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Abstract

This work studies the design of neural networks that can process the weights or
gradients of other neural networks, which we refer to as neural functional networks
(NFNs). Despite a wide range of potential applications, including learned opti-
mization, processing implicit neural representations, network editing, and policy
evaluation, there are few unifying principles for designing effective architectures
that process the weights of other networks. We approach the design of neural
functionals through the lens of symmetry, in particular by focusing on the permuta-
tion symmetries that arise in the weights of deep feedforward networks because
hidden layer neurons have no inherent order. We introduce a framework for build-
ing permutation equivariant neural functionals, whose architectures encode these
symmetries as an inductive bias. The key building blocks of this framework are
NF-Layers (neural functional layers) that we constrain to be permutation equiv-
ariant through an appropriate parameter sharing scheme. In our experiments, we
find that permutation equivariant neural functionals are effective on a diverse set of
tasks that require processing the weights of MLPs and CNNs, such as predicting
classifier generalization, producing “winning ticket” sparsity masks for initializa-
tions, and classifying or editing implicit neural representations (INRs). In addition,
we provide code for our models and experiments1.

1 Introduction

As deep neural networks have become increasingly prevalent across various domains, there has
been a growing interest in techniques for processing their weights and gradients as data. Example
applications include learnable optimizers for neural network training [3, 56, 2, 44], extracting
information from implicit neural representations of data [61, 45, 58], corrective editing of network
weights [57, 11, 46], policy evaluation [24], and Bayesian inference given networks as evidence [60].
We refer to functions of a neural network’s weight-space (such as weights, gradients, or sparsity
masks) as neural functionals; when these functions are themselves neural networks, we call them
neural functional networks (NFNs).

In this work, we design neural functional networks by incorporating relevant symmetries directly
into the architecture, following a general line of work in “geometric deep learning” [8, 54, 34, 5].
For neural functionals, the symmetries of interest are transformations of a network’s weights that
preserve the network’s behavior. In particular, we focus on neuron permutation symmetries, which
are those that arise from the fact that the neurons of hidden layers have no inherent order.

Neuron permutation symmetries are simplest in feedforward networks, such as multilayer perceptrons
(MLPs) and basic convolutional neural networks (CNNs). These symmetries are induced by the
fact that the neurons in each hidden layer of a feedforward network can be arbitrarily permuted
without changing its behavior [27]. In MLPs, permuting the neurons in hidden layer i corresponds to

1https://github.com/AllanYangZhou/nfn
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Figure 1: The internal operation of our permutation equivariant neural functionals (NFNs). The
NFN processes the input weights through a series of equivariant NF-Layers, with each one producing
weight-space features with varying numbers of channels. In this example, a neuron permutation
symmetry simultaneously permutes the rows of W (2) and the columns of W (3). This permutation
propagates through the NFN in an equivariant manner.

permuting the rows of the weight matrix W (i), and the columns of the next weight matrix W (i+1)

as shown on the left-hand side of Figure 1. Note that the same permutation must be applied to the
rows W (i) and columns of W (i+1), since applying different permutations generally changes network
behavior and hence does not constitute a neuron permutation symmetry.

We introduce a new framework for constructing neural functional networks that are invariant or
equivariant to neuron permutation symmetries. Our framework extends a long line of work on
permutation equivariant architectures [52, 68, 25, 63, 41] that design equivariant layers for a particular
permutation symmetry of interest. Specifically, we introduce neural functional layers (NF-Layers)
that operate on weight-space features (see Figure 1) while being equivariant to neuron permutation
symmetries. Composing these NF-Layers with pointwise non-linearities produces equivariant neural
functionals.

We propose different NF-Layers depending on the assumed symmetries of the input weight-space:
either only the hidden neurons of the feedforward network can be permuted (hidden neuron permuta-
tion, HNP), or all neurons, including inputs and outputs, can be permuted (neuron permutation, NP).
Although the HNP assumption is typically more appropriate, the corresponding NF-Layers can be
parameter inefficient and computationally infeasible in some settings. In contrast, NF-Layers derived
under NP assumptions often lead to much more efficient architectures, and, when combined with a
positional encoding scheme we design, can even be effective on tasks that require breaking input and
output symmetry. For situations where invariance is required, we also define invariant NF-Layers that
can be applied on top of equivariant weight-space features.

Finally, we investigate the applications of permutation equivariant neural functionals on tasks involv-
ing both feedforward MLPs and CNNs. Our first two tasks require (1) predicting the test accuracy of
CNN image classifiers and (2) classifying implicit neural representations (INRs) of images and 3D
shapes. We then evaluate NFNs on their ability to (3) predict good sparsity masks for initializations
(also called winning tickets [19]), and on (4) a weight-space “style-editing” task where the goal is to
modify the content an INR encodes by directly editing its weights. In multiple experiments across
these diverse settings, we find that permutation equivariant neural functionals consistently outperform
non-equivariant methods and are effective for solving weight-space tasks.

Relation to DWSNets. The recent work of Navon et al. [45] recognized the potential of leveraging
weight-space symmetries to build equivariant architectures on deep weight-spaces; they characterize
a weight-space layer which is mathematically equivalent to our NF-Layer in the HNP setting. Their
work additionally studies interesting universality properties of the resulting equivariant architectures,
and demonstrates strong empirical results for a suite of tasks that require processing the weights of
MLPs. Our framework additionally introduces the NP setting, where we make stronger symmetry
assumptions to develop equivariant layers with improved parameter efficiency and practical scalability.
We also extend our NFN variants to process convolutional neural networks (CNNs) as input, leading
to applications such as predicting the generalization of CNN classifiers (Section 3.1).
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Table 1: Permutation symmetries of L-layer feedforward networks with n0, . . . , nL neurons at each
layer. All feedforward networks are invariant under hidden neuron permutations (HNP), while
NP assumes that input and output neurons can also be permuted. We show the corresponding
equivariant NF-Layers which process weight-space features from U , with ci input channels and co
output channels.

Group Abbrv Permutable layers
Equivariant NF-Layer

Signature Parameter count

S =
∏L
i=0 Sni NP All layers H : Uci → Uco O(cicoL

2)

S̃ =
∏L−1
i=1 Sni

HNP Hidden layers H̃ : Uci → Uco O
(
cico(L+ n0 + nL)

2
)

— — None T : Uci → Uco cico dim(U)2

2 Equivariant neural functionals

We begin by setting up basic concepts related to (hidden) neuron permutation symmetries, before
defining the equivariant NF-Layers in Sec. 2.2 and invariant NF-Layers in Sec. 2.3.

2.1 Preliminaries

Consider an L-layer feedforward network having ni neurons at layer i, with n0 and nL be-
ing the input and output dimensions, respectively. The network is parameterized by weights
W =

{
W (i) ∈ Rni×ni−1 | i ∈ J1..LK

}
and biases v = { v(i) ∈ Rni | i ∈ J1..LK }. We denote

the combined collection U := (W, v) belonging to weight-space, U :=W ×V .

Since the neurons in a hidden layer i ∈ {1, · · · , L − 1} have no inherent ordering, the network is
invariant to the symmetric group Sni

of permutations of the neurons in layer i. This reasoning applies
to every hidden layer, so the network is invariant to S̃ := Sn1

× · · · × SnL−1
, which we refer to as

the hidden neuron permutation (HNP) group. Under the stronger assumption that the input and
output neurons are also unordered, the network is invariant to S := S0 × · · · × SnL

, which we refer
to as the neuron permutation (NP) group. We focus on the NP setting throughout the main text, and
treat the HNP case in Appendix B. See Table 1 for a concise summary of the relevant notation for
each symmetry group we consider.

Consider an MLP and a permutation σ = (σ0, · · · , σL) ∈ S. The action of the neuron permutation
group is to permute the rows of each weight matrix W (i) by σi, and the columns by σi−1. Each bias
vector v(i) is also permuted by σi. So the action is σU := (σW, σv), where:

[σW ]
i
jk =W

(i)

σ−1
i (j),σ−1

i−1(k)
, [σv]

i
j = v

(i)

σ−1
i (j)

. (1)

Until now we have used U = (W, v) to denote actual weights and biases, but the inputs to a neural
functional layer could be any weight-space feature such as a gradient, sparsity mask, or the output
of a previous NF-Layer (Figure 1). Moreover, we may consider inputs with c ≥ 1 feature channels,
belonging to Uc =

⊕c
i=1 U , the direct sum of c copies of U . Concretely, each U ∈ Uc consists

of weights W =
{
W (i) ∈ Rni×ni−1×c | i ∈ J1..LK

}
and biases v =

{
v(i) ∈ Rni×c | i ∈ J1..LK

}
,

with the channels in the final dimension. The action defined in Eq. 1 extends to the multiple channel
case if we define W (i)

jk :=W
(i)
j,k,: ∈ Rc and v(i)j := v

(i)
j,: ∈ Rc.

The focus of this work is on making neural functionals that are equivariant (or invariant) to neuron
permutation symmetries. Letting ci and co be the number of input and output channels, we refer to a
function f : Uci → Uco as S-equivariant if σf(U) = f(σU) for all σ ∈ S and U ∈ Uci , where the
action of S on the input and output spaces is defined by Eq. 1. Similarly, a function f : Uc → R is
S-invariant if f(σU) = f(U) for all σ and U .

If f, g are equivariant, then their composition f ◦ g is also equivariant; if g is equivariant and f is
invariant, then f ◦ g is invariant. Since pointwise nonlinearities are already permutation equivariant,
our remaining task is to design a linear NF-Layer that is S-equivariant. We can then construct
equivariant neural functionals by stacking these NF-Layers with pointwise nonlinearities.
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Figure 2: A permutation equivariant NF-Layer takes in weight-space features as input (bottom)
and outputs transformed features (top), while respecting the neuron permutation symmetries of
feedforward networks. This illustrates the computation of a single output element H(W )ijk, defined
in Eq. 2. Each output is a weighted combination of rows or column sums of the input weights, which
preserves permutation symmetry. The first term contributes a weighted combination of row-and-
column sums from every input weight, though this is omitted for visual clarity.

2.2 Equivariant NF-Layers

We now construct a linear S-equivariant layer that serves as a key building block for neural functional
networks. In the single channel case, we begin with generic linear layers T (·; θ) : vec(U) 7→ θvec(U),
where vec(U) ∈ Rdim(U) is U flattened as a vector and θ ∈ Rdim(U)×dim(U) is a matrix of parameters.
We show in Appendix B.2 that any S-equivariant T (·; θ) must satisfy a system of constraints on θ
known as equivariant parameter sharing. We derive this parameter sharing by partitioning the entries
of θ by the orbits of their indices under the action of S, with parameters shared in each orbit [54].
Table 7 of the appendix describes the parameter sharing in detail.

Equivariant parameter sharing reduces the matrix-vector product θvec(U) to the NF-Layer we now
present. For simplicity we ignore V and assume here that U =W and defer the full form to Eq. 3 in
the appendix. Then H :Wci →Wco maps input

(
W (1), · · · ,W (L)

)
to
(
H(W )(1), · · · , H(W )(L)

)
.

Recall that the inputs are not necessarily weights, but could be arbitrary weight-space features
including the output of a previous NF-Layer. For W (i) ∈ Rni×ni−1×ci , the corresponding output is
H(W )(i) ∈ Rni×ni−1×co with entries computed:

H(W )
(i)
jk =

(∑
s

ai,sW
(s)
⋆,⋆

)
+ bi,iW

(i)
⋆,k+ b

i,i−1W
(i−1)
k,⋆ + ci,iW

(i)
j,⋆ + c

i,i+1W
(i+1)
⋆,j +diW

(i)
jk . (2)

Note that the terms involving W (i−1) or W (i+1) should be omitted for i = 0 and i = L, respectively,
and ⋆ denotes summation or averaging over either the rows or columns. Recall that in the multi-
channel case, each W (i)

jk is a vector in Rci so each parameter is a co × ci matrix. We also provide a
concrete pseudocode description of H in Appendix A. Figure 2 visually illustrates the NF-Layer in
the single-channel case, showing how the row or column sums from each input contribute to each
output. To gain intuition for the operation of H , it is straightforward to check S-equivariance:
Proposition 1. The NF-Layer H : Uci → Uco (Eq. 2 and Eq. 3) is S-equivariant, where the group’s
action on input and output spaces is defined by Eq. 1. Moreover, any linear S-equivariant map
T : Uci → Uco is equivalent to H for some choice of parameters a, b, c, d.

Proof (sketch). We can verify that H satisfies the equivariance condition [σH(W )]
(i)
jk = H(σW )

(i)
jk

for any i, j, k by expanding each side of the equation using the definitions of the layer and action

4



(Eq. 1). Moreover, Appendix B.2 shows that any S-equivariant linear map T (·, θ) must have the
same equivariant parameter sharing as H , meaning that it must be equivalent to H for some choice of
parameter a, b, c, d.

Informally, the above proposition tells us that H can express any linear S-equivariant function of
a weight-space. Since S̃ is a subgroup of S, H is also S̃-equivariant. However, it does not express
every possible linear S̃-equivariant function. We derive the full S̃-equivariant NF-Layer H̃ : U → U
in Appendix C.

Table 1 summarizes the number of parameters (after parameter sharing) under different symmetry
assumptions. While in general a linear layer T (·; θ) : Uci → Uco has cico dim(U)2 parameters,
the equivariant NF-Layers have significantly fewer free parameters due to parameter sharing. The
S-equivariant layerH hasO

(
cicoL

2
)
, while the S̃-equivariant layer H̃ hasO

(
cico(L+ n0 + nL)

2
)

parameters. The latter’s quadratic dependence on input and output dimensions can be prohibitive in
some settings, such as in classification where the number of outputs can be tens of thousands.

Extension to convolutional weight-spaces. In convolution layers, since neurons correspond to
spatial channels, we let ni denote the number of channels at the ith layer. Each bias v(i) ∈ Rni has
the same dimensions as in the fully connected case, so only the convolution filter needs to be treated
differently since it has additional spatial dimension(s) that cannot be permuted. For example, consider
a 1D CNN with filters W =

{
W (i) ∈ Rni×ni−1×w

∣∣ i ∈ J1..LK
}

, where ni × ni−1 are the output
and input channel dimensions and w is the filter width. We let W (i)

jk :=W
(i)
j,k,: ∈ Rw denote the kth

filter in the jth output channel, then define the S-action the same way as in Eq. 1.

We immediately observe the similarities to multi-channel features: both add dimensions that are not
permuted by the group action. In fact, suppose we have c-channel features U ∈ Uc where U is the
weight-space of a 1D CNN. Then we combine the filter and channel dimensions of the weights, with
W (i) ∈ Rni×ni−1×(cw). This allows us to use the multi-channel NF-Layer H : Uwci → Uwco . Any
further channel dimensions, such as those for 2D convolutions, can also be folded into the channel
dimension.

It is common for CNNs in image classification to follow convolutional layers with pooling and fully
connected (FC) layers, which opens the question of defining the S-action when layer ℓ is FC and
layer ℓ− 1 is convolutional. If global spatial pooling removes all spatial dimensions from the output
of ℓ− 1 (as in e.g., ResNets [26] and the Small CNN Zoo [64]), then we can verify that the existing
action definitions work without modification. We leave more complicated situations (e.g., when
nontrivial spatial dimensions are flattened as input to FC layers) to future work.

IO-encoding. The S-equivariant layer H is more parameter efficient than H̃ (Table 1), but its NP
assumptions are typically too strong. To resolve this problem, we can add either learned or fixed
(sinusoidal) position embeddings to the columns of W (1) and the rows of W (L) and v(L); this breaks
the symmetry at input and output neurons even when using S-equivariant layers. In our experiments,
we find that IO-encoding makes H competitive or superior to H̃ , while using a fraction of the
parameters.

2.3 Invariant NF-Layers

Invariant neural functionals can be designed by composing multiple equivariant NF-Layers with
an invariant NF-Layer, which can then be followed by an MLP. We define an S-invariant2 layer
P : U → R2L by simply summing or averaging the weight matrices and bias vectors across any
axis that has permutation symmetry, i.e., P (U) =

(
W

(1)
⋆,⋆ , · · · ,W (L)

⋆,⋆ , v
(1)
⋆ , · · · , v(L)⋆

)
. We can then

apply a fully connected layer to the output of P to produce an invariant vector of arbitrary size. In
fact, this combination expresses every possible linear invariant function on U :

Proposition 2. Any S-invariant linear function U → Rd can be expressed in the form f ◦ P , for
some choice of linear f : R2L → Rd. Proof: See section B.3.

2We define the analogous S̃-invariant layer P̃ in Eq. 20 of the appendix.
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Table 2: Test τ of generalization prediction methods on the Small CNN Zoo [64], which contains the
weights and test accuracies of many small CNNs trained on different datasets, such as CIFAR-10-GS
or SVHN-GS. NFNHNP outperforms other methods on both datasets. Uncertainties indicate max and
min over two runs.

NFNHNP NFNNP STATNN

CIFAR-10-GS 0.934± 0.001 0.922± 0.001 0.915± 0.002
SVHN-GS 0.931± 0.005 0.856± 0.001 0.843± 0.000

3 Experiments

Our experiments evaluate permutation equivariant neural functionals on a variety of tasks that
require either invariance (predicting CNN generalization and extracting information from INRs) or
equivariance (predicting “winning ticket” sparsity masks and weight-space editing of INR content).

Throughout the experiments, we construct neural functional networks (NFNs) using the NF-Layers
described in the previous section. Although the specific design varies depending on the task, we
will broadly refer to our permutation equivariant NFNs as NFNNP and NFNHNP, depending on which
NF-Layer variant they use (see Table 1). We also evaluate a “pointwise” ablation of our equivariant
NF-Layer that ignores interactions between weights by only using the last term of Eq. 2, computing
H(W )ijk := diW

(i)
jk . We refer to NFNs that use this pointwise NF-Layer as NFNPT.

Using our benchmarks, we compare the performance of NFNs with other methods for processing
weights, including standard MLPs that operate on the flattened weight inputs. To encourage per-
mutation equivariance, we optionally augment the MLP’s training with permutations using Eq. 1.
On relevant datasets we also compare with the recently developed DWSNets [47], an equivariant
architecture similar to NFNHNP, and with inr2vec [12], a recent non-equivariant approach for learning
useful representations from weights.

3.1 Predicting CNN generalization from weights

Why deep neural networks generalize despite being heavily overparameterized is a longstanding
research problem in deep learning. One recent line of work has investigated the possibility of
directly predicting the test accuracy of the models from the weights [64, 16]. The goal is to study
generalization in a data-driven fashion and ultimately identify useful patterns from the weights.

Prior methods develop various strategies for extracting potentially useful features from the weights
before using them to predict the test accuracy [29, 67, 64, 30, 42]. However, using hand-crafted
features could fail to capture intricate correlations between the weights and test accuracy. Instead,
we explore using neural functionals to predict test accuracy from the raw weights of feedforward
convolutional neural networks (CNN) from the Small CNN Zoo dataset [64], which contains thousands
of CNN weights trained on several datasets with a shared architecture, but varied optimization
hyperparameters. We compare the predictive power of NFNHNP and NFNNP against a method of
Unterthiner et al. [64] that trains predictors on statistical features extracted from each weight and bias,
and refer to it as STATNN. To measure the predictive performance of each method, we use Kendall’s
τ [31], a popular rank correlation metric with values in [−1, 1].
In Table 2, we show the results on two challenging subsets of Small CNN Zoo corresponding to
CNNs trained on CIFAR-10-GS and SVHN-GS (GS stands for grayscaled). We see that NFNHNP
consistently performs the best on both datasets by a significant margin, showing that having access to
the full weights can increase predictive power over hand-designed features as in STATNN. Because
the input and output dimensionalities are small on these datasets, NFNHNP only uses moderately
more (∼ 1.4×) parameters than NFNNP with equivalent depth and channel dimensions, while having
significantly better performance.

3.2 Classifying implicit neural representations of images and 3D shapes

Given the rise of implicit neural representations (INRs) that encode data such as images and 3D-
scenes [61, 43, 7, 49, 58, 45, 14, 15], it is natural to wonder how to extract information about the

6



Table 3: Classification test accuracies (%) for implicit neural representations of MNIST, FashionM-
NIST, and CIFAR-10. Equivariant architectures such as NFNs and DWSNets [47] outperform the
non-equivariant MLP baselines, even when the MLP has permutation augmentations. Our NFNNP
variant consistently outperforms all other methods across each dataset. Uncertainties indicate standard
error over three runs.

NFNHNP NFNNP DWSNets MLP MLPAug

MNIST 92.5± 0.071 92.9± 0.218 74.4± 0.143 14.5± 0.035 21.0± 0.172

FashionMNIST 72.7± 1.53 75.6± 1.07 64.8± 0.685 12.5± 0.111 15.9± 0.181

CIFAR-10 44.1± 0.471 46.6± 0.072 41.5± 0.431 16.9± 0.250 18.9± 0.432

Table 4: Classification test accuracies (%) for datasets of implicit neural representations (INRs) of
either ShapeNet-10 [6] or ScanNet-10 [10]. Our equivariant NFNs outperform the MLP baselines
and recent non-equivariant methods such as inr2vec [12]. Uncertainties indicate standard error over
three runs.

NFNHNP NFNNP MLP MLPAug inr2vec[12]

ShapeNet-10 86.9± 0.860 88.7± 0.461 25.4± 0.121 33.8± 0.126 39.1± 0.385

ScanNet-10 64.1± 0.572 65.9± 1.10 32.9± 0.351 45.5± 0.126 38.2± 0.409

original data directly from INR weights. Compared to discrete signal representations (pixels, voxels,
etc.), the advantage of directly processing INRs is that one can easily be agnostic to varying signal
sizes and resolutions.

In this task, our goal is to classify the contents of INRs given only the weights as input. We consider
datasets of SIRENs [58] that encode images (MNIST [38], FashionMNIST [66], and CIFAR [35]) and
3D shapes (ShapeNet-10 and ScanNet-10 [53]). For image datasets each SIREN network represents
the mapping from pixel coordinate to RGB (or grayscale) value for a single image, while for 3D
shapes each network is a signed (or unsigned) distance function encoding a single shape. Each dataset
of SIREN weights is split into training, validation, and testing sets. We construct and train invariant
neural functionals to classify the INRs, and compare their performance against the MLP and MLPAug
baselines, which are three-layer MLPs with ReLU activations and 1,000 hidden units per layer.

As Navon et al. [47] test the performance of DWSNets on their independently constructed 2D-image
INR datasets, we also present the results of training DWSNets on our own 2D-image INR datasets.
Table 3 show that NFNNP consistently achieves the highest test accuracies of any method on the
2D-image tasks. More broadly, equivariant architectures significantly outperform the non-equivariant
MLP approaches, even with permutation data augmentations.

For the 3D-shape datasets we also report the performance of inr2vec [12], a recent non-equivariant
method for classifying 3D shapes from INR weights. Note that inr2vec’s original setting assumes
that all INRs in a dataset are trained from the same shared initialization, whereas our problem setting
makes no such assumption and allows INRs to be trained from random and independent initializations.
As expected, Table 4 shows that NFNHNP and NFNNP achieve significantly higher test accuracies
than inr2vec, as well as the non-equivariant MLP baselines.

In addition to superior generalization, Appendix Table 16 shows that the NFNs are also better at
fitting the training data compared to non-equivariant architectures. The MLPs achieve low train
accuracy, even with an equal number of parameters as the NFNs. Interestingly, NFNNP matches
or exceeds NFNHNP performance on both CIFAR-10 and the 3D-shape datasets while using fewer
parameters (e.g., 35% as many parameters on CIFAR-10). Finally, we note that no weight space
methods (including NFN) match the performance of near state-of-the-art methods on discrete data
representations such as 2D image arrays and point clouds (see Section E.2 for details). All weight
space methods still lack the geometric inductive biases that, e.g., convolutional networks have in
image tasks.
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Table 5: Test accuracy (%) of training with winning tickets (95% sparsity masks) produced either by
running IMP or predicted by an NFN. We also show the performance of Random ticket (random mask
of equivalent sparsity level), and Dense training (no sparsity). We show results for MLPs (trained on
MNIST) and CNNs (trained on CIFAR-10). Uncertainties show standard error over initializations.

Dense IMP Random NFNNP NFNPT

CIFAR-10 63.1± 0.06 44.0± 0.06 21.1± 0.26 41.4± 0.08 42.6± 0.07
MNIST 97.8± 0.0 96.2± 0.04 89.6± 0.36 94.8± 0.01 95.0± 0.01

NFN

Original INR Edited INR

Figure 3: In weight-space style editing, an NFN
directly edits the weights of an INR to alter the
content it encodes. In this example, the NFN
edits the weights to dilate the encoded image.

Method Contrast Dilate
(CIFAR-10) (MNIST)

MLP 0.031 0.306
MLPAug 0.029 0.307
NFNPT 0.029 0.197
NFNHNP 0.021 0.070
NFNNP 0.020 0.068

Table 6: Test mean squared error (lower
is better) between weight-space editing
methods and ground-truth image-space
transformations.

3.3 Predicting “winning ticket” masks from initialization

The Lottery Ticket Hypothesis [19, 20, LTH] conjectures the existence of winning tickets, or sparse
initializations that train to the same final performance as dense networks, and showed their existence
in some settings through iterative magnitude pruning (IMP). IMP retroactively finds a winning
ticket by pruning trained models by magnitude; however, finding the winning ticket from only the
initialization without training remains challenging.

We demonstrate that permutation equivariant neural functionals are a promising approach for finding
winning tickets at initialization by learning over datasets of initializations and their winning tickets.
Let U0 ∈ U be an initialization and let the sparsity mask M ∈ {0, 1}dim(U) be a winning ticket for
the initialization, with zeros indicating that the corresponding entries of U0 should be pruned. The
goal is to predict a winning ticket M̂ given a held out initialization U0, such that the MLP initialized
with U0 and sparsity pattern M̂ will achieve a high test accuracy after training.

We construct a conditional variational autoencoder [32, 59, cVAE] that learns a generative model of
the winning tickets conditioned on initialization and train on datasets of (initialization, ticket) pairs
found by one step of IMP with a sparsity level of Pm = 0.95 for both MLPs trained on MNIST and
CNNs trained on CIFAR-10. Table 5 compares the performance of tickets predicted by equivariant
neural functionals against IMP tickets and random tickets. We generate random tickets by randomly
sampling sparsity mask entries from Bernoulli(1 − Pm). In this setting, NFNHNP is prohibitively
parameter inefficient, but NFNNP is able to recover test accuracies that are close to that of IMP pruned
networks in CIFAR-10 and MNIST, respectively. Somewhat surprisingly, NFNPT performs just as
well as the other NFNs, indicating that one can approach IMP performance in these settings without
considering interactions between weights or layers. Appendix E.4 further analyzes how NFNPT learns
to prune.

3.4 Weight-space style editing

Another potentially useful application of neural functionals is to edit (i.e., transform) the weights
of a given INR to alter the content that it encodes. In particular, the goal of this task is to edit the
weights of a trained SIREN to alter its encoded image (Figure 3). We evaluate two editing tasks:
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Figure 4: Random qualitative samples of INR editing behavior on the Dilate (MNIST) and Contrast
(CIFAR-10) editing tasks. The first row shows the image produced by the original INR, while the rows
below show the result of editing the INR weights with an NFN. The difference between MLP neural
functionals and equivariant neural functionals is especially pronounced on the more challenging
Dilate tasks, which require modifying the geometry of the image. In the Contrast tasks, the MLP
baseline produces dimmer images compared to the ground truth, which is especially evident in the
second and third columns.

(1) making MNIST digits thicker via image dilation (Dilate), and (2) increasing image contrast on
CIFAR-10 (Contrast). Both of these tasks require neural functionals to process the relationships
between different pixels to successfully solve the task.

To produce training data for this task, we use standard image processing libraries [28, OpenCV]
to dilate or increase the contrast of the MNIST and CIFAR-10 images, respectively. The training
objective is to minimize the mean squared error between the image generated by the NFN-edited
INR and the image produced by image processing. We construct equivariant neural functionals to
edit the INR weights, and compare them against MLP-based neural functionals with and without
permutation augmentation.

Table 6 shows that permutation equivariant neural functionals (NFNHNP and NFNNP) achieve signifi-
cantly better test MSE when editing held out INRs compared to other methods, on both the Dilate
(MNIST) and Contrast (CIFAR-10) tasks. In other words, they produce results that are closest to
the “ground truth” image-space processing operations for each task. The pointwise ablation NFNPT
performs significantly worse, indicating that accounting for interactions between weights and layers
is important to accomplishing these tasks. Figure 4 shows random qualitative samples of editing by
different methods below the original (pre-edit) INR. We observe that NFNs are more effective than
MLPAug at dilating MNIST digits and increasing the contrast in CIFAR-10 images.

4 Related work

The permutation symmetries of neurons have been a topic of interest in the context of loss landscapes
and model merging [21, 4, 62, 17, 1]. Other works have analyzed the degree of learned permutation
symmetry in networks that process weights [64] and studied ways of accounting for symmetries when
measuring or encouraging diversity in the weight-space [13]. However, these symmetries have not
been a key consideration in architecture design for processing weight-space objects [2, 39, 23, 36,
69, 13, 33]. Instead, existing approaches try to encourage permutation equivariance through data
augmentation [51, 44]. In contrast, this work directly encodes the equivariance of the weight-space
into our architecture design, which can result in much higher data and computational efficiency, as
evidenced by the success of convolutional neural networks [37].

Our work follows a long line of literature that incorporates structure and symmetry into neural
network architectures [37, 8, 54, 34, 9, 18]. This includes works that design permutation equivariant
layers, originally for processing sets and graphs [52, 68, 25, 41]. More generally, equivariant layers
have been developed for processing arbitrary rank-k tensors (and correspondingly, hypergraphs) under
higher-order permutation actions [40, 63, 48]. In this context, we can view feedforward networks
as graphs that factor into a special layered structure where each (hidden) layer of neurons is an
independently permutable set of nodes, and the weights are adjacency matrices specifying the edge
weights between nodes of adjacent layers. Then our equivariant NF-Layers give the maximal set
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of linear functions on these special graph structures. As discussed in Section 1, Navon et al. [47]
recently developed an equivariant weight-space layer that is equivalent to our NF-Layer in the HNP
setting. Our work introduces the NP setting to improve parameter efficiency and scalability over
the HNP setting, and extends beyond the fully connected case to handle convolutional weight-space
inputs.

5 Conclusion

This paper proposes a novel symmetry-inspired framework for the design of neural functional
networks (NFNs), which process weight-space features such as weights, gradients, and sparsity
masks. Our framework focuses on the permutation symmetries that arise in weight-spaces due to the
particular structure of neural networks. We introduce two equivariant NF-Layers as building blocks
for NFNs, which differ in their underlying symmetry assumptions and parameter efficiency, then
use them to construct a variety of permutation equivariant neural functionals. Experimental results
across diverse settings demonstrate that permutation equivariant neural functionals outperform prior
methods and are effective for solving weight-space tasks.

Limitations and future work. Although we believe this framework is a step toward the principled
design of effective neural functionals, there remain multiple directions for improvement. One such
direction would concern extending the NF-Layers beyond feedforward weight spaces, in order to
process the weights of more complex architectures such as ResNets [26] and Transformers [65].
Another useful direction would involve reducing the activation sizes produced by NF-Layers, in order
to scale neural functionals to process the weights of very large networks. Finally, improvements to
NF-Layers could account for the other symmetries of neural network weight spaces, such as scaling
symmetries in ReLU networks [22].
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A Equivariant NF-Layer pseudocode

Here we present a multi-channel implementation of the S-equivariant NF-Layer presented in Eq. 2
(which ignores biases), using PyTorch [50] and Einops-like [55] pseudocode. That is, it implements a
linear layer H :Wci →Wco , where ci and co are the number of input and output channels.

Note that our actual implementation differs from this pseudocode in a few ways: (1) it supports
the full weight-space U which includes biases, (2) it supports convolution weights as well as fully
connected weights, and (3) it initializes parameters based on the fan-in of the NF-Layer, instead of
from N (0, 1).

1 class NPLayer(nn.Module):
2 def __init__(self, L, co, ci):
3 super().__init__()
4 # initialize weights. co=output channels, ci=input channels.
5 self.A = nn.Parameter(torch.randn(L, L, co, ci))
6 self.B = nn.Parameter(torch.randn(L, co, ci))
7 self.B_prev = nn.Parameter(torch.randn(L, co, ci))
8 self.C = nn.Parameter(torch.randn(L, co, ci))
9 self.C_next = nn.Parameter(torch.randn(L, co, ci))
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10 self.D = nn.Parameter(torch.randn(L, co, ci))
11

12 def forward(self, W):
13 # Input W is a list of L weight-space tensors with shapes:
14 # [(B, ci, n1, n0), . . . , ((B, ci, nL, nL−1))]
15 # We return a list of L tensors with shapes:
16 # [(B, co, n1, n0), . . . , ((B, co, nL, nL−1))]
17 # where ci, co are the input and output channels.
18

19 # Compute
[
W

(1)
⋆,: , · · · ,W (L)

⋆,:

]
. Each has shape (B, ci, ni−1).

20 row_means = [w.mean(-2) for w in W]
21 # Compute

[
W

(1)
:,⋆ , · · · ,W (L)

:,⋆

]
. Each has shape (B, ci, ni).

22 col_means = [w.mean(-1) for w in W]
23 # Compute

[
W

(1)
⋆,⋆ , · · · ,W (L)

⋆,⋆

]
with shape (B, ci, L).

24 rowcol_means = torch.stack([w.mean(dim=(-2, -1)) for w in W], -1)
25 out_W = []
26 for i, (w, a, b, b_prev, c, c_next, d) in enumerate(zip(
27 W, self.A, self.B, self.B_prev, self.C, self.C_next, self.D
28 )):
29 # Calculates

∑
s a

i,sW
(s)
⋆,⋆.

30 h1 = einsum(a, rowcol_means, 'co ci s, B ci s -> B co () ()')
31 # Calculates bi,iW

(i)
⋆,k.

32 h2 = einsum(b, row_means[i], 'co ci, b ci n_im1 -> B co () n_im1')
33 if i > 0:
34 # Calculates bi,i−1W

(i−1)
k,⋆ .

35 h2 += einsum(b_prev, col_means[i-1], 'co ci, B ci n_im1 -> B co () n_im1')
36 # Calculates ci,iW

(i)
j,⋆.

37 h3 = einsum(c, col_means[i], 'co ci, B ci n_i -> b co n_i ()')
38 if i < self.L - 1:
39 # Calculates ci,i+1W

(i+1)
⋆,j .

40 h3 += einsum(c_next, row_col[i+1], 'co ci, B ci n_i -> B co n_i ()')
41 # Calculates diW

(i)
jk .

42 h4 = einsum(d, w, 'co ci, B ci n_i n_im1 -> B co n_i n_im1')
43 # Calculates H(W (i)) with shape (B, co, ni, ni−1).
44 out_W.append(h1 + h2 + h3 + h4)
45 return out_W

B NF-Layers for the NP Setting

This section presents futher details related to the S-equivariant layer H : U → U and the S-invariant
layer P . First, Sec. B.1 gives the full definition of H as a function of both weight-space and bias-
space features. Sec. B.2 provides a proof that H(·) expresses any S-equivariant linear function on U
(Proposition 1). Sec. B.3 proves that combining our invariant layer P with a fully connected layer
can express any S-invariant function from U to Rd (Proposition 2).

B.1 Full definition

We present the full definition of the S-equivariant NF-Layer H : U → U , which completes Eq. 2 by
also including the biases. The layer processes a set of weights U = (W, v) and outputs arrays (Y, z)
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Table 7: S-equivariant parameter sharing for linear maps vec(U) 7→ θvec(U). Parameter sharing
is a system of constraints on the entries of (ϑ, ϕ, φ, ψ) = θ. Each table is organized by the layer
indices (i, s). For example, the first table says that for any (i, s) where s = i − 1, we constrain
ϑijkspq = ϑi,j

′,k′

s,p′,q′ = ai,i−1
ϑ for any j, k, p, q and j′, k′, p′, q′ where k ̸= p and k′ ̸= p′. After parameter

sharing, we observe that there are only a constant number of free parameters for each (i, s) pair,
adding up to O

(
L2
)

parameters total.

s = i− 1 s = i s = i+ 1 other s

ϑijkspq

{
ai,i−1
ϑ k ̸= p

bi,i−1
ϑ k = p


ai,iϑ j ̸= p, k ̸= q

bi,iϑ j = p, k ̸= q

ci,iϑ j ̸= p, k = q

diϑ j = p, k = q

{
ai,i+1
ϑ j ̸= q

ci,i+1
ϑ j = q

ai,sϑ

s = i− 1 s = i other s

ϕijksp

{
ai,i−1
ϕ k ̸= p

bi,i−1
ϕ k = p

{
ai,iϕ j ̸= p

bi,iϕ j = p
ai,sϕ

s = i s = i+ 1 other s

φijspq

{
ai,i−1
φ j ̸= p

bi,i−1
φ j = p

{
ai,iφ j ̸= q

bi,iφ j = q
ai,sφ

s = i other s

ψijsp

{
ai,iψ j ̸= p

biψ j = p
ai,sψ

with the same dimensions. The learnable parameters are in blue:

H(U) :=(Y, z) ∈ W × V (3)

Y
(i)
jk :=

∑
s

(
ai,sϑ W

(s)
⋆,⋆ + ai,sϕ v

(s)
⋆

)
+ bi,iϑ W

(i)
⋆,k + bi,i−1

ϑ W
(i−1)
k,⋆

+ biϕv
(i)
j + ci,iϑ W

(i)
j,⋆ + ci,i+1

ϑ W
(i+1)
⋆,j + ciϕv

(i−1)
k + diϑW

(i)
jk

z
(i)
j :=

∑
s

(
ai,sφ W

(s)
⋆,⋆ + ai,sψ v

(s)
⋆

)
+ bi,iφ W

(i)
j,⋆ + bi,i+1

φ W
(i+1)
⋆,j + biψv

(i)
j ,

where ⋆ denotes summation or averaging over a dimension.

B.2 Proof of Proposition 1

Here we show that the layer defined in Eq. 3 is not only S-equivariant, it can express every linear
equivariant function U → U . Our strategy is to first consider general linear layers T (·; θ) : U → U
parameterized by θ ∈ Θ, and then constrain to θ such that T (·; θ) is S-equivariant. Applying this
constraint will directly yield Eq. 3.

For our purposes, it is sometimes convenient to distinguish layer, row, and column indices of entries
in U , so we split the parameters θ = (ϑ, ϕ, φ, ψ) and write T : U → U in the form:

T (U ; θ) := (Y (U), z(U)) ∈ W × V = U (4)

Y (U)
(i)
jk :=

L∑
s=1

ns∑
p=1

ns−1∑
q=1

ϑijkspqW
(s)
pq +

L∑
s=1

ns∑
p=1

ϕijksp v
(s)
p (5)

z(U)
(i)
j :=

L∑
s=1

ns∑
p=1

ns−1∑
q=1

φijspqW
(s)
pq +

L∑
s=1

ns∑
p=1

ψijspv
(s)
p . (6)
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We introduce the notation Uα to identify individual entries of U . Here α is a tuple of length two or
three, for indexing into either a weight or bias. We denote the space of valid index tuples ofW and V
by W and V, respectively, and define U := W∪V as the combined index space of U . For example, if
α = (i, j, k) ∈W, then Uα =W

(i)
jk .

We can then define the index space I := U×U for parameters θ ∈ Θ. We use θαβ to index an entry of
θ with upper and lower indices [α, β] ∈ I . For example, if α = (i, j, k) ∈W and β = (s, p, q) ∈W,
we have θαβ = ϑijkspq .

By flattening U into a vector, we can think of θ as a matrix with indices α and β. Eq. 4 can be
rewritten in the flattened form:

T (U ; θ)α =
∑
β

θαβUβ . (7)

In the flattened representation, we can write the action of σ ∈ S on vec(U) by a permutation matrix
Pσ. Equivariance requires that Pσθvec(U) = θPσvec(U) for any σ ∈ S. Since the input U can be
anything, we get the following constraint on θ:

Pσθ = θPσ, ∀σ ∈ S. (8)

We can re-express the action of S on U (Eq. 1) as an action on the index space U. For α ∈ U, we
write σ(α) which is defined:

σ(i, j, k) = (i, σi(j), σi−1(k)) (i, j, k) ∈W (9)
σ(i, j) = (i, σi(j)) (i, j) ∈ V, (10)

for any σ ∈ S. We extend this definition into an action of S on I:

σ [α, β] := [σα, σβ], [α, β] ∈ U× U. (11)

We can now rewrite the equivariance constraint in Eq. 8 using indices α, β:

[Pσθ]
α
β = θ

σ−1(α)
β = θασ(β) = [θPσ]

α
β . (12)

By relabeling α ← σ−1(α), we can rewrite this condition θαβ = θ
σ(α)
σ(β) . Hence, equivariance is

equivalent to requiring that θ share parameters within orbits under the action of S on its indices
α, β [54, Prop 3.1]. We characterize these orbits in Sec. B.2.1, yielding Table 7 which gives the
parameter sharing as a system of constraints on the indices of θ. These constraints characterize the
space of S-equivariant T (·, θ). In Sec. B.2.2, we conclude the proof by showing that under parameter
sharing, T (·, θ) is equivalent to Eq. 3.

B.2.1 Parameter orbits and sharing

We now partition the parameters of θ into orbits under the S-action on its index space, in order to
generate the parameter sharing constraints given in Table 7. The index space of θ is I = U × U.
There are four subsets of I:

1. IWW := W×W: Contains [α, β] = [(i, j, k), (s, p, q)], indexing parameters ϑijkspq .

2. IWV := W× V: Contains [α, β] = [(i, j, k), (s, p)], indexing parameters ϕijksp .

3. IVW := V×W: Contains [α, β] = [(i, j), (s, p, q)], indexing parameters φijspq .

4. IV V := V× V: Contains [α, β] = [(i, j), (s, p)], indexing parameters ψijsp.

Consider the block of indices IWW = W ×W, containing [α, β] = [(i, j, k), (s, p, q)] indexing
parameters ϑαβ . Since the S-action never changes the layer indices (i, s), we can independently
consider orbits within sub-blocks of indices IWW

i,s = { [(i, j, k), (s, p, q)] | ∀j, k, p, q }. The number
of orbits within each sub-block IWW

i,s depends on the relationship between the layer indices i and
s: they are either the same layer (s = i), they are adjacent (s = i − 1 or s = i + 1), or they are
non-adjacent (s /∈ {i− 1, i, i+ 1}). We now analyze the orbits of sub-blocks for a few cases.
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If s = i− 1, then choose any two indices
[
α(1), β(1)

]
,
[
α(2), β(2)

]
∈ IWW

i,s where the first satisfies
p ̸= k and the second satisfies p = k. Then the orbits of each index are:

Orbit
([
α(1), β(1)

])
= { [(i, j, k), (s, p, q)] | ∀j, k, p, q : p ̸= k } (13)

Orbit
([
α(2), β(2)

])
= { [(i, j, k), (s, p, q)] | ∀j, k, p, q : p = k } . (14)

We see that these two orbits actually partition the entire sub-block of indices IWW
i,s , with each orbit

characterized by whether or not p = k. We introduce the parameters ai,i−1
ϑ (for the first orbit) and

bi,i−1
ϑ (for the second orbit). Under equivariant parameter sharing, all parameters of ϑ corresponding
IWW
i,s are equal to either ai,i−1

ϑ or bi,i−1
ϑ , depending on whether p = k or p ̸= k.

If s = i+1, we instead choose any two indices where the first satisfies j ̸= q and the second satisfies
j = q. Then the sub-block of indices IWW

i,s is again partitioned into two orbits:

{ [(i, j, k), (s, p, q)] | ∀j, k, p, q : j ̸= q } , and { [(i, j, k), (s, p, q)] | ∀j, k, p, q : j = q } (15)

depending on the condition j = q. We name two parameters ai,i+1
ϑ and ci,i+1

ϑ for this sub-block, with
one for each orbit.

We can repeat this process for sub-blocks of IWW where i = s and s /∈ {i − 1, i, i + 1}, as well
as for the other three blocks of I. Table 7 shows the complete parameter sharing constraints on θ
resulting from partitioning all possible sub-blocks into orbits.

Number of parameters. We also note that every layer pair (i, s) introduces only a constant number
of parameters: the number of parameters in each cell of Table 7 has no dependence on the input,
output, or hidden dimensions of U . Hence the number of distinct parameters after parameter sharing
simply grows with the number of layer pairs, i.e. O

(
L2
)
.

B.2.2 Equivalence to equivariant NF-Layer definition

All that remains is to show that the map T (·; θ) : U → U with S-equivariant parameter sharing
(Table 7) is equivalent to the NF-Layer H we defined in Eq. 3.

Consider a single term from Eq. 4 where s = i− 1. Substituting using the constraints of Table 7, we
simplify: ∑

p,q

ϑi,j,ki−1,p,qW
(i−1)
pq = ai,i−1

∑
q

∑
k ̸=p

W (i−1)
p,q + bi,i−1

∑
q

W
(i−1)
k,q (16)

= ai,i−1W
(i−1)
⋆,⋆ + (bi,i−1 − ai,i−1)W

(i−1)
k,⋆ .

We can then reparameterize bi,i−1 ← bi,i−1 − ai,i−1, resulting in two terms that appear in Eq. 3. We
can simplify every term of Eq. 4 in a similar manner using the parameter sharing of Table 7, reducing
the general layer to the S-equivariant NF-Layer.

B.3 Proof of Proposition 2

Analogous to Sec. B.2, we begin with general parameterized linear maps T (·; θ) : U → Rd and
characterize the parameter sharing implied by S-invariance. We then show that T (·, θ) under these
constraints is equivalent to f ◦ P , where f : R2L → Rd is a parameterized linear map (i.e., a fully
connected layer) and P (U) =

(
W

(1)
⋆,⋆ , · · · ,W (L)

⋆,⋆ , v
(1)
⋆ , · · · , v(L)⋆

)
. We will assume d = 1 for the

rest of this section, but it is straightforward to generalize our arguments to arbitrary d.

In general, we can parameterize linear maps U → R by θ ∈ Rdim(U), where:

T (U, θ) =
∑

θαUα, (17)

where α is an index for either weights or biases as in Sec. B.2. The invariance constraint T (U) =
T (σU) implies:

θα = θσ(α), (18)

where σ(α) is defined by Eq. 9.
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We can now characterize the orbits of the indices of θ under S . In this case, the orbits (and resulting
parameter sharing) are relatively simple. For a fixed i, all (i, j, k) ∈ W form an orbit, and we
introduce a shared parameter ai. Similarly, for each i all (i, j) ∈ V form an orbit, and we introduce a
shared parameter bi for each. We can then rewrite the layer:

T (U ; θ) =
∑
i

ai∑
jk

W
(i)
jk + bi

∑
j

v
(i)
j

 =
∑
i

aiW
(i)
⋆,⋆ + biv

(i)
⋆ . (19)

This is simply a linear combination of the output of P (U) parameterized by {(ai, bi)}, and can be
written as the composition f ◦ P where f is a fully connected layer.

C NF-Layers for the HNP setting

C.1 Equivariant NF-Layer

Because an expression for the S̃-equivariant NF-Layer analogous to Eq. 3 would be unwieldy, we
instead define the layer in terms of its parameter sharing (Tables 8-11) on θ.

We can derive HNP-equivariant parameter sharing of θ using a similar strategy to Sec. B.2.1:
we partition the index spaces IWW , IWV , IVW , IV V into orbits under the action of S̃, and share
parameters within each corresponding orbit of ϑ, ϕ, φ, ψ. The resulting parameter sharing is different
from the NP-setting because while the action of S on U could permute the rows and columns of every
weight and bias, the action of S̃ on U does not affect the columns of W (1) or the rows of W (L), v(L),
which correspond to input and output dimensions (respectively).

The orbits are again analyzed within sub-blocks defined by the values of the layer indices (i, s). As
with the NP setting, there are broadly four types of sub-blocks based on whether i = s, s = i− 1,
s = i + 1, or s /∈ {i − 1, i, i + 1}. However, there are now additional considerations based on
whether i or s is an input or output layer. For example, consider the sub-block of IWW where
i = s = 1, which we denote IWW

1,1 . The action on the indices in this sub-block can be written
σ [α, β] = [(1, σ1(j), k), (1, σ1(p), q)]. Importantly, the column indices k, q are never permuted
since they correspond to the input layer. We see that IWW

1,1 contains two orbits for each k ∈ J1..n0K
and q ∈ J1..n0K, with the two orbits characterized by whether or not j = p. Hence we have 2n20

orbits and Table 8 introduces 2n20 parameters
{
a1,1,k,qϑ , b1,1,k,qϑ

∣∣∣ k, q ∈ J1..n0K
}

for this sub-block
of parameters.

Now consider another sub-block of IWW where 1 < i = s < L. Now the action of S̃ on indices
in this sub-block can be written σ [α, β] = [(i, σi(j), σi−1(k)), (i, σi(p), σi−1(q))]. Then we have a
total of two orbits characterized by whether or not k = p, rather than 2n20 orbits for the i = 1 case.
Tables 8-11 present the complete parameter sharing for each of ϑ, ϕ, φ, ψ, resulting from analyzing
every possible orbit within any sub-block of IWW , IWV , IVW , IV V .

C.2 Invariant NF-Layer

While the NP-invariant NF-Layer sums over the rows and columns of every weight and bias, under
HNP assumptions there is no need to sum over the columns ofW (1) (inputs) or the rows ofW (L), v(L)

(outputs). So the HNP invariant NF-Layer P̃ : U → R2L+n0+2nL is defined:

P̃ (U) =
(
P (U),W

(1)
⋆,: ,W

(L)
:,⋆ , v

(L)
)
, (20)

where W (1)
⋆,: and W (L)

:,⋆ denote summing over only the rows or only the columns of the matrix,
respectively. Note that P̃ satisfies S̃-invariance without satifying S-invariance.

D Additional experimental details

D.1 Predicting generalization

The model we use consists of three equivariant NF-Layers with 16, 16, and 5 channels respectively.
We apply ReLU activations after each linear NF-Layer. The resulting weight-space features are passed

20



Table 8: HNP-equivariant parameter sharing on ϑ ⊆ θ, corresponding to the NF-Layer H̃ : U → U .

ϑijkspq

s = i− 1

i = 2 2 < i < L i = L{
a2,1,qϑ k ̸= p

b2,1,qϑ k = p

{
ai,i−1
ϑ k ̸= p

bi,i−1
ϑ k = p

{
aL,L−1,j
ϑ k ̸= p

bL,L−1,j
ϑ k = p

s = i

i = 1 1 < i < L i = L{
a1,1,k,qϑ j ̸= p

b1,1,k,qϑ j = p


ai,iϑ j ̸= p, k ̸= q

bi,iϑ j = p, k ̸= q

ci,iϑ j ̸= p, k = q

di,iϑ j = p, k = q

{
aL,L,j,pϑ k ̸= q

cL,L,j,pϑ k = q

s = i+ 1

i = 1 1 < i < L− 1 i = L− 1{
a1,2,kϑ j ̸= q

c1,2,kϑ j = q

{
a1,2ϑ j ̸= q

c1,2ϑ j = q

{
aL−1,L,p
ϑ j ̸= q

cL−1,L,p
ϑ j = q

other s

i = 1, 1 < s < L i = 1, s = L 1 < i < L, s = L

a1,s,kϑ a1,L,k,pϑ ai,L,pϑ

1 < i < L, s = 1 i = L, s = 1 i = L, 1 < s < L

ai,1,qϑ aL,1,j,qϑ aL,s,jϑ

1 < i < L, 1 < s < L

ai,sϑ

Table 9: HNP-equivariant parameter sharing on ϕ ⊂ θ, corresponding to the NF-Layer H̃ : U → U .

ϕijksp

s = i− 1

1 < i < L i = L{
ai,i−1
ϕ k ̸= p

bi,i−1
ϕ k = p

{
aL,L−1,j
ϕ k ̸= p

bL,L−1,j
ϕ k = p

s = i

i = 1 1 < i < L i = L{
a1,1,kϕ j ̸= p

b1,1,kϕ j = p

{
ai,iϕ j ̸= p

bi,iϕ j = p
bL,L,j,pϕ

other s

i = 1, 1 < s < L i = 1, s = L 1 < i < L, s = L

a1,s,kϕ a1,L,k,pϕ ai,L,pϕ

1 < i < L, 1 ≤ s < L i = L, 1 ≤ s < L

ai,sϕ aL,s,jϕ
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Table 10: HNP-equivariant parameter sharing on φ ⊂ θ, corresponding to the NF-Layer H̃ : U → U .

φijspq

s = i

i = 1 1 < i < L i = L{
a1,1,qφ j ̸= p

b1,1,kφ j = p

{
ai,iφ j ̸= p

bi,iφ j = p
bL,L,j,pφ

s = i+ 1

1 ≤ i < L− 1 i = L− 1{
ai,i+1
φ j ̸= p

bi,i+1
φ j = p

{
aL−1,L,p
φ j ̸= p

bL−1,L,p
φ j = p

other s

1 ≤ i < L, s = 1 1 ≤ i < L, 1 < s < L 1 ≤ i < L, s = L

ai,s,qφ ai,sφ ai,L,pφ

i = L, s = 1 i = L, 1 < s < L

aL,1,j,qφ aL,s,jφ

Table 11: HNP-equivariant parameter sharing on ψ ⊂ θ, corresponding to the NF-Layer H̃ : U → U .

ψijsp

s = i

1 ≤ i < L i = L{
ai,iψ j ̸= p

bi,iψ j = p
bL,L,j,pψ

other s
1 ≤ i < L, s = L i = L, 1 ≤ s < L 1 ≤ i < L, 1 ≤ s < L

ai,L,pψ aL,s,jψ ai,sψ

into an invariant NF-Layer with mean pooling. The output of the invariant NF-Layer is flattened
and projected to R1,000. The resulting vector is then passed through an MLP with two hidden layers,
each with 1,000 units and ReLU activations. The output is linearly projected to a scalar and passed
through a sigmoid function. Since the output of the model can be interpreted as a probability, we
train the model with binary cross-entropy with hyperparameters outlined in Table 12. The model is
trained for 50 epochs with early stopping based on τ on the validation set, which takes 1 hour on a
Titan RTX GPU.

Table 12: Hyperparameters for predicting generalization on Small CNN Zoo.

Name Values
Optimizer Adam
Learning rate 0.001
Batch size 8
Loss Binary cross-entropy
Epoch 50

D.2 Predicting “winning ticket” masks from initialization

Concretely, the encoder learns the posterior distribution qθ(Z | U0,M) where Z ∈ Rdim(U)×C is the
latent variable for the winning tickets and C is the number of latent channels. The decoder learns
pθ(M | U0, Z), and both encoder and decoder are implemented using our equivariant NF-Layers.
For the prior p(Z) we choose the isometric Gaussian distribution, and train using the evidence lower
bound (ELBO):

Lθ(M,U0) = Ez∼qθ(·|U0,M)

[
ln pθ(M | U0, z)

]
− DKL

(
qθ(· | U0,M) || p(·)

)
.
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The initialization and sparsity mask are concatenated so the input to the encoder qθ is (U,M) ∈
Rdim(U)×2. After the bottleneck, we concatenate the latent variables and the original mask along the
channels, i.e. the decoder input is (U0, Z) ∈ Rdim(U)×(C+1).

The first dataset uses three-layer MLPs with 128 hidden units trained on MNIST and the second uses
CNNs with three convolution layers (128 channels) and 2 fully-connected layers trained on CIFAR-10.
In each dataset, we include 400 pairs for training and hold out 50 for evaluation. The hyperparameter
details are in Table 13. The encoder and decoder models contain 4 equivariant NF-Layers with 64
hidden channels within each layer. The latent variable is 5 dimensions. Training takes 5H on a Titan
RTX GPU.

Table 13: Hyperparameters for predicting LTH on MNIST and CIFAR-10.

Name Values
Optimizer Adam
Learning rate 1× 10−3

Batch size [4, 8]
Epoch 200

D.3 Classifying INRs

We use SIREN [58] for our INRs of CIFAR-10, FashionMNIST, and MNIST. For the SIREN models,
we used a three-layer architecture with 32 hidden neurons in each layer. We trained the SIRENs for
5,000 steps using Adam optimizer with a learning rate of 5× 10−5. Datasets were split into 45,000
training images, 5,000 validation images, and 10,000 (MNIST, CIFAR-10) or 20,000 (FashionMNIST)
test images. We trained 10 copies (MNIST, FashionMNIST) or 20 copies (CIFAR-10) of SIRENs
on each training image with different initializations, and a single SIREN on each validation and test
image. No additional data augmentation was applied. For 3D shape classification, we adopt the same
protocol introduced in [12], and we train each SIREN to fit the Unsigned Distance Function (UDF)
value of points sampled around a shape. Each SIREN is composed of a single hidden layer with 128
neurons. We use Adam as an optimizer and we train for 1,000 steps.

We also trained neural functionals with three equivariant NF-Layers + ReLU activations, each with
512 channels, followed by invariant NF-Layers (mean pooling) and a three-layer MLP head with
1,000 hidden units and ReLU activation. Dropout was applied to the MLP head only. For the NFN
IO-encoding, we used sinusoidal position encoding with a maximum frequency of 10 and 6 frequency
bands (dimension 13). The training hyperparameters are shown in Table 14, and training took ∼ 4H
on a Titan RTX GPU.

Table 14: Hyperparameters for classifying INRs on MNIST and CIFAR-10 using neural functionals.

Name Values
Optimizer Adam
Learning rate 1× 10−4

Batch size 32
Training steps 2× 105

MLP dropout 0.5

We also experimented with larger MLPs (4,000 and 8,000 hidden units per layer) that have parameter
counts comparable to those of the NFNs, but found that it did not significantly increase test accuracy,
as shown in Table 16.

D.4 Weight-space style editing

For weight-space editing, we use the same INRs as the ones used for classification but we do
not augment the dataset with additional INRs. Let Ui be the INR weights for the ith image and
SIREN(x, y;U) be the output of the INR parameterized by U at coordinates (x, y). We edit the INR
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weights U ′
i = Ui + γ · NFN(Ui), and γ is a learned scalar initialized to 0.01. Letting fi(x, y) be the

pixel values of the ground truth edited image (obtained from image-space processing), the objective
is to minimize mean squared error:

L (NFN) =
1

N · d2
N∑
i=1

d∑
x,y

∥SIREN (x, y;U ′)− fi(x, y)∥22. (21)

Note that since the SIREN itself is differentiable, the loss can be directly backpropagated through U ′

to the parameters of the NFN.

The neural functionals contain 3 equivariant NF-Layers with 128 channels, one invariant NF-Layer
(mean pooling) followed by 4 linear layers with 1,000 hidden neurons. Every layer uses ReLU
activation. The training hyperparameters can be found in Table 15, and training takes ∼ 1 hour on a
Titan RTX GPU.

Table 15: Hyperparameters for weight-space style editing using neural functionals.

Name Values
Optimizer Adam
Learning rate 1× 10−3

Batch size 32
Training steps 5× 104

E Additional experiments and analysis

E.1 Analyzing train vs test accuracies in INR classification

Table 16 shows the training and test accuracies of our NFNs and other weight space methods across
the benchmarks we consider in this paper. An interesting observation is that in addition to better
test performance, NFN typically achieve much higher training accuracies compared to the MLPs.
MLPAug, the MLP variant trained with permutation augmentations, especially struggles to achieve
low training error. This indicates that training architectures to respect neuron permutation symmetries
is extremely challenging, perhaps because these symmetry groups are extremely large [1]. Therefore,
encoding equivariance or invariance via architecture design, as we do with NFNs, is much more
effective.

E.2 Non-weight-space baselines for image classification

For the image and 3D shape classification tasks discussed in Sec. 3.2, we compared the neural
functionals to non-weight-space baselines, namely residual networks [26] for MNIST, FashionMNIST,
and CIFAR-10, and PointNet [52] for ShapeNet-10 and ScanNet-10. The results, shown in Table 16,
indicate that applying state of the art architectures to pixels or point clouds is more effective than any
weight space method. This may be because these architectures can leverage geometric properties
of image and shape classification tasks. While neural functionals handle weight space symmetries,
it remains an open problem to incorporate the geometric symmetries of common machine learning
problems into weight space methods.

E.3 Ablating positional encoding

We ablate the effect of IO-encoding on the NFNNP architectures, in the 2D-INR classification and
style editing tasks. The results, reported in Tables 17 and 18, show that IO-encoding adds a very
small (sometimes negligible) boost to NFNNP performance, though it never hurts. Since NFNNP often
performs as well as or better than NFNHNP, this indicates that even the base NP variant can solve
many weight-space tasks without needing to break that symmetry.

E.4 Interpreting learned lottery ticket masks

We further analyze the behavior of NFNPT on lottery ticket mask prediction by plotting the mask
score predicted for a given initialization value at each layer. To make the visualization clear we train
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Table 16: Classification train and test accuracies (%) on datasets of 2D INRS (MNIST, Fashion-
MNIST, and CIFAR-10) and 3D INRs (ShapeNet-10 and ScanNet-10). Our equivariant NFNs
outperform the MLP baselines, even when the MLPs have permutation augmentations to encourage
invariance, and even when the MLPs are significantly larger to match NFN’s parameter counts
(MLP-4000/8000). NFNs also outperform recent non-equivariant methods developed for 3D INRs
such as inr2vec [12]. ResNet-18 and PointNet operate on gridded or pointcloud signals, instead of
weight space representations, and their performance is given for reference. PointNet results were
obtained directly from Qi et al. [52]. Where given, uncertainties indicate standard error over three
runs.

MNIST FashionMNIST CIFAR-10 ShapeNet-10 ScanNet-10

NFNHNP
Train 94.9± 0.579 82.3± 2.78 75.5± 0.810 100± 0.0 100.0± 0.0
Test 92.5± 0.071 72.7± 1.53 44.1± 0.471 86.9± 0.860 64.1± 0.572

NFNNP
Train 95.0± 0.115 81.8± 0.868 66.0± 0.694 100.0± 0.0 100.0± 0.0
Test 92.9± 0.218 75.6± 1.07 46.6± 0.072 88.7± 0.461 65.9± 1.10

MLP Train 42.4± 2.44 44.5± 2.17 23.7± 2.39 100.0± 0.0 100.0± 0.0
Test 14.5± 0.035 12.5± 0.111 16.9± 0.250 25.4± 0.121 32.9± 0.351

MLPAug
Train 20.5± 0.401 14.9± 1.45 19.1± 1.75 34.0± 0.0 42.7± 0.012
Test 21.0± 0.172 15.9± 0.181 18.9± 0.432 33.8± 0.126 45.5± 0.126

MLP-4000 Train 72.6± 1.39 – 30.4± 0.521 – –
Test 15.5± 0.090 – 17.1± 0.120 – –

MLP-4000Aug
Train 19.4± 1.39 – 20.5± 0.333 – –
Test 21.1± 0.010 – 19.3± 0.325 – –

MLP-8000 Train 77.8± 1.74 – 35.9± 0.868 – –
Test 15.8± 0.014 – 17.3± 0.280 – –

MLP-8000Aug
Train 20.3± 3.30 – 18.1± 0.347 – –
Test 21.3± 0.075 – 19.6± 0.060 – –

inr2vec[12] Train – – – 99.0± 0.0 93.8± 0.090
Test – – – 39.1± 0.385 38.2± 0.409

ResNet-18 Test 99.21± 0.28 95.48± 0.13 93.95± 0.08 – –

PointNet Test – – – 94.3 72.7

Table 17: Classification test accuracies (%) when ablating the positional encoding for implicit neural
representations (INRs) of MNIST, FashionMNIST, and CIFAR-10. Uncertainties indicate standard
error over three runs.

NFNNP NFNNP (no positional encoding)

MNIST 92.9± 0.218 92.9± 0.077

CIFAR-10 46.6± 0.072 46.5± 0.160

FashionMNIST 75.6± 1.07 73.4± 0.701

Table 18: Test mean squared error when ablating the positional encoding on the Dilate (MNIST)
and Contrast (CIFAR-10) implicit neural representation (INR) editing task. Uncertainties indicate
standard error over three runs.

NFNNP NFNNP (no positional encoding)

Contrast (CIFAR-10) 0.020± 0.000 0.020± 0.000
Dilate (MNIST) 0.068± 0.000 0.070± 0.001
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Figure 5: Mask scores vs weight magnitude for modified NFNPT.

NFNPT on MLP mask prediction without layer norm, which can be viewed as a scalar function of the
initialization f (i) : R→ R for each layer i. Figure 5 plots, for a fixed latent value, the predicted mask
score as a function of the initialization value (low mask scores are pruned, while high mask scores
are not). These plots suggest that, in the MLP setting, neural functionals are learning something
similar to magnitude pruning of the initialization. In our setting, this turns out to be a strong baseline
for lottery ticket mask prediction: the test accuracy of models pruned with the modified network is
95.0%.
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Table 19: Kendall’s τ coefficient and R2 between predicted and actual test accuracies of three- and
five-layer MLPs trained on MNIST. Our equivariant neural functionals outperform the baseline from
[64] which predicts generalization using only simple weight statistics as features. Uncertainties
indicate standard error over five runs.

NFNHNP NFNNP STATNN

τ
3-Layer 0.876± 0.003 0.859± 0.002 0.854± 0.002
5-Layer 0.871± 0.001 0.855± 0.001 0.860± 0.001

R2 3-Layer 0.957± 0.003 0.9424± 0.003 0.937± 0.002
5-Layer 0.956± 0.002 0.947± 0.001 0.950± 0.001

E.5 Predicting MLP generalization from weights

In addition to predicting generalization on the Small CNN Zoo benchmark (Section 3.1), we
also construct our own datasets to evaluate predicting generalization on MLPs. Specifically,
we study three- and five-layer MLPs with 128 units in each hidden layer. For each of the two
architectures, we train 2,000 MLPs on MNIST with varying optimization hyperparameters, and
save 10 randomly-selected checkpoints from each run to construct a dataset of 20,000 (weight, test
accuracy) pairs. Runs are partitioned according to a 90% / 10% split for training and testing.

We evaluate NFNHNP and NFNNP on this task and compare them to the STATNN baseline [64] which
predicts test accuracy from hand-crafted features extracted from the weights. Table 19 shows that
NFNNP and STATNN are broadly comparable, while NFNHNP consistently outperform other methods
across both datasets in two measures of correlation: Kendall’s tau and R2. These results confirm
that processing the raw weights with permutation equivariant neural functionals can lead to greater
predictive power when assessing generalization from weights.
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