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Abstract

Robust reinforcement learning is essential for deploying reinforcement learning
algorithms in real-world scenarios where environmental uncertainty predominates.
Traditional robust reinforcement learning often depends on rectangularity assump-
tions, where adverse probability measures of outcome states are assumed to be
independent across different states and actions. This assumption, rarely fulfilled
in practice, leads to overly conservative policies. To address this problem, we intro-
duce a new time-constrained robust MDP (TC-RMDP) formulation that considers
multifactorial, correlated, and time-dependent disturbances, thus more accurately
reflecting real-world dynamics. This formulation goes beyond the conventional
rectangularity paradigm, offering new perspectives and expanding the analytical
framework for robust RL. We propose three distinct algorithms, each using varying
levels of environmental information, and evaluate them extensively on continuous
control benchmarks. Our results demonstrate that these algorithms yield an effi-
cient tradeoff between performance and robustness, outperforming traditional deep
robust RL methods in time-constrained environments while preserving robustness
in classical benchmarks. This study revisits the prevailing assumptions in robust RL
and opens new avenues for developing more practical and realistic RL applications.

1 Introduction

Robust MDPs capture the problem of finding a control policy for a dynamical system whose transition
kernel is only known to belong to a defined uncertainty set. The most common framework for analyz-
ing and deriving algorithms for robust MDPs is that of sa-rectangularity [1, 2], where probability
measures on outcome states are picked independently in different source states and actions (in formal
notation, P(s′|s, a) and P(s′|s̄, ā) are independent of each other). This provides an appreciable
decoupling of worst transition kernel search across time steps and enables sound algorithms like
robust value iteration (RVI). But policies obtained for such sa-rectangular MDPs are by nature very
conservative [3, 4], as they enable drastic changes in environment properties from one time step to
the next, and the algorithms derived from RVI tend to yield very conservative policies even when
applied to non-sa-rectangular robust MDP problems.

In this paper, we depart from the rectangularity assumption and turn towards a family of robust MDPs
whose transition kernels are parameterized by a vector ψ. This parameter vector couples together
the outcome probabilities in different (s, a) pairs, hence breaking the independence assumption that
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is problematic, especially in large dimension [3]. This enables accounting for the notion of transition
model consistency across states and actions: outcome probabilities are not picked independently
anymore but are rather set across the state and action spaces by drawing a parameter vector. In
turn, we examine algorithms for solving such parameter-based robust MDPs when the parameter is
constrained to follow a bounded evolution throughout time steps. Our contributions are the following.

1. We introduce a formal definition for parametric robust MDPs and time-constrained robust
MDPs, discuss their properties and derive a generic algorithmic framework (Sec. 2).

2. We propose three algorithmic variants for solving time-constrained MDPs, named vanilla
TC , Stacked-TC and Oracle-TC (Sec. 4), which use different levels of information in
the state space, and come with theoretical guaranties (Sec. 6).

3. These algorithms are extensively evaluated in MuJoCo [5] benchmarks, demonstrating they
lead to non-conservative and robust policies (Sec. 5).

2 Problem statement

(Robust) MDPs. A Markov Decision Process (MDP) [6] is a model of a discrete-time, sequential
decision making task. At each time step, from a state st ∈ S of the MDP, an action at ∈ A is
taken and the state changes to st+1 according to a stationary Markov transition kernel p(st+1|st, at),
while concurrently receiving a reward r(st, at). S and A are measurable sets and we write ∆S

and ∆A the set of corresponding probability distributions. A stationary policy π(·|s) is a mapping
from states to distributions over actions, prescribing which action should be taken in s. The value
function vπp of policy π maps state s to the expected discounted sum of rewards Ep,π[

∑
t γ

trt] when
applying π from s for an infinite number of steps. An optimal policy for an MDP is one whose value
function is maximal in any state. In a Robust MDP (RMDP) [1, 2], the transition kernel p is not
set exactly and can be picked in an adversarial manner at each time step, from an uncertainty set
P . Then, the pessimistic value function of a policy is vπP(s) = minp∈P v

π
p (s). An optimal robust

policy is one that has the largest possible pessimistic value function v∗P in any state, hence yielding
an adversarial maxπminp optimization problem. Robust Value Iteration (RVI) [1, 7] solves this
problem by iteratively computing the one-step lookahead best pessimistic value:

vn+1(s) = T ∗
Pvn(s) := max

π(s)∈∆A
min
p∈P

Ea∼π(s)[r(s, a) + Ep[vn(s′)]].

The T ∗
P operator is called the robust Bellman operator and the sequence of vn functions converges to

the robust value function v∗P as long as the adversarial transition kernel belongs to the simplex of ∆S .

Zero-sum Markov Games. Robust MDPs can be cast as zero-sum two-players Markov games
[8, 9] where B is the action set of the adversarial player. Writing π̄ : S × A → ∆B the policy of
this adversary, the robust MDP problem turns to maxπminπ̄ v

π,π̄, where vπ,π̄(s) is the expected
sum of discounted rewards obtained when playing π (agent actions) against π̄ (transition models)
at each time step from s. This enables introducing the robust value iteration sequence of functions

vn+1(s) := T ∗∗vn(s) := max
π(s)∈∆A

min
π̄(s,a)∈∆S

(Tπ,π̄vn)(s)

where Tπ,π̄ := Ea∼π(s)[r(s, a) + γEs′∼π̄(s,a)vn(s′)] is a zero-sum Markov game operator. These
operators are also γ−contractions and converge to their respective fixed point vπ,π̄ and v∗∗ = v∗P
[9]. This formulation will be useful to derive a practical algorithm in Section 4.

Often, this convergence is analyzed under the assumption of sa-rectangularity, stating that the
uncertainty set P is a set product of independent subsets of ∆S in each s, a pair. Quoting [1],
rectangularity is a sort of independence assumption and is a minimal requirement for most theoretical
results to hold. Within robust value iteration, rectangularity enables picking π̄(st, at) completely
independently of π̄(st−1, at−1). To set ideas, let us consider the robust MDP of a pendulum, described
by its mass and rod length. Varying this mass and rod length spans the uncertainty set of transition
models. The rectangularity assumption induces that π̄(st, at) can pick a measure in ∆S corresponding
to a mass and a length that are completely independent from the ones picked in the previous time
step. While this might be a good representation in some cases, in general it yields policies that are
very conservative as they optimize for adversarial configurations which might not occur in practice.

We first step away from the rectangularity assumption and define a parametric robust MDP as an
RMDP whose transition kernels are spanned by varying a parameter vector ψ (typically the mass
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and rod length in the previous example). Choosing such a vector couples together the probability
measures on successor states from two distinct (s, a) and (s′, a′) pairs. The main current robust
deep RL algorithms actually optimize policies for such parametric robust MDPs but still allow the
parameter value at each time step to be picked independently of the previous time step.

Parametric MDPs. A parametric RMDP is given by the tuple (S,A,Ψ, pψ, r) where the transition
kernel pψ(s, a) ∈ ∆S is parameterized by ψ, and Ψ is the set of values ψ can take, equipped with an
appropriate metric. This yields the robust value iteration update :

vn+1(s) = max
π(s)∈∆A

min
ψ∈Ψ

(Tπψ vn)(s) := max
π(s)∈∆A

min
ψ∈Ψ

Ea∼π(s)[r(s, a) + γEs′∼pψ(s,a)vn(s
′)].

A parametric RMDP remains a Markov game and the Bellman operator remains a contraction
mapping as long as pψ can reach only elements in the simplex of ∆S , where the adversary’s action
set is the set of parameters instead of a (possibly sa-rectangular) set of transition kernels.

Time-constrained RMDPs (TC-RMDPs). We introduce TC-RMDPs as the family of parametric
RMDPs whose parameter’s evolution is constrained to be Lipschitz with respect to time. More
formally a TC-RMDP is given by the tuple (S,A,Ψ, pψ, r, L), where ∥ψt+1 − ψt∥ ≤ L, that is
the parameter change is bounded through time. In the previous pendulum example, this might
represent the wear of the rod which might lose mass or stretch length. Similarly, and for a larger scale
illustration, TC-RMDPs enable representing the possible evolutions of traffic conditions in a path
planning problem through a busy town. Starting from an initial parameter value ψ−1, the pessimistic
value function of a policy π is non-stationary, as ψ0 is constrained to lay at most L-far away from
ψ−1, ψ1 from ψ0, and so on. Generally, this yields non-stationary value functions as the uncertainty
set at each time step depends on the previous uncertainty parameter. To regain stationarity without
changing the TC-RMDP definition, we first change the definition of the adversary’s action set. The
adversary picks its actions in the constant set B = B(0Ψ, L), which is the ball of radius L centered
in the null element in Ψ. In turn, the state of the Markov game becomes the pair s, ψ and the Markov
game itself is given by the tuple ((S ×Ψ), A,B, pψ, r), where the Lipschitz constant L is included
in B. Thus, given an action bt ∈ B and a previous parameter value ψt−1, the parameter value at time
t is ψt = ψt−1 + bt. Then, we define the pessimistic value function of a policy as a function of both
the state s and parameter ψ:

vπB(s, ψ) := min
(bt)t∈N,
bt∈B

E
[∑

γtrt|ψ−1 = ψ, s0 = s, bt ∈ B,ψt = ψt−1 + bt, a ∼ π, st ∼ pψt
]
,

v∗B(s, ψ) = max
π(s,ψ)∈∆A

vπB(s, ψ).

In turn, an optimal robust policy is a function of s and ψ and the TC robust Bellman operators are:

vn+1(s, ψ) := T ∗
Bvn(s, ψ) := max

π(s,ψ)∈∆A
TπBvn(s, ψ),

:= max
π(s,ψ)∈∆A

min
b∈B

Ea∼π(s)[r(s, a) + γEs′∼pψ+b(s,a)vn(s
′, ψ + b)].

This iteration scheme converges to a fixed point according to Th. 2.1.
Theorem 2.1. The time-constrained (TC) Bellman operators TπB and T ∗

B are contraction mappings.
Thus the sequences vn+1 = TπBvn and vn+1 = T ∗

Bvn, converge to their respective fixed points vπB
and v∗B .

Proof of Th. 2.1 can be found in Appendix B. We refer to this formulation as algorithm Oracle-TC
(see Section 4 for implementation details) since an oracle makes the current parameter ψ visible to the
agent. Therefore, it is possible to derive optimal policies for TC-RMDPs by iterated application of this
TC Bellman operator. These policies have the form π(s, ψ). In the remainder of this paper, we extend
state-of-the-art robust deep RL algorithms to the TC-RMDP framework. In particular, we compare
their performance and robustness properties with respect to classical robust MDP formulations, we
also discuss their relation with the π(s) robust policies of classical robust MDPs.

If the agent is unable to observe the state variable ψ, it is not possible to guarantee the existence
of a stationary optimal policy of the form π(s). Similarly, there is no guarantee of convergence of
value functions to a fixed point. Nonetheless, this scenario, in which access to the ψ parameter is not
available, is more realistic in practice. It turns the two-player Markov game into a partially observable
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Markov game, where one can still apply the TC Bellman operator but without these guarantees of
convergence. We call vanilla TC the repeated application of the TC Bellman operator in this partially
observable case. Vanilla TC will be tested in practice, and some theoretical properties of the objective
function will be derived using the Lipschitz properties (Sec 6).

3 Related works

Since our method is a non-rectangular, Deep Robust RL algorithm, (possibly non-stationary for
Stacked-TC and TC ), we discuss the following related work.

Non-stationary MDPs. First, non-stationarity has been studied in the Bandits setting in [10].
Then, for episodic, non-stationary MDPs [11, 12, 13] have explored and provided regret bounds
for algorithms that use oracle access to the current reward and transition functions. More recently
[14, 15] have facilitated oracle access by performing a count-based estimation of the reward and
transition functions based on the recent history of interactions. Finally, for tabular MDPs, past data
from a non-stationary MDP can be used to construct a full Bayesian model [16] or a maximum
likelihood model [17] of the transition dynamics. We focus on the setting not restricted to tabular
representations

Non-rectangular RMDPs. While rectangularity in practice is very conservative, it can be demon-
strated that, in an asymptotic sense, non-rectangular ellipsoidal uncertainty sets around the maximum
likelihood estimator of the transition kernel constitute the smallest possible confidence sets for the
ground truth transition kernel, as implied by classical Cramér-Rao bounds. This is in accordance
with the findings presented in § 5 and Appendix A of [7]. More recently, [3] extends the rectangular
assumptions using a factored uncertainty model, where all transition probabilities depend on a small
number of underlying factors denoted w1, . . . ,wr ∈ RS, such that each transition probability Psa
for every (s, a) is a linear (convex) combination of these r factors. Finally, [4] use policy gradient
algorithms for non-rectangular robust MDPs. While this work presents nice theoretical guarantees
of convergence, there is no practical Deep RL algorithms for learning optimal robust policies.

Deep Robust RL Methods. Many Deep Robust algorithms exist such as M2TD3 [18], M3DDPG
[19], or RARL [20], which are all based on the two player zero-sum game presented in 2. We
will compare our method against these algorithms, except [19] which is outperformed by [18] in
general. We also compare our algorithm to Domain randomization (DR) [21] that learns a value
function V (s) = maxπ Ep∼U(P)V

π
p (s) which maximizes the expected return on average across a

fixed (generally uniform) distribution on P . As such, DR approaches do not optimize the worst-case
performance but still have good performance on average. Nonetheless, DR has been used convincingly
in applications [22, 23]. Finally, the zero-sum game formulation has lead to the introduction of
action robustness [9] which is a specific case of rectangular MDPs, in scenarios where the adversary
shares the same action space as the agent and interferes with the agent’s actions. Several strategies
based on this idea have been proposed. One approach, the Game-theoretic Response Approach
for Adversarial Defense (GRAD) [24] builds on the Probabilistic Action Robust MDP (PR-MDP)
[9]. This method introduces time-constrained perturbations in both the action and state spaces and
employs a game-theoretic approach with a population of adversaries. In contrast to GRAD, where
temporal disturbances affect the transition kernel around a nominal kernel, our method is part of a
broader setting in which the transition kernel is included in a larger uncertainty set. Robustness via
Adversary Populations (RAP) [25] introduces a population of adversaries. This approach ensures that
the agent develops robustness against a wide range of potential perturbations, rather than just a single
one, which helps prevent convergence to suboptimal stationary points. Similarly, State Adversarial
MDPs [26, 27, 28, 24] address adversarial attacks on state observations, effectively creating a partially
observable MDP. Finally, using rectangularity assumptions, [29, 30] use Wasserstein and χ2 balls
respectively for the uncertainty set in Robust RL.

4 Time-constrained robust MDP algorithms

The TC-RMDP framework addresses the limitations of traditional robust reinforcement learning
by considering multifactorial, correlated, and time-dependent disturbances. Traditional robust
reinforcement learning often relies on rectangularity assumptions, which are rarely met in real-
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Figure 1: TC-RMDP training involves a temporally-constrained adversary aiming to maximize the
effect of temporally-coupled perturbations. Conversely, the agent aims to optimize its performance
against this time-constrained adversary. In orange, the oracle observation, and in blue the stacked
observation.

world scenarios, leading to overly conservative policies. The TC-RMDP framework provides a more
accurate reflection of real-world dynamics, moving beyond the conventional rectangularity paradigm.

We cast the TC-RMDP problem as a two-player zero-sum game, where the agent interacts
with the environment, and the adversary (nature) changes the MDP parameters ψ. Our ap-
proach is generic and can be derived within any robust value iteration scheme, perform-
ing maxπ(s)∈∆A minψ∈Ψ Ea∼π(s)[r(s, a) + γEs′∼pψ(s,a)vn(s′)] updates, by modifying the ad-
versary’s action space and potentially the agent’s state space to obtain updates of the form
maxπ(s,ψ)∈∆A minb∈B Ea∼π(s)[r(s, a) + γEs′∼pψ+b(s,a)vn(s

′)]. In Section 5, we will introduce
time constraints within two specific robust value iteration algorithms, namely RARL [20] and
M2TD3 [18] by simply limiting the search space for worst-case ψ at each step. This specific im-
plementation extends the original actor-critic algorithms. For the sake of conciseness, we refer the
reader to Appendix E.1 for details regarding the loss functions and algorithmic details.

Three variations of the algorithm are provided (illustrated in Figure 1) but all fall within the training
loop of Algorithm 1.

Algorithm 1 Time-constrained robust training
Input: Time-constrained MDP: (S,A,Ψ, pψ, r, L), Agent π, Adversary π̄
for each interaction time step t do

at ∼ πt(st, ψt) // Sample an action with Oracle-TC
or at ∼ πt(st, at−1, st−1) // Sample an action with Stacked-TC
or at ∼ πt(st) // Sample an action with TC
ψt+1 ∼ π̄t(st, at, ψt) // Sample the worst TC parameter
st+1 ∼ pψt+1

(st, at) // Sample a transition
B ← B ∪ {(st, at, r (st, at) , ψt, ψt+1, st+1)} // Add transition to replay buffer
{si, ai, r(si, ai), ψi, ψi+1, si+1}i∈[1,N ] ∼ B // Sample a mini-batch of transitions
πt+1 ← UpdatePolicy(πt) // Update Agent
π̄t+1 ← UpdatePolicy(π̄t) // Update Adversary

Oracle-TC . As discussed in Section 2, the Oracle-TC version includes the MDP state and
parameter value as input, π : S × Ψ → A. This method assumes that the agent has access to the
true parameters of the environment, allowing it to make the most informed decisions and possibly
reach the true robust value function. However, these parameters ψ are sometimes non-observable in
practical scenarios, making this method not always feasible.

Stacked-TC . Since ψ might not be observable but may be approximately identified by the last
transitions, the Stacked-TC policy uses the previous state and action as additional inputs in an
attempt to replace ψ, π : S ×A×S → A. This approach leverages the information in the transitions,
even though it might be insufficient for a perfect estimate of ψ. It aims to retain (approximately) the
convergence properties of the Oracle-TC algorithm.
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Vanilla TC . Finally, the vanilla TC version takes only the state, π : S → A, as input, similar to
standard robust MDP policies. This method does not attempt to infer the environmental parameters
or the transition dynamics explicitly. Instead, it relies on the current state information to guide the
agent’s actions. While this version is the most straightforward and computationally efficient, it may
not perform as robustly as the Oracle-TC or Stacked-TC versions in environments with significant
temporal disturbances, since it attempts to solve a partially observable Markov game, for which there
may not exist a stationary optimal policy based only on the observation. Despite this, it remains a
viable option in scenarios where computational simplicity and quick decision-making are prioritized.

5 Results

Experimental settings. This section evaluates the robust time-constrained algorithm’s performance
under severe time constraints and in the static settings. Experimental validation was conducted in
continuous control scenarios using the MuJoCo simulation environments [5]. The approach was
categorized into three variants. The Oracle-TC , where the agent accessed environmental parameters
π(st, ψ); the Stacked-TC , where the agent took in input π(st, st−1, at−1); and the vanilla TC ,
which did not receive any additional inputs π(s). For each variant of the time-constrained algorithms,
we applied them to RARL [20], and M2TD3 [18], renaming them TC-RARL and TC-M2TD3,
respectively. The algorithms were tested against two state-of-the-art robust reinforcement learning
algorithms, M2TD3 and RARL. Additionally, the Oracle versions of M2TD3 and RARL, where
the agent’s policy included ψ in the input π : S ×Ψ→ A, were evaluated for a more comprehensive
assessment. Comparisons were also made with Domain Randomization (DR) [21] and vanilla
TD3. [31] to ensure a thorough analysis. A 3D uncertainty set is defined in each environment P
normalized between [0, 1]3. Appendix G provides detailed descriptions of uncertainty parameters.
Performance metrics were gathered after five million steps to ensure a fair comparison. All baselines
were constructed using TD3, and a consistent architecture was maintained across all TD3 variants.
The results presented below were obtained by averaging over ten distinct random seeds. Appendices
E.4, E.3, E.2, and H.2 discuss further details on hyperparameters, network architectures, and
implementation choices, including training curves for our methods and baseline comparisons. In
the following tables 1, 2, 3, the best performances are shown in bold. Oracle methods, with access
to optimal information, are shown in black. Items in bold and green represent the best performances
with limited information on ψ, making them more easily usable in many scenarios. When there is
only one element in bold and green, this implies that the best overall method is a non-oracle method.

Table 1: Avg. of normalized time-coupled worst-case performance over 10 seeds for each method
Ant HalfCheetah Hopper Humanoid Walker Agg.

Oracle M2TD3 1.11± 0.07 0.95± 0.1 1.51± 0.84 2.07± 0.19 1.31± 0.36 1.39± 0.31
Oracle RARL 0.72± 0.18 −0.71± 0.05 −1.3± 0.28 −2.8± 1.62 −0.19± 0.2 −0.86± 0.47
Oracle-TC -M2TD3 1.61± 0.32 2.76± 0.16 7.79± 1.0 1.69± 2.14 1.49± 0.41 3.07± 0.81
Oracle-TC -RARL 1.66± 0.32 2.63± 0.12 6.86± 1.46 0.19± 1.68 1.34± 0.11 2.54± 0.74

Stacked-TC -M2TD3 1.33± 0.21 2.4 ± 0.19 6.51 ± 0.59 −1.42± 1.44 1.69 ± 0.33 2.1± 0.55
Stacked-TC -RARL 1.48± 0.22 1.76± 0.08 3.28± 0.27 1.39± 0.57 1.01± 0.21 1.78± 0.27
TC -M2TD3 1.52± 0.2 2.42 ± 0.1 5.16± 0.2 4.02 ± 1.23 1.38± 0.25 2.9 ± 0.4
TC -RARL 1.57± 0.26 1.54± 0.15 2.04± 0.49 1.25± 1.91 0.89± 0.2 1.46± 0.6
TD3 0.0± 0.19 0.0± 0.27 0.0± 1.27 0.0± 1.18 0.0± 0.23 0.0± 0.63
DR 1.58 ± 0.2 1.59± 0.12 2.28± 0.42 0.87± 1.79 1.03± 0.19 1.47± 0.54
M2TD3 1.0± 0.19 1.0± 0.14 1.0± 0.96 1.0± 1.31 1.0± 0.31 1.0± 0.58
RARL 0.63± 0.2 −0.61± 0.18 −1.5± 0.33 0.8± 0.88 0.27± 0.25 −0.08± 0.37

Performance of TCRMDPs in worst-case time-constrained. Table 1 reports the worst-case
time-constrained perturbation. To address the worst-case time-constrained perturbations for
each trained agent π∗, we utilized a time-constrained adversary using TD3 algorithm π̄∗ =
minb∈B Ea∼π∗(s),b∼π̄(s,a,ψ)[r(s, a) + γEs′ ∼ pψ+b(s, a)vn(s′)] within a perturbation radius of
L = 0.001 for a total of 5 million steps. The sum of episode rewards was averaged over 10
episodes. To compare metrics across different environments, each method’s score v was standardized
relative to the reference score of TD3. TD3 was trained on the environment using default transition
function parameters, with its score denoted as vTD3. The M2TD3 score, vM2TD3, was used as the
comparison target. The formula applied was (v− vTD3)/(|vM2TD3− vTD3|). This positioned vTD3

as the minimal baseline and vM2TD3 as the target score. This standardisation provides a metric that
quantifies the improvement of each method over TD3 in relation to the improvement of M2TD3 over
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TD3. In each evaluation environment, agents trained with the time-constrained framework (indicated
by TC in the method name) demonstrated significantly superior performance compared to those
trained using alternative robust reinforcement learning approaches, including M2TD3 and RARL.
Furthermore, they outperformed those trained through domain randomisation (DR). Notably, even
without directly conditioning the policy with ψ, the time-constrained trained policies excelled against
all baselines, achieving up to a 2.9-fold improvement. The non-normalized scores are reported in
Appendix H. Additionally, when policies were directly conditioned by ψ and trained within the robust
reinforcement learning framework, they tended to be overly conservative in the time-constrained
framework. This is depicted in Table 1, comparing the performances of Oracle RARL, Oracle M2TD3,
Oracle TC-RARL, and Oracle TC-M2TD3. Both policies also observe ψ. The only difference is
that Oracle RARL and Oracle M2TD3 were trained in the robust reinforcement learning framework,
while Oracle TC-RARL and Oracle TC-M2TD3 were trained in the time-constrained framework. The
performance differences under worst-case time-coupled perturbation are as follows: for Oracle RARL
(resp. M2TD3) and Oracle TC-RARL (resp. M2TD3), the values are −0.86 (1.39) vs. 2.54 (3.07).
This observation highlights the need for a balance between robust training and flexibility in dynamic
conditions. A natural question arises regarding the worst-case time-constrained perturbation. Was the
adversary in the loop adequately trained, or might its suboptimal performance lead to overestimating
the trained agent’s reward against the worst-case perturbation? The adversary’s performance was
monitored during its training against all fixed-trained agents. The results in Appendix F show that
our adversary converged.

Robust Time-Constrained Training under various time fixed adversaries. The method was
evaluated against various fixed adversaries, focusing on the random fixed adversary shown in Figure 2.
This evaluation shows that robustly trained agents can handle dynamic and unpredictable conditions.
The random fixed adversary simulates stochastic changes by selecting a parameter ψt at each timestep
within a radius of L = 0.1. This radius is 100 times larger than in our training methods. At the start
of each episode, ψ0 is uniformly sampled from the uncertainty set ψ0 ∼ U(P). This tests the agents’
adaptability to unexpected changes. Figures 2a through 2e show our agents’ performance. Agents
trained with our robust framework consistently outperformed those trained with standard methods.
The policy was also assessed against five other fixed adversaries: cosine, exponential, linear, and
logarithmic. Detailed results are provided in the Appendix. H.1.

(a) Ant (b) HalfCheetah (c) Hopper

(d) Humanoid (e) Walker

Figure 2: Evaluation against a random fixed adversary, with a radius L = 0.1

Performance of Robust Time-Constrained MDPs in the static setting. In static environments,
the Robust Time-Constrained algorithms were evaluated for worst-case and average performance
metrics, shown in Tables 2 and 3. A fixed uncertainty set P was used, dividing each dimension
of Ψ into ten segments, creating a grid of 1000 points (103). Each agent ran five episodes at
each grid point, and the rewards were averaged. The scores were normalized as described for the
time-constrained adversary analysis in Table 1. The raw data is provided in Appendix 9 and 10.
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Performance scores were adjusted relative to the baseline vTD3 and vM2TD3. As a result, normalized
results reveal distinct trends among agent configurations within the TC-RMDP framework. The
Oracle TC-M2TD3 variant achieved an average score of 3.12 3, while the Stacked TC-M2TD3 scored
2.23, indicating its resilience. Furthermore, in the worst-case scenario, the TC-RARL and Stacked
TC-RARL variants demonstrated adaptability, with TC-RARL scoring 0.92 and TC-M2TD3 scoring
1.02 2. This performance highlights its reliability in challenging static environments.

Table 2: Avg. of normalized static worst-case performance over 10 seeds for each method
Ant HalfCheetah Hopper Humanoid Walker Agg

Oracle M2TD3 1.02± 0.19 0.34± 0.23 0.97± 0.55 3.9± 3.65 0.3± 0.45 1.31± 1.01
Oracle RARL 0.62± 0.32 0.1± 0.02 0.48± 0.19 −2.59± 2.18 0.16± 0.21 −0.25± 0.58
Oracle-TC -M2TD3 0.1± 0.25 1.87± 0.1 0.49± 1.07 −0.8± 3.05 0.28± 0.38 0.39± 0.97
Oracle-TC -RARL 0.59± 0.36 1.55± 0.35 0.4± 0.16 1.19± 1.24 0.56± 0.39 0.86± 0.5

Stacked-TC -M2TD3 −0.05± 0.09 1.56 ± 0.16 1.08± 0.89 −0.83± 2.62 1.12± 0.5 0.58± 0.85
Stacked-TC -RARL 0.07± 0.13 0.76± 0.34 1.35 ± 0.93 1.75 ± 2.48 0.67± 0.32 0.92± 0.84
TC -M2TD3 −0.06± 0.08 1.49± 0.23 1.29± 0.29 1.21± 2.44 1.19 ± 0.34 1.02 ± 0.68
TC -RARL 0.14± 0.24 0.89± 0.3 1.5± 0.76 1.4± 4.57 0.67± 0.59 0.92± 1.29
TD3 0.0± 0.34 0.0± 0.06 0.0± 0.21 0.0± 2.27 0.0± 0.1 0.0± 0.6
DR 0.06± 0.16 1.07± 0.36 0.86± 0.82 0.04± 4.1 0.57± 0.37 0.52± 1.16
M2TD3 1.0 ± 0.27 1.0± 0.16 1.0± 0.65 1.0± 3.32 1.0± 0.63 1.0± 1.01
RARL 0.44± 0.3 0.13± 0.08 0.5± 0.22 0.44± 2.94 0.12± 0.09 0.33± 0.73

Table 3: Avg. of normalized static average case performance over 10 seeds for each method
Ant HalfCheetah Hopper Humanoid Walker Agg

Oracle M2TD3 1.13± 0.08 1.56± 0.24 1.12± 0.46 1.96± 1.53 1.23± 0.3 1.4± 0.52
Oracle RARL 0.7± 0.22 −1.4± 0.13 −0.77± 0.24 −2.6± 2.88 −1.13± 0.84 −1.04± 0.86
Oracle-TC -M2TD3 1.73± 0.09 4.35± 0.26 5.54± 0.13 2.12± 1.4 1.84± 0.37 3.12± 0.45
Oracle-TC -RARL 1.78± 0.02 4.32± 0.21 5.08± 0.48 0.42± 2.9 1.68± 0.24 2.66± 0.77

Stacked-TC -M2TD3 1.45± 0.38 3.78 ± 0.29 5.2 ± 0.29 −1.38± 1.67 2.11 ± 0.52 2.23± 0.63
Stacked-TC -RARL 1.52± 0.11 2.29± 0.23 2.91± 0.67 1.14± 2.19 1.21± 0.46 1.81± 0.73
TC -M2TD3 1.6± 0.06 3.71± 0.24 4.4± 0.6 3.28 ± 2.52 1.56± 0.23 2.91 ± 0.73
TC -RARL 1.67 ± 0.07 2.27± 0.22 1.79± 0.53 0.89± 2.19 1.01± 0.21 1.53± 0.64
TD3 0.0± 0.49 0.0± 0.22 0.0± 0.83 0.0± 1.36 0.0± 0.51 0.0± 0.68
DR 1.65± 0.05 2.31± 0.27 2.08± 0.49 1.15± 2.47 1.22± 0.34 1.68± 0.72
M2TD3 1.0± 0.11 1.0± 0.19 1.0± 0.55 1.0± 1.43 1.0± 0.65 1.0± 0.59
RARL 0.69± 0.13 −1.3± 0.54 −0.99± 0.11 0.47± 1.92 −0.35± 0.83 −0.3± 0.71

6 Some Theoretical properties of TC-MDPS.

6.1 On the optimal policy of TC

Following Lemma 3.3 of [1], it is known that in the rectangular case, there exists an optimal policy
of the adversary that is stationary, provided that the actor policy is stationary. The TC-RMDP
definition enforces a limitation on the temporal variation of the transition kernel. Consequently,
all stationary adversarial policies are constrained by this stipulation. In turn, this guarantees that
(under the hypothesis of sa-rectangularity) there always exists a solution to the TC-RMDP that is
also a solution to the original RMDP. In other words: optimizing policies for TC-RMDPs do not
exclude optimal solutions to the underlying RMDP. This sheds an interesting light on the search for
robust optimal policies, since TC-RMDPs shrink the search space of optimal adversarial policies. In
practice, this is confirmed by the previous experimental results (Figure 2) where the optimal agent
policy found by either Oracle-TC , Stacked-TC , or vanilla TC actually outperforms the one found
by M2TD3 or RARL in the non time-constrained setting.

6.2 Some Lipchitz-properties for non-stationary TC-RMPDS.

In this subsection we slightly depart from the framework defined in Section 2 and study the smoothness
of the robust objective for vanilla TC or Stacked-TC . Th. 2.1 is no longer applicable as ψ is not
observed. However, we can still give smoothness of the objective starting from Lipchichz conditions
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on the evolution of the parameter that leads to smoothness on reward and transition kernel in the
following definition 6.1.
Definition 6.1 (Reward/Kernel Lipchitz TC-RMDPs [13]). We say that a parametric RDMPs is time
constrained if the parameter change is bounded through time ie. ∥ψt+1 − ψt∥ ≤ L. Moreover, we
assume that this variation in parameter implies a variation in the reward and transition kernel of

∀s ∈ S,∀a ∈ A, ∥Pt(· | s, a)− Pt+1(· | s, a)∥1 ≤ LP ; |rt(s, a)− E [rt+1(s, a)]| ≤ Lr

From a theoretical point of view, a TC-RMDP can be seen as a sequence of stationary MDPs
with time indexed reward and transition kernel rt, Pt that have continuity. More formally for
Mt = (S,A,Ψ, pψt , rt, L = (Lp, Lr)), we can then define the sequence of stationary MDPs with
Lipchitz variation :

ML
t =

{
{Mt}tt′=t0 ;∃Lr ∈ R∀s ∈ S,∀a ∈ A, ∥P ′

t (· | s, a)− Pt′+1(· | s, a)∥1 ≤ LP ;

|rt′(s, a)− rt′+1(s, a)| ≤ Lr
}

(1)

Defining rkt as the random variable corresponding to the reward function at time step t for stationary
MDPs, but iterating with index k, the stationary rollout return at time t is G(π,Mt) =

∑
k≥0 γ

krkt .
Assuming that at a fixed t the reward and transition kernel rt, Pt are fixed, the robust objective
function is:

JR(π, t) := min
m={m′

t}
t
t′=t0

∈ML
t

E [G (π,m)]

This leads to the following guarantee for vanilla TC and Stacked-TC algorithms.
Theorem 6.2. Assume TC-RMPDS with L = (Lr, LP ) smoothness. Then ∀t ∈ N, rt ∈ [0, 1],

∀t ∈ N+,∀t0 ∈ N+, |JR(π, t0)− JR(π, t0 + t)| ≤ L′t.

with L′ :=
(

γ
(1−γ)2LP + 1

1−γLr

)
This theorem states that a small variation of the Kernel and reward function will not affect too much
the robust objective. In other terms, despite the fact that the TC Bellman operator may not admit
a fixed point and yield a non-stationary sequence of value functions, variations of the expected return
remain bounded. Proof of the Th. 6.2 can be found in Appendix C.

7 Conclusion

This paper presents a novel framework for robust reinforcement learning, which addresses the
limitations of traditional methods that rely on rectangularity assumptions. These assumptions often
result in overly conservative policies, which are not suitable for real-world applications where
environmental disturbances are multifactorial, correlated, and time-constrained. In order to overcome
these challenges, we proposed a new formulation, the Time-Constrained Robust Markov Decision
Process (TC-RMDP). The TC-RMDP framework is capable of accurately capturing the dynamics
of real-world environments, due to its consideration of the temporal continuity and correlation of
disturbances. This approach resulted in the development of three algorithms: The three algorithms,
Oracle-TC , Stacked-TC , vanilla TC which differ in the extent to which environmental information
is incorporated into the decision-making process. A comprehensive evaluation of continuous control
benchmarks using MuJoCo environments has demonstrated that the proposed TC-RMDP algorithms
outperform traditional robust RL methods and domain randomization techniques. These algorithms
achieved a superior balance between performance and robustness in both time-constrained and
static settings. The results confirmed the effectiveness of the TC-RMDP framework in reducing the
conservatism of policies while maintaining robustness. Moreover, we provided theoretical guaranties
for Oracle-TC in Th. 2.1 and for Stacked-TC and vanilla TC in Th. 6.2. This study contributes to
the field of robust reinforcement learning by introducing a time-constrained framework that more
accurately reflects the dynamics observed in real-world settings. The proposed algorithms and
theoretical contributions offer new avenues for the development of more effective and practical RL
applications in environments with complex, time-constrained uncertainties.
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A Appendix

The Appendix is structured as follow :

• In Appendix B, proof for fix point of Oracle-TC algorithm for can be found.
• In Appendix C, proof for algorithm Vanilla TC and Stacked-TC can found about robust

objective.
• In Appendix F, the adversary training was sanity-checked within the time-constrained

evaluation.
• In Appendix E, all implementation details are provided.
• In Appendix H, all raw results are presented.
• In Appendix I, the computer resources and training wall clock time are detailed.
• In Appendix J, the broader impact and limitations are discussed.

B Proof of Theorem 2.1

Proof. The Proof is similar to [1], using the fact that pψ+b belongs to the simplex, we get contraction
of the operator and convergence to a fix point v∗B . Not that to converge to the fix point, there is no
need of rectangularity.

Recall the recursion

vn+1(s, ψ) = max
π(s,ψ)∈∆A

min
b∈B

Tπb vn(s, ψ) := max
π(s,ψ)∈∆A

min
b∈B

Ea∼π(s)[r(s, a) + γEs′∼pψ+b
vn(s

′, ψ′)]

(2)

First we prove that the TC Robust Operator TπB is a contraction. Let V1, V2 ∈ Rn. Fix s ∈ S, and
assume that TπBV1(s, ψ) ≥ TπBV2(s, ψ). Then fix ϵ > 0 and pick π s.t given s ∈ S,

inf
b∈B

Epψ+b
[r (s, π(s)) + γV1 (s

′, ψ′)] ≥ TπBV1(s, ψ′)− ϵ. (3)

First we pick a probability measure p′ such that p′ = pψ+b, b ∈ B, such that

Ep′ [r (s, π(s)) + γV2 (s
′, ψ′)] ≤ inf

b∈B
Ep′ [r (s, π(s)) + γV2 (s

′, ψ′)] + ϵ. (4)

Then it lead to

0 ≤ TπBV1(s, ψ)− TπBV2(s, ψ) ≤
(
inf
p∈B

Ep [r (s, π(s)) + γV1 (s
′, ψ′)] + ϵ

)
(5)

−
(
inf
p∈B

Ep [r (s, π(s)) + γV2 (s
′, ψ′)]

)
(6)

≤ (Ep′ [r (s, π(s)) + γV1 (s
′, ψ′)] + ϵ)− (7)

(Ep′ [r (s, π(s)) + γV2 (s
′, ψ′)]− ϵ) , (8)

= γEp′ [V1 − V2] + 2ϵ, (9)
≤ γEp′ |V1 − V2|+ 2ϵ (10)
≤ γ∥V1 − V2∥∞ + 2ϵ. (11)

where last inequality is Holder’s inequality between L1 and L∞ norms, use probability measure in
the simplex such as ∥p′∥1 = 1. Doing the same thing but in the case where TπBV1(s) ≤ TπBV2(s) , it
holds

∀s ∈ S, |TπBV1(s)− TπBV2(s)| ≤ γ∥V1 − V2∥∞ + 2ϵ, (12)
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i.e. ∥TπBV1 − TπBV2∥∞ ≤ γ∥V1 − V2∥∞ + 2ϵ. As we can choose ϵ arbitrary small, this establishes
that the TC Bellman operator is a γ-contraction. Since TπB is a contraction operator on a Banach
space, the Banach fixed point theorem implies that the operator equation TπBV = V has a unique
solution V = vπB . A similar proof can be done for optimal operator T ∗

B . The only difference is
the maximum operator which is 1−Lipschitz. So T ∗

B is also a contraction. Then, once proved that
operators are γ− contraction, following [1] (Th. 5), we have that the fixed point of this recursion is
exactly :

vπB(s, ψ) := min
(bt)t∈N,
bt∈B

E
[∑

γtrt|ψ−1 = ψ, s0 = s, bt ∈ B,ψt = ψt−1 + bt, a ∼ π, st ∼ pψt
]
,

(13)
v∗B(s, ψ) = max

π(s,ψ)∈∆A
vπB(s, ψ). (14)

for (optimal) TC Bellman Operator.

C Guaranties for non-stationary Robust MDPS

Recall that we represent a non-stationary robust MDPs (NS-RMDP) as a stochastic sequence,
{M = {Mi}∞t=t0 , of stationary MDPs Mt ∈M, whereM is the set of all stationary MDPs. Each
Mt is a tuple,

(
S,A, Pt, rt, γ, ρ0

)
, where S The set of possible states is denoted by S, the set of

actions byA, the discounting factor by γ, the start-state distribution by ρ0, and the reward distribution
by rt. The reward distribution, denoted by rt : S × A → ∆(R), is the probability distribution of
rewards. The transition function, represented by Pt : S ×A → ∆(S), is the probability distribution
of transitions between states. The symbol ∆ denotes the simplex. For all Mt ∈ M, we assume
that the state space, action space, discount factor, and initial distribution remain fixed. A policy is
represented as a function π : S → ∆(A). In general, we will use subscripts t to denote the time
evolution during an episode and superscripts k to denote the time step assuming reward or kernel t
which is stationary, assuming that the reward function is not changing as it is at time step t stationary.
That rkt is the random variables corresponding to the state, action, and reward at time step t for
stationary, but iterating with index k.
Definition C.1 ( Lipschitz of sequence of MDPs). We denote the sequence of kernel and reward
function P = {Pt}∞t=t0 andR = {rt}∞t=t0 . We define a sequence of MDP is L = (Lr, LP )-Lipchitz
if m = {mt}∞t=t0 ∈M

L with

ML
t =

{
{Mt}tt′=t0 ;∃(Lr, LP ) ∈ R2

+∀t ∈ N,∀s ∈ S,∀a ∈ A, ∥Pt′(· | s, a)− Pt′+1(· | s, a)∥1 ≤ LP

; |r′t(s, a)− rt′+1(s, a)| ≤ Lr
}

Assuming that for a time steps the reward function is stationary, we can compute the average return
as:
Definition C.2. Non-robust objective function, assuming that G(π,Mt) =

∑
k≥0 γ

krkt , the return is
we assume stationary with reward function rt

J (π, t) = E[G(π,Mt)] = (1− γ)−1
∑
s∈S

dπ (s,Mt)
∑
a∈A

π(a | s)rt(s, a). (15)

with dπ the state occupancy measure defined in (16).
Definition C.3 (Robust (optimal) Return of NS-RMDPs). Let a return of π for any mt ∈ Mt be
G(π,Mt) :=

∑∞
k=0 γ

krkt with kernel transition Pt following π, with ∀k, t, rkt ∈ [0, 1], and the
Robust non-stationary expected return with variation of kernel

Let the robust performance of π for episode t be

JR(π, t) := min
m={m′

t}
t
t′=t0

∈ML
t

E [G (π,m)]
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D Proof Theom 6.2

∀t ∈ N+,∀t0 ∈ N+, |JR(π, t0)− JR(π, t0 + t)| ≤ L′t.

with L′ :=
(

γ
(1−γ)2LP + 1

1−γLr

)

Proof of Theorem 6.2. First, this difference can be upper bounded in the non robust case as:

By definition, we can rewrite non-robust objective function and occupancy measure as.

dπ (s,Mt) = (1− γ)
∞∑
k=0

γk Pr (St = s | π,Mt) , (16)

J (π,Mt) = (1− γ)−1
∑
s∈S

dπ (s,Mt)
∑
a∈A

π(a | s)rt(s, a). (17)

First, we can decompose the problem into sub-problems such that

∀t ∈ N+,∀t0 ∈ N+, |J(π, t0)− J(π, t0 + t)| ≤ |
t0+t−1∑
t′=t0

|J(π,Mt′)− J(π,Mt′+1)| (18)

using triangular inequality. Looking at differences between two time steps:

(1− γ)|J(π,Mt)− J(π,Mt+1)|

=

∣∣∣∣∣∑
s∈S

dπ (s,Mt)
∑
a∈A

π(a | s)rt(s, a)−
∑
s∈S

dπ (s,Mt+1)
∑
a∈A

π(a | s)rt+1(s, a)

∣∣∣∣∣
=

∣∣∣∣∣∑
s∈S

∑
a∈A

π(a | s) (dπ (s,Mt) rt(s, a)− dπ (s,Mt+1) rt+1(s, a))

∣∣∣∣∣
=

∣∣∣∣∣∑
s∈S

∑
a∈A

π(a | s) (dπ (s,Mt) (rt+1(s, a) + (rt(s, a)−Rt+1(s, a)))− dπ (s,Mt+1) rt+1(s, a))

∣∣∣∣∣
=
∣∣∣∑
s∈S

∑
a∈A

π(a | s) (dπ (s,Mt)− dπ (s,Mt+1)) rt+1(s, a)

+
∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt) (rt(s, a)− rt+1(s, a))
∣∣∣

(a)

≤
∑
s∈S

∑
a∈A

π(a | s) |dπ (s,Mt)− dπ (s,Mt+1)| |rt+1(s, a)|

+
∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt) |rt(s, a)− rt+1(s, a)|

(b)

≤
∑
s∈S

∑
a∈A

π(a | s) |dπ (s,Mt)− dπ (s,Mt+1)|+ LR
∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt)

=
∑
s∈S
|dπ (s,Mt)− dπ (s,Mt+1)|+ Lr

where (a) is triangular inequality, (b) is definition of of supremum of reward in the assumptions
and reward bounded by 1. Then, let Pπt ∈ R|S|×|S| be the transition matrix ( s′ in rows and s in
columns) resulting due to π and Pt, i.e., ∀t, Pπt (s′, s) := Pr (St+1 = s′ | St = s, π,Mt), and let
dπ (·,Mt) ∈ R|S| denote the vector of probabilities for each state, then Finally we can easily bound
the difference of occupation measure as :
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∑
s∈S
|dπ (s,Mt)− dπ (s,Mt+1)| (19)

(d)

≤ γ(1− γ)−1
∑
s′∈S

∣∣∣∣∣∑
s∈S

(
Pπt (s′, s)− Pπt+1 (s

′, s)
)
dπ (s,Mt)

∣∣∣∣∣ (20)

≤ γ(1− γ)−1
∑
s′∈S

∑
s∈S

∣∣Pπt (s′, s)− Pπt+1 (s
′, s)

∣∣ dπ (s,Mt) (21)

= γ(1− γ)−1
∑
s′∈S

∑
s∈S

∣∣∣∣∣∑
a∈A

π(a | s) (Pr (s′ | s, a,Mt)− Pr (s′ | s, a,Mt+1))

∣∣∣∣∣ dπ (s,Mt) (22)

≤ γ(1− γ)−1
∑
s′∈S

∑
s∈S

∑
a∈A

π(a | s) |Pr (s′ | s, a,Mt)− Pr (s′ | s, a,Mt+1)| dπ (s,Mt) (23)

= γ(1− γ)−1
∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt)
∑
s′∈S
|Pr (s′ | s, a,Mt)− Pr (s′ | s, a,Mt+1)| (24)

≤ γ(1− γ)−1
∑
s∈S

∑
a∈A

π(a | s)dπ (s,Mt)LP (25)

=
γLP

(1− γ)
, (26)

which gives regrouping all terms:

|J(π,Mt)− J(π,Mt+1)| ≤
Lr

1− γ
+

γLP
(1− γ)2

. (27)

where the stationary MDP Mt+1 can be chosen as the minimum over the previous MDPs at time step
t such as |Pr (s′ | s, a,Mt)− Pr (s′ | s, a,Mt+1)| ≤ Lp. Rewriting previous equation (27), it holds
that

∣∣∣∣∣[Eπ,P [G (π,m)]− min
m={m′

t}
t+1

t′=t

Eπ,P [G (π,m)]
]∣∣∣∣∣ ≤ Lr

1− γ
+

γLP
(1− γ)2

= L′. (28)

Now considering non robust objective :

∣∣JR (π, t)− JR (π, t+ 1)
∣∣ (29)

=

∣∣∣∣∣ min
m={m′

t}
t
t′=t0

∈ML
E [G (π,m)]− min

m={m′
t}
t+1

t′=t0
∈ML

t+1

E [G (π,m)]

∣∣∣∣∣ (30)

=

∣∣∣∣∣ min
m={m′

t}
t
t′=t0

∈ML
t

[
E [G (π,m)]− min

m={m′
t}
t
t′=t0

∈ML
t

min
m={m′

t}
t+1

t′=t

E [G (π,m)]
]∣∣∣∣∣ (31)

≤ max
m={mt}tt=t0∈ML

t

∣∣∣∣∣[E [G (π,m)]− min
m={m′

t}
t+1

t′=t

E [G (π,m)]
]∣∣∣∣∣ (32)

where first equality is the definition of the robust objective, second equality is decomposition of
minimum across time steps and final inequality is simply a property of the min such as |min a −
min b| ≤ sup |a− b|.
Finally plugging 28 in (32), it holds that
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∣∣JR (π, t)− JR (π, t+ 1)
∣∣ (33)

=

∣∣∣∣∣ min
m={m′

t}
t
t′=t0

∈ML
Eπ,P [G (π,m)]− min

m={m′
t}
t+1

t′=t0
∈ML

Eπ,P [G (π,m)]

∣∣∣∣∣ ≤ Lr
1− γ

+
γLP

(1− γ)2
.

(34)

:=L′. (35)

Combining t times the previous equation gives the result:

∀t ∈ N+,∀t0 ∈ N+, |JR(π, t0)− JR(π, t0 + t)| ≤ L′t.

with L′ :=
(

γ
(1−γ)2LP + 1

1−γLr

)
E Implementation details

E.1 Algorithm

Algorithm 2 Time-constrained robust training
Input: Time-constrained MDP: (S,A,Ψ, pψ, r, L), Agent π, Adversary π̄
for each interaction time step t do

at ∼ πt(st, ψt) // Sample an action with Oracle-TC
at ∼ πt(st, at−1, st−1) // Sample an action with Stacked-TC
at ∼ πt(st) // Sample an action with TC
ψt+1 ∼ π̄ϕ(st, at, ψt) // Sample the worst TC parameter
st+1 ∼ pψt+1

(st, at) // Sample a transition
B ← B ∪ {(st, at, r (st, at) , ψt, ψt+1, st+1)} // Add transition to replay buffer
{si, ai, r(si, ai), ψi, ψi+1, si+1}i∈[1,N ] ∼ B // Sample a mini-batch of transitions
θc ← θc − α∇θcLQ(θc) // Critic update phase
θa ← θa − α∇θaLπ(θa) // Actor update
ϕc ← ϕc + α∇ϕcLQ̄(ϕc) // Adversary Critic update phase
ϕa ← ϕa + α∇ϕaLπ̄(ϕa) // Adversary update

Note that in Time-constrained robust training Algorithm in section E.1, LQ and Lπ are as defined by
[31] double critics and target network updates are omitted here for clarity

In Table 4, for the stack algorithm, si is defined as si ← si ∪ si−1 ∪ ai−1 for Stacked-TC , and for
the Oracle-TC version, si ← si ∪ ψi.

Loss Function Equation

LQθc (TC-RARL) E [Qθc(si, ai)− r(si, ai) + γminj=1,2Qθc(si+1, π(si+1))]

Lπ(θa) (TC-RARL) −E [Qθc(si, πθa(si))]

Lπ̄(θa) (TC-RARL) E
[
Q̄θc(si, ai, π̄(si, ai), ψi)

]
LQ̄(θc) (TC-RARL) E

[
Q̄θc(si, ai)− r(si, ai) + γminj=1,2 Q̄θc(si+1, πθa(si+1), π̄θa(si+1, ai+1, ψi+1))

]
LQθc Shared (TC-M2TD3) E [Qθc(si, ai)− r(si, ai) + γminj=1,2Qθc(si+1, πθa(si+1), π̄θa(si+1, ai+1, ψi+1))]

Lπ(θa) (TC-M2TD3) E [Qθc(si, ai, π̄θa(si, ai), ψi)]

Lπ̄(θa) (TC-M2TD3) −E
[
Q̄θc(si, ai, π̄θa(si, ai, ψi))

]
Table 4: Summary of Loss Functions for TD3 in TC-RARL and TC-M2TD3
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E.2 Neural network architecture

We employ a consistent neural network architecture for both the baseline and our proposed methods for
the actor and the critic components. The architecture’s design ensures uniformity and comparability
across different models.

The critic network is structured with three layers, as depicted in Figure 3a, the critic begins with an
input layer that takes the state and action as inputs, which then passes through two fully connected
linear layers of 256 units each. The final layer is a single linear unit that outputs a real-valued function,
representing the estimated value of the state-action pair.

The actor neural network, shown in Figure 3b, also utilizes a three-layer design. It begins with an
input layer that accepts the state as input. This is followed by two linear layers, each consisting of
256 units. The output layer of the actor neural network has a dimensionality equal to the number of
dimensions of the action space.

(a) Critic neural network architecture (b) Actor neural network architecture

Figure 3: Actor critic neural network architecture

E.3 M2TD3

We utilized the official M2TD3 [18] implementation provided by the original authors, accessible via
the GitHub repository for M2TD3 and Oracle M2TD3.

For the TC-M2TD3 or variants, we implemented the M2TD3 algorithm as specified. To simplify our
approach, we omitted the implementation of the multiple ψ̂ network and the system for resetting ψ̂.
We replace with an adversary which π̄ : S ×A×Ψ→ Ψ which minimize Q(s, a, ψ).

E.4 TD3

We adopted the TD3 implementation from the CleanRL library, as detailed in [32].

F Sanity check on the adversary training in the time-constrained evaluation

A natural question arises regarding the worst time-constrained perturbation. Whether we adequately
trained the adversary in the loop, or its suboptimal performance might lead to overestimating
the trained agent reward against the worst-case time-constrained perturbation. We monitored the
adversary’s performance during its training against a fixed agent to address this. The attached figure
shows the episodic reward (from the agent’s perspective) during the adversary’s training over 5
million timesteps, with a perturbation radius of L = 0.001. Each curve is an average of over 10 seeds.
The plots show a rapid decline in reward during the initial stages of training, followed by quick
stabilization. The episodic reward stabilizes early in the Ant (Figure 4a) environment, indicating
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Hyperparameter Default Value
Policy Std Rate 0.1
Policy Noise Rate 0.2
Noise Clip Policy Rate 0.5
Noise Clip Omega Rate 0.5
Omega Std Rate 1.0
Min Omega Std Rate 0.1
Maximum Steps 5e6
Batch Size 100
Hatomega Number 5
Replay Size 1e6
Policy Hidden Size 256
Critic Hidden Size 256
Policy Learning Rate 3e-4
Critic Learning Rate 3e-4
Policy Frequency 2
Gamma 0.99
Polyak 5e-3
Hatomega Parameter Distance 0.1
Minimum Probability 5e-2
Hatomega Learning Rate (ho_lr) 3e-4
Optimizer Adam
Table 5: Hyperparameters for the M2TD3 Agent

Hyperparameter Default Value
Maximum Steps 5e6
Buffer Size 1× 106

Learning Rate 3× 10−4

Gamma 0.99
Tau 0.005
Policy Noise 0.2
Exploration Noise 0.1
Learning Starts 2.5× 104

Policy Frequency 2
Batch Size 256
Noise Clip 0.5
Action Min -1
Action Max 1
Optimizer Adam

Table 6: Hyperparameters for the TD3 Agent

quick convergence. Similarly, in the HalfCheetah (Figure 4b) environment, the reward shows a
sharp initial decline and stabilizes, suggesting effective training. For Hopper (Figure 4c), the reward
decreases and then levels off, reflecting adversary convergence. Although the reward is more variable
in the HumanoidStandup (Figure 4d) environment, it ultimately reaches a steady state, confirming
adequate training. Finally, in the Walker environment, the reward pattern demonstrates a quick drop
followed by stabilization, indicating convergence. These observations confirm that the adversaries
were not undertrained. The rapid convergence to a stable performance across all environments
ensures the accuracy of the worst time-constrained perturbations estimated during training.

G Uncertainty set in MuJoCo environments

The experiments of Section 5 follow the evaluation protocol proposed by [18] and based on MuJoCo
environments [5]. These environments are designed with a 3D uncertainty sets. Table 7 lists all
environments evaluated and their uncertainty sets. The uncertainty sets column defines the ranges of
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(a) Ant: Episodic reward of the trained agent dur-
ing adversary training

(b) HalfCheetah: Episodic reward of the trained
agent during adversary training

(c) Hopper: Episodic reward of the trained agent
during adversary training

(d) HumanoidStandup: Episodic reward of the
trained agent during adversary training

(e) Walker: Episodic reward of the trained agent
during adversary training (f) Legend for algorithm

Figure 4: Episodic reward of the trained agent during the training of the adversary across different
environments. Each plot represents the performance over 5 million timesteps, with rewards averaged
across 10 seeds. The perturbation radius is set to L = 0.001 for all adversaries.

variation for the parameters within each environment. The reference parameters column indicates the
nominal or default values. The uncertainty parameters column describes the physical meaning of
each parameter.

H Raw results

Table 8 reports the non-normalized time-constrained (with a radius of L = 0.001) worst-case scores,
averaged across 10 independent runs for each benchmark. Table 9 reports the static worst case score
obtained by each agent across a grid of environments, also averaged across 10 independent runs for
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Table 7: List of environment and parameters for the experiments
Environment Uncertainty set P Reference values Uncertainty parame-

ters
Ant [0.1, 3.0] ×

[0.01, 3.0] ×
[0.01, 3.0]

(0.33, 0.04, 0.06) torso mass; front left
leg mass; front right
leg mass

HalfCheetah [0.1, 4.0]×[0.1, 7.0]×
[0.1, 3.0]

(0.4, 6.36, 1.53) world friction; torso
mass; back thigh mass

Hopper [0.1, 3.0]×[0.1, 3.0]×
[0.1, 4.0]

(1.00, 3.53, 3.93) world friction; torso
mass; thigh mass

HumanoidStandup [0.1, 16.0] ×
[0.1, 5.0]× [0.1, 8.0]

(8.32, 1.77, 4.53) torso mass; right foot
mass; left thigh mass

Walker [0.1, 4.0]×[0.1, 5.0]×
[0.1, 6.0]

(0.7, 3.53, 3.93) world friction; torso
mass; thigh mass

Table 8: Avg. of time-constrained worst-case performance over 10 seeds for each method
Environment Ant HalfCheetah Hopper HumanoidStandup Walker
Method

Oracle M2TD3 5768± 395 3521± 187 1241± 125 116232± 1454 4559± 757
Oracle RARL 4387± 667 −50± 99 344± 113 68979± 10641 1811± 342
Oracle TC-M2TD3 7268± 704 7507± 284 3386± 323 114411± 16973 5344± 536
Oracle TC-RARL 7534± 781 7526± 311 3169± 311 101182± 12083 4783± 382

Stacked TC-M2TD3 6502± 450 6377± 517 3047± 394 85524± 11448 5724± 828
Stacked TC-RARL 6955± 690 5319± 223 1747± 153 107913± 5514 4152± 483
TC-M2TD3 7181± 591 6516± 232 2511± 45 129183± 9120 4964± 531
TC-RARL 7473± 361 4989± 284 1475± 158 108669± 17764 3971± 351
DR 7247± 925 4986± 363 1642± 104 109618± 11479 4380± 488
M2TD3 5622± 435 3671± 405 1120± 220 102839± 12987 4078± 644
RARL 4348± 574 382± 366 240± 104 106768± 4051 2388± 559
TD3 2259± 424 1808± 503 777± 407 104877± 12063 1893± 361

each benchmark. Table 10 reports the static average case score obtained by each agent across a grid
of environments, also averaged across 10 independent runs for each benchmark.

H.1 Fixed adversary evaluation

At the beginning of each episode, ψ0 ∼ U(Ψ) is selected for every fixed adversary. The episode
length is 1000 steps. To begin with, the random fixed adversary simulates stochastic changes. It
selects a parameter ψt at each timestep within a radius of L = 0.1, which is 100 times larger than
in our training methods. This tests the agents’ adaptability to unexpected changes. In contrast,
the cosine fixed adversary introduces deterministic changes using a cosine function. The radius

Table 9: Avg. of raw static worst-case performance over 10 seeds for each method
Ant HalfCheetah Hopper Humanoid Walker

dr 19.78± 394.84 2211.48± 915.64 245.01± 167.21 64886.87± 30048.79 1318.36± 777.51
m2td3 2322.73± 649.3 2031.9± 409.7 273.6± 131.9 71900.97± 24317.35 2214.16± 1330.4
oracle m2td3 2370.93± 473.56 319.67± 599.26 267.41± 111.47 93123.84± 26696.17 736.59± 944.76
oracle rarl 1396.88± 777.46 −278.84± 54.36 167.5± 38.2 45635.24± 15974.44 459.74± 437.02
oracle tc m2td3 120.74± 618.23 4273.31± 246.91 168.7± 217.94 58687.26± 22321.77 710.99± 799.08
oracle tc rarl 1328.27± 890.49 3458.52± 893.22 150.54± 33.12 73276.78± 9110.33 1299.88± 812.63
rarl 960.11± 744.01 −211.8± 218.73 170.46± 45.73 67821.86± 21555.24 360.31± 186.06
stacked tc m2td3 −242.98± 212.98 3467.34± 418.64 289.37± 182.18 58515.04± 19186.25 2475.58± 1057.03
stacked tc rarl 37.77± 320.71 1414.37± 876.91 344.37± 190.1 77357.17± 18186.34 1518.86± 668.13
td3 −123.64± 824.35 −546.21± 158.81 69.3± 42.77 64577.24± 16606.51 114.41± 211.05
tc m2td3 −271.34± 191.15 3286.67± 603.14 333.36± 60.04 73428.2± 17879.28 2603.59± 706.63
tc rarl 209.04± 575.89 1738.59± 782.71 376.01± 155.4 74840.68± 33496.45 1513.65± 1239.3
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Table 10: Avg. of raw static average case performance over 10 seeds for each method
env name Ant HalfCheetah Hopper HumanoidStandup Walker
algo-name

dr 7500.88± 143.38 6170.33± 442.57 1688.36± 225.59 110939.89± 22396.41 4611.24± 463.42
m2td3 5577.41± 316.95 4000.98± 314.76 1193.32± 254.9 109598.43± 12992.35 4311.2± 877.89
oracle m2td3 5958.21± 237.32 4930.18± 390.96 1249.62± 212.74 118273.54± 13891.06 4616.05± 407.94
oracle rarl 4684.83± 648.14 36.19± 216.52 380.39± 110.14 76920.58± 26135.3 1451.39± 1132.87
oracle-tc m2td3 7739.65± 254.65 9536.92± 429.14 3281.92± 61.79 119737.21± 12697.2 5442.85± 499.78
oracle-tc-rarl 7889.1± 56.0 9474.0± 341.69 3071.17± 220.39 104348.01± 26249.98 5220.2± 318.07
rarl 4650.55± 395.03 206.71± 887.25 276.37± 52.42 104764.87± 17400.85 2493.26± 1113.74
stacked tc m2td3 6912.76± 1116.81 8583.55± 479.97 3124.06± 133.27 88039.74± 15138.11 5809.54± 703.92
stacked-tc-rarl 7123.07± 332.33 6130.71± 384.05 2072.75± 306.48 110843.2± 19887.32 4596.79± 619.2
vanilla 2600.43± 1468.87 2350.58± 357.12 733.18± 382.06 100533.0± 12298.37 2965.47± 685.39
vanilla-tcm2td3 7366.9± 169.58 8467.64± 397.42 2756.5± 273.91 130305.38± 22865.1 5070.71± 315.7
vanilla-tc-rarl 7558.58± 198.37 6092.61± 365.68 1558.26± 242.17 108635.71± 19848.21 4325.42± 283.04

Environment Ant HalfCheetah Hopper HumanoidStandup Walker
Method

Oracle TC-M2TD3 7782± 915 8805± 165 2365± 199 116791± 12572 5148± 558
Oracle TC-RARL 8041± 470 8727± 227 2120± 96 107733± 11975 4896± 326
Oracle M2TD3 5830± 542 4445± 186 1222± 111 118861± 1365 4584± 787
Oracle RARL 4628± 514 −51± 60 370± 141 81583± 16526 1829± 356

Stacked TC-M2TD3 6888± 738 7400± 385 2114± 138 88436± 10750 5278± 845
Stacked TC-RARL 7045± 904 5992± 427 1940± 93 106213± 6770 4430± 389
TC-M2TD3 7156± 692 7530± 185 2157± 112 129599± 13556 4931± 568
TC-RARL 7554± 948 5751± 482 1445± 203 105144± 16813 4112± 329
DR 7572± 629 6048± 349 1416± 168 105677± 16333 4371± 431
M2TD3 5588± 516 4180± 70 1018± 271 107692± 10414 4176± 783
RARL 4347± 567 240± 250 390± 130 103583± 9217 1925± 501
TD3 4017± 518 2028± 1250 1944± 246 91205± 11350 2860± 419

Table 11: Avg. performance against time-constrained fixed random adversary with a radius L = 0.1
over 10 seeds for each method

of L = 0.1 scales the frequency of the cosine function, ensuring smooth and periodic variations.
Additionally, a phase shift at the start of each episode ensures different starting points. Meanwhile,
the linear fixed adversary employs a linear function. The parameters change linearly from the
initial value to either one of a vertex of the uncertainty set Ψ over 1000 steps. Furthermore, the
exponential fixed adversary uses an exponential function. Parameters change exponentially from
the initial value to either of a vertex of the uncertainty set Ψ over 1000 steps. This ensures smooth
and predictable variations. Similarly, the logarithmic fixed adversary uses a logarithmic function.
Parameters change logarithmically from the initial value to either of a vertex of the uncertainty of
the uncertainty set Ψ over 1000 steps, ensuring smooth and predictable variations. Agents trained
under the time-constrained framework outperform all baselines in all environments for each fixed
adversary, except when compared to the oracle TC method, which has access to ψ. In this case, the
stacked-TC or TC methods outperform all baselines in all environments for the cosine, logarithmic,
and exponential adversaries and outperform the fixed adversary baseline in 4 out of 5 instances for
the random and linear fixed adversaries.

H.2 Agents training curve

We conducted training for each agent over a duration of 5 million steps, closely monitoring the
cumulative rewards obtained over a trajectory spanning 1,000 steps. To enhance the reliability of
our results, we averaged the performance curves across 10 different seeds. The graphs in Figures 5
to 15 illustrate how different training methods, including Domain Randomization, M2TD3, RARL,
Oracle RARL ,Oracle M2TD3, TC RARL, TC M2TD3, Stacked TC RARL and Stacked TC M2TD3,
impact agent performance across various environments.
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Table 12: Avg. performance against time-constrained fixed cosine adversary with a radius L = 0.1
over 10 seeds for each method

Environment Ant HalfCheetah Hopper HumanoidStandup Walker
Method

Oracle M2TD3 5528± 637 3453± 266 1016± 48 119813± 3281 3589± 863
Oracle RARL 4550± 626 −79± 34 371± 140 74116± 7890 1593± 326
Oracle TC-M2TD3 7586± 1345 8174± 383 1946± 104 115506± 12470 4464± 781
Oracle TC-RARL 7522± 1435 7838± 810 1735± 138 110535± 12702 4442± 591

Stacked TC-M2TD3 6269± 849 7173± 509 1734± 157 88157± 10654 4888± 567
Stacked TC-RARL 6510± 1395 5385± 445 1519± 118 105696± 5243 3848± 404
TC-M2TD3 6350± 769 6797± 609 1413± 167 130892± 11544 4611± 632
TC-RARL 7124± 912 5109± 348 1172± 129 102864± 13308 3548± 545
DR 6975± 992 5490± 384 1091± 169 109227± 17068 3851± 612
M2TD3 5330± 684 3634± 321 938± 158 108136± 9755 4126± 644
RARL 4153± 602 154± 261 363± 58 103366± 7604 1689± 465
TD3 4025± 557 2784± 370 1317± 189 94352± 10101 2020± 355

Table 13: Avg. performance against a fixed linear adversary over 10 seeds for each method
Environment Ant HalfCheetah Hopper HumanoidStandup Walker
Method

Oracle M2TD3 5811± 121 3560± 167 1216± 326 118829± 846 4431± 615
Oracle RARL 4447± 600 −122± 64 308± 62 81498± 12860 1503± 450
Oracle TC-M2TD3 7919± 595 7495± 268 2983± 252 117610± 11682 4952± 415
Oracle TC-RARL 8069± 151 7443± 236 2805± 352 110314± 9354 4613± 257
Stacked TC-M2TD3 7003± 812 6365± 335 2714± 198 89556± 11115 5256± 675
Stacked TC-RARL 7328± 251 5301± 86 1616± 137 105137± 7903 4234± 385
TC-M2TD3 7622± 413 6451± 246 2228± 131 129501± 10326 4844± 417
TC-RARL 7675± 143 4881± 251 1277± 288 105566± 15551 3906± 381
DR 7713± 412 5290± 103 1419± 122 108711± 16696 4307± 309
M2TD3 5444± 225 3810± 69 970± 323 106311± 9771 4128± 727
RARL 4651± 446 218± 138 346± 22 101477± 8947 1894± 515
TD3 3493± 475 1462± 1246 1722± 366 89934± 10644 2396± 416

Table 14: Avg. performance against a fixed logarithmic adversary over 10 seeds for each method
Environment Ant HalfCheetah Hopper HumanoidStandup Walker
Method

Oracle M2TD3 5561± 580 3086± 163 957± 165 119214± 2525 4148± 630
Oracle RARL 4911± 177 −145± 67 293± 49 79522± 13470 1618± 142
Oracle TC-M2TD3 7963± 796 6625± 204 2577± 171 116664± 11798 4818± 451
Oracle TC-RARL 8061± 821 6532± 304 2572± 177 108213± 10684 4375± 382

Stacked TC-M2TD3 7315± 478 5863± 290 2283± 122 87691± 11133 4931± 735
Stacked TC-RARL 7514± 62 4770± 145 1426± 197 104193± 8030 3939± 369
TC-M2TD3 7910± 90 5657± 280 1702± 226 128467± 10762 4664± 412
TC-RARL 7686± 208 4475± 238 1082± 298 104835± 16040 3636± 428
DR 7883± 67 4721± 146 1166± 332 106171± 16867 3995± 313
M2TD3 5371± 279 3565± 105 802± 271 104002± 11606 4206± 712
RARL 4620± 763 231± 110 340± 44 102004± 9925 1919± 499
TD3 3678± 623 576± 983 1389± 327 88952± 11367 1956± 360
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Table 15: Avg. performance against a fixed exponential adversary over 10 seeds for each method
Environment Ant HalfCheetah Hopper HumanoidStandup Walker
Method

Oracle M2TD3 5860± 93 3780± 137 1271± 224 119205± 1217 4767± 815
Oracle RARL 4585± 674 −88± 79 302± 41 82063± 13274 1611± 342
Oracle TC-M2TD3 7491± 624 8256± 269 2894± 244 118476± 11683 5161± 289
Oracle TC-RARL 7724± 368 8000± 250 3036± 293 110092± 10754 4650± 503

Stacked TC-M2TD3 6903± 365 7041± 302 2721± 214 91077± 11945 5310± 882
Stacked TC-RARL 7061± 222 5741± 249 1825± 145 104793± 6758 4376± 342
TC-M2TD3 7318± 299 7139± 387 2408± 113 129966± 10823 4910± 663
TC-RARL 7441± 133 5326± 220 1457± 163 106491± 14605 4017± 439
DR 7389± 206 5691± 121 1564± 99 106290± 17502 4224± 660
M2TD3 5466± 318 3909± 332 1062± 272 107097± 9551 4274± 582
RARL 4556± 729 228± 181 351± 24 102096± 8291 2053± 493
TD3 3771± 228 2302± 343 2201± 219 90496± 9487 2768± 538

Table 16: Average wall-clock time for each algorithm
Wall-clock time

TD3 14h
M2TD3 16h
RARL 18h
TC 16h
Stacked TC 16h
Oracle TC 16h

I Computer ressources

All experiments were run on a desktop machine (Intel i9, 10th generation processor, 64GB RAM)
with a single NVIDIA RTX 4090 GPU. Averages and standard deviations were computed from 10
independent repetitions of each experiment.

J Broader impact

This paper aims to advance robust reinforcement learning. It addresses general mathematical and
computational challenges. These challenges may have societal and technological impacts, but we do
not find it necessary to highlight them here.

J.1 Limitations

While our proposed Time-Constrained Robust Markov Decision Process (TC-RMDP) framework
significantly advances robust reinforcement learning by addressing multifactorial, correlated, and
time-dependent disturbances, several limitations must be acknowledged. The TC-RMDP framework
assumes that the parameter vector ψ that governs environmental disturbances is known during
training. In real-world applications, obtaining such detailed information may not always be feasible.
This reliance on precise parameter knowledge limits the practical deployment of our algorithms in
environments where ψ cannot be accurately measured or inferred. Our approach assumes that the
environment’s dynamics can be accurately parameterized and that these parameters remain within a
predefined uncertainty set Ψ. This assumption might not hold in more complex or highly dynamic
environments where disturbances are not easily parameterized or when the uncertainty set Ψ cannot
comprehensively capture all possible variations. Consequently, the robustness of the learned policies
might degrade when facing disturbances outside the considered parameter space. Addressing these
limitations in future work.

23



(a) Training curve on Ant with Domain Random-
ization

(b) Training curve on HalfCheetah with Domain
Randomization

(c) Training curve on Hopper with Domain Ran-
domization

(d) Training curve on HumanoidStandup with Do-
main Randomization

(e) Training curve on Walker with Domain Ran-
domization

Figure 5: Averaged training curves for the Domain Randomization method over 10 seeds
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(a) Training curve on Ant with M2TD3 (b) Training curve on HalfCheetah with M2TD3

(c) Training curve on Hopper with M2TD3
(d) Training curve on HumanoidStandup with
M2TD3

(e) Training curve on Walker with M2TD3

Figure 6: Averaged training curves for the M2TD3 method over 10 seeds
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(a) Training curve on Ant with RARL (b) Training curve on HalfCheetah with RARL

(c) Training curve on Hopper with RARL
(d) Training curve on HumanoidStandup with
RARL

(e) Training curve on Walker with RARL

Figure 7: Averaged training curves for the RARL method over 10 seeds
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(a) Training curve on Ant with TD3 (b) Training curve on HalfCheetah with TD3

(c) Training curve on Hopper with TD3 (d) Training curve on HumanoidStandup with TD3

(e) Training curve on Walker with TD3

Figure 8: Averaged training curves for the TD3 method over 10 seeds
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(a) Training curve on Ant with Oracle RARL
(b) Training curve on HalfCheetah with Oracle
RARL

(c) Training curve on Hopper with Oracle RARL
(d) Training curve on HumanoidStandup with Ora-
cle RARL

(e) Training curve on Walker with Oracle RARL

Figure 9: Averaged training curves for the Oracle RARL method over 10 seeds
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(a) Training curve on Ant with Oracle M2TD3
(b) Training curve on HalfCheetah with Oracle
M2TD3

(c) Training curve on Hopper with Oracle M2TD3
(d) Training curve on HumanoidStandup with Ora-
cle M2TD3

(e) Training curve on Walker with Oracle M2TD3

Figure 10: Averaged training curves for the Oracle M2TD3 method over 10 seeds

29



(a) Training curve on Ant with Oracle M2TD3
(b) Training curve on HalfCheetah with Oracle
M2TD3

(c) Training curve on Hopper with Oracle M2TD3
(d) Training curve on HumanoidStandup with Ora-
cle M2TD3

(e) Training curve on Walker with Oracle M2TD3

Figure 11: Averaged training curves for the Oracle M2TD3 method over 10 seeds
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(a) Training curve on Ant with Oracle TC-RARL
(b) Training curve on HalfCheetah with Oracle TC-
RARL

(c) Training curve on Hopper with Oracle TC-
RARL

(d) Training curve on HumanoidStandup with Ora-
cle TC-RARL

(e) Training curve on Walker with Oracle TC-
RARL

Figure 12: Averaged training curves for the Oracle TC-RARL method over 10 seeds
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(a) Training curve on Ant with Oracle TC-M2TD3
(b) Training curve on HalfCheetah with Oracle TC-
M2TD3

(c) Training curve on Hopper with Oracle TC-
M2TD3

(d) Training curve on HumanoidStandup with Ora-
cle TC-M2TD3

(e) Training curve on Walker with Oracle TC-
M2TD3

Figure 13: Averaged training curves for the Oracle TC-M2TD3 method over 10 seeds
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(a) Training curve on Ant with Stacked TC-
M2TD3

(b) Training curve on HalfCheetah with Stacked
TC-M2TD3

(c) Training curve on Hopper with Stacked TC-
M2TD3

(d) Training curve on HumanoidStandup with
Stacked TC-M2TD3

(e) Training curve on Walker with Stacked TC-
M2TD3

Figure 14: Averaged training curves for the Stacked TC-M2TD3 method over 10 seeds
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(a) Training curve on Ant with Stacked TC-RARL
(b) Training curve on HalfCheetah with Stacked
TC-RARL

(c) Training curve on Hopper with Stacked TC-
RARL

(d) Training curve on HumanoidStandup with
Stacked TC-RARL

(e) Training curve on Walker with Stacked TC-
RARL

Figure 15: Averaged training curves for the Stacked TC-RARL method over 10 seeds
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