

000 001 002 003 004 005 006 007 008 009 010 JOHNSON-LINDENSTRAUSS LEMMA GUIDED NET- WORK FOR EFFICIENT 3D MEDICAL SEGMENTATION

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Lightweight 3D medical image segmentation remains constrained by a funda-
012 mental “*efficiency / robustness conflict*”, particularly when processing complex
013 anatomical structures and heterogeneous modalities. In this paper, we study
014 how to redesign the framework based on the characteristics of high-dimensional
015 3D images, and explore data synergy to overcome the fragile representation of
016 lightweight methods. Our approach, VeloxSeg, begins with a deployable and ex-
017 tensible dual-stream CNN-Transformer architecture composed of Paired Window
018 Attention (PWA) and Johnson-Lindenstrauss lemma-guided convolution (JLC).
019 For each 3D image, we invoke a “glance-and-focus” principle, where PWA rapidly
020 retrieves multi-scale information, and JLC ensures robust local feature extraction
021 with minimal parameters, significantly enhancing the model’s ability to operate
022 with low computational budget. Followed by an extension of the dual-stream ar-
023 chitecture that incorporates modal interaction into the multi-scale image-retrieval
024 process, VeloxSeg efficiently models heterogeneous modalities. Finally, Spatially
025 Decoupled Knowledge Transfer (SDKT) via Gram matrices injects the texture
026 prior extracted by a self-supervised network into the segmentation network, yield-
027 ing stronger representations than baselines at no extra inference cost. Experi-
028 mental results on multimodal benchmarks show that VeloxSeg achieves a 26% Dice
029 improvement, alongside increasing GPU throughput by 11 \times , CPU by 48 \times , and
030 reducing training peak GPU memory usage by 1/20, inference by 1/24.

031 1 INTRODUCTION

032 3D medical image segmentation serves as a cornerstone of contemporary clinical workflows (Wu
033 et al., 2025; Peiris et al., 2023), driving rapid advances in semantic segmentation models (Liu
034 et al., 2024a; Shaker et al., 2024; He et al., 2025; Yu et al., 2025a; Wald et al., 2025). However,
035 translating these advances into clinical practice faces significant obstacles, including limited hard-
036 ware resources, stringent latency requirements, and the need to achieve multi-organ generalization
037 while handling heterogeneous multimodal data in deployment environments. These challenges have
038 spurred the development of lightweight 3D medical segmentation methods, leading to lightweight
039 approaches with fewer than 5 million parameters (Perera et al., 2024; Pang et al., 2024; Yu et al.,
040 2025b; Li et al., 2025; Ye et al., 2025). Yet, the pursuit of smaller parameter counts and lower com-
041 putational costs has revealed a fundamental and increasingly prominent trade-off: these lightweight
042 models struggle to maintain both efficiency and robust performance when handling heterogeneous
043 data and complex lesions, which we term “*efficiency / robustness conflict*”. We address this problem
044 from two key perspectives:

045 **Insufficient consideration of the high-dimensional complexity of 3D data.** Recent sequence
046 models, such as Mamba (Gu & Dao, 2023; Xing et al., 2025) and RWKV (Peng et al., 2023; Ye
047 et al., 2025), have achieved remarkable progress in segmentation, owing to their linear complexity
048 and long-range modeling capabilities. However, due to the lack of more efficient scanning strategies
049 suitable for 3D data, these methods have not yet supplanted CNN-Transformer architectures in the
050 domain of efficient medical segmentation. Our model is built on a dual-stream CNN-Transformer
051 architecture, synergizing the complementary strengths of both components: the inductive bias (lec,
052 1989; Mansour et al., 2019) and training stability (He et al., 2016; Ioffe & Szegedy, 2015; Ulyanov
053 et al., 2016) of convolutions with the global modeling power (Vaswani et al., 2017) and extensibility
054 (Lu et al., 2019; Chen et al., 2020; Dosovitskiy et al., 2020) of Transformers. Pruning is the most

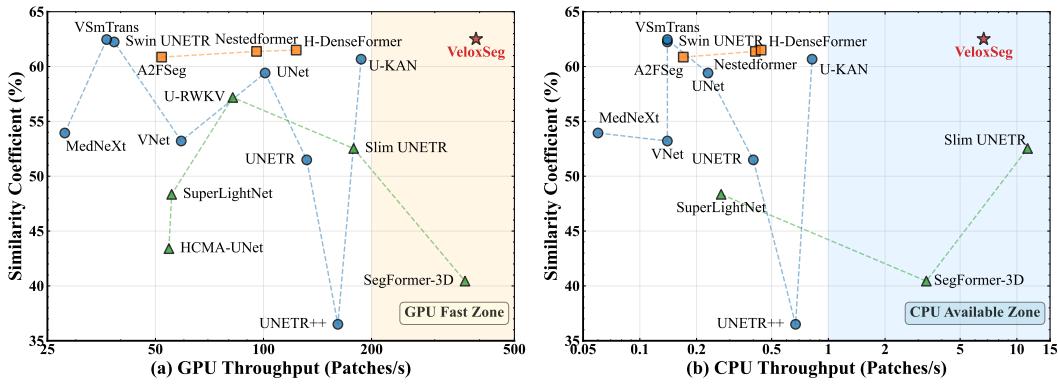


Figure 1: Comparison of our proposed VeloxSeg with recent methods on the AutoPET-II test set. Basic models, multimodal models, lightweight models, and our model are marked with circles, squares, triangles, and stars, respectively. GPU and CPU Throughput are measured on an NVIDIA RTX3090 GPU and a single-core Intel(R) Xeon(R) Gold 5320 CPU, respectively.

common approach to model lightweighting (Molchanov et al., 2019; Fang et al., 2023), but its final configuration relies on dataset-specific importance metrics and hand-tuned sparsity schedules, which limit generalizability and lead to expensive retraining. Therefore, developing lightweight and efficient components is essential. Constructing relationships among tokens is the core of feature modeling. In principle, self-attention (Dosovitskiy et al., 2021) can represent arbitrary dependencies, but in practice it is constrained by computation and memory. Window-based attention (Hatamizadeh et al., 2021; Du et al., 2025) performs fine-grained relation modeling within local windows, but it relies on cascaded operations to capture cross-window interactions, leading to substantial redundancy. Axial attention (Liu et al., 2024a) and downsampled attention (Pang et al., 2024; Perera et al., 2024; Kuang et al., 2025) accelerate the construction of relationships between a token and distant tokens by constraining attention paths or operating at lower resolutions, but they tend to weaken the representation of critical local dependencies. We propose paired window attention (PWA), which builds parallel multi-scale feature streams and coordinates short- and long-range attention to capture global token relations while maintaining sufficient focus on local information, at a computational cost comparable to axial or downsampled attention. Convolution with its inductive bias remains indispensable for detailed local modeling. However, common depthwise-separable designs (Chollet, 2017; Ma et al., 2018; Roy et al., 2023; Muhammad et al., 2025) suffer from a key limitation: aggressive channel decoupling disrupts the original geometric adjacency among tokens, making them harder to distinguish and fragmenting the information. This issue is particularly severe for complex anatomical structures and heterogeneous modalities. To address this, we introduce a Johnson–Lindenstrauss (JL) lemma–guided lightweight convolution (Lindenstrauss & Johnson, 1984), which enforces a minimum number of channels per group in each convolution layer to preserve geometric adjacency among tokens. This design keeps the model lightweight while ensuring that fine-grained details can be robustly captured.

Insufficient exploration of data synergy, including multimodal cooperation and data priors. Exploiting multimodal complementary information is crucial for robust model representation (Mu et al., 2020; Zheng et al., 2025; Zou et al., 2025). However, it is often ignored by lightweight methods due to the potential increase in computational cost, even when training on multimodal datasets. As discussed in Appendix C, bridging multimodal information across multiple scales is vital for extracting complementary information from heterogeneous modalities. Therefore, we extend our dual-stream architecture, using PWA to facilitate efficient modal interaction at the additional cost of only 0.27 MParams and 0.09 GFLOPs. Besides, exploring prior knowledge from existing data to enhance a model’s detailed representation holds practical significance for efficient segmentation methods. These methods often achieve higher efficiency by performing segmentation in a compressed space, which comes at the cost of exploring small lesions and complex boundaries (Perera et al., 2024; He et al., 2023; Rahman et al., 2024; Pang et al., 2024). Although establishing cross-task knowledge transfer from reconstruction to segmentation appears to be a solution (Sun et al., 2020; Rui et al., 2025; Zhang et al., 2020; Wang et al., 2025b), the significant differences in their regions of interest (ROIs) often lead to negative knowledge transfer (Qiu et al., 2023). To this end, our proposed

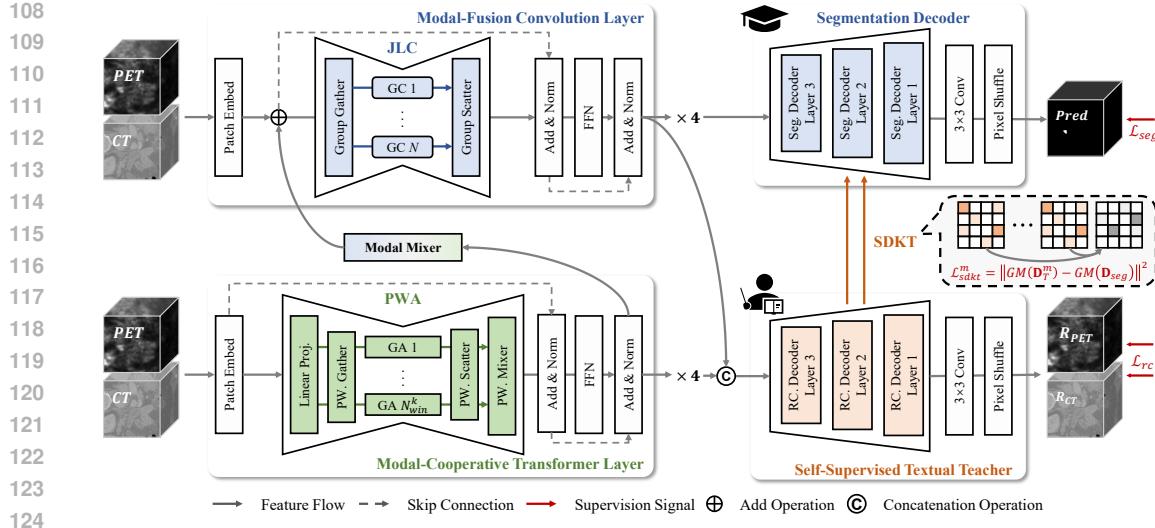


Figure 2: Overview of VeloxSeg. VeloxSeg employs an encoder-decoder architecture with Paired Window Attention (PWA) and Johnson-Lindenstrauss lemma-guided convolution (JLC) on the left, using 1×1 convolution as modal mixer. GC: group convolution; GA: multimodal grouped attention.

Spatially Decoupled Knowledge Transfer (SDKT) is a simple yet effective solution, motivated by the observation that a common upsampling operation in reconstruction and super-resolution tasks, “Conv+PixelShuffle” (Su et al., 2025), essentially unfolds the channel relationships at each voxel position into the spatial details of the surrounding image patch. This suggests that the guidance provided by a texture teacher to a segmentation task should be based on the channel relationships within its features. The Gram matrix, commonly used to represent style in the field of image style transfer, characterizes feature channel relationships in a spatially-invariant manner (Gatys et al., 2016; 2015). Based on it, we establish a positive knowledge transfer path from a self-supervised texture teacher to the segmentation network with no inference overhead (Zhu et al., 2021; Akiva et al., 2022).

Inspired by the above insights, we propose VeloxSeg that systematically alleviates the “*efficiency / robustness conflict*” during model lightweighting. Extensive experiments thoroughly explored the rationale for the design choices and demonstrated the model’s excellent clinical applicability and generalization capabilities. Figure 1 shows a comparison of VeloxSeg’s performance with other methods on the AutoPET-II (Gatidis S, 2022) dataset, demonstrating strong competitiveness. In summary, we develop:

- A Paired Window Attention to ensemble multi-scale attention groups, capturing local-global information simultaneously, improving localization capabilities with less cost, and achieving low-cost but effective modal interaction at multiple scales.
- A Johnson-Lindenstrauss lemma-guided convolution that theoretically determines a minimum group size to preserve spatial adjacency, ensuring robust local feature extraction without costly and data-specific pruning.
- A Spatially Decoupled Knowledge Transfer strategy that uses Gram matrices to distill rich textural details from a self-supervised teacher during training, enhancing model fidelity with zero inference overhead.

2 METHODOLOGY

2.1 OVERVIEW OF VELOXSEG

As shown in Figure 2, VeloxSeg employs two 4-stage encoders, a modal-fusion convolution encoder and a modal-cooperative Transformer encoder, along with a segmentation decoder and a detail texture teacher. The Paired Window Attention (PWA), a key component of the transformer encoder, is designed to capture multi-scale and cross-modal context with low enough cost. The

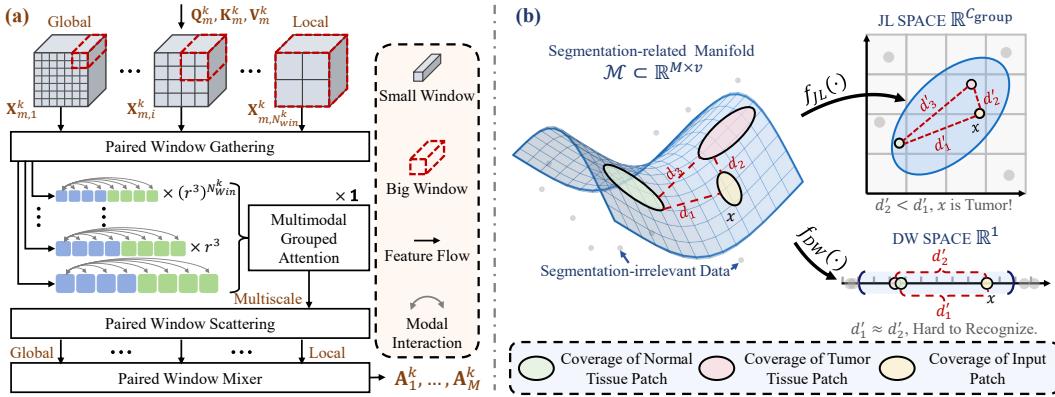


Figure 3: (a) Overview of Paired Window Attention (PWA). (b) Intuitive difference between depth-wise (DW) convolution and Johnson-Lindenstrauss (JL) guided Convolution in the feature space.

Johnson-Lindenstrauss lemma-guided Convolution (JLC), a key component of the convolution encoder, consists of 3 parallel JLCs at different scales to fuse modal information and model local features. Separating these two avoids a parameter explosion as the number of modalities increases, while maximizing the advantages and parallelism of both. In training, the Spatially Decoupled Knowledge Transfer (SDTK) strategy is used to enhance texture representation, which is also of great significance for super-resolution and segmentation tasks.

2.2 PAIRED WINDOW ATTENTION

To achieve sufficiently strong clue-capturing capabilities with minimal computational cost, PWA ensembles parallel feature streams to capture key multimodal information at multiple scales. Notably, our approach differs significantly from conventional parallel multi-attention approaches (Liu et al., 2024a; Shaker et al., 2024), aiming to create a faster, lower-cost, more effective, and more elegant feature stream. Given M modal features from k -th stage $\mathbf{E}_m^k, m = 1, \dots, M$, they are first projected into $\mathbf{Q}_m^k, \mathbf{K}_m^k, \mathbf{V}_m^k$. As shown in Figure 3 (a), we (i) partition the features into a set of big windows, collecting a salient token for each small window; (ii) synchronously expand window pairs to obtain multimodal sequences $\mathbf{X}_{m,i}^k, \mathbf{X} \in \{\mathbf{Q}, \mathbf{K}, \mathbf{V}\}$ of different scales but equal length, where i is the number of the paired window; (iii) gather all sequences and compute attention across all scales and modalities at once; and (iv) use a lightweight mixer to simply and efficiently blend features from all scales. The attention \mathbf{A}_m^k is obtained by the following formula:

$$\mathbf{A}_m^k = \text{PWA} (\mathbf{E}_m^k | \mathbf{E}_1^k, \dots, \mathbf{E}_M^k). \quad (1)$$

For more information about PWA, please see the Appendix D, including PyTorch code, detailed formula flow, and complexity analysis. We also provide a detailed analysis of the necessity of multi-scale modeling of medical modalities. Notably, PWA requires only $\log(\text{size}), \text{size} \in \{H, W, D\}$ paired windows to capture global context, while the minimum window ensures the preservation of local details. PWA achieves near-linear complexity, with a linear coefficient of approximately 7.87% of Swin Transformer (Liu et al., 2021).

2.3 JOHNSON-LINDENSTRAUSS LEMMA-GUIDED CONVOLUTION

Lemma 1 (Johnson-Lindenstrauss). *For any finite set $\mathcal{X} \subset \mathbb{R}^d$ with $|\mathcal{X}| = N$ and $\varepsilon \in (0, 1)$, there exists a linear map $f : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ with $d' \geq c_{\text{JL}} \varepsilon^{-2} \log N$, all $x, y \in \mathcal{X}$ satisfy $(1 - \varepsilon) \|x - y\|_2 \leq \|f(x) - f(y)\|_2 \leq (1 + \varepsilon) \|x - y\|_2$.*

As shown in Figure 3 (b), depth-wise convolution destroys the adjacency relationship between data in the feature space, making it difficult to connect the current clues with the key information of the case. Inspired by Likhoshesterov et al. (2021) derivation of the minimum attention head size via the Johnson-Lindenstrauss (JL) lemma, we build our lightest but robust convolution upon the above theory framework. In particular, we extend it to the 3D segmentation, exploring the lower

bound on group size while preserving spatial adjacency. The JL lemma states that for N points in high-dimensional space, we need at least $\mathcal{O}(\log N)$ embedding dimensions to preserve pairwise distances. The volume ratio of the input image of M modalities to the intermediate feature is v , and each voxel of the feature must retain information from at least v input voxels. Due to anatomical constraints and the boundedness of the normalized input values, the manifold \mathcal{M} of segmentation-related information of the input image patch can be covered by a finite number of samples, with a coverage count of $N(M, v)$. Substituting $N = N(M, v)$ into the lemma yields the size of the convolution group:

$$C_{\text{group}} = d' \geq c_{\text{JL}} \varepsilon^{-2} \log N(M, v), \quad (2)$$

where C_{group} is the number of channels per group.

Due to the lack of N in the vision domain, we empirically approximate $N(M, v)$ using $\hat{N}(M, v) = (M \cdot v)^\alpha$, where α is related to the difficulty of the segmentation task at hand. We conduct ablation studies on datasets with the richest modality heterogeneity and data distribution to identify the most generalizable scaling factor, which we use to obtain a lower bound on the group size of the convolution layers in each network stage. As analyzed in the Appendix E, we will use $\{C_{\text{group}}^k\}_{k=1}^4 = \{n, 2n, 2n, 4n\}$ as the group size for each stage of our network, where $n \in \mathbb{N}$ is determined from the most challenging AutoPET-II (Gatidis S, 2022) dataset to ensure multi-organ generalization capability.

2.4 SPATIALLY DECOUPLED KNOWLEDGE TRANSFER

To strengthen the representation of the lightweight model, we transfer the rich texture details extracted by the self-supervised texture teacher to the segmentation network via the Gram matrix. Specifically, we start with learning M self-supervised detail texture teachers $T_m, m = 1, \dots, M$, who are optimized by M reconstruction tasks. The Gram matrix is commonly used to represent image style and can capture feature channel relationships in a spatially invariant manner. For feature maps $\mathbf{X} \in \mathbb{R}^{C \times (HWD)}$ with C channels, the Gram matrix is:

$$\text{GM}(\mathbf{X}) = \frac{1}{CHWD} (\mathbf{X} \mathbf{X}^T) \in \mathbb{R}^{C \times C}. \quad (3)$$

SDKT is implemented by matching Gram matrices, which is mathematically equivalent to minimizing the maximum mean difference (MMD) using a second-order polynomial kernel (Li et al., 2017; Gupta et al., 2017). This naturally avoids a series of issues caused by excessive ROI discrepancies between the reconstruction/super-resolution features and the segmentation features. Specifically, a Gram-based consistency constraint serves as a positive knowledge transfer path between the segmentation features \mathbf{D}_{seg} and the M teacher features \mathbf{D}_T^m . Final loss \mathcal{L} is:

$$\mathcal{L} = (\mathcal{L}_{\text{dice}} + \mathcal{L}_{\text{ce}}) + \lambda_{rc} \mathcal{L}_{rc} + \lambda_{sdkt} \sum_{m=1}^M \|\text{GM}(\mathbf{D}_T^m) - \text{GM}(\mathbf{D}_{\text{seg}})\|^2, \quad (4)$$

For information about \mathcal{L} , please see Appendix F. λ_{seg} , λ_{rc} and λ_{sdkt} are the loss weights.

3 EXPERIMENTS

3.1 DATASETS & METRICS

We validate the effectiveness of VeloxSeg on four public datasets: AutoPET-II (Gatidis S, 2022), Hecktor2022 (Oreiller et al., 2022), BraTS2021 (Baid et al., 2021), and BraTS2016 (Menze et al., 2014a) (details in Appendix G). Unlike typical medical segmentation datasets, the modality heterogeneity of PET/CT and the complex anatomical structures of multiple organs, and even the whole body, pose unique challenges to all models. We adopt comprehensive evaluation metrics suitable for clinical settings: Model Size (MParams), Computational Complexity (GFLOPs), Efficiency (GPU/CPU Throughput), and Segmentation Performance measured by Dice similarity coefficient (Dice) as the primary indicator, alongside 95% Hausdorff distance (HD95), Precision, and Recall.

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	Method	Venue	AutoPET-II				Hecktor2022			
			Dice \uparrow	HD95 \downarrow	Prec. \uparrow	Rec. \uparrow	Dice \uparrow	HD95 \downarrow	Prec. \uparrow	Rec. \uparrow
UNet	MICCAI'16	59.41	241.31	62.32	70.74	50.25	65.03	72.13	41.50	
VNet	3DV'15	53.21	242.78	53.21	60.85	55.61	41.46	78.21	46.01	
MedNeXt-S	MICCAI'23	53.94	180.83	60.63	60.25	47.22	79.82	64.89	40.38	
UNETR	WACV'22	51.49	257.30	51.49	61.03	48.10	73.27	70.71	39.11	
Swin UNETR	MICCAI'21	62.24	242.07	62.91	73.30	44.56	103.02	62.43	37.55	
VSmTrans	MIA'24	62.46	223.88	65.19	70.92	52.91	78.03	61.91	50.97	
UNETR++	TMI'24	36.50	178.57	36.50	60.16	29.95	27.74	61.84	21.75	
U-KAN	AAAI'25	60.67	70.91	62.03	72.94	55.89	23.48	77.72	46.89	
Nestedformer	MICCAI'22	61.38	265.51	61.38	64.29	40.17	72.95	63.22	32.59	
A2FSeg	MICCAI'23	60.86	131.48	60.86	76.10	40.90	32.95	77.02	30.57	
H-DenseFormer	MICCAI'23	61.50	252.98	61.41	75.76	46.79	34.84	78.33	35.31	
SAM-Med3D (CT)	TNNLS'25	13.13	101.24	19.82	16.70	27.52	18.84	43.94	24.46	
SAM-Med3D (PET)	TNNLS'25	26.59	101.94	31.92	31.86	31.94	18.03	69.69	24.35	
DINOv3-L (PET)	Arxiv'25	10.87	—	6.85	64.96	9.43	—	9.40	25.93	
DINOv3-L (CT+PET)	Arxiv'25	12.17	—	7.50	71.16	30.86	—	34.99	39.98	
SegFormer-3D	CVPRW'24	40.44	174.43	56.73	38.19	48.47	54.29	73.63	38.35	
Slim UNETR	TMI'24	52.53	310.53	53.99	66.55	49.40	56.55	69.53	41.20	
SuperLightNet	CVPR'25	48.35	59.09	60.82	47.61	50.03	34.36	75.29	40.65	
HCMA-UNet	ICME'25	43.40	146.11	43.32	62.46	42.06	146.11	67.68	33.18	
U-RWKV	MICCAI'25	57.18	61.12	66.69	59.40	45.97	56.83	64.52	39.71	
VeloxSeg	Ours	62.51	241.08	67.76	66.28	56.48	47.66	74.81	49.24	

i) Due to the small object and camouflage recognition involved, DINOv3-L (CT) cannot recognize tumors.

ii) “—” means that the value is out of range.

Table 1: Comparisons of segmentation performance on PET/CT datasets. The best performance is highlighted by **red**, followed by **blue**. VeloxSeg is highlighted in **green**.

3.2 IMPLEMENTATION DETAILS & BASELINES

Our implementation is based on PyTorch 2.4.1. Training is performed on an NVIDIA GeForce RTX 3090 GPU, while inference is run on an Intel(R) Xeon(R) Gold 5320 CPU. All datasets are standardized and partitioned into training, validation, and testing subsets in a 6:2:2 ratio. For training, we use a batch size of 4 with a 1:1 positive-to-negative sample ratio. Data augmentation involves random z-axis flipping with a 0.5 probability. We train the model for 300 epochs using the AdamW optimizer (Loshchilov & Hutter, 2017) with an initial learning rate of 2.5e-4 and a weight decay of 0.01. The learning rate is managed by a linear warmup and cosine annealing scheduler (Liu, 2022).

To ensure a convincing evaluation, we benchmark our method against a diverse set of models, including 8 basic models, 3 multimodal models, and 5 lightweight models, which are categorized accordingly in Tables 6. Furthermore, our analysis covers five distinct architectural paradigms: CNN-based models (UNet (Çiçek et al., 2016), VNet (Milletari et al., 2016), MedNeXt (Roy et al., 2023), A2FSeg (Wang & Hong, 2023)); CNN-Transformer hybrids (UNETR (Hatamizadeh et al., 2022), Nestedformer (Xing et al., 2022), SuperLightNet (Yu et al., 2025b)); CNN-KAN hybrids (U-KAN (Liu et al., 2024b)); CNN-Mamba hybrids (HCMA-UNet (Li et al., 2025)); and CNN-RWKV hybrids (U-RWKV (Ye et al., 2025)). The comparison is extended to include 2 advanced vision foundation models: SAM-Med3D (Wang et al., 2025a), which is evaluated in a zero-shot setting, and DINOv3 (Siméoni et al., 2025), for which the linear head is fine-tuned (Liu et al., 2025). Our comparison conforms to the fair comparison principle outlined in Isensee et al. (2024).

Modules			Ablation	Hyper-Parameters	Params (M)	FLOPs (G)	Thr. GPU (Pat./s)	Dice (%)
Conv.	Trans.	SDKT.						
✓	✗	✗	Width	⟨32, 64, 128, 256⟩	2.65	5.31	145.63	48.96
✓	✗	✗		⟨16, 32, 64, 128⟩	0.73	2.41	616.53	50.10
✓	✗	✗	Kernel Size	⟨7⟩	0.73	2.41	616.53	50.10
✓	✗	✗		⟨1, 3, 5⟩	0.66	2.30	295.02	53.65
✓	✗	✗	Group Size	⟨1, 1, 1, 1⟩	0.66	2.30	295.02	53.65
✓	✗	✗		⟨1, 2, 2, 4⟩	0.75	2.33	291.18	53.95
✓	✗	✗		⟨2, 4, 4, 8⟩	0.89	2.44	284.83	54.40
✓	✗	✗		⟨4, 8, 8, 16⟩	1.18	2.66	282.13	55.84
✓	✗	✗		⟨8, 16, 16, 32⟩	1.75	3.11	279.48	55.14
✓	✗	✗		⟨16, 32, 64, 128⟩	4.76	4.18	290.72	56.20
✓	✓	✗	Attention Depth	⟨2, 2, 2, 2⟩	2.37	3.07	137.87	59.56
✓	✓	✗		⟨1, 1, 1, 1⟩	1.88	2.90	185.08	61.03
✓	✓	✗	Expansion Ratio	⟨4, 4, 4, 4⟩	1.88	2.90	331.56	61.03
✓	✓	✗		⟨3, 3, 2, 2⟩	1.61	2.84	336.94	61.43
✓	✓	✓	Teacher	+ Texture Teacher	1.61	2.84	336.94	59.64
✓	✓	✓	Up	Unify Upsampling	1.66	1.79	390.91	59.71
✓	✓	✓	Gram	+ Gram Supervision	1.66	1.79	390.91	62.51

Table 2: Module ablation experiments on AutoPET-II. “Conv.”: convolution encoder; “Trans.”: transformer encoder; “SDKT.”: spatially decoupled knowledge transfer. The best performance is in **red** and the second is in **blue**. Final setting is highlighted in **green**.

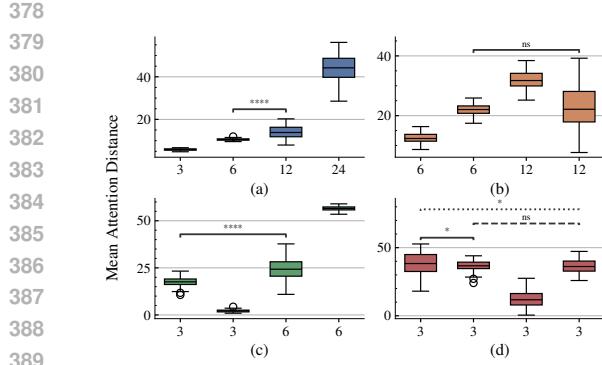
3.3 CLINICAL CAPABILITIES EVALUATION

Figure 1 provides a more intuitive comparison of the trade-offs between Dice and parameter count, and between Dice and GPU throughput. Specifically, regarding segmentation performance, Table 1 shows the segmentation performance for PET/CT. Appendix K shows the qualitative results of all models. Detailed computational costs are provided in the Appendix H. Furthermore, we report the GPU memory usage of all models on the three datasets, including training and inference, in Appendix I. To release the model’s potential, we train VeloxSeg on the nnUNet (Isensee et al., 2021; Huang et al., 2023) training framework and compare it with the nnUNet baseline, as shown in Appendix J. In addition, to verify the modality adaptation ability of the method, we test the performance of MRI segmentation on BraTS2021.

Comparison with Basic Models. Against established basic architectures, including CNN-based, CNN-Transformer-based, and CNN-KAN-based methods, VeloxSeg demonstrates superior performance, with significantly lower computational cost. On the AutoPET-II dataset, VeloxSeg achieves a 62.51% Dice. This result marginally outperforms the best basic model, VSNet, using only 13.30% of its parameters and 1.96% of its GFLOPs. On Hecktor2022, VeloxSeg still surpasses all other models. These demonstrate that VeloxSeg is an efficient model in medical segmentation.

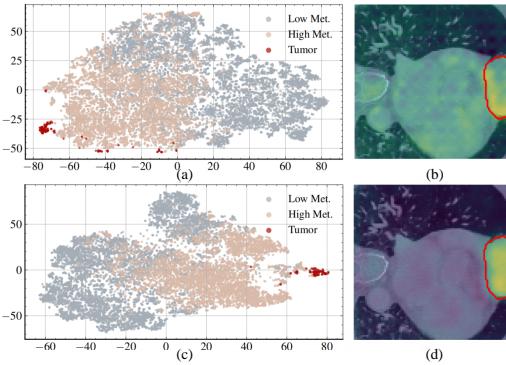
Comparison with Multimodal Models. When compared to specialized multimodal architectures, VeloxSeg demonstrates its effectiveness and efficiency in cross-modal feature integration. On the AutoPET-II dataset, VeloxSeg’s Dice of 62.51% outperformed H-DenseFormer, Nestedformer, and A2FSeg by 1.01%, 1.13%, and 1.65%, respectively, while achieving GPU throughput improvements of $2.80\times$ to $7.75\times$ and a significant reduction of computational complexity. Furthermore, on Hecktor2022, due to reduced data size, other multimodal models exhibit overfitting and overly conservative predictions, while VeloxSeg’s Dice score remains stable.

Comparison with Lightweight Models. Against other lightweight methods, VeloxSeg is clearly superior. It leads in Dice on both datasets by a significant margin of over 5%. While some competitors have fewer parameters, they are computationally expensive or lack CPU support for clinical use. VeloxSeg offers the best balance, achieving 1.66 MParams and 1.79 GFLOPs. It also achieves a high GPU throughput of 599.06 patches/s and supports CPU-only devices, making it the most clinically practical solution.



390
391
392
393
394
395

Figure 4: Average attention distance distribution of PWA on AutoPET-II. (a)-(d) show the results for PWA across 4 stage. Y-axis: average attention distance; X-axis: big window size. Wilcoxon rank-sum test: ns ($0.05 < p \leq 1$), * ($0.01 < p \leq 0.05$), **** ($p \leq 0.0001$).



396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 5: Visualization of model decoding and t-SNE plot. (a)-(b) show results without attention; (c)-(d) with attention. In (a) and (c), “Low Met.” and “High Met.” represent low/high-metabolism PET regions. In (b) and (d), CT background with red tumor outline.

Comparison of Peak GPU Memory Usage. As shown in Appendix I, VeloxSeg achieves the lowest or second lowest peak GPU memory usage among all methods. Compared to basic CNN/CNN-Transformer baseline models, VeloxSeg reduces memory usage by up to $20\times$ during training and up to $24\times$ during inference. Even among lightweight models, VeloxSeg is close to the most compact model (Slim UNETR), reducing memory usage by up to $10\times$ compared to other lightweight models.

Train on nnUNet Training Framework. As analyzed in Appendix J, VeloxSeg achieves a 14.2% Dice improvement with only 1.87% of nnUNet’s MParams and 0.058% of its GFLOPs (Isensee et al., 2021), accompanied by a $4.8\times$ improvement in GPU throughput and a $52.5\times$ on CPU.

Modality Adaptation Evaluation. On the BraTS2021 dataset, which contains 4 MRI modalities, our early fusion strategy VeloxSeg-C achieves superior performance, surpassing the second-best method by 1.72% Dice. This demonstrates that our VeloxSeg can adapt to diverse multimodal segmentation tasks. Details can be found in Appendix L.

3.4 MODULE ABLATION

We evaluate the performance of three model designs on AutoPET-II: JLC, PWA, and SDKT (Table 2). When using JLC alone, Params and Dice have the lowest performance. Although the framework is the simplest, the FLOPs/throughput is suboptimal due to the use of transposed convolution for upsampling. After adding the attention mechanism, the accuracy increased by 5.59%, but the throughput decreased by 233.6 Patches/s. After changing the upsampling strategy, FLOPs are significantly reduced from 2.84 G to 1.79 G, and the GPU throughput is increased from 336.94 to 599.06 Patches/s. The last three rows in the table show that it is not enough to just optimize the encoder’s detail representation after adding the texture teacher. Only through the SDKT strategy based on Gram matrices can the representation ability be improved. For more specific reasons and analysis of hyper-parameter selection, please see Appendix M.

PWA Effect Evaluation. To verify the robustness of PWA, we conduct three experiments:

Reduce computational redundancy through multi-scale windows. VeloxSeg utilizes PWA to parallelize the computation of multi-scale relationships and reduce redundancy. Experimental details of Figure 4 can be found in Appendix N. The inter-group differences in PWA are significant and positively correlated with the window size, indicating that redundant information is reduced and long-distance modeling is efficient. Regarding the fourth attention stage, its design is more similar to multi-head attention, retaining some redundancy.

Changes in features after adding PWA. We visualize the model’s decoding and its t-SNE projection, as shown in Figure 5. The results indicate that PWA helps distinguish tumor regions from high-metabolic regions while producing a more compact feature distribution.

432	Methods	MParams ↓	Dice ↑
433	FC.	4.78 +3.58	79.97 +0.63
435	FC. w. Pn.	1.27 +0.07	62.00 -17.34
436	JLC	1.20	79.34

Table 3: Domain generalization capability comparison of the JLC and ℓ_2 pruning methods (Filters’Importance, 2016; Fang et al., 2023) (BraTS2021 → BraTS2016 TCIA). “FC.” represents full convolution, and “Pn.” represents pruning operation.



Figure 6: Dice performance comparison between different group size configurations.

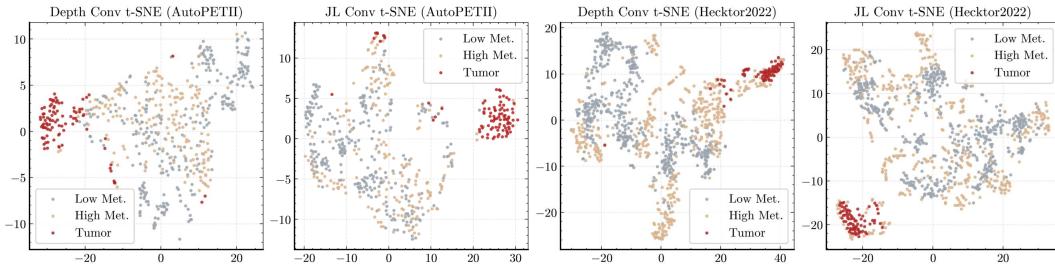


Figure 7: t-SNE plots of depth-wise convolution and JC convolution. “Low Met.” and “High Met.” represent low/high metabolism PET regions, respectively.

Effectiveness in handling heterogeneous modalities. We test various modal input combinations, whose details could be found in Appendix O. Notably, introducing modal interaction into PWA improves the Dice score by 5.75%, significantly enhancing performance robustness without significantly increasing computational costs.

JLC Effect Evaluation. To verify the robustness of JLC, we conduct four experiments:

Comparison of segmentation performance between the JL setting and the standard setting with similar parameter sizes, as shown in Figure 6. We use a uniform kernel size of 3 to ensure a general setup. The JL-guided configuration, $\{n, 2n, 2n, 4n\}$, consistently surpasses the larger setup, $\{2n, 2n, 2n, 2n\}$, in all cases. The best performance is a 54.14% Dice score, achieved when $n = 4$. This suggests the JL-guided group size arrangement enables more robust feature extraction in a lightweight model.

Comparison of external test performance between the JL setting and the pruned setting with similar parameter sizes, as shown in Table 3. It verifies the generalization advantage of our lightweight convolution over the pruning method. The model with ℓ_2 pruning (Filters’Importance, 2016) on full convolution performs significantly worse than JLC on BraTS2015 TCIA cases, even after a cycle of training, pruning, and retraining.

Testing the segmentation performance of JLC on two other datasets, as detailed in the Appendix P. We test the segmentation performance of pure convolution networks. The convolution with JL-guided group sizes consistently outperforms the depth-wise convolution, achieving performance gains of 6.25% on Hecktor2022 and 1.16% on BraTS2021, with only a marginal increase of 0.091 million parameters. Notably, on the Hecktor2022 dataset, the JLC even surpasses the segmentation performance of the full convolution while using 0.63 million fewer parameters.

Comparison of the t-SNE projection visualizations of JLC and depth-wise convolution is shown in Figure 7. We test the depth-wise convolution and JLC in Figure 6 and Appendix P, providing direct visual evidence that depth-wise convolution disrupts the geometric adjacency between tokens.

Gram-Based Transfer Effect Evaluation. Our method is the only one to demonstrate positive knowledge transfer, as shown in Table 4. This is due to our method’s avoidance of irrelevant features

Strategy	Dice \uparrow	HD95 \downarrow
—	59.71	291.81
$+\ell_1$	1.67 -58.04	626.79
+Affinity	41.44 -18.27	354.01
+Shared ROI	57.15 -2.56	397.43
+SDKT	62.51 +2.80	241.08

Table 4: Comparison of knowledge transfer paths constructed with different losses: Sang et al. (2021) use ℓ_1 loss, Wang et al. (2021) use Affinity loss, Qiu et al. (2023) use agent loss in shared ROI, and we use Sdkt.

from the texture teachers, leading to better convergence. To further evaluate the effectiveness of Sdkt, we analyze Dice across varying lesion volumes, as shown in Figure 8. VeloxSeg outperforms other lightweight models in segmentation mask fineness across all lesion volumes. Notably, for lesion volumes between 1000 and 5000, “MM.”, “MM.+RC.”, and “Ours” show a significant upward trend. We attribute this to the increased influence of complex textures in tumor segmentation at these sizes. The above experiments show that there is potential for optimization in small lesion segmentation. The loss weight hyperparameter experiment can be found in Appendix M.

4 CONCLUSION

In this paper, we propose VeloxSeg, a lightweight, theory-based framework that systematically alleviates the “*efficiency / robustness conflict*” in 3D medical image segmentation. By extending the Johnson-Lindenstrauss lemma to the convolution setting, we derive a theoretical lower bound on the group size of convolution per stage, ensuring spatial adjacency and enabling robust detail extraction. Our paired window attention mechanism, by ensembling a tumor localization team composed of attention at different scales, has near-linear complexity and more powerful modeling capabilities. Furthermore, the multimodal interaction of PWA significantly enhances model representation. Furthermore, our Spatially Decoupled Knowledge Transfer strategy establishes a positive knowledge transfer path between the self-supervised texture teacher and the segmentation network, enabling detailed representations that surpass baseline models without increasing inference overhead. Comprehensive evaluation on four diverse clinical datasets demonstrates that VeloxSeg achieves strong robustness with minimal computational cost, requiring only a single CPU core.

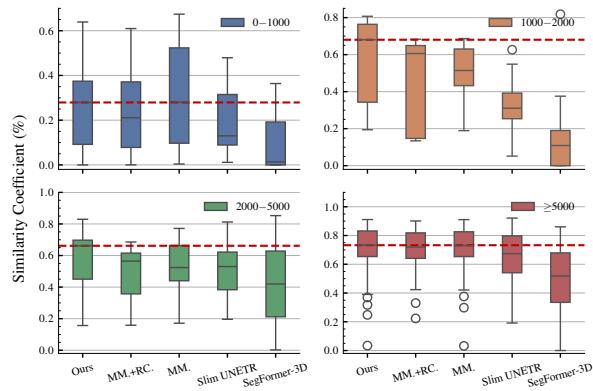


Figure 8: Box plots of Dices at different lesion volumes. “MM.”: PWA+JLC multimodal backbone; “MM.+RC.”: backbone with reconstruction teacher; “Ours”: backbone with the teacher and Sdkt.

540 REFERENCES
541

542 Backpropagation applied to handwritten zip code recognition. *Neural computation*, 1(4):541–551,
543 1989.

544 Peri Akiva, Matthew Purri, and Matthew Leotta. Self-supervised material and texture representation
545 learning for remote sensing tasks. In *Proceedings of the IEEE/CVF conference on computer vision
546 and pattern recognition*, pp. 8203–8215, 2022.

547 Ujjwal Baid et al. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and
548 radiogenomic classification. *arXiv preprint arXiv:2107.02314*, 2021.

549 Spyridon Bakas et al. Advancing the cancer genome atlas glioma mri collections with expert seg-
550 mentation labels and radiomic features. *Scientific data*, 4(1):1–13, 2017.

551 Johan Bussink, Johannes HAM Kaanders, Winette TA Van Der Graaf, and Wim JG Oyen. Pet-ct
552 for radiotherapy treatment planning and response monitoring in solid tumors. *Nature Reviews
553 Clinical Oncology*, 8(4):233–242, 2011.

554 Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
555 Jingjing Liu. Uniter: Universal image-text representation learning. In *European conference on
556 computer vision*, pp. 104–120. Springer, 2020.

557 François Chollet. Xception: Deep learning with depthwise separable convolutions. In *Proceedings
558 of the IEEE conference on computer vision and pattern recognition*, pp. 1251–1258, 2017.

559 Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d
560 u-net: learning dense volumetric segmentation from sparse annotation. In *Medical Image Comput-
561 ing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens,
562 Greece, October 17–21, 2016, Proceedings, Part II* 19, pp. 424–432. Springer, 2016.

563 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
564 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
565 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
566 arXiv:2010.11929*, 2020.

567 Alexey Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at
568 scale. In *International Conference on Learning Representations*, 2021.

569 Hao Du, Qihua Dong, Yan Xu, and Jing Liao. Tdformer: Top-down token generation for 3d medical
570 image segmentation. *IEEE Journal of Biomedical and Health Informatics*, 2025.

571 Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
572 any structural pruning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
573 Pattern Recognition*, pp. 16091–16101, 2023.

574 Determine Filters’Importance. Pruning filters for efficient convnets. *arXiv preprint
575 arXiv:1608.08710*, 2016.

576 Kuestner T, Gatidis S. A whole-body fdg-pet/ct dataset with manually annotated tumor lesions
577 (fdg-pet-ct-lesions). *The Cancer Imaging Archive*, 226, 2022.

578 Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using convolutional neural
579 networks. *Advances in neural information processing systems*, 28, 2015.

580 Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
581 neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recog-
582 nition*, pp. 2414–2423, 2016.

583 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
584 preprint arXiv:2312.00752*, 2023.

585 Agrim Gupta, Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Characterizing and improving sta-
586 bility in neural style transfer. In *Proceedings of the IEEE International Conference on Computer
587 Vision*, pp. 4067–4076, 2017.

594 Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger R Roth, and Daguang Xu.
 595 Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In
 596 *International MICCAI Brainlesion Workshop*, pp. 272–284. Springer, 2021.

597

598 Ali Hatamizadeh et al. Unetr: Transformers for 3d medical image segmentation. In *Proceedings of*
 599 *the IEEE/CVF winter conference on applications of computer vision*, pp. 574–584, 2022.

600 Along He, Kai Wang, Tao Li, Chengkun Du, Shuang Xia, and Huazhu Fu. H2former: An efficient
 601 hierarchical hybrid transformer for medical image segmentation. *IEEE Transactions on Medical*
 602 *Imaging*, 42(9):2763–2775, 2023.

603

604 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 605 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 606 770–778, 2016.

607 Yufan He, Pengfei Guo, Yucheng Tang, Andriy Myronenko, Vishwesh Nath, Ziyue Xu, Dong Yang,
 608 Can Zhao, Benjamin Simon, Mason Belue, et al. Vista3d: A unified segmentation foundation
 609 model for 3d medical imaging. In *Proceedings of the Computer Vision and Pattern Recognition*
 610 *Conference*, pp. 20863–20873, 2025.

611 Juha Heinonen. *Lectures on analysis on metric spaces*. Springer Science & Business Media, 2001.

612

613 Ziyang Huang, Haoyu Wang, Zhongying Deng, Jin Ye, Yanzhou Su, Hui Sun, Junjun He, Yun Gu,
 614 Lixu Gu, Shaoting Zhang, et al. Stu-net: Scalable and transferable medical image segmentation
 615 models empowered by large-scale supervised pre-training. *arXiv preprint arXiv:2304.06716*,
 616 2023.

617 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 618 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
 619 pmlr, 2015.

620

621 Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnun-
 622 net: a self-configuring method for deep learning-based biomedical image segmentation. *Nature*
 623 *methods*, 18(2):203–211, 2021.

624

625 Fabian Isensee, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus Maier-
 626 Hein, and Paul F Jaeger. nnu-net revisited: A call for rigorous validation in 3d medical image
 627 segmentation. In *International Conference on Medical Image Computing and Computer-Assisted*
 628 *Intervention*, pp. 488–498. Springer, 2024.

629

630 Charalambos Kaittanis et al. Environment-responsive nanophores for therapy and treatment moni-
 631 toring via molecular mri quenching. *Nature communications*, 5(1):3384, 2014.

632

633 Vibhu Kapoor, Barry M McCook, and Frank S Torok. An introduction to pet-ct imaging. *Radio-
 634 graphics*, 24(2):523–543, 2004.

635

636 Lynn D Kramer, GE Locke, SE Byrd, and JAFAR Daryabagi. Cerebral cysticercosis: documentation
 637 of natural history with ct. *Radiology*, 171(2):459–462, 1989.

638

639 Hulin Kuang, Yahui Wang, Xianzhen Tan, Jialin Yang, Jiarui Sun, Jin Liu, Wu Qiu, Jingyang Zhang,
 640 Jiulou Zhang, Chunfeng Yang, et al. Lw-ctrans: A lightweight hybrid network of cnn and trans-
 641 former for 3d medical image segmentation. *Medical Image Analysis*, 102:103545, 2025.

642

643 Haoxuan Li, Peiwu Qin, Xi Yuan, and Zhenglin Chen. Hcma-unet: A hybrid cnn-mamba unet with
 644 axial self-attention for efficient breast cancer segmentation. *arXiv preprint arXiv:2501.00751*,
 645 2025.

646

647 Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying neural style transfer. 2017.

648 Valerii Likhoshesterov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of
 649 self-attention matrices. *arXiv preprint arXiv:2106.03764*, 2021.

650

651 W Johnson J Lindenstrauss and J Johnson. Extensions of lipschitz maps into a hilbert space. *Con-
 652 temp. Math*, 26(189-206):2, 1984.

648 Che Liu, Yinda Chen, Haoyuan Shi, Jinpeng Lu, Bailiang Jian, Jiazhen Pan, Linghan Cai, Jiayi
 649 Wang, Yundi Zhang, Jun Li, et al. Does dinov3 set a new medical vision standard? *arXiv preprint*
 650 *arXiv:2509.06467*, 2025.

651

652 Tiange Liu, Qingze Bai, Drew A Torigian, Yubing Tong, and Jayaram K Udupa. Vsmtrans: A hybrid
 653 paradigm integrating self-attention and convolution for 3d medical image segmentation. *Medical*
 654 *image analysis*, 98:103295, 2024a.

655 Ze Liu et al. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceed-
 656 ings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

657

658 Zhao Liu. Super convergence cosine annealing with warm-up learning rate. In *CAIBDA 2022; 2nd
 659 International Conference on Artificial Intelligence, Big Data and Algorithms*, pp. 1–7, 2022.

660

661 Ziming Liu et al. Kan: Kolmogorov-arnold networks. *arXiv preprint arXiv:2404.19756*, 2024b.

662

663 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 664 *arXiv:1711.05101*, 2017.

665

666 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-
 667 guistic representations for vision-and-language tasks. *Advances in neural information processing*
 668 *systems*, 32, 2019.

669

670 Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
 671 efficient cnn architecture design. In *ECCV*, 2018.

672

673 Renzo Manara et al. Brain and spine mri features of hunter disease: frequency, natural evolution
 674 and response to therapy. *Journal of Inherited Metabolic Disease: Official Journal of the Society*
 675 *for the Study of Inborn Errors of Metabolism*, 34(3):763–780, 2011.

676

677 Tarek Mansour et al. *Deep neural networks are lazy: on the inductive bias of deep learning*. PhD
 678 thesis, Massachusetts Institute of Technology, 2019.

679

680 Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani, Justin
 681 Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, et al. The multimodal
 682 brain tumor image segmentation benchmark (brats). *IEEE transactions on medical imaging*, 34
 683 (10):1993–2024, 2014a.

684

685 Bjoern H Menze et al. The multimodal brain tumor image segmentation benchmark (brats). *IEEE*
 686 *transactions on medical imaging*, 34(10):1993–2024, 2014b.

687

688 Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural net-
 689 works for volumetric medical image segmentation. In *2016 fourth international conference on*
 690 *3D vision (3DV)*, pp. 565–571. Ieee, 2016.

691

692 Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
 693 for neural network pruning. In *Proceedings of the IEEE/CVF conference on computer vision and*
 694 *pattern recognition*, pp. 11264–11272, 2019.

695

696 Wei Mu et al. Non-invasive decision support for nsclc treatment using pet/ct radiomics. *Nature*
 697 *communications*, 11(1):5228, 2020.

698

699 Usman Muhammad, Jorma Laaksonen, and Lyudmila Mihaylova. Towards lightweight hyper-
 700 spectral image super-resolution with depthwise separable dilated convolutional network. *arXiv*
 701 *preprint arXiv:2505.00374*, 2025.

702

703 Valentin Oreiller et al. Head and neck tumor segmentation in pet/ct: the hecktor challenge. *Medical*
 704 *image analysis*, 77:102336, 2022.

705

706 Yan Pang et al. Slim unetr: Scale hybrid transformers to efficient 3d medical image segmentation
 707 under limited computational resources. *IEEE transactions on medical imaging*, 43(3):994–1005,
 708 2024.

702 Himashi Peiris, Munawar Hayat, Zhaolin Chen, Gary Egan, and Mehrtash Harandi. Uncertainty-
 703 guided dual-views for semi-supervised volumetric medical image segmentation. *Nature Machine*
 704 *Intelligence*, 5(7):724–738, 2023.

705 Bo Peng et al. Rwkv: Reinventing rnns for the transformer era. *arXiv preprint arXiv:2305.13048*,
 706 2023.

708 Shehan Perera, Pouyan Navard, and Alper Yilmaz. Segformer3d: an efficient transformer for 3d
 709 medical image segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 710 *and Pattern Recognition*, pp. 4981–4988, 2024.

712 Zhongxi Qiu, Yan Hu, Xiaoshan Chen, Dan Zeng, Qingyong Hu, and Jiang Liu. Rethinking dual-
 713 stream super-resolution semantic learning in medical image segmentation. *IEEE Transactions on*
 714 *Pattern Analysis and Machine Intelligence*, 46(1):451–464, 2023.

715 Md Mostafijur Rahman, Mustafa Munir, and Radu Marculescu. Emcad: Efficient multi-scale con-
 716 volutional attention decoding for medical image segmentation. In *Proceedings of the IEEE/CVF*
 717 *Conference on Computer Vision and Pattern Recognition*, pp. 11769–11779, 2024.

718 Saikat Roy et al. Mednext: transformer-driven scaling of convnets for medical image segmentation.
 719 In *International Conference on Medical Image Computing and Computer-Assisted Intervention*,
 720 pp. 405–415. Springer, 2023.

722 Shaohao Rui, Lingzhi Chen, Zhenyu Tang, Lilong Wang, Mianxin Liu, Shaoting Zhang, and Xi-
 723 aosong Wang. Multi-modal vision pre-training for medical image analysis. In *Proceedings of the*
 724 *Computer Vision and Pattern Recognition Conference*, pp. 5164–5174, 2025.

725 Yu Sang, Jinguang Sun, Simiao Wang, Heng Qi, and Keqiu Li. Super-resolution and infection
 726 edge detection co-guided learning for covid-19 ct segmentation. In *ICASSP 2021 - 2021 IEEE*
 727 *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1665–1669,
 728 2021. doi: 10.1109/ICASSP39728.2021.9414327.

730 Abdelrahman M Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang,
 731 and Fahad Shahbaz Khan. Unetr++: delving into efficient and accurate 3d medical image seg-
 732 mentation. *IEEE Transactions on Medical Imaging*, 2024.

733 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 734 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv*
 735 *preprint arXiv:2508.10104*, 2025.

736 Hu Su, Ying Li, Yifan Xu, Xiang Fu, and Song Liu. A review of deep-learning-based super-
 737 resolution: From methods to applications. *Pattern Recognition*, 157:110935, 2025.

739 Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
 740 ing with self-supervision for generalization under distribution shifts. In *International conference*
 741 *on machine learning*, pp. 9229–9248. PMLR, 2020.

742 Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
 743 gredient for fast stylization. *arXiv preprint arXiv:1607.08022*, 2016.

745 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 746 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 747 *tion processing systems*, 30, 2017.

748 Tassilo Wald, Constantin Ulrich, Stanislav Lukyanenko, Andrei Goncharov, Alberto Paderno, Max-
 749 imilian Miller, Leander Maerkisch, Paul Jaeger, and Klaus Maier-Hein. Revisiting mae pre-
 750 training for 3d medical image segmentation. In *Proceedings of the Computer Vision and Pattern*
 751 *Recognition Conference*, pp. 5186–5196, 2025.

753 Haoyu Wang, Sizheng Guo, Jin Ye, Zhongying Deng, Junlong Cheng, Tianbin Li, Jianpin Chen,
 754 Yanzhou Su, Ziyan Huang, Yiqing Shen, et al. Sam-med3d: A vision foundation model for
 755 general-purpose segmentation on volumetric medical images. *IEEE Transactions on Neural*
756 Networks and Learning Systems, 2025a.

756 Hongyi Wang et al. Patch-free 3d medical image segmentation driven by super-resolution technique
 757 and self-supervised guidance. In *Medical Image Computing and Computer Assisted Intervention–*
 758 *MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1,*
 759 *2021, Proceedings, Part I 24*, pp. 131–141. Springer, 2021.

760 Jiawen Wang et al. Masktwins: Dual-form complementary masking for domain-adaptive image
 761 segmentation. In *Forty-second International Conference on Machine Learning*, 2025b.

763 Zirui Wang and Yi Hong. A2fseg: Adaptive multi-modal fusion network for medical image seg-
 764 mentation. In *International Conference on Medical Image Computing and Computer-Assisted*
 765 *Intervention*, pp. 673–681. Springer, 2023.

766 Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Hui Hui, Yanfeng Wang, and Weidi Xie. Towards generalist
 767 foundation model for radiology by leveraging web-scale 2d&3d medical data. *Nature Communi-*
 768 *cations*, 16(1):7866, 2025.

770 Zhaohu Xing, Lequan Yu, Liang Wan, Tong Han, and Lei Zhu. Nestedformer: Nested modality-
 771 aware transformer for brain tumor segmentation. In *International conference on medical image*
 772 *computing and computer-assisted intervention*, pp. 140–150. Springer, 2022.

773 Zhaohu Xing, Tian Ye, Yijun Yang, Du Cai, Baowen Gai, Xiao-Jian Wu, Feng Gao, and Lei Zhu.
 774 Segmamba-v2: Long-range sequential modeling mamba for general 3d medical image segmenta-
 775 *IEEE Transactions on Medical Imaging*, 2025.

777 Hongbo Ye et al. U-rwkv: Lightweight medical image segmentation with direction-adaptive rwkv.
 778 *arXiv preprint arXiv:2507.11415*, 2025.

779 Bin Yu, Quan Zhou, Li Yuan, Huageng Liang, Pavel Shcherbakov, and Xuming Zhang. 3d medical
 780 image segmentation using the serial–parallel convolutional neural network and transformer based
 781 on cross-window self-attention. *CAAI Transactions on Intelligence Technology*, 10(2):337–348,
 782 2025a.

783 Feng Yu, Jiacheng Cao, Li Liu, and Minghua Jiang. Superlightnet: Lightweight parameter aggrega-
 784 *tion network for multimodal brain tumor segmentation. In Proceedings of the Computer Vision*
 785 *and Pattern Recognition Conference*, pp. 5197–5206, 2025b.

787 Linfeng Zhang, Muzhou Yu, Tong Chen, Zuoqiang Shi, Chenglong Bao, and Kaisheng Ma. Auxil-
 788 iary training: Towards accurate and robust models. In *Proceedings of the IEEE/CVF conference*
 789 *on computer vision and pattern recognition*, pp. 372–381, 2020.

791 Shenhai Zheng, Xin Ye, Chaohui Yang, Lei Yu, Weisheng Li, Xinbo Gao, and Yue Zhao. Asym-
 792 metric adaptive heterogeneous network for multi-modality medical image segmentation. *IEEE*
 793 *Transactions on Medical Imaging*, 2025.

794 Lanyun Zhu, Deyi Ji, Shiping Zhu, Weihao Gan, Wei Wu, and Junjie Yan. Learning statistical
 795 texture for semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer*
 796 *Vision and Pattern Recognition*, pp. 12537–12546, 2021.

797 Jing Zou, Lanqing Liu, Qi Chen, Shujun Wang, Zhanli Hu, Xiaohan Xing, and Jing Qin. Mmr-
 798 mamba: Multi-modal mri reconstruction with mamba and spatial-frequency information fusion.
 799 *Medical Image Analysis*, 102:103549, 2025.

800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 APPENDIX
811812 **Table of content:**
813

- 814 • §A: Reproducibility Statement
815
- 816 • §B: Use of Large Language Models (LLMs)
817
- 818 • §C: Necessity of Multi-Scale Attention
819
- 820 • §D: Details of PWA
821
- 822 • §E: Details of JL-guided Group Size
823
- 824 • §F: Details of Loss Function
825
- 826 • §G: Dataset Details
827
- 828 • §H: Details of computational performance
829
- 830 • §I: Details of GPU memory usage
831
- 832 • §J: Results on the nnUNet training framework
833
- 834 • §K: Qualitative Results
835
- 836 • §L: Modality Adaptation Evaluation
837
- 838 • §M: Hyperparameter Analysis
839
- 840 • §N: Computation of Mean Attention Distance
841
- 842 • §O: PWA MultiModal Evaluation
843
- 844 • §P: JL-Setting Generalization Evaluation
845
- 846 • §Q: Convergence Analysis of Models
847
- 848 • §R: Comparison of Different Attention Mechanisms
849
- 850 • §S: Comparison of Different Knowledge Transfer Strategies
851
- 852 • §T: K-Fold and Multiple Seed
853

841 A REPRODUCIBILITY STATEMENT
842

843 Our code is available for download at the following anonymous link: <https://anonymous.4open.science/r/VeloxSeg-DC7B>. We also provide the source code in the code folder in
844 the supplementary materials. The “README.md” file in the source code fully explains the entire
845 training process, including data preprocessing, training, and testing code.
846

847 B USE OF LARGE LANGUAGE MODELS (LLMs)
848

849 To enhance the quality and readability of this manuscript, we use Large Language Models (LLMs)
850 for assistance with the following tasks:
851

- 852 1. **Table Formatting:** Improving the presentation of tables, including adjustments to spacing,
853 typography, and alignment to conform to publication standards.
854
- 855 2. **Proofreading:** Identifying and correcting grammatical errors, such as improper tense and
856 word usage.
857
- 858 3. **Language Refinement:** Refining phrasing and sentence structure to improve clarity, con-
859 ciseness, and overall flow.
860

861 C NECESSITY OF MULTI-SCALE ATTENTION
862

863 CT scans the human body using X-rays and reconstructs a two-dimensional image from one-
864 dimensional projection data. These two-dimensional images are then stacked into a continuous
865

864 three-dimensional image. CT imaging is characterized by high resolution, low tumor specificity,
 865 and rich structural information (Kramer et al., 1989).

866 PET generally refers to 18F-FDG PET. Radiologists use the short-lived radionuclide 18F to label
 867 glucose. After injecting this labeled glucose into the body, they observe the accumulation of glucose,
 868 which indirectly reflects the metabolic activity of human tissues. Because tumors require large
 869 amounts of glucose to support their growth and proliferation, tumor areas often appear bright in
 870 PET images (Mu et al., 2020; Kapoor et al., 2004; Bussink et al., 2011).

871 Magnetic resonance imaging (MRI) provides rich complementary information for analyzing brain
 872 tumors and is routinely used in clinical practice. Specifically, for gliomas, commonly used MRI
 873 sequences include T1-weighted (T1), contrast-enhanced T1-weighted (T1Gd), T2-weighted (T2),
 874 and T2 fluid-attenuated inversion recovery (T2-FLAIR) images; each sequence plays a different
 875 role in distinguishing between the tumor, peritumoral edema, and the tumor core. For meningiomas,
 876 these sequences exhibit distinct characteristic features on T1Gd and contrast-enhanced T2-FLAIR
 877 (FLAIR-C) MRI images (Menze et al., 2014b; Manara et al., 2011; Kaittanis et al., 2014; Bakas
 878 et al., 2017).

879 This indicates that different medical modalities exhibit significant differences in their regions of
 880 interest. In tumor imaging, PET imaging, characterized by high metabolic sensitivity and low res-
 881 olution, excels at localizing tumors at large scales, but its low resolution prevents clear delineation
 882 of tumor morphology. While CT imaging is less sensitive for tumors, it excels at clearly delineating
 883 tumor tissue contours at small scales. Furthermore, the four contrast types in MRI contribute differ-
 884 ently to the identification of targets at three different scales: tumor, peritumoral edema, and tumor
 885 core. Therefore, multi-scale modality interaction is crucial in multimodal medical tasks.

886

887 D DETAILS OF PWA

888

889 D.1 PYTORCH CODE

890

891 We've organized the PyTorch code and feature shape changes of PWA to help readers under-
 892 stand its key operations. As shown in the Algorithm 1, $N_{win} = \log(H/h_b)/\log(r) + 1$, which
 893 means that we expand the large window (h_b, w_b, d_b) by $N_{win} - 1$ to obtain full-image-sized
 894 features. In the AutoPET-II dataset, we set the minimum large window size of each stage to
 895 $\langle 3, 3, 3 \rangle, \langle 6, 6, 6 \rangle, \langle 3, 3, 3 \rangle, \langle 3, 3, 3 \rangle$, which means that after the synchronous expansion of the
 896 paired windows, the large window sizes of each stage are:

897

- First Stage: $\langle 3, 3, 3 \rangle, \langle 6, 6, 6 \rangle, \langle 12, 12, 12 \rangle, \langle 24, 24, 24 \rangle$;
- Second Stage: $\langle 6, 6, 6 \rangle, \langle 12, 12, 12 \rangle$;
- Third Stage: $\langle 3, 3, 3 \rangle, \langle 6, 6, 6 \rangle$;
- Forth Stage: $\langle 3, 3, 3 \rangle$.

898

899 The settings of BraTS2021 are the same. In the Hecktor2022 dataset, the minimum maximum
 900 window size at each stage is $\langle 4, 4, 2 \rangle, \langle 8, 8, 4 \rangle, \langle 4, 4, 2 \rangle, \langle 4, 4, 2 \rangle$. The number of windows must be
 901 divisible by the number of channels of the feature map at the current stage to avoid extensive output
 902 channels during linear mapping. Therefore, the minimum maximum window size in the second
 903 stage is doubled.

904

905

906 D.2 FEATURE FLOW

907

908 As shown in Figure 9, given the m -th modal feature of the k -th encoder stage, $\mathbf{E}_m^k \in$
 909 $\mathbb{R}^{C^k \times H^k \times W^k \times D^k}$, we need to first compute a set of ordered paired window sizes $\{Win_i^k\}_{i=1}^{N_{win}^k}$,
 910 where N_{win}^k is the number of window pairs:

911

912

913

$$\{Win_i^k\}_{i=1}^{N_{win}^k} = \{B_i^k, S_i^k\}_{i=1}^{N_{win}^k} = \left\{ \begin{array}{l} (r^{i-1}h_b^k, r^{i-1}w_b^k, r^{i-1}d_b^k), \\ (r^{i-1}h_s^k, r^{i-1}w_s^k, r^{i-1}d_s^k) \end{array} \right\}_{i=1}^{N_{win}^k}, \quad (5)$$

914

915

916

917 where $r \in \mathbb{N}$ is the expansion rate (default $r = 2$), B_i^k and S_i^k represent the big window and small
 918 window, respectively. h_b^k, w_b^k, d_b^k represent the height, width, and depth of the big window; h_s^k, w_s^k ,

918

Algorithm 1: Pytorch Code of Paired Window Attention (PWA)

919

Input:

920

- \mathbf{E} : Input tensor of shape $[M, C, H, W, D]$.
- B : Min big window size, $[h_b, w_b, d_b]$.
- S : Min small window size, $[h_s, w_s, d_s]$.
- r : Expansion ratio for the paired windows.
- \hat{C} : Number of channels per window after linear projection.

921

Output: Attentions of all modalities \mathbf{A}

def PWA (E, B, S, r) :

922

```
 $N_{win} \leftarrow \lfloor \log(H/h_b) / \log(r) \rfloor + 1$  // the number of paired windows
```

923

```
/* 1) Linear Projection
```

924

```
 $\mathbf{Q}, \mathbf{K}, \mathbf{V} \leftarrow [\text{PWC}(\text{LN}(\mathbf{E})) \text{ for } \_ \text{ in range}(3)]$ 
```

925

```
/* 2) Paired Window Gathering
```

926

```
for  $\mathbf{X}$  in  $[\mathbf{Q}, \mathbf{K}, \mathbf{V}]$  do
```

927

```
     $\mathbf{X}_s \leftarrow []$  // Initialize list for window features
```

928

```
    for  $i \leftarrow 1$  to  $N_{win}$  do
```

929

```
        // Split channels for each window feature
```

930

```
 $\mathbf{X}_i \leftarrow \mathbf{X}[:, (i-1) \cdot \hat{C} : i \cdot \hat{C}, \dots]$ 
```

931

```
// Big and small window sizes expand synchronously
```

932

```
 $S_i, B_i \leftarrow r^{i-1} \cdot S, r^{i-1} \cdot B$ 
```

933

```
// Partition with big window
```

934

```
 $\mathbf{X}_i \leftarrow \text{rearrange} \left( \mathbf{X}_i, "M \text{ Chat } (Nh \text{ hb}) \text{ (Nw wb) } (Nd \text{ db}) \text{ } \rightarrow M \text{ (Nh Nw Nd Chat) hb wb db}" \right)$ 
```

935

```
// Collecting a salient token for each small window
```

936

```
 $\mathbf{X}_i \leftarrow \text{F.max\_pool3d}(\mathbf{X}_i, S_i, S_i)$ 
```

937

```
// Flatten spatial dims and concatenate multimodal sequences
```

938

```
 $\mathbf{X}_i \leftarrow \text{rearrange} \left( \mathbf{X}_i, "M \text{ (N Chat) nh nw nd } \rightarrow \text{ N Chat (M nh nw nd) }" \right)$ 
```

939

```
 $\mathbf{X}_s.append(\mathbf{X}_i)$ 
```

940

```
end
```

941

```
// Concatenate all window features
```

942

```
//  $\mathbf{X}$ :  $[\sum_{i=1}^{N_{win}} N_i, \hat{C}, M \cdot L]$ 
```

943

```
 $\mathbf{X} \leftarrow \text{torch.cat}(\mathbf{X}_s, \text{dim} = 0)$ 
```

944

```
end
```

945

```
/* 3) Multimodal Grouped Attention  $\times 1$ 
```

946

```
 $\mathbf{A} \leftarrow \text{multihead\_attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V})$ 
```

947

```
/* 4) Paired Window Scattering
```

948

```
// Inverse of gathering.
```

949

```
//  $\mathbf{A}$ :  $[M, \hat{C}, H, W, D]$ 
```

950

```
 $\mathbf{A} \leftarrow \text{window\_scattering}(\mathbf{A})$ 
```

951

```
/* 5) Paired Window Mixer
```

952

```
//  $\mathbf{A}$ :  $[M, C, H, W, D]$ 
```

953

```
 $\mathbf{A} \leftarrow \mathbf{E} + \text{Dropout}(\text{PWC}(\mathbf{A}))$ 
```

954

```
return  $A$ 
```

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

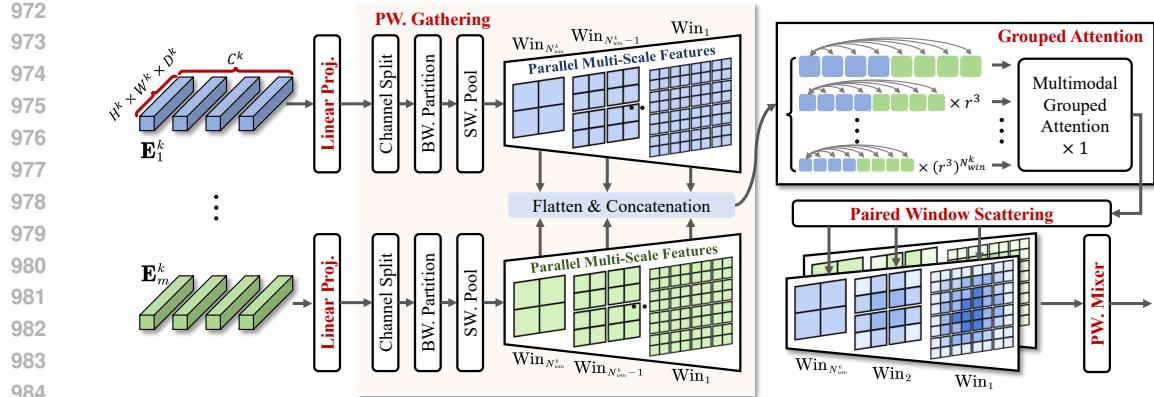


Figure 9: Detailed architecture of Paired Window Attention (PWA). This figure focuses on visually showing the feature flows of PWA.

d_s^k correspond to the small window. Notably, r , B_1^k , and S_1^k are closely related to the computational cost, and the specific settings for different datasets are given in Appendix D.3. Since $B_{N_{win}^k}^k$ is equal to (H^k, W^k, D^k) , there is no need to set N_{win}^k in advance. Subsequently, the encoder features will undergo the following steps in order:

D.2.1 LINEAR PROJECTION

We do not follow the habit of linear mapping: the number of output channels is equal to the number of input channels, but based on the JL-guided minimum head size C_{min}^k , the number of heads N_{head}^k , and the number of window pairs N_{win}^k , the number of output channels is $\hat{C}^k = \min \{nC_{min}^k, n \in \mathbb{N} : N_{win}^k N_{head}^k (nC_{min}^k) \geq C^k\}$, where \hat{C}^k is the actual head size. The formula is as follows:

$$\mathbf{Q}_m^k = \text{PWC}(\text{LN}(\mathbf{E}_m^k)), \mathbf{K}_m^k = \text{PWC}(\text{LN}(\mathbf{E}_m^k)), \mathbf{V}_m^k = \text{PWC}(\text{LN}(\mathbf{E}_m^k)), \quad (6)$$

where \mathbf{Q} , \mathbf{K} , \mathbf{V} represent query, key, and value respectively. $\text{LN}(\cdot)$ represents layer normalization, and $\text{PWC}(\cdot)$ represents point-wise convolution. For convenience, we use \mathbf{X} to represent \mathbf{Q} , \mathbf{K} , \mathbf{V} in Algorithm 1 and Figure 3 (a).

D.2.2 PAIRED WINDOW GATHERING

Synchronously expanding paired windows ensures that the sequence lengths of \mathbf{Q} , \mathbf{K} and \mathbf{V} remain consistent across multiple scales, which enables parallel computation. Given $\mathbf{Q}_m^k, \mathbf{K}_m^k, \mathbf{V}_m^k \in \mathbb{R}^{C^k \times H^k \times W^k \times D^k}$, where i denotes the i -th paired window, the processing pipeline is as follows:

- **Channel Split:** This operation assigns features to their corresponding windows along the channel dimension. The feature shape becomes $(N_{head}^k \times \hat{C}^k \times H^k \times W^k \times D^k)$.
- **Big Window Partition:** This operation partitions the features into non-overlapping blocks based on the big window size B_i^k . The feature shape becomes $(n_i^k, N_{head}^k, \hat{C}^k, r^{i-1}h_b, r^{i-1}w_b, r^{i-1}d_b)$, where n_i^k is the total number of large windows.
- **Small Window Pooling:** This operation gathers salient tokens from each small window S_i^k . The feature shape becomes $(n_i^k, N_{head}^k, \hat{C}^k, h_b^k/h_s^k, w_b^k/w_s^k, d_b^k/d_s^k)$.
- **Flatten and Concatenation:** These are feature reshaping operations. The new feature size is $(n_i^k, N_{head}^k, \hat{C}^k, ML)$, where $L = (h_b^k/h_s^k) \times (w_b^k/w_s^k) \times (d_b^k/d_s^k)$ is the sequence length and M is the number of modalities.

The above operations are repeated for each paired window. Thanks to the synchronous expansion, the sequence length L is guaranteed to be equal across different scales. Finally, we can summarize

1026 this process as follows:
 1027

$$\tilde{\mathbf{Q}}^k = \text{Gather}(\mathbf{Q}_1^k, \dots, \mathbf{Q}_M^k), \tilde{\mathbf{K}}^k = \text{Gather}(\mathbf{K}_1^k, \dots, \mathbf{K}_M^k), \tilde{\mathbf{V}}^k = \text{Gather}(\mathbf{V}_1^k, \dots, \mathbf{V}_M^k), \quad (7)$$

1030
 1031 **D.2.3 MULTIMODAL GROUPED ATTENTION**

1032 The similarity matrix calculation formula is as follows:
 1033

$$\mathbf{S}^k = \frac{1}{\sqrt{\hat{C}^k}} \left(\tilde{\mathbf{Q}}^k \right)^T \otimes \tilde{\mathbf{K}}^k, \quad (8)$$

1036 where \otimes represents matrix multiplication. In addition, each $L \times L$ block in the similarity matrix is
 1037 assigned a relative position code \mathbf{E}_{pos}^k to strengthen the position relationship between voxels in the
 1038 window and cross-modal voxels. The remaining attention is calculated as follows:
 1039

$$\mathbf{W}^k = \text{softmax}(\mathbf{S}^k + \mathbf{E}_{pos}^k), \quad (9)$$

$$\mathbf{A}^k = \mathbf{W}^k \otimes \hat{\mathbf{V}}^k, \quad (10)$$

1040 \mathbf{W}^k is the attention weight matrix, and \mathbf{A}^k is the attention obtained for each window.
 1041

1042
 1043 **D.2.4 PAIRED WINDOW SCATTERING**

1044 After computing the attention mechanism in parallel, we perform the inverse operation of Paired
 1045 Window Gathering to map the multi-scale attention mechanism to the original feature space, ob-
 1046 taining the window attention \mathbf{A}_m^k for each modality, which has the same size as $\mathbf{Q}_m^k, \mathbf{K}_m^k, \mathbf{V}_m^k$.
 1047

$$\mathbf{A}_1^k, \dots, \mathbf{A}_M^k = \text{Scatter}(\mathbf{A}^k). \quad (11)$$

1048
 1049 **D.2.5 PAIRED WINDOW MIXER**

1050 The above operations obtain window attention of different scales. We will use $1 \times 1 \times 1$ convolution
 1051 to mix them to get the final feature $\tilde{\mathbf{E}}_m^k$. The formula is as follows:
 1052

$$\tilde{\mathbf{E}}_m^k = \mathbf{E}_m^k + \text{PWC}(\mathbf{A}_m^k), m = 1, \dots, M. \quad (12)$$

1053
 1054 **D.3 COMPUTATIONAL COMPLEXITY**

1055 Let $N = H \cdot W \cdot D, B = h_b \cdot w_b \cdot d_b, S = h_s \cdot w_s \cdot d_s$, and $\kappa = 1 + \frac{1}{r^2} + \dots + \frac{1}{r^{2N_{win}}} = \frac{1-r^{-3N_{win}}}{1-r^{-3}}$,
 1056 the computational complexity of PWA is calculated as follows:
 1057

$$\begin{aligned} & \underbrace{\left(\frac{N}{B} \right) \left(1 + \frac{1}{r^2} + \dots + \frac{1}{r^{2N_{win}}} \right)}_{\text{number of big windows}} \underbrace{\left(4 \frac{B}{S} C^2 + 2 \frac{B^2}{S^2} C \right)}_{\text{multiplication operations per big window}} \\ &= N \kappa \left(4 \frac{1}{S} C^2 + 2 \frac{B}{S^2} C \right) \\ &= \left(\frac{N \kappa}{S} \right) \left(4 C^2 + 2 \frac{B}{S} C \right), \end{aligned}$$

1058
 1059 **E DETAILS OF JL-GUIDED GROUP SIZE**

1060
 1061 **E.1 EMPIRICAL PARAMETRIZATION OF COVERING NUMBERS**

1062 Motivated by the classical covering-number results in Heinonen (2001, Definition 10.15 and Exer-
 1063 cise 10.17), we consider a hypothesis class whose covering number satisfies
 1064

$$N(\epsilon) \leq C \left(\frac{1}{\epsilon} \right)^\beta, \quad C \geq 1, \quad \epsilon \in (0, 1), \quad (13)$$

1080 where $C \geq 1$ is a constant independent of the ball, $\epsilon \in (0, 1)$. To ensure generality, we do not make
 1081 further assumptions about the data to obtain specific parameters, but instead use empirical functions
 1082 for approximation: $\hat{N} = (M \cdot v)^\alpha$.
 1083

- 1084 • $M \cdot v$ replaces $1/\epsilon$, representing the coverage density required per dimension. Given the
 1085 constraints of JL’s logarithmic scaling and the requirement that the group size divides the
 1086 input channel, we omit the possible constant term.
- 1087 • α serves as a difficulty coefficient reflecting the dataset’s intrinsic complexity. We calibrate
 1088 α based on the most challenging dataset to ensure robust generalization across different
 1089 tasks.

1090

1091 E.2 WHY WE AVOID MORE COMPLEX POLYNOMIAL APPROXIMATIONS.

1092

1093 The covering-number estimate is only an intermediate step; JL lemma then applies a logarithm.
 1094 Consequently, low-degree and constant terms in a polynomial approximation have a minimal effect
 1095 after taking the log. For example, consider $v = 43, M = 2, \alpha = 1$. If we add a constant term β ,
 1096 $\log(Mv + \beta) - \log(Mv) = \log(1 + \beta/128) \approx 0$. Besides, because the group_size must divide
 1097 input_channel, such a small interrupt rarely changes the final group size.

1098

1099

1100 E.3 ANALYSIS OF DIFFERENT NUMBER OF MODALITIES AND THE GROUP SIZE OF 2D 1101 IMAGES

1102

1103

1104 For a typical lightweight 3D medical segmentation method, its network contains $M \in \{1, 2, 4\}$
 1105 modalities with volume ratios $\{v^k\}_{k=1}^4 = \{4^3, 8^3, 16^3, 32^3\}$ of each stage. Its complexity increases
 1106 with depth, which means that the group size is:

1107

$$C_{\text{group}} \approx \begin{cases} \{4.2\alpha, 6.2\alpha, 8.3\alpha, 10.4\alpha\}, & M = 1 \\ \{4.9\alpha, 6.9\alpha, 9.0\alpha, 11.1\alpha\}, & M = 2 \\ \{5.5\alpha, 7.6\alpha, 9.7\alpha, 11.8\alpha\}, & M = 4 \end{cases} \quad (14)$$

1108

1109

1110 Considering that the group size needs to be divisible by the total number of channels and that nonlin-
 1111 ear networks have stronger compression capabilities than linear networks, we use $\{C_{\text{group}}^k\}_{k=1}^4 =$
 1112 $\{4\alpha, 8\alpha, 16\alpha\}$ for each stage, where α is determined by the most difficult AutoPET-II dataset to
 1113 ensure universality. For convenience, we replace α with $n = \lceil \alpha/4 \rceil \in \mathbb{N}$, and the final convolution
 1114 group size of each stage of the network is set to $\{C_{\text{group}}^k\}_{k=1}^4 = \{n, 2n, 2n, 4n\}$.

1115

1116

1117

1118

1119

1120 For lightweight convolution settings in the natural image domain, the input image typically has
 1121 $M = 3$ channels, and the volume ratio of each stage of the network is $\{v^k\}_{k=1}^4 = \{1^2, 2^2, 4^2, 8^2\}$,
 1122 which means the group size is: $\{C_{\text{group}}^k\}_{k=1}^4 = \{\alpha \log 3, \alpha \log 12, \alpha \log 48, \alpha \log 192\} \approx$
 1123 $\{1.1\alpha, 2.5\alpha, 3.9\alpha, 5.3\alpha\}$. Considering the integer divisibility of the channels, it is recommended
 1124 to use a group size of $\{\alpha, 2\alpha, 4\alpha, 4\alpha\}$. This setting is similar to the depth-wise convolution setting,
 1125 further demonstrating the effectiveness of depth-wise convolution in the natural image domain.

1126

1127

F DETAILS OF LOSS FUNCTION

1128

1129

F.1 SEGMENTATION LOSS

1130

1131

1132

1133

1134 For segmentation, we use a combination of the cross entropy loss \mathcal{L}_{ce} and the foreground dice loss
 1135 \mathcal{L}_{dice} , which can optimize the detail and global segmentation effects. Deep supervision is performed
 1136 on the segmentation decoder. The formula is as follows:

1137

1138

1139

$$\mathcal{L}_{ce}(\mathbf{P}, \mathbf{Y}) = -\frac{1}{HWD} \sum_{i=1}^{HWD} \mathbf{P}_i \log(\mathbf{Y}_i), \quad (15)$$

1140

1141

1142

1143

$$\mathcal{L}_{dice}(\mathbf{P}, \mathbf{Y}) = 1 - \frac{2 \sum_{i=1}^{HWD} \mathbf{P}_i \mathbf{Y}_i}{\sum_{i=1}^{HWD} \mathbf{P}_i + \sum_{i=1}^{HWD} \mathbf{Y}_i}, \quad (16)$$

1144 where \mathbf{P} is prediction map and \mathbf{Y} is segmentation ground truth, subscript i represents the i -th voxel.

1134 F.2 RECONSTRUCTION LOSS
11351136 The texture teacher learns without data annotation, reconstructing the original input image based on
1137 model features. The loss function is a simple mean squared error, as shown in the following formula:
1138

1139
1140
$$\mathcal{L}_{rc} = \frac{1}{M} \sum_{m=1}^M \|\mathbf{R}_m - \mathbf{I}_m\|^2, \quad (17)$$

1141
1142

1143 where M is the number of input modalities, \mathbf{R}_m and \mathbf{I}_m represent the reconstructed and original
1144 images of the m -th modality, respectively.
1145
11461147 G DETAILS OF DATASET
1148
1149

1150 Dataset	1151 Modalities	1152 Region	1153 Label Type	1154 Image Size	1155 Crop Size	1156 Voxel Spacing
1152 AutoPET-II	1153 PET, CT	1154 Whole Body	1155 Malignant melanoma, lymphoma, or lung cancer lesions	1156 Min (400, 400, 200)	1157 (96, 96, 96)	1158 Fixed (2.036, 2.036, 3)
1155 Hecktor2022	1156 PET, CT	1157 Head & Neck	1158 Primary gross tumor volume (GTVp), or lymph node gross tumor volume (GTVn)	1159 Min (128, 128, 67)	1160 (128, 128, 64)	1161 Median (0.98, 0.98, 3.3)
1159 BraTS2021	1160 MRI	1161 Brain	1162 Brain tumors: whole tumor (WT), tumor core (TC), enhancing tumor (ET) subregions.	1163 Fixed (240, 240, 155)	1164 (96, 96, 96)	1165 Fixed (1.0, 1.0, 1.0)
1163 BraTS 2016	1164 TCIA	1165 MRI	1166 Brain	1167 Glioma segmentation (multi-class): necrosis/active tumor and edema.	1168 Fixed (240, 240, 155)	1169 (96, 96, 96) Fixed (1.0, 1.0, 1.0)

1167 Table 5: Details of AutoPET-II, Hecktor2022, BraTS2021, and BraTS 2016 TCIA datasets. If image
1168 size is a variable, the minimum value is reported. If voxel spacing is a variable, the median value is
1169 reported.
1170
11711172 We evaluate our proposed VeloxSeg on four public medical image datasets: AutoPET-II (Gatidis S, 2022),
1173 Hecktor2022 (Oreiller et al., 2022), BraTS2021 (Baid et al., 2021), and BraTS 2016
1174 TCIA (Menze et al., 2014a). The AutoPET-II and Hecktor2022 datasets are multimodal PET/CT
1175 datasets for tumor segmentation. AutoPET-II contains 1,014 whole-body PET/CT scans with vari-
1176 able image dimensions and is cropped to $96 \times 96 \times 96$ patches. Hecktor2022 comprises 524 head
1177 and neck PET/CT scans, cropped to $128 \times 128 \times 64$ patches. The BraTS2021 and BraTS 2016 TCIA
1178 datasets are multimodal (T1, T1ce, T2, FLAIR) MRI datasets for brain tumor segmentation. Each
1179 patient’s data is registered to a common spatial resolution of $240 \times 240 \times 155$ and undergoes skull
1180 stripping. The brain tumor region is segmented into three primary sub-regions: the enhancing tumor
1181 (ET), the tumor core (TC), and the whole tumor (WT). For training efficiency, volumes are cropped
1182 to $96 \times 96 \times 96$ patches. BraTS2021 contains 1,251 cases for training and validation, while BraTS
1183 2016 TCIA (244 cases) serves as an external test set to evaluate domain generalization capability
across different data distributions.1184 We use four public medical image datasets to verify the effectiveness of SlimMSCT, including
1185 AutoPET-II, Hecktor2022, BraTS2021, and BraTS 2016 TCIA, which is used as an external test
1186 set to compare the generalization ability of the model. The first two datasets contain CT and PET
1187 images, and the latter two datasets contain 3D MRI images with four modalities. The details of the
datasets are described in Table 5.

1188	1189	1190	1191	Methods	Type	AutoPET-II				Hecktor2022			
						MP.	GF.	ThrG.	ThrC.	MP.	GF.	ThrG.	ThrC.
Basic Models													
1192	UNet	CNN		5.75	136.56	101.04	0.23	5.75	161.84	85.60	0.19		
1193	VNet	CNN		45.60	322.22	58.99	0.14	45.60	381.89	49.82	0.11		
1194	MedNeXt-S	CNN		5.54	57.93	27.95	0.06	5.54	68.54	23.20	0.05		
1195	UNETR	CNN-Transformer		95.76	83.61	131.96	0.40	95.76	99.09	105.78	0.35		
1196	Swin UNETR	CNN-Transformer		15.51	84.26	38.37	0.14	15.51	100.66	28.58	0.10		
1197	VSmTrans	CNN-Transformer		12.48	91.44	36.56	0.14	3.12	28.79	34.13	0.16		
1198	UNETR++	CNN-Transformer		19.97	57.93	161.15	0.67	19.97	68.66	138.39	0.56		
1199	U-KAN	CNN-KAN		7.06	22.90	187.06	0.82	7.06	27.13	159.92	0.75		
Multimodal Models													
1202	Nestedformer	CNN-Transformer		4.71	58.62	95.63	0.41	4.71	69.48	79.05	0.35		
1203	A2FSeg	CNN		41.32	207.97	52.02	0.17	41.32	246.48	40.60	0.13		
1204	H-DenseFormer	CNN-Transformer		3.64	71.91	123.35	0.44	3.64	85.23	102.80	0.37		
Lightweight Models													
1206	SegFormer-3D	CNN-Transformer		4.50	5.11	364.24	3.31	4.50	6.06	305.01	2.67		
1207	Slim UNETR	CNN-Transformer		1.77	3.83	178.33	11.40	1.77	4.53	151.85	8.78		
1208	SuperLightNet	CNN-Transformer		2.75	19.42	55.48	0.27	2.75	23.01	47.36	0.23		
1209	HCMA-UNet	CNN-Mamba		2.81	26.15	54.51	—	2.81	31.00	46.48	—		
1210	U-RWKV	CNN-RWKV		1.44	20.68	82.09	—	1.44	24.51	73.98	—		
1212	VeloxSeg	CNN-Transformer		1.66	1.79	390.91	6.67	1.66	2.13	319.80	5.47		

Table 6: Computational performance comparison of all models on AutoPET-II and Hecktor2022 datasets. “MP.”: Million Parameters; “GF.”: GFLOPs; “ThrG.”: Throughput on GPU; “ThrC.”: Throughput on CPU.

H DETAILS OF COMPUTATIONAL PERFORMANCE

We evaluate the computational performance of VeloxSeg against other leading models on the AutoPET-II, Hecktor2022, and BraTS2021 datasets. Our analysis focus on four key metrics: the number of model parameters in millions, GFLOPs, GPU throughput, and CPU throughput. On the AutoPET-II and Hecktor2022 datasets, VeloxSeg established a new standard for efficiency. As detailed in Table 6, our model operates with only 1.66 million parameters and the lowest GFLOPs among all competitors, requiring just 1.79 on AutoPET-II and 2.13 on Hecktor2022. This lean profile translates to exceptional speed, where VeloxSeg recorded the highest GPU throughput and second-highest CPU throughput on both datasets. In the lightweight category, while Slim UNETR is marginally smaller, VeloxSeg surpasses it in computational cost and processing speed.

On the BraTS2021 dataset, we test early-fusion VeloxSeg due to its concentrated target distribution, absence of small lesions, and low modality heterogeneity. Table 7 shows that VeloxSeg-C is one of the smallest models with only 1.46 million parameters, yet it achieves the lowest GFLOPs at 2.64. Most notably, it delivered the highest GPU throughput of any model, processing 536.62 images/s, alongside the second-fastest CPU throughput. This positions VeloxSeg-C as a more efficient and faster alternative to other lightweight models like U-RWKV and SegFormer-3D.

Across all three benchmarks, the VeloxSeg architecture demonstrates an excellent balance between model size, computational requirements, and processing speed, making it well-suited for deployment in resource-constrained environments. Furthermore, segmentation methods based on sequence models, such as Mamba and RWKV, lack CPU support, significantly limiting their application in edge devices.

	Methods	Type	MP. \downarrow	GF. \downarrow	ThrG. \uparrow	ThrC. \uparrow
Basic Models						
UNet	CNN		5.75	138.14	103.70	0.23
VNet	CNN		45.61	322.85	63.37	0.14
MedNeXt-S	CNN		5.54	57.95	27.75	0.06
UNETR	CNN-Transformer		102.06	85.79	128.16	0.41
Swin UNETR	CNN-Transformer		15.51	85.53	38.11	0.13
VSmTrans	CNN-Transformer		12.48	92.72	36.18	0.13
UNETR++	CNN-Transformer		19.98	58.81	153.63	0.52
U-KAN	CNN-KAN		7.06	23.69	181.89	0.85
Multimodal Models						
Nestedformer	CNN-Transformer		7.52	88.43	56.92	0.23
A2FSeg	CNN		74.55	361.18	28.92	0.08
H-DenseFormer	CNN-Transformer		5.39	73.18	95.61	0.42
Lightweight Models						
SegFormer-3D	CNN-Transformer		4.53	5.42	355.73	2.98
Slim UNETR	CNN-Transformer		1.78	6.59	97.50	10.62
SuperLightNet	CNN-Transformer		2.75	19.54	55.13	0.28
HCMA-UNet	CNN-Mamba		2.81	26.69	53.72	—
U-RWKV	CNN-RWKV		1.43	21.08	83.15	—
VeloxSeg-C	CNN-Transformer		1.46	2.64	536.62	5.23

Table 7: Computational performance on BraTS2021 dataset with patch size $96 \times 96 \times 96$ and 4 modalities (T1/T1ce/T2/FLAIR). “MP.”: Million Parameters; “GF.”: GFLOPs; “ThrG.”: Throughput on GPU; “ThrC.”: Throughput on CPU.

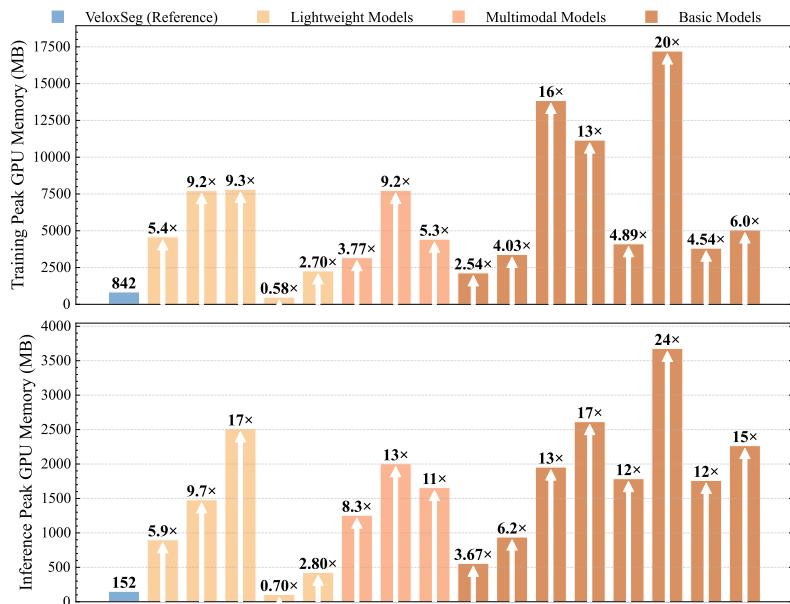


Figure 10: Visualization of memory usage for training and inference of all models. Arranged from left to right in reverse order of Table 6.

1296	1297	1298	1299	Methods	Type	AutoPET-II		Hecktor2022		BraTS2021	
						TM.	IM.	TM.	IM.	TM.	IM.
Basic Models											
1300	UNet	CNN		5054	2268	5942	2698	5112	2090		
1301	VNet	CNN		3820	1762	4460	2072	3886	1684		
1302	MedNeXt	CNN		17216	3678	20372	4376	17258	3734		
1303	UNETR	CNN-Transformer		4114	1788	4626	1914	4106	1460		
1304	Swin UNETR	CNN-Transformer		11164	2616	13258	3704	11166	3466		
1305	VSmTrans	CNN-Transformer		13856	1956	13318	2532	14202	1972		
1306	UNETR++	CNN-Transformer		3392	940	3906	1088	3640	984		
1307	U-KAN	CNN-KAN		2138	558	2360	640	2200	606		
Multimodal Models											
1310	NestedFormer	CNN-Transformer		4428	1658	5182	1966	7274	2200		
1311	A2FSeg	CNN		7748	2004	9102	2352	15604	3074		
1312	H-DenseFormer	CNN-Transformer		3172	1256	3778	1474	3712	1094		
Lightweight Models											
1314	SegFormer-3D	CNN-Transformer		2272	426	2702	436	2096	430		
1315	Slim UNETR	CNN-Transformer		488	106	562	124	602	172		
1316	SuperLightNet	CNN-Transformer		7812	2510	9192	2730	7842	2266		
1317	HCMA-UNet	CNN-Mamba		7730	1480	9098	1892	7938	2020		
1318	U-RWKV	CNN-RWKV		4582	900	5388	1044	4670	936		
1319	VeloxSeg	CNN-Transformer		842	152	1006	178	1392	1112		

Table 8: Peak GPU memory usage for training and inference for all models across three datasets. All models were tested with a fixed batch size of 2, ensuring all other experimental conditions remained the same. “TM.” represents the peak GPU memory usage during training, and “IM.” represents the peak GPU memory usage during inference.

I DETAILS OF GPU MEMORY USAGE

Table 8 shows that VeloxSeg has the second lowest memory footprint, saving more GPU memory than all non-lightweight baseline models. As shown in Figure 10, on the AutoPET-II dataset, the base methods’ GPU memory usage is 2.5 to 20 times that of VeloxSeg, with inference memory usage reaching up to 24 times higher. Compared to other lightweight models, VeloxSeg consistently has less GPU memory usage than SegFormer-3D, SuperLightNet, HCMA-UNet, and U-RWKV, which, despite claiming to be lightweight, have GPU memory usage that is 5.9 to 17 times higher than ours.

J RESULTS ON THE nnUNET TRAINING FRAMEWORK

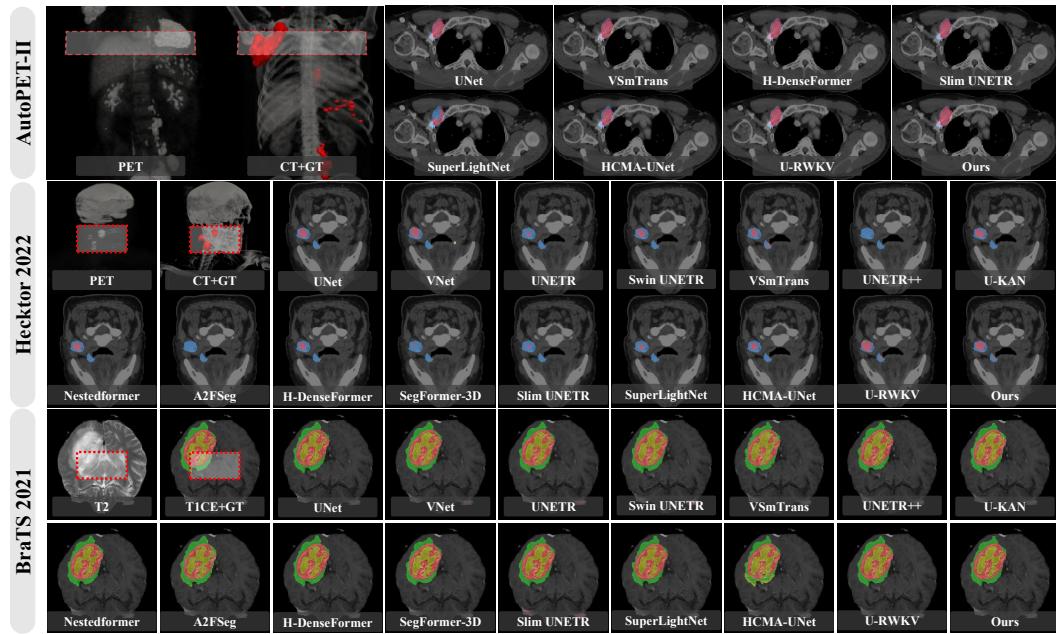
1339	Dataset	Model	MParams ↓	GFLOPs ↓	Thr.GPU ↑	Thr.CPU ↑	Dice ↑	HD95 ↓
1340	AutoPET-II	nnUNet	88.62	3078.83	81.13	0.127	55.85	193.54
		VeloxSeg	1.66	1.79	390.91	6.67	70.05	177.51
1343	Hecktor2022	nnUNet	88.62	4828.04	68.02	0.106	60.80	36.67
		VeloxSeg	1.66	2.13	319.80	5.47	62.51	30.22

Table 9: Performance comparison between nnUNet and VeloxSeg across PET/CT datasets. Both segmentation performance and computational efficiency are evaluated.

To unleash more model potential, we placed the model in the nnUNet training framework and completed the training while keeping the patch size consistent with the experimental setting. The results

1350
 1351 are shown in Table 9. It can be seen that our model has achieved comprehensive transcendence. In
 1352 the AutoPET-II dataset, we achieved a Dice that was 14.2% higher than the nnUNet baseline with
 1353 1.87% of the parameters and 5.81e-2% GLOPs, and the GPU throughput and CPU throughput in-
 1354 creased by 4.8 \times and 52.5 \times respectively. Similarly, in the Hecktor2022 dataset, VeloxSeg achieved
 1355 a Dice that was 1.71% higher than the nnUNet baseline with 1.87% of the parameters and 4.41e-2%
 1356 GLOPs, and the GPU throughput and CPU throughput increased by 4.7 \times and 51.6 \times respectively.
 1357

K QUALITATIVE RESULTS



1360
 1361 Figure 11: 3D qualitative visualization of different methods on the AutoPET-II, Hecktor2022 and
 1362 BraTS2021 datasets. In PET-CT datasets, model predictions are shown on CT images (red indicates
 1363 true positives, yellow indicates false positives, and blue indicates false negatives); In MRIs datasets,
 1364 model predictions are shown on T1CE images (red represents ET, yellow represents TC, and green
 1365 represents WT).
 1366

1367
 1368 Figure 11 show the qualitative results of three segmentation cases: large melanoma lesions, primary
 1369 and secondary lesions of right tonsil tumors or lymphomas, and glioma lesions. It can be seen
 1370 that our method can accurately locate the tumor area, exclude the wrong attention to areas such as
 1371 intracranial veins, and the prediction results are consistent with the labels.
 1372

L MODALITY ADAPTATION EVALUATION

1373 On BraTS2021 MRI brain tumor dataset, we use an early fusion strategy (VeloxSeg-C) that does
 1374 not slow down as the number of modalities increases, as shown in Table 10. Since brain tumors are
 1375 large and centralized, and the slices processed are relatively fixed, almost all models achieved good
 1376 results. Our model improves the Dice by 1.72% compared to the state-of-the-art SuperLightNet.
 1377

M HYPERPARAMETER ANALYSIS

M.1 MODULE HYPERPARAMETER

1378 Model optimization, detailed in Table 2, focused on balancing segmentation performance and com-
 1379 putational efficiency. convolution adjustments, including reducing model width $\langle 32, 61, 128, 256 \rangle$
 1380 to $\langle 16, 32, 64, 128 \rangle$, improved CPU throughput, from 10.83 to 20.23, and Dice, from 48.96% to
 1381

1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	Method	Dice Similarity Coefficient (%)				Hausdorff Distance 95% (mm)			
																				Avg. \uparrow	ET \uparrow	TC \uparrow	WT \uparrow	Avg. \downarrow	ET \downarrow	TC \downarrow	WT \downarrow	
UNet	88.18	89.62	85.65	89.28	4.93	5.95	7.52	3.59																				
V-Net	88.86	90.66	86.16	89.75	5.26	5.98	8.29	4.31																				
MedNeXt-S	90.70	92.64	88.33	91.12	4.48	4.72	7.10	3.33																				
UNETR	85.44	88.12	81.49	86.71	6.68	8.51	8.19	4.75																				
Swin UNETR	88.52	90.19	85.73	89.63	5.07	6.37	7.29	3.44																				
VSmTrans	86.62	91.15	78.01	90.71	7.00	6.00	12.07	3.44																				
UNETR++	88.77	90.26	87.01	89.05	4.49	5.30	6.98	3.76																				
U-KAN	88.51	90.57	86.14	88.82	5.44	5.77	8.03	4.65																				
Nestedformer	88.54	89.60	86.71	89.30	4.21	5.44	7.38	3.13																				
A2FSeg	88.18	91.78	84.58	88.18	4.66	4.47	7.51	3.72																				
H-DenseFormer	89.35	90.80	86.66	90.59	5.58	5.85	8.88	3.97																				
SegFormer-3D	89.18	90.37	87.49	89.69	4.61	5.45	6.30	3.57																				
Slim UNETR	87.33	89.31	85.00	87.66	5.16	6.46	7.57	3.52																				
SuperLightNet	89.72	91.46	87.22	90.48	4.46	5.39	6.33	3.06																				
HCMA-UNet	89.53	91.63	86.24	90.72	4.79	5.05	8.12	4.15																				
U-RWKV	89.04	91.34	86.94	88.83	5.42	6.39	7.66	4.63																				
VeloxSeg-C	91.44	93.09	89.00	92.24	3.75	3.89	4.41	3.35																				

Table 10: Segmentation performance comparison on the BraTS2021 dataset. VeloxSeg-C’s metrics are highlighted in green. The best performance is red and the second best performance is blue.

Depth	CT	PET	Enc.	Dec.
1	3.07	3.22	3.02	3.06
2	2.85	2.82	2.73	2.75
3	2.37	2.38	2.26	2.29
4	1.82	1.85	1.74	—

Table 11: Ratio of channels to input embeddings after pruning the FFN layers of PWA and JLC. Baseline Dice: 69.94%; after pruning: 68.49%.

Ablation	λ_{rc}	λ_{sdkt}	Dice \uparrow
\mathcal{L}_{rc}	1.5	1.5	58.03 -4.41
	1.0	1.5	61.53 -0.92
	0.5	1.5	62.44
\mathcal{L}_{style}	0.5	2.5	62.23 -0.28
	0.5	2.0	62.51
	0.5	1.5	62.44 -0.07
	0.5	1.0	61.66 -0.85
	0.5	0.5	60.55 -2.06

Table 12: Hyperparameters experiments with loss weight on AutoPET-II.

50.10%. Replacing large kernel convolution $\langle 7 \rangle$ with parallel small kernels $\langle 1, 3, 5 \rangle$ yielded a 3.55% Dice increase, from 50.10% to 53.65%, while simultaneously reducing MParams from 0.73 to 0.66, and GFLOPs from 2.41 to 2.30. Optimal group channel setting $\langle 4, 8, 8, 16 \rangle$ achieved a 55.14% Dice. Attention depth reduction $\langle 2, 2, 2, 2 \rangle$ to $\langle 1, 1, 1, 1 \rangle$ surprisingly enhanced Dice, from 59.56% to 61.03%. As suggested in Table 11, reducing the FFN dilation rate of Transformer/Convolution to $\langle 3, 3, 2, 2 \rangle$ can slightly improve Dice performance while reducing computational cost.

M.2 LOSS WEIGHT

Considering the differences in the contributions of various tasks to segmentation, we need to adjust the relative weights between different tasks to explore the optimal parameter update process. To this end, we adopt the strategy of controlling variables and adjust the loss weights of \mathcal{L}_{rc} and \mathcal{L}_{style} in turn. The specific results are shown in Table 12. The final parameters of each experiment are highlighted in green, and red and green are used to indicate the improvement and deterioration in the process. Finally, the optimal weight parameters are selected as $\lambda_{rc} = 0.5$, $\lambda_{sdkt} = 2.0$.

1458 N COMPUTATION OF MEAN ATTENTION DISTANCE

1460 To analyze the locality of attention heads, we compute the Mean Attention Distance (MAD), a metric
 1461 that measures the average physical distance between a query voxel and the key voxels it attends to,
 1462 weighted by the attention scores. We extend the Mean Attention Distance metric to 3D volumes to
 1463 analyze attention patterns in volumetric data, and its computation is detailed below.

1464 Let the input 3D volume be partitioned into a grid of $H \times W \times D$ voxels, resulting in a total of
 1465 $L = H \cdot W \cdot D$ voxels. The attention weight matrix for a given head is denoted by $\mathbf{W} \in \mathbb{R}^{L \times L}$,
 1466 where \mathbf{W}_{ij} is the attention weight from voxel i to voxel j . Let $\mathbf{s} \in \mathbb{R}^+$ be a scalar representing the
 1467 physical edge length of a single cubic voxel.

1468 First, we map each voxel’s flattened 1D index i (where $i \in \{0, \dots, L - 1\}$) to its physical 3D
 1469 coordinates (x_i, y_i, z_i) . Assuming a standard row-major flattening order where the x-axis (width) is
 1470 the fastest-changing dimension and the z-axis (depth) is the slowest:

$$\begin{cases} z_i = \lfloor i / (H \cdot W) \rfloor \\ y_i = \lfloor (i \bmod (H \cdot W)) / W \rfloor \\ x_i = i \bmod W \end{cases} \quad (18)$$

1472 Next, we compute the pairwise physical distance matrix $\mathbf{D} \in \mathbb{R}^{L \times L}$. Each element \mathbf{D}_{ij} represents
 1473 the scaled Euclidean distance between the centers of voxel i and voxel j :

$$\mathbf{D}_{ij} = \mathbf{s} \cdot \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2} \quad (19)$$

1474 Finally, the Mean Attention Distance (MAD) is formulated as the expectation of the physical
 1475 distance over the attention distribution. As shown in Equation 20, it is computed by summing all dis-
 1476 tances weighted by their corresponding attention scores, and then averaging over all query voxels:

$$\text{MAD} = \frac{1}{L} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \mathbf{W}_{ij} \cdot \mathbf{D}_{ij} \quad (20)$$

1477 A smaller MAD value indicates that the attention head primarily focuses on local information,
 1478 whereas a larger MAD value signifies a more global attention pattern across the volume. The win-
 1479 dow size of each stage of PWA is shown in Appendix D.

1480 O PWA MULTIMODAL EVALUATION

1481 Modality	1482 MParams \downarrow	1483 GFLOPs \downarrow	1484 Thr. (GPU) \uparrow	1485 Dice \uparrow
1486 CT	1.39 -0.27	1.61 -0.18	768.48 +377.57	21.43 -41.01
1487 PET	1.39 -0.27	1.61 -0.18	768.48 +377.57	49.28 -13.16
1488 PET + CT	1.39 -0.27	1.70 -0.09	694.76 +303.85	56.69 -5.75
1489 $\langle \text{CT, PET} \rangle$	1.66	1.79	390.91	62.51

1490 Table 13: Modality ablation experiments performed on AutoPET-II. “PET+CT” indicates an early
 1491 fusion strategy, and “⟨CT, PET⟩” indicates consideration of modality interaction.

1492 To verify the effectiveness of PWA in heterogeneous modal modeling, we test various inputs, as
 1493 shown in Table 13. Using only PET or CT reduces model size and complexity but sacrifices seg-
 1494 mentation performance. An early fusion strategy achieves a Dice of 56.69%, outperforming the pure
 1495 convolution framework’s 55.84%. Crucially, introducing modal interaction in PWA improves Dice
 1496 by 5.75%, significantly improving performance robustness without significantly increasing compu-
 1497 tational or time costs.

1508 P JL-SETTING GENERALIZATION EVALUATION

1509 Results demonstrate the effectiveness of JL-guided group size configurations $\langle 4, 8, 8, 16 \rangle$ on various
 1510 datasets. While the smallest configuration $\langle 1, 1, 1, 1 \rangle$ achieves the lowest computational cost, reduc-

1512 Table 14: Performance comparison of different group size configurations across datasets. The JL-
 1513 guided configuration $\langle 4, 8, 8, 16 \rangle$ is used as the reference baseline.

1514

1515	Dataset	Configuration	MParams \downarrow	GFLOPs \downarrow	Dice \uparrow
1517	Hecktor2022	$\langle 1, 1, 1, 1 \rangle$	0.618 -0.091	2.637 -0.075	37.95 -6.25
		$\langle 4, 8, 8, 16 \rangle$	0.709	2.712	44.20
		$\langle 16, 32, 64, 128 \rangle$	1.342 +0.633	3.029 +0.317	43.21 -0.99
1521	BraTS2021	$\langle 1, 1, 1, 1 \rangle$	0.629 -0.091	2.377 -0.063	85.82 -1.00
		$\langle 4, 8, 8, 16 \rangle$	0.720	2.440	86.82
		$\langle 16, 32, 64, 128 \rangle$	1.353 +0.633	2.708 +0.268	87.98 +1.16

1523

1524

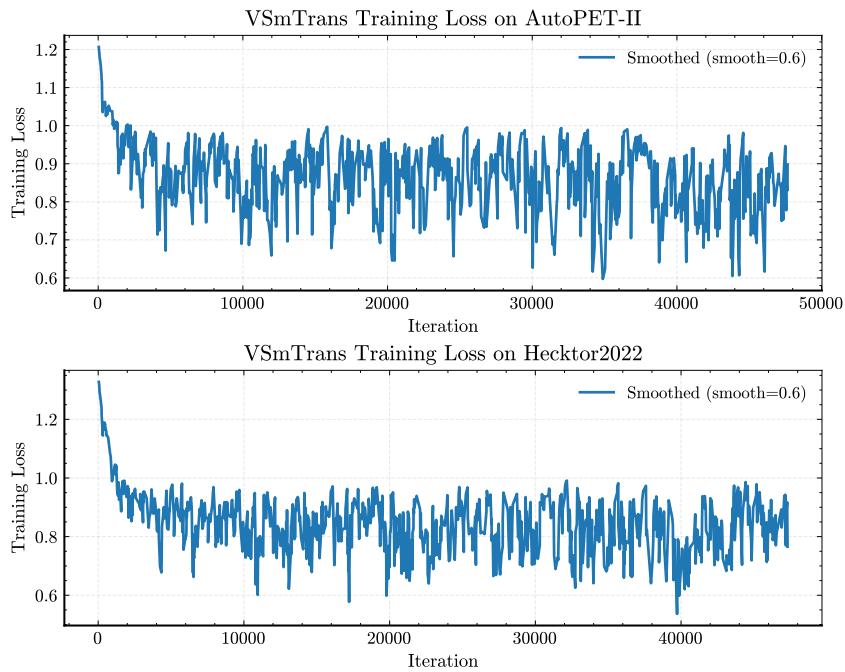
1525 ing segmentation performance by 0.091 MParams and 0.063 to 0.075 GFLOPs, it significantly de-
 1526 grades segmentation performance, particularly on the Hecktor2022 dataset, which features heteroge-
 1527 neous modality data and cross-organ distribution of targets, where the Dice drops by 6.25%. Larger
 1528 configurations $\langle 16, 32, 64, 128 \rangle$ only slightly improve the Dice (by 1.16% on BraTS2021) but signif-
 1529 icantly increase computational complexity by 0.633 MParams and 0.268 to 0.317 GFLOPs. This ex-
 1530 periment further demonstrates that JL-guided configurations strike an optimal balance, maintaining
 1531 competitive performance while ensuring computational efficiency suitable for clinical deployment.

1532

1533

Q CONVERGENCE ANALYSIS OF MODELS

1534



1535

1536

1537 Figure 12: Visualization of the training loss of VSmTrans, which has the largest number of parame-
 1538 ters, across two datasets.

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560 We set the number of training epochs to 300, a common choice in recent literature. It's important to
 1561 note that the "1000 epochs" in nnU-Net is not directly comparable: nnU-Net uses 250 iterations per
 1562 epoch, for a total of $250 \times 1000 = 250,000$ iterations. In our setup, each epoch corresponds to one
 1563 complete traversal of the dataset. Considering we use 60% of the training data (random sampling)
 1564 per training cycle, the number of iterations is as follows: AutoPET-II: $(300 \times 1014 \times 0.6 = 182,520)$;
 1565 BraTS2021: $(300 \times 1251 \times 0.6 = 225,180)$. Therefore, our total number of iterations is on the
 1566 same order of magnitude as nnU-Net, and adjusting the number of iterations based on dataset size is

1566 reasonable. To alleviate readers' concerns about model convergence, we further plotted the training
 1567 loss curve for the model with the largest number of parameters, VSmTrans. As shown in Figure 12,
 1568 this model had fully converged at the end of training.

1570 R COMPARISON OF DIFFERENT ATTENTION MECHANISMS

1573 Methods	1574 MParams	1575 GFLOPs	1576 Tr. Mem.	1577 Inf. Mem.	1578 Thr. GPU	1579 Dice
Window	1.51 -0.10	2.80 -0.04	678 -46	1066 +918	227.28 +45.83	56.01 -5.42
Downsample	1.52 -0.09	2.78 -0.06	1066 +342	136 -12	239.01 +57.56	55.18 -6.25
PWA	1.61	2.84	724	148	181.45	61.43

1579 Table 15: Computation consumption of different attention variants.

1581 Under similar computational cost constraints, we replaced PWA with other attention mechanisms,
 1582 such as window-based multimodal attention and downsampling-based multimodal attention, as
 1583 shown in Figure 15. Although our method is not optimal due to the larger tensor size change rate,
 1584 the model performance is significantly better than the other two attention mechanisms, which further
 1585 validates the effectiveness of PWA for heterogeneous modality modeling.

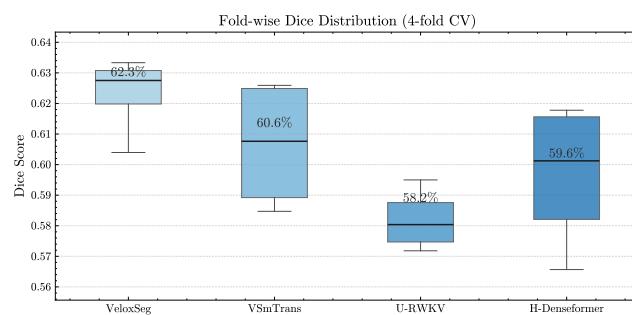
1587 S COMPARISON OF DIFFERENT KNOWLEDGE TRANSFER STRATEGIES

1590 Methods	1591 MParams	1592 GFLOPs	1593 Tr. Mem.	1594 Inf. Mem.	1595 Thr. GPU	1596 Dice
w/o Teacher	1.61	2.84	724	148	181.45	61.43
w Teacher	1.66 +0.05	1.79 -1.05	824 +100	152 +4	390.91 +209.46	59.71 -1.72
+ ℓ_1	1.66 +0.05	1.79 -1.05	824 +100	152 +4	390.91 +209.46	1.67 -59.76
+ Affinity	1.66 +0.05	1.79 -1.05	894 +170	152 +4	390.91 +209.46	41.44 -19.99
+ Shared ROI	1.66 +0.05	1.79 -1.05	1064 +340	152 +4	390.91 +209.46	57.15 -4.28
+ SDKT	1.66 +0.05	1.79 -1.05	842 +118	152 +4	390.91 +209.46	62.51 +1.08

1599 Table 16: Computation consumption of different knowledge transfer methods.

1601 The comparison results with other strategies are listed in Table 4, with settings largely consistent
 1602 with the dual-stream settings in reference (Qiu et al., 2023). All comparison methods were per-
 1603 formed under the same conditions. The additional training overhead is listed in Table 16, where
 1604 SDKT uses only about 100 MB more memory than the baseline methods.

1606 T K-FOLD AND MULTIPLE SEED



1619 Figure 13: Box plot of 4-fold cross-validation results

Model	Metric	Mean	Std	p-value
VeloxSeg	Dice	62.31 (± 2.10)	1.32	—
	Precision	64.14 (± 4.18)	2.63	—
	Recall	69.87 (± 4.33)	2.72	—
VSmTrans	Dice	60.65 (± 3.47)	2.18	0.25
	Precision	70.43 (± 6.23)	3.91	0.042
	Recall	61.08 (± 11.56)	7.26	0.089
U-RWKV	Dice	58.19 (± 1.65)	1.04	0.003
	Precision	62.77 (± 6.14)	3.86	0.58
	Recall	66.91 (± 10.63)	6.68	0.46
H-Denseformer	Dice	59.65 (± 3.92)	2.46	0.12
	Precision	66.04 (± 5.75)	3.61	0.43
	Recall	64.16 (± 16.52)	10.38	0.36

Table 17: Results of AutoPETII 4-fold cross-validation. Only the state-of-the-art (SOTA) of each model is considered. The values in parentheses represent the 95% confidence intervals. The p-values compared to VeloxSeg are determined using the Welch t-test.

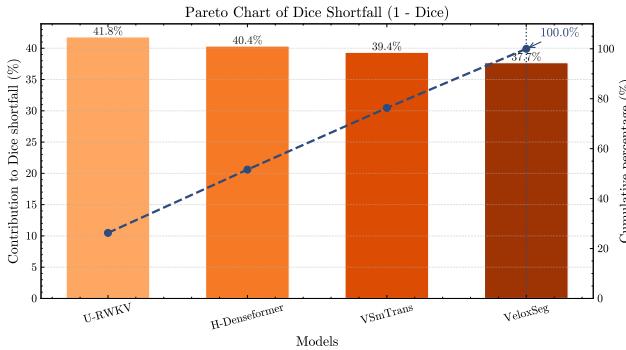


Figure 14: Pareto plot of 4-fold cross-validation results

To further demonstrate the representativeness of our experimental results—that is, that the metric results are not significantly affected by dataset splitting and changes in the random number seed—we performed 4-fold cross-validation on the AutoPETII dataset for state-of-the-art models in three model categories, with each fold trained using an independent random seed. For each model, we report the mean, standard deviation, 95% confidence interval, and exact p-value (Welch t-test) relative to the VeloxSeg baseline (Table 17). Furthermore, box plot and pareto plot illustrate the distribution of metric values, as shown in Figure 13 and Figure 14. The results demonstrate that the models are not sensitive to random initialization and data sorting.

U SCALING LAW OF VELOXSEG

Model	Dice	Parameters (M)	FLOPS (G)
nnUNet	55.85	88.62	3078.83
VeloxSeg S	68.56	1.19	1.41
VeloxSeg B	70.05	1.66	1.79
VeloxSeg B+	71.56	5.26	4.27
VeloxSeg L	72.11	2.65	2.45

Table 18: Accuracy results of VeloxSeg after increasing model size.

Our specific parameter configuration is as follows:

1674 • S represents changing the convolution kernel from [1,3,5] to [3] under the original parameter configuration.
1675
1676 • B represents the original parameter configuration.
1677 • B+ represents scaling up the number of attention and convolution channels from 16 to 32.
1678 • L represents scaling up the depth of attention and convolution from 1 to 2.
1679

1680 In VeloxSeg, the Dice value is directly proportional to the number of parameters/floating-point operations: for versions S to B, the Dice value increases by 1.5 for every 0.47M additional parameters; for 1681 versions B to B++, the Dice value increases by 1.5 for every 360M additional parameters; while for 1682 version L, with fewer parameters/floating-point operations than B++, the Dice value only increases 1683 by 0.55. This indicates diminishing returns and that architectural adjustments (not just scaling) are 1684 key to improving performance. Non-monotonic resource ordering (L version is smaller than B++ 1685 version) results in roughly equal Dice values.
1686

1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727