-
leviates the “efficiency / robustness conflict” in 3D medical image segmentation. By extending the
Johnson-Lindenstrauss lemma to the convolution setting, we derive a theoretical lower bound on the
group size of convolution per stage, ensuring spatial adjacency and enabling robust detail extraction.
Our paired window attention mechanism, by ensembling a tumor localization team composed of
attention at different scales, has near-linear complexity and more powerful modeling capabilities.
Furthermore, the multimodal interaction of PWA significantly enhances model representation. Fur-
thermore, our Spatially Decoupled Knowledge Transfer strategy establishes a positive knowledge
transfer path between the self-supervised texture teacher and the segmentation network, enabling
detailed representations that surpass baseline models without increasing inference overhead. Com-
prehensive evaluation on four diverse clinical datasets demonstrates that VeloxSeg achieves strong
robustness with minimal computational cost, requiring only a single CPU core.
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A REPRODUCIBILITY STATEMENT

Our code is available for download at the following anonymous link: https://anonymous.
4dopen.science/r/VeloxSeg-DC7BL We also provide the source code in the code folder in
the supplementary materials. The “README.md” file in the source code fully explains the entire
training process, including data preprocessing, training, and testing code.

B USE OF LARGE LANGUAGE MODELS (LLMS)

To enhance the quality and readability of this manuscript, we use Large Language Models (LLMs)
for assistance with the following tasks:

1. Table Formatting: Improving the presentation of tables, including adjustments to spacing,
typography, and alignment to conform to publication standards.

2. Proofreading: Identifying and correcting grammatical errors, such as improper tense and
word usage.

3. Language Refinement: Refining phrasing and sentence structure to improve clarity, con-
ciseness, and overall flow.

C NECESSITY OF MULTI-SCALE ATTENTION

CT scans the human body using X-rays and reconstructs a two-dimensional image from one-
dimensional projection data. These two-dimensional images are then stacked into a continuous
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three-dimensional image. CT imaging is characterized by high resolution, low tumor specificity,
and rich structural information (Kramer et al., [1989).

PET generally refers to 18F-FDG PET. Radiologists use the short-lived radionuclide 18F to label
glucose. After injecting this labeled glucose into the body, they observe the accumulation of glucose,
which indirectly reflects the metabolic activity of human tissues. Because tumors require large
amounts of glucose to support their growth and proliferation, tumor areas often appear bright in
PET images (Mu et al., |2020; Kapoor et al.,|2004; Bussink et al., 2011).

Magnetic resonance imaging (MRI) provides rich complementary information for analyzing brain
tumors and is routinely used in clinical practice. Specifically, for gliomas, commonly used MRI
sequences include T1-weighted (T1), contrast-enhanced T1-weighted (T1Gd), T2-weighted (T2),
and T2 fluid-attenuated inversion recovery (T2-FLAIR) images; each sequence plays a different
role in distinguishing between the tumor, peritumoral edema, and the tumor core. For meningiomas,
these sequences exhibit distinct characteristic features on T1Gd and contrast-enhanced T2-FLAIR
(FLAIR-C) MRI images (Menze et al., 2014bj; Manara et al., 2011; Kaittanis et al.| 2014; Bakas
et al., 2017).

This indicates that different medical modalities exhibit significant differences in their regions of
interest. In tumor imaging, PET imaging, characterized by high metabolic sensitivity and low res-
olution, excels at localizing tumors at large scales, but its low resolution prevents clear delineation
of tumor morphology. While CT imaging is less sensitive for tumors, it excels at clearly delineating
tumor tissue contours at small scales. Furthermore, the four contrast types in MRI contribute differ-
ently to the identification of targets at three different scales: tumor, peritumoral edema, and tumor
core. Therefore, multi-scale modality interaction is crucial in multimodal medical tasks.

D DETAILS OF PWA

D.1 PyYTORCH CODE

We’ve organized the PyTorch code and feature shape changes of PWA to help readers under-
stand its key operations. As shown in the Algorithm [1} Ny, = log(H/hy)/log(r) + 1, which
means that we expand the large window (hy, wp,dp) by Nyin — 1 to obtain full-image-sized
features. In the AutoPET-II dataset, we set the minimum large window size of each stage to
(3,3,3),(6,6,6),(3,3,3),(3,3,3), which means that after the synchronous expansion of the
paired windows, the large window sizes of each stage are:

* First Stage: (3,3,3),(6,6,6), (12,12,12), (24, 24, 24);

* Second Stage: (6,6,6),(12,12,12);

* Third Stage: (3,3,3),(6,6,6);

* Forth Stage: (3, 3, 3).
The settings of BraTS2021 are the same. In the Hecktor2022 dataset, the minimum maximum
window size at each stage is (4,4,2) , (8,8,4), (4,4,2), (4,4, 2). The number of windows must be
divisible by the number of channels of the feature map at the current stage to avoid extensive output

channels during linear mapping. Therefore, the minimum maximum window size in the second
stage is doubled.

D.2 FEATURE FLOW
As shown in Figure E], given the m-th modal feature of the k-th encoder stage, EF ¢
RCkXHkXWkXDk N:fn"n

i=1 °
where N*

win

*
k k i—1pk ni—1, k ,i—1 gk Nyin
-k Nwin _ k kY Nwin _ (T hbaT Wy, T db>7
{Win; }i:l = {B},S; }izl —{ (ri= TRk, ik iRy [ L )
1=

, we need to first compute a set of ordered paired window sizes {Wmf}
is the number of window pairs:

where r € N is the expansion rate (default 7 = 2), B¥ and S¥ represent the big window and small
window, respectively. h¥, w¥, d¥ represent the height, width, and depth of the big window; h%, w¥,
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Algorithm 1: Pytorch Code of Paired Window Attention (PWA)

Input:
- E: Input tensor of shape [M,C, H, W, D].

B: Min big window size, [hy, wp, dp).

- S: Min small window size, [hs, ws, ds].
- r: Expansion ratio for the paired windows.

- C: Number of channels per window after linear projection.

Output: Attentions of all modalities A
def PWA (E, B, S, r):
Nyin < |log(H/hy)/log(r)] +1// the number of paired windows

/* 1) Linear Projection

Q.K,V « [PWC(LN(E)) for _in range(3)]

/+ 2) Paired Window Gathering

for X in [Q, K, V] do

)(S%—[]// Initialize list for window features

for : < 1to N, do

// Split channels for each window feature

X; X[, (i-1)-C:i-C,...]

// Big and small window sizes expand synchronously
SivBi e 'S,?"i_l -B

// Partition with big window

X, < rearrange (Xi,"M Chat (Nh hb) (Nw wb) (Nd db)
-> M (Nh Nw Nd Chat) hb wb db"
// Collecting a salient token for each small window

X, F.max,poo|3d(Xi, S, Sl)

X; « rearrange (Xi,"M (N Chat) nh nw nd —>>
N Chat (M nh nw nd)"

Xs.append(X;)
end
// Concatenate all window features

/) X: [zf;ﬁm Ni,C, M - L]
X < torch.cat(Xs, dim = 0)

end

/+ 3) Multimodal Grouped Attention x1
A + multihead_attention(Q, K, V)

/* 4) Paired Window Scattering
// Inverse of gathering.

/) A: [M, ¢ H,W, D]

A + window_scattering(A)

/* 5) Paired Window Mixer
// A: [M,C,H,W,D]

A < E + Dropout(PWC(A))

return A

// Flatten spatial dims and concatenate multimodal sequences

*/

*/

*/

*/

*/
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Figure 9: Detailed architecture of Paired Window Attention (PWA). This figure focuses on visually
showing the feature flows of PWA.

d” correspond to the small window. Notably, r, B¥, and S¥ are closely related to the computational
cost, and the specific settings for different datasets are given in Appendix Since Bj’i/k is equal

to (H*, W*, D¥), there is no need to set N¥, in advance. Subsequently, the encoder features will
undergo the following steps in order:

D.2.1 LINEAR PROJECTION

We do not follow the habit of linear mapping: the number of output channels is equal to the
number of input channels, but based on the JL-guided minimum head size C¥, , the num-

ber of heads N .. and the number of window pairs N, . the number of output channels is

C* = min {nCk, ,n e N: Nk, NF . (nCk. ) > C*}, where C* is the actual head size. The
formula is as follows:

Q}, =PWC (LN (Ef,)) K}, = PWC (LN (Ef,)) , Vi, =PWC (LN (EX)), ()

where Q, K,V represent query, key, and value respectively. LN (-) represents layer normalization,
and PWC (+) represents point-wise convolution. For convenience, we use X to represent Q, K, V
in Algorithm [T)and Figure [3](a).

D.2.2 PAIRED WINDOW GATHERING

Synchronously expanding paired windows ensures that the sequence lengths of Q, K and V re-
main consistent across multiple scales, which enables parallel computation. Given QF,, KX 'V ¢

RO*xH*xW*xD" 'y here i denotes the i-th paired window, the processing pipeline is as follows:

* Channel Split: This operation assigns features to their corresponding windows along the
channel dimension. The feature shape becomes (Nfead x CF x H* x Wk x Dk).

* Big Window Partition: This operation partitions the features into non-
overlapping blocks based on the big window size BF. The feature shape becomes

(nf, NE S CF =y i Ly, ri_ldb), where n¥ is the total number of large windows.
* Small Window Pooling: This operation gathers salient tokens from each small window
SE. The feature shape becomes (nf, NE .4 CF hEJRE wh fwk, d’g/d’;)
* Flatten and Concatenation: These are feature reshaping operations. The new feature size
is (nf, NE., CF, ML) , where L = (h¥ /h¥) x (wF /wk) x (df /d¥) is the sequence length
and M is the number of modalities.

The above operations are repeated for each paired window. Thanks to the synchronous expansion,
the sequence length L is guaranteed to be equal across different scales. Finally, we can summarize
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this process as follows:

Q" = Gather (QF,--- , Q%) . K" = Gather (K}, --- ,K%/), V" = Gather (V¥,--- , V%),

(N
D.2.3 MULTIMODAL GROUPED ATTENTION
The similarity matrix calculation formula is as follows:
1 ~\NT -
st=—— (Q") @K, ®)

\ Gk
where ® represents matrix multiplication. In addition, each L x L block in the similarity matrix is

assigned a relative position code E’;OS to strengthen the position relationship between voxels in the
window and cross-modal voxels. The remaining attention is calculated as follows:

W* = softmax (S* + E},.) , 9)

AF =Wk g VF, (10)
WF* is the attention weight matrix, and AF¥ is the attention obtained for each window.
D.2.4 PAIRED WINDOW SCATTERING

After computing the attention mechanism in parallel, we perform the inverse operation of Paired
Window Gathering to map the multi-scale attention mechanism to the original feature space, ob-
taining the window attention A¥, for each modality, which has the same size as QF  KF V.

AV ... A% = Scatter(A"). (1)

D.2.5 PAIRED WINDOW MIXER

The above operations obtain window attention of different scales. We will use 1 x 1 x 1 convolution
to mix them to get the final feature EX . The formula is as follows:

EF, =Ef +PWC (AE) m=1,--- M. (12)

D.3 COMPUTATIONAL COMPLEXITY

Let N=H -W-D,B=hy-wy-dp, S = hs ws-dg,and k = 1—}-%24—- e ,,_2,\,1“”,% = 1’1T::Jj§“",
the computational complexity of PWA is calculated as follows:

N 1 1 B _, .B?
<B> (1+ﬁ+-~-+7%) (40 +2C>

S S2
number of big windows multiplication operations per big window

1 , .B

_ (N5 (407 428
- (%) (sc* +250),

E DETAILS OF JL-GUIDED GROUP SIZE

E.1 EMPIRICAL PARAMETRIZATION OF COVERING NUMBERS

Motivated by the classical covering-number results in [Heinonen| (2001, Definition 10.15 and Exer-
cise 10.17), we consider a hypothesis class whose covering number satisfies

N(e) < 0(1)5, C>1, ee(0,1), (13)
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where C' > 1 is a constant independent of the ball, e € (0, 1). To ensure generality, we do not make
further assumptions about the data to obtain specific parameters, but instead use empirical functions

for approximation: N = (M - v).

* M - v replaces 1/¢, representing the coverage density required per dimension. Given the
constraints of JL's logarithmic scaling and the requirement that the group size divides the
input channel, we omit the possible constant term.

* «a serves as a difficulty coefficient reflecting the dataset’s intrinsic complexity. We calibrate
« based on the most challenging dataset to ensure robust generalization across different
tasks.

E.2 WHY WE AVOID MORE COMPLEX POLYNOMIAL APPROXIMATIONS.

The covering-number estimate is only an intermediate step; JL lemma then applies a logarithm.
Consequently, low-degree and constant terms in a polynomial approximation have a minimal effect
after taking the log. For example, consider v = 43, M = 2, a = 1. If we add a constant term [3,
log(Mv + B) — log(Mv) = log(1 + 8/128) ~ 0. Besides, because the group_size must divide
input_channel, such a small interrupt rarely changes the final group size.

E.3 ANALYSIS OF DIFFERENT NUMBER OF MODALITIES AND THE GROUP SIZE OF 2D
IMAGES

For a typical lightweight 3D medical segmentation method, its network contains M € {1,2,4}
modalities with volume ratios {v* }izl = {438,163, 323} of each stage. Its complexity increases
with depth, which means that the group size is:
{4.20,,6.20,,8.30,10.4a}, M =1
Coaroup = § {4.9¢,6.90,,9.00,11.10}, M =2. (14)
{5.5¢t,7.60,9.7,11.8a}, M =4
Considering that the group size needs to be divisible by the total number of channels and that nonlin-
ear networks have stronger compression capabilities than linear networks, we use {CEI?YOUP}izl =
{4a, 8a, 8, 16} for each stage, where « is determined by the most difficult AutoPET-II dataset to
ensure universality. For convenience, we replace o with n = [a/4] € N, and the final convolution

group size of each stage of the network is set to {Cgroup}::1 = {n,2n,2n,4n}.

For lightweight convolution settings in the natural image domain, the input image typically has
M = 3 channels, and the volume ratio of each stage of the network is {vk }2:1 = {12,22 42 8%},
which means the group size is: {Cgroup}izl = {alog3,alog12,alog48, alog192} =~
{1.1a, 2.5, 3.9, 5.3ac}. Considering the integer divisibility of the channels, it is recommended

to use a group size of {a, 2cv, 4, 4a}. This setting is similar to the depth-wise convolution setting,
further demonstrating the effectiveness of depth-wise convolution in the natural image domain.

F DETAILS OF LOSS FUNCTION

F.1 SEGMENTATION LOSS

For segmentation, we use a combination of the cross entropy loss L. and the foreground dice loss
L gice, Which can optimize the detail and global segmentation effects. Deep supervision is performed
on the segmentation decoder. The formula is as follows:

HWD
1
Lee (PY) = ~ WD Z P;log (Y,), (15)
i=1
250 T PY

Edice (P7Y) =1- (16)

HWD HWD~, ’
Zz’:l P;+ Zi:l Y
where P is prediction map and Y is segmentation ground truth, subscript ¢ represents the i-th voxel.

21



Under review as a conference paper at ICLR 2026

F.2 RECONSTRUCTION LOSS

The texture teacher learns without data annotation, reconstructing the original input image based on
model features. The loss function is a simple mean squared error, as shown in the following formula:

1 M
Lre = — R,, — L.l 17
M;II || (17)

where M is the number of input modalities, R,,, and I,,, represent the reconstructed and original
images of the m-th modality, respectively.

G DETAILS OF DATASET

Dataset Modalities Region Label Type Image Size Crop Size  Voxel Spacing
Malignant melanoma . .
Whole ? Min Fixed
AutoPET-II  PET, CT Tty lymphoma, or lung (400, 400, 200) (96, 96, 96) (2.036,2.036, 3)

cancer lesions

Primary gross tumor

Head & volume (GTVp), or Min Median
Hecktor2022 PET, CT "\ lymph  node  gross (128,128,67) (128128:64) g 95 08 3.3)
tumor volume (GTVn)
Brain tumors: whole
. tumor (WT), tumor Fixed Fixed
Bmllsziall Ll Brain . re (TC), enhancing (240,240, 155) (96,96, 96) (1.0,1.0,1.0)
tumor (ET) subregions.
Glioma segmentation
BraTS . (multi-class):  necro- Fixed Fixed
016Tcia  MRL - Brain G ctive tumor and (240,240, 155)  (6:96:96) 4 5 17 1.0)
edema.

Table 5: Details of AutoPET-1I, Hecktor2022, BraTS2021, and BraTS 2016 TCIA datasets. If image
size is a variable, the minimum value is reported. If voxel spacing is a variable, the median value is
reported.

We evaluate our proposed VeloxSeg on four public medical image datasets: AutoPET-II (Ga-
tidis S|, 2022), Hecktor2022 (Oreiller et al.| [2022), BraTS2021 (Baid et al., [2021)), and BraTS 2016
TCIA (Menze et al., [2014a). The AutoPET-II and Hecktor2022 datasets are multimodal PET/CT
datasets for tumor segmentation. AutoPET-II contains 1,014 whole-body PET/CT scans with vari-
able image dimensions and is cropped to 96 x 96 x 96 patches. Hecktor2022 comprises 524 head
and neck PET/CT scans, cropped to 128 x 128 x 64 patches. The BraTS2021 and BraTS 2016 TCIA
datasets are multimodal (T1, Tlce, T2, FLAIR) MRI datasets for brain tumor segmentation. Each
patient’s data is registered to a common spatial resolution of 240 x 240 x 155 and undergoes skull
stripping. The brain tumor region is segmented into three primary sub-regions: the enhancing tumor
(ET), the tumor core (TC), and the whole tumor (WT). For training efficiency, volumes are cropped
to 96 x 96 x 96 patches. BraTS2021 contains 1,251 cases for training and validation, while BraTS
2016 TCIA (244 cases) serves as an external test set to evaluate domain generalization capability
across different data distributions.

We use four public medical image datasets to verify the effectiveness of SlimMSCT, including
AutoPET-II, Hecktor2022, BraTS2021, and BraTS 2016 TCIA, which is used as an external test
set to compare the generalization ability of the model. The first two datasets contain CT and PET
images, and the latter two datasets contain 3D MRI images with four modalities. The details of the
datasets are described in Table
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Methods Type AutoPET-II Hecktor2022

MP. GE.  ThrG. ThrC. MP. GF. ThrG. ThrC.
Basic Models
UNet CNN 5.75 136.56 101.04 0.23 5.75 161.84 85.60 0.19
VNet CNN 45.60 322.22 5899 0.14 45.60 381.89 49.82 0.11
MedNeXt-S CNN 5.54 5793 2795 0.06 554 6854 2320 0.05
UNETR CNN-Transformer 95.76 83.61 131.96 0.40 95.76 99.09 105.78 0.35
Swin UNETR  CNN-Transformer 15.51 84.26 38.37 0.14 15.51 100.66 28.58 0.10
VSmTrans CNN-Transformer 12.48 91.44 36.56 0.14 3.12 28.79 34.13 0.16
UNETR++ CNN-Transformer 19.97 5793 161.15 0.67 19.97 68.66 138.39 0.56
U-KAN CNN-KAN 7.06 2290 187.06 0.82 7.06 27.13 159.92 0.75
Multimodal Models
Nestedformer ~ CNN-Transformer 4.71 58.62 95.63 041 4.71 6948 79.05 0.35
A2FSeg CNN 41.32 20797 52.02 0.17 41.32 246.48 40.60 0.13

H-DenseFormer CNN-Transformer 3.64 71.91 12335 044 3.64 85.23 102.80 0.37

Lightweight Models

SegFormer-3D  CNN-Transformer 4.50 5.11 364.24 331 450 6.06 305.01 2.67
Slim UNETR  CNN-Transformer 1.77 3.83 178.33 1140 1.77 4.53 151.85 8.78
SuperLightNet CNN-Transformer 2.75 1942 5548 0.27 2.75 23.01 4736 0.23

HCMA-UNet CNN-Mamba 281 26.15 5451 — 281 31.00 4648 —
U-RWKV CNN-RWKV 144 2068 8209 — 144 2451 7398 —
VeloxSeg CNN-Transformer 1.66 1.79 39091 6.67 1.66 2.13 319.80 5.47

Table 6: Computational performance comparison of all models on AutoPET-II and Hecktor2022
datasets. “MP.””: Million Parameters; “GFE.”: GFLOPs; “ThrG.”: Throughput on GPU; “ThrC.”:
Throughput on CPU.

H DETAILS OF COMPUTATIONAL PERFORMANCE

We evaluate the computational performance of VeloxSeg against other leading models on the
AutoPET-II, Hecktor2022, and BraTS2021 datasets. Our analysis focus on four key metrics: the
number of model parameters in millions, GFLOPs, GPU throughput, and CPU throughput. On the
AutoPET-II and Hecktor2022 datasets, VeloxSeg established a new standard for efficiency. As de-
tailed in Table [6] our model operates with only 1.66 million parameters and the lowest GFLOPs
among all competitors, requiring just 1.79 on AutoPET-II and 2.13 on Hecktor2022. This lean
profile translates to exceptional speed, where VeloxSeg recorded the highest GPU throughput and
second-highest CPU throughput on both datasets. In the lightweight category, while Slim UNETR
is marginally smaller, VeloxSeg surpasses it in computational cost and processing speed.

On the BraTS2021 dataset, we test early-fusion VeloxSeg due to its concentrated target distribution,
absence of small lesions, and low modality heterogeneity. Table[7] shows that VeloxSeg-C is one of
the smallest models with only 1.46 million parameters, yet it achieves the lowest GFLOPs at 2.64.
Most notably, it delivered the highest GPU throughput of any model, processing 536.62 images/s,
alongside the second-fastest CPU throughput. This positions VeloxSeg-C as a more efficient and
faster alternative to other lightweight models like U-RWKYV and SegFormer-3D.

Across all three benchmarks, the VeloxSeg architecture demonstrates an excellent balance between
model size, computational requirements, and processing speed, making it well-suited for deploy-
ment in resource-constrained environments. Furthermore, segmentation methods based on sequence
models, such as Mamba and RWKY, lack CPU support, significantly limiting their application in
edge devices.
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Methods Type MP.| GF.| ThrG.1 ThrC. 1

Basic Models

UNet CNN 5.75 138.14 103.70 0.23
VNet CNN 45.61 32285 63.37 0.14
MedNeXt-S CNN 5.54 5795 27.5 0.06
UNETR CNN-Transformer 102.06 85.79 128.16 0.41
Swin UNETR  CNN-Transformer 15.51 85.53  38.11 0.13
VSmTrans CNN-Transformer 12.48 9272  36.18 0.13
UNETR++ CNN-Transformer 19.98 58.81 153.63 0.52
U-KAN CNN-KAN 7.06 23.69 181.89 0.85
Multimodal Models

Nestedformer ~ CNN-Transformer 7.52 88.43  56.92 0.23
A2FSeg CNN 74.55 361.18 28.92 0.08

H-DenseFormer CNN-Transformer 5.39 73.18 95.61 0.42

Lightweight Models

SegFormer-3D  CNN-Transformer 4.53 542  355.73 2.98
Slim UNETR ~ CNN-Transformer 1.78  6.59 97.50 10.62
SuperLightNet CNN-Transformer 2.75 19.54  55.13 0.28
HCMA-UNet  CNN-Mamba 281 26.69 53.72 -
U-RWKV CNN-RWKV 143 21.08 83.15 —

VeloxSeg-C CNN-Transformer 1.46  2.64  536.62 5.23

Table 7: Computational performance on BraTS2021 dataset with patch size 96 x 96 x 96 and 4
modalities (T1/T1ce/T2/FLAIR). “MP.”: Million Parameters; “GF.”: GFLOPs; “ThrG.”: Through-
put on GPU; “ThrC.”: Throughput on CPU.

VeloxSeg (Reference) Lightweight Models Multimodal Models Basic Models
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Figure 10: Visualization of memory usage for training and inference of all models. Arranged from
left to right in reverse order of Table @
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Methods Type AutoPET-II Hecktor2022 BraTS2021
™. IM. ™. IM. TM. IM.
Basic Models
UNet CNN 5054 2268 5942 2698 5112 2090
VNet CNN 3820 1762 4460 2072 3886 1684
MedNeXt CNN 17216 3678 20372 4376 17258 3734
UNETR CNN-Transformer 4114 1788 4626 1914 4106 1460
Swin UNETR  CNN-Transformer 11164 2616 13258 3704 11166 3466
VSmTrans CNN-Transformer 13856 1956 13318 2532 14202 1972
UNETR++ CNN-Transformer 3392 940 3906 1088 3640 984
U-KAN CNN-KAN 2138 558 2360 640 2200 606
Multimodal Models
NestedFormer ~ CNN-Transformer 4428 1658 5182 1966 7274 2200
A2FSeg CNN 7748 2004 9102 2352 15604 3074
H-DenseFormer CNN-Transformer 3172 1256 3778 1474 3712 1094
Lightweight Models
SegFormer-3D  CNN-Transformer 2272 426 2702 436 2096 430
Slim UNETR ~ CNN-Transformer 488 106 562 124 602 172
SuperLightNet CNN-Transformer 7812 2510 9192 2730 7842 2266
HCMA-UNet CNN-Mamba 7730 1480 9098 1892 7938 2020
U-RWKV CNN-RWKV 4582 900 5388 1044 4670 936
VeloxSeg CNN-Transformer 842 152 1006 178 1392 1112

Table 8: Peak GPU memory usage for training and inference for all models across three datasets. All
models were tested with a fixed batch size of 2, ensuring all other experimental conditions remained
the same. “TM.” represents the peak GPU memory usage during training, and “IM.” represents the

peak GPU memory usage during inference.

I DETAILS OF GPU MEMORY USAGE

Table [§] shows that VeloxSeg has the second lowest memory footprint, saving more GPU memory
than all non-lightweight baseline models. As shown in Figure [10} on the AutoPET-II dataset, the
base methods” GPU memory usage is 2.5 to 20 times that of VeloxSeg, with inference memory usage
reaching up to 24 times higher. Compared to other lightweight models, VeloxSeg consistently has
less GPU memory usage than SegFormer-3D, SuperLightNet, HCMA-UNet, and U-RWKYV, which,
despite claiming to be lightweight, have GPU memory usage that is 5.9 to 17 times higher than ours.

J  RESULTS ON THE NNUNET TRAINING FRAMEWORK

Dataset MParams | GFLOPs | Thr.GPU1{ Thr.CPU 1 Dice{ HD9YS |

AUtoPET.II 88.62 3078.83 81.13 0.127 55.85 193.54
1.66 1.79 390.91 6.67 70.05 177.51

Hecktor2022 88.62 4828.04 68.02 0.106 60.80 36.67
1.66 2.13 319.80 5.47 62.51 30.22

Table 9: Performance comparison between nnUNet and VeloxSeg across PET/CT datasets. Both

segmentation performance and computational efficiency are evaluated.

To unleash more model potential, we placed the model in the nnUNet training framework and com-
pleted the training while keeping the patch size consistent with the experimental setting. The results
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are shown in Table[9] It can be seen that our model has achieved comprehensive transcendence. In
the AutoPET-II dataset, we achieved a Dice that was 14.2% higher than the nnUNet baseline with
1.87% of the parameters and 5.81e-2% GLOPs, and the GPU throughput and CPU throughput in-
creased by 4.8x and 52.5x respectively. Similarly, in the Hecktor2022 dataset, VeloxSeg achieved
a Dice that was 1.71% higher than the nnUNet baseline with 1.87% of the parameters and 4.41e-2%
GLOPs, and the GPU throughput and CPU throughput increased by 4.7 x and 51.6x respectively.

K QUALITATIVE RESULTS
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Figure 11: 3D qualitative visualization of different methods on the AutoPET-1I, Hecktor2022 and
BraTS2021 datasets. In PET-CT datasets, model predictions are shown on CT images (red indicates
true positives, yellow indicates false positives, and blue indicates false negatives); In MRIs datasets,
model predictions are shown on T1CE images (red represents ET, yellow represents TC, and green
represents WT).

Figure[IT]show the qualitative results of three segmentation cases: large melanoma lesions, primary
and secondary lesions of right tonsil tumors or lymphomas, and glioma lesions. It can be seen
that our method can accurately locate the tumor area, exclude the wrong attention to areas such as
intracranial veins, and the prediction results are consistent with the labels.

L MODALITY ADAPTATION EVALUATION

On BraTS2021 MRI brain tumor dataset, we use an early fusion strategy (VeloxSeg-C) that does
not slow down as the number of modalities increases, as shown in Table @l Since brain tumors are
large and centralized, and the slices processed are relatively fixed, almost all models achieved good
results. Our model improves the Dice by 1.72% compared to the state-of-the-art SuperLightNet.

M HYPERPARAMETER ANALYSIS

M.1 MODULE HYPERPARAMETER
Model optimization, detailed in Table[2] focused on balancing segmentation performance and com-

putational efficiency. convolution adjustments, including reducing model width (32,61, 128, 256)
to (16, 32,64, 128), improved CPU throughput, from 10.83 to 20.23, and Dice, from 48.96% to
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Dice Similarity Coefficient (%) Hausdorff Distance 95% (mm)

Method

Avg.t ETT TC1T WT1T Avg.| ET| TC| WT]
UNet 88.18 89.62 85.65 89.28 4.93 595 7.52 3.59
V-Net 88.86 90.66 86.16 89.75 5.26 5.98 8.29 4.31
MedNeXt-S 90.70 92.64 8833 91.12 448 4.72 7.10 3.33
UNETR 85.44 88.12 81.49 86.71 6.68 &8.51 8.19 4.75
Swin UNETR  88.52 90.19 85.73 89.63 5.07 6.37 7.29 3.44
VSmTrans 86.62 91.15 78.01 90.71 7.00 6.00 12.07 3.44
UNETR++ 88.77 90.26 87.01 89.05 4.49 5.30 6.98 3.76
U-KAN 88.51 90.57 86.14 88.82 5.44 5.77 8.03 4.65
Nestedformer 88.54 89.60 86.71 89.30 4.21 5.44 7.38 3.13
A2FSeg 88.18 91.78 84.58 88.18 4.66 4.47 7.51 3.72

H-DenseFormer 89.35 90.80 86.66 90.59 5.58 5.85 8.88 3.97

SegFormer-3D  89.18 90.37 87.49 89.69 4.61 545 6.30 3.57
Slim UNETR 87.33 89.31 85.00 87.66 5.16 6.46 7.57 3.52
SuperLightNet 89.72 91.46 87.22 90.48 4.46 5.39 6.33 3.06
HCMA-UNet 89.53 91.63 86.24 90.72 4.79 5.05 8.12 4.15
U-RWKV 89.04 91.34 86.94 88.83 542 6.39 7.66 4.63

VeloxSeg-C 91.44 93.09 89.00 92.24 3.75 3.89 4.41 3.35

Table 10: Segmentation performance comparison on the BraTS2021 dataset. VeloxSeg-C’s metrics
are highlighted in green . The best performance is red and the second best performance is blue.

Ablation A, Asqrt  Dice T
1.5 1.5 58.03-4.41

Depth CT PET Enc. Dec. Lore 1.0 15 61.53-092
1 307 322 3.02 3.06 N,
2 285 2.82 273 275 05 25 6223-028
3 237 238 226 229 05 20 62.51
4 182 185 174 — Lstyie 05 1.5 62.44-0.07
05 1.0 61.66-0.85
Table 11: Ratio of channels to input embeddings 05 05 60.55-2.06

after pruning the FFN layers of PWA and JL.C.
Baseline Dice: 69.94%; after pruning: 68.49%.  Table 12: Hyperparameters experiments with
loss weight on AutoPET-II.

50.10%. Replacing large kernel convolution (7) with parallel small kernels (1, 3, 5) yielded a 3.55%
Dice increase, from 50.10% to 53.65%, while simultaneously reducing MParams from 0.73 to 0.66,
and GFLOPs from 2.41 to 2.30. Optimal group channel setting (4, 8,8, 16) achieved a 55.14%
Dice. Attention depth reduction (2,2, 2,2) to (1,1, 1, 1) surprisingly enhanced Dice, from 59.56%
to 61.03%. As suggested in Table[IT] reducing the FFN dilation rate of Transformer/Convolution to
(3,3,2,2) can slightly improve Dice performance while reducing computational cost.

M.2 LoSS WEIGHT

Considering the differences in the contributions of various tasks to segmentation, we need to adjust
the relative weights between different tasks to explore the optimal parameter update process. To
this end, we adopt the strategy of controlling variables and adjust the loss weights of £,.. and Ly
in turn. The specific results are shown in Table The final parameters of each experiment are
highlighted in green , and red and green are used to indicate the improvement and deterioration in

the process. Finally, the optimal weight parameters are selected as \,.. = 0.5, A\sqxt = 2.0.
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N COMPUTATION OF MEAN ATTENTION DISTANCE

To analyze the locality of attention heads, we compute the Mean Attention Distance (MAD), a metric
that measures the average physical distance between a query voxel and the key voxels it attends to,
weighted by the attention scores. We extend the Mean Attention Distance metric to 3D volumes to
analyze attention patterns in volumetric data, and its computation is detailed below.

Let the input 3D volume be partitioned into a grid of H x W x D voxels, resulting in a total of
L = H-W - D voxels. The attention weight matrix for a given head is denoted by W € RL*L,
where W is the attention weight from voxel ¢ to voxel j. Let s € RT be a scalar representing the
physical edge length of a single cubic voxel.

First, we map each voxel’s flattened 1D index i (where ¢ € {0,...,L — 1}) to its physical 3D
coordinates (z;,y;, z;). Assuming a standard row-major flattening order where the x-axis (width) is
the fastest-changing dimension and the z-axis (depth) is the slowest:

2= i J(H W)
yi = [(i mod (H-W))/W . (18)
r; =i mod W

Next, we compute the pairwise physical distance matrix D € RY*Z_ Each element D;; represents
the scaled Euclidean distance between the centers of voxel ¢ and voxel j:

Dy = s/ (s = 3)2 + (5 = 37)? + (21— 2)? (19)

Finally, the Mean Attention Distance (MAD) is formulated as the expectation of the physical dis-
tance over the attention distribution. As shown in Equation it is computed by summing all dis-
tances weighted by their corresponding attention scores, and then averaging over all query voxels:

| L=ri-t
MAD = Z Z W,; - Dy (20)
1=0 j=0
A smaller MAD value indicates that the attention head primarily focuses on local information,

whereas a larger MAD value signifies a more global attention pattern across the volume. The win-
dow size of each stage of PWA is shown in Appendix D]

O PWA MULTIMODAL EVALUATION

Modality MParams | GFLOPs| Thr. (GPU) 1 Dice 1

CT 1.39-0.27 1.61-0.18 768.48 +377.57 21.43 -41.01
PET 1.39-0.27 1.61-0.18 768.48 +377.57 49.28 -13.16
PET+CT 1.39-0.27 1.70-0.09 694.76 +303.85 56.69 -5.75
(CT, PET) 1.66 1.79 390.91 62.51

Table 13: Modality ablation experiments performed on AutoPET-II. “PET+CT” indicates an early
fusion strategy, and “(CT, PET)” indicates consideration of modality interaction.

To verify the effectiveness of PWA in heterogeneous modal modeling, we test various inputs, as
shown in Table [I3] Using only PET or CT reduces model size and complexity but sacrifices seg-
mentation performance. An early fusion strategy achieves a Dice of 56.69%, outperforming the pure
convolution framework’s 55.84%. Crucially, introducing modal interaction in PWA improves Dice
by 5.75%, significantly improving performance robustness without significantly increasing compu-
tational or time costs.

P JL-SETTING GENERALIZATION EVALUATION

Results demonstrate the effectiveness of JL-guided group size configurations (4, 8, 8, 16) on various
datasets. While the smallest configuration (1, 1,1, 1) achieves the lowest computational cost, reduc-
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Table 14: Performance comparison of different group size configurations across datasets. The JL-
guided configuration (4, 8, 8, 16) is used as the reference baseline.

Dataset Configuration = MParams | GFLOPs | Dice 1

(1,1,1,1) 0.618 -0.091 2.637-0.075 37.95-6.25
Hecktor2022 (4, 8,8, 16) 0.709 2712 44.20
(16,32, 64,128) 1.342 +0.633 3.029 +0.317 43.21-0.99
(1,1,1,1) 0.629 -0.091 2.377-0.063 85.82-1.00
BraTS2021  (4,8,8, 16) 0.720 2.440 86.82
(16,32,64,128) 1.353+0.633 2.708 +0.268 87.98 +1.16

ing segmentation performance by 0.091 MParams and 0.063 to 0.075 GFLOPs, it significantly de-
grades segmentation performance, particularly on the Hecktor2022 dataset, which features heteroge-
neous modality data and cross-organ distribution of targets, where the Dice drops by 6.25%. Larger
configurations (16, 32, 64, 128) only slightly improve the Dice (by 1.16% on BraTS2021) but signif-
icantly increase computational complexity by 0.633 MParams and 0.268 to 0.317 GFLOPs. This ex-
periment further demonstrates that JL-guided configurations strike an optimal balance, maintaining
competitive performance while ensuring computational efficiency suitable for clinical deployment.

Q CONVERGENCE ANALYSIS OF MODELS

VSmTrans Training Loss on AutoPET-II
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Figure 12: Visualization of the training loss of VSmTrans, which has the largest number of parame-
ters, across two datasets.

We set the number of training epochs to 300, a common choice in recent literature. It’s important to
note that the “1000 epochs” in nnU-Net is not directly comparable: nnU-Net uses 250 iterations per
epoch, for a total of 250 x 1000 = 250, 000 iterations. In our setup, each epoch corresponds to one
complete traversal of the dataset. Considering we use 60% of the training data (random sampling)
per training cycle, the number of iterations is as follows: AutoPET-II: (300 x 1014 x0.6 = 182, 520);
BraTS2021: (300 x 1251 x 0.6 = 225,180). Therefore, our total number of iterations is on the
same order of magnitude as nnU-Net, and adjusting the number of iterations based on dataset size is

29



Under review as a conference paper at ICLR 2026

reasonable. To alleviate readers’ concerns about model convergence, we further plotted the training
loss curve for the model with the largest number of parameters, VSmTrans. As shown in Figure[12]
this model had fully converged at the end of training.

R COMPARISON OF DIFFERENT ATTENTION MECHANISMS

Methods MParams GFLOPs Tr. Mem. Inf. Mem. Thr. GPU Dice

Window 1.51-0.10 2.80-0.04 678 -46 1066 +918 227.28 +45.83 56.01-5.42
Downsample 1.52-0.09 2.78-0.06 1066 +342  136-12  239.01 +57.56 55.18 -6.25

PWA 1.61 2.84 724 148 181.45 61.43

Table 15: Computation consumption of different attention variants.

Under similar computational cost constraints, we replaced PWA with other attention mechanisms,
such as window-based multimodal attention and downsampling-based multimodal attention, as
shown in Figure [T5] Although our method is not optimal due to the larger tensor size change rate,
the model performance is significantly better than the other two attention mechanisms, which further
validates the effectiveness of PWA for heterogeneous modality modeling.

S COMPARISON OF DIFFERENT KNOWLEDGE TRANSFER STRATEGIES

Methods MParams GFLOPs Tr. Mem. Inf. Mem. Thr. GPU Dice
w/o Teacher 1.61 2.84 724 148 181.45 61.43
w Teacher 1.66 +0.05 1.79-1.05 824 +100 152 +4 39091 +209.46 59.71-1.72
+ /1 1.66 +0.05 1.79-1.05 824 +100 152 +4 39091 +209.46 1.67 -59.76

+ Affinity 1.66 +0.05 1.79-1.05 894 +170 15244 390.91 +209.46 41.44-19.99
+ Shared ROI 1.66 +0.05 1.79-1.05 1064 +340 152 +4 39091 +209.46 57.15-4.28

+ SDKT 1.66 +0.05 1.79-1.05 842 +118 152 +4 39091 +209.46 62.51 +1.08

Table 16: Computation consumption of different knowledge transfer methods.

The comparison results with other strategies are listed in Table [] with settings largely consistent
with the dual-stream settings in reference (Qiu et al., 2023). All comparison methods were per-
formed under the same conditions. The additional training overhead is listed in Table [I6] where
SDKT uses only about 100 MB more memory than the baseline methods.

T K-FOLD AND MULTIPLE SEED

Fold-wise Dice Distribution (4-fold CV)
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Figure 13: Box plot of 4-fold cross-validation results
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Model Metric Mean Std  p-value
Dice 62.31 (+£2.10) 1.32 -
VeloxSeg Precision 64.14 (£4.18) 2.63 -

Recall 69.87 (£4.33) 2.72 -

Dice 60.65 (£3.47)  2.18 0.25
VSmTrans Precision  70.43 (+6.23) 3.91 0.042
Recall 61.08 (£11.56) 7.26 0.089

Dice 58.19 (£1.65) 1.04 0.003
U-RWKV Precision  62.77 (£6.14)  3.86 0.58
Recall  66.91 (£10.63) 6.68 0.46

Dice 59.65 (£3.92) 246 0.12
H-Denseformer Precision  66.04 (£5.75) 3.61 0.43
Recall 64.16 (£16.52) 10.38 0.36

Table 17: Results of AutoPETII 4-fold cross-validation. Only the state-of-the-art (SOTA) of each
model is considered. The values in parentheses represent the 95% confidence intervals. The p-values
compared to VeloxSeg are determined using the Welch t-test.
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Figure 14: Pareto plot of 4-fold cross-validation results

To further demonstrate the representativeness of our experimental results—that is, that the met-
ric results are not significantly affected by dataset splitting and changes in the random number
seed—we performed 4-fold cross-validation on the AutoPETII dataset for state-of-the-art models
in three model categories, with each fold trained using an independent random seed. For each
model, we report the mean, standard deviation, 95% confidence interval, and exact p-value (Welch
t-test) relative to the VeloxSeg baseline (Table[T7). Furthermore, box plot and pareto plot illustrate
the distribution of metric values, as shown in Figure[I3]and Figure[T4] The results demonstrate that
the models are not sensitive to random initialization and data sorting.

U SCALING LAW OF VELOXSEG

Model Dice  Parameters (M) FLOPS (G)
nnUNet 55.85 88.62 3078.83
VeloxSeg S 68.56 1.19 1.41
VeloxSeg B 70.05 1.66 1.79
VeloxSeg B+ 71.56 5.26 4.27
VeloxSeg L 72.11 2.65 2.45

Table 18: Accuracy results of VeloxSeg after increasing model size.

Our specific parameter configuration is as follows:
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* S represents changing the convolution kernel from [1,3,5] to [3] under the original param-
eter configuration.

* B represents the original parameter configuration.
* B+ represents scaling up the number of attention and convolution channels from 16 to 32.

* L represents scaling up the depth of attention and convolution from 1 to 2.

In VeloxSeg, the Dice value is directly proportional to the number of parameters/floating-point oper-
ations: for versions S to B, the Dice value increases by 1.5 for every 0.47M additional parameters; for
versions B to B++, the Dice value increases by 1.5 for every 360M additional parameters; while for
version L, with fewer parameters/floating-point operations than B++, the Dice value only increases
by 0.55. This indicates diminishing returns and that architectural adjustments (not just scaling) are
key to improving performance. Non-monotonic resource ordering (L version is smaller than B++
version) results in roughly equal Dice values.
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