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Query Augmentation with Brain Signals
Anonymous Authors

ABSTRACT
In the information retrieval scenario, query augmentation is an es-
sential technique to refine semantically imprecise queries to align
closely with users’ actual information needs. Traditional methods
typically rely on extracting signals from user interactions such as
browsing or clicking behaviors to augment the queries, which may
not accurately reflect the actual user intent due to inherent noise
and the dependency on initial user interactions. To overcome these
limitations, we introduce Brain-Aug, a novel approach that de-
codes semantic information directly from brain signals of users to
augment query representation. Brain-Aug explores three-fold tech-
niques: (1) Structurally, an adapter network is utilized to project
brain signals into the embedding space of a language model, allow-
ing query augmentation conditioned on both the users’ initial query
and their brain signals. (2) During training, we use a next token
prediction task for query augmentation and adopt prompt tuning
to efficiently train the brain adapter. (3) At the inference stage, a
ranking-oriented decoding strategy is implemented, enabling Brain-
Aug to generate augmentations that improve ranking performance.
We evaluate our approach on multiple functional magnetic resonance
imaging (fMRI) datasets, demonstrating that Brain-Aug not only pro-
duces semantically richer queries but also significantly improves doc-
ument ranking accuracy, particularly for ambiguous queries. These
results validate the effectiveness of our proposed Brain-Aug ap-
proach, and reveal the great potential of leveraging internal cognitive
states to understand and augment text-based queries.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; • Computing methodologies → Artificial intelligence; •
Information systems → Users and interactive retrieval.

KEYWORDS
Query augmentation, Prompt tunning, Brain-computer interface (BCI)

1 INTRODUCTION
Understanding users’ intentions is the key to effective search engines.
In the interactions between users and search engines, queries play
an important role in presenting the users’ intentions and for search
engines to retrieve relevant documents. However, search engine
users often struggle to express their information needs precisely,
resulting in queries that are short [21], vague [53], or inaccurately
phrased [11], which compromise the retrieval effectiveness.
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To address this problem, query augmentation emerges as a crucial
technique to refine the original queries into more effective expres-
sions [23, 33]. Traditionally, this reformulation process relies heavily
on external document information such as expanding the query with
contents from documents users have engaged with [2, 9, 43].

The advent of neurophysiological interfaces offers a novel source
of data to understand users’ search intentions [36, 57]. In information
retrieval (IR) scenarios, several studies have revealed that brain
signals can be used to predict users’ relevance perception [14, 44, 58]
and cognitive state [38]. These advances open new avenues in using
brain signals as an alternative to conventional signals for query
augmentation. Existing studies have investigated the use of brain
signals to predict the relevance of perceived input [13], which can be
further used to extract relevant content for query augmentation [55,
56]. However, the existing process of query augmentation still relies
on the quality of initially retrieved documents and cannot kick off
before potentially unsatisfactory interactions with initial documents.

In this paper, we introduce Brain-Aug, a novel approach to
query augmentation. It leverages brain signals to directly refine
user-submitted queries by decoding semantic information embed-
ded in neural activity. Brain-Aug incorporates three core elements:
(i) Model Architecture: Brain-Aug employs a mapping network to
transform brain signals into the input space of transformer model.
This allows the model to generate query conditional on both the
brain signals and the initial query simultaneously, effectively in-
tegrating neural data with computational language processing. (ii)
Training Protocol: We develop a specialized pre-training alignment
task tailored for brain signals and a fine-tuning process specifically
for query augmentation. This dual training strategy enhances the
model’s ability to decode users’ intentions from their neural signals.
(iii) Ranking-Oriented Inference: During inference, Brain-Aug im-
plements a ranking-oriented decoding strategy that utilizes inverse
document frequency (IDF) to generate query continuations. This
method ensures that the augmented words not only fit the context
but also possess distinctive characteristics to improve ranking per-
formance.

We conduct comprehensive experiments to validate the effective-
ness of Brain-Aug. Using a variety of functional magnetic resonance
imaging (fMRI) datasets and different retrieval systems, our results
robustly demonstrate that Brain-Aug can accurately interpret user
intentions and enhance search engine performance. Our approach
not only significantly outperforms traditional query augmentation
methods but also enhances their efficacy when combined with these
methods. Furthermore, we performed both quantitative and qual-
itative analyses to deeply analyze Brain-Aug’s capabilities. Our
analysis reveals that Brain-Aug can effectively augment ambiguous
queries, creating clearer and more precise queries that significantly
boost retrieval effectiveness.

In summary, our contributions are as follows: (1) We introduce
Brain-Aug, a novel architecture that enhances query representation
by incorporating brain signals as an additional input. We have de-
vised training and inference protocols aimed at refining queries with

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The procedure of query augmentation with brain signals (Brain-Aug). Brain-Aug constructs a unified prompt representation
that jointly models the brain responses and original queries. With the unified prompt representation as input, a language model is
adopted to generate the continuation of the original query for its augmentation.

greater semantic precision and enhanced discriminative capability
across different documents. (2) We demonstrate the effectiveness of
Brain-Aug, showing that Brain-Aug refines queries to align more
semantically closely with the search intent. We further show that
the augmented query can be used to improve search performance in
terms of document ranking. (3) We analyze the performance gain
achieved by Brain-Aug against its controls and unsupervised base-
lines. We observe that Brain-Aug is more effective in cases where
the original query is probed to be ambiguous.

2 RELATED WORK
2.1 Query augmentation
Traditionally, query augmentation can be categorized into two types:
based on pseudo-relevance signals [7, 23] and based on user sig-
nals [26]. Approaches based on pseudo-relevance signals usually
treat top-ranked documents in the initial retrieval step as relevant.
Based on these relevant documents, Rocchio Jr [48] and Lavrenko
and Croft [23] adopt a vector space model and a language model for
refining the query representation to be closer to the top-ranked doc-
uments, respectively. In contrast, approaches based on user signals
usually integrate information from documents the user has previ-
ously interacted with or queries they submitted historically. E.g.,
Chen et al. [9] and Ahmad et al. [2] build a sequence model to
extract semantic representations from historical clicked documents
to refine the query representation. Existing methods, either based
on pseudo signals or user signals, are limited by their reliance on
the quality of the documents and the accuracy of estimating their
relevance.

2.2 Neuroscience and IR
There is increasing literature that adopts neuroscientific methods into
IR scenarios [10, 16, 30, 39, 45]. For example, Chen et al. [10] built
a prototype in which users can interact with the search systems with
a brain-computer interface. Allegretti et al. [3], Michalkova et al.
[36], Moshfeghi et al. [38] conducts a series of work to study the cog-
nitive mechanisms involved in the process of information retrieval.
A common finding observed by existing literature is that[3, 14] brain
signals can be utilized to as a relevance indicator. This indicator can
be employed for query rewriting [13, 56]. Although this paradigm

has been shown to be effective, it still relies on the quality of the
retrieved documents. On the other hand, other studies have demon-
strated that semantics could be decoded to some extent with brain sig-
nals such as fMRI [54, 61] and magnetoencephalogram (MEG) [12].
However, there is currently a lack of research investigating the uti-
lization of the decoded semantics for query augmentation.

3 METHOD
We first formalize the query augmentation task and then present
Brain-Aug, including its architecture, training objective, and infer-
ence process.

3.1 Task formalization
In search engines, users’ input queries are often unclear, failing to
accurately reflect their true intentions. As brain-computer interface
techniques become increasingly cost-effective and wearable, this
paper explores the potential of leveraging brain signals to enhance
the queries written by users. By incorporating the brain neural data,
we aim to capture and reflect user intentions more precisely, augment
queries, and thereby improve the accuracy of search results.

The input to the task of augmenting queries with brain signals is
a query submitted by a user and the brain signals associated with the
query context. 𝑄 is used to denote the query composed of 𝑛 tokens:
𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑛}. 𝐵 = {𝑏1, . . . , 𝑏𝑡 } ∈ R𝑡×𝑐 represent the brain
signal, which is a sequence of features extracted from fMRI data,
where 𝑐 is the number of fMRI features and 𝑡 is the number of time
frames that brain recordings are collected.

Given the input query and brain signals, the task is to learn an
autoregressive function 𝐹 to refine the query based on the user’s cog-
nitive process. 𝐹 generates a query continuation 𝑀 = {𝑚1, ...,𝑚𝑘 },
which will be concatenated to the initial query 𝑄 as an augmen-
tated query. Let𝑚𝑖 be the 𝑖-th token of 𝑀 , the generation process is
formalized as:

𝑚𝑖 = 𝐹 ({𝑞1, . . . , 𝑞𝑛,𝑚1, . . . ,𝑚𝑖−1}, 𝐵;Θ), (1)

where Θ is the model parameters of 𝐹 .
The effectiveness of query augmentation is measured extrinsi-

cally using the document ranking performance. Formally, let D be
a document corpus and 𝐺 be a ranking model (e.g., BM25 [47],
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RepLLaMA [32]). The ranking model 𝐺 estimates a ranking score
𝐺 ({𝑄,𝑀}, 𝑑) for each document 𝑑 ∈ D and the document rank-
ing performance can be measured by a ranking-based metric such
as normalized discounted cumulative gain (NDCG) [19] or mean
average precision (MAP) [20].

3.2 Overall procedure
Fig. 1 provides an overview of the three-stage process of Brain-
Aug: 𝑆1 : Input to Brain-Aug consists of the original query and
brain signals associated with the user’s cognitive response within
the query context. 𝑆2 : Then a brain adapter is trained to align the
representations of brain signals with the representation space of text
embedding in the language model. This allows for creating a unified
prompt representation that jointly models the brain responses and
original queries. With the unified prompt representation as input,
a language model is adopted to generate the continuation of the
original query. A ranking-oriented inference method is utilized to
enhance the generation process to improve the ranking performance.
𝑆3 : In this case, the original query “Raspberry” (sampled from
Pereira’s dataset in our experiment) is augmented to “Raspberry is
eaten fresh or cooked”. Consequently, documents with a focus on
the subtopic of “eating raspberry” are ranked higher than those on
“raspberry’s nutrition” or “raspberry Pi”.

3.3 Model Architecture
Brain-Aug integrates the textual query with cognitive information
derived from brain signals and inputs them into a Transformer model.
The Transformer is used to generate query augmentations based on
the context of initial queries and user brain signals. In the following,
we describe how to map the brain signals and input it to Transformer.

First, since the brain signal extracted by fMRI cannot be directly
processed by a pretrained language model, we devise a brain adapter
𝑓𝑏 to embed each brain representation 𝑏𝑖 ∈ 𝐵 into the same latent
space R𝑑 , which can be formulated as 𝑣𝐵

𝑖
= 𝑓𝑏 (𝑏𝑖 ). We implement

it as a neural network 𝑓𝑏 comprising (i) a MLP network 𝑓𝑚 with
ReLU [15] as the activation function, and (ii) a position embed-
ding 𝑃 = {𝑝1, . . . , 𝑝𝑡 } ∈ R𝑡×𝑐 . Element-wise addition is applied
where each position embedding 𝑝𝑖 ∈ 𝑃 is added to its corresponding
fMRI features 𝑏𝑖 ∈ 𝐵. The multi-layer perceptron network 𝑓𝑚 is
constructed with an input layer and two hidden layers. Formally, the
fMRI features 𝑏𝑖 is mapped as:

𝑣𝐵𝑖 = 𝑓𝑏 (𝑏𝑖 ) = 𝑓𝑚𝑙𝑝 (𝑝𝑖 + 𝑏𝑖 ) . (2)

where 𝑖 denotes the 𝑖-th time frame.
Then, we acquire the embeddings of the initial query. We feed

the query’s text 𝑄 to the language model’s embedding layer 𝑓𝑞 to
transform the tokens into latent vectors 𝑉𝑄 = {𝑣𝑞1 , . . . , 𝑣

𝑞

𝑖
, . . . , 𝑣

𝑞
𝑛} ∈

R𝑛×𝑑 , where 𝑛 is the number of tokens, 𝑑 is the embedding size of
the language model.

Finally, the brain embedding 𝑉 𝐵 and the query embedding 𝑉𝑄

are concatenated with embeddings of two special tokens, i.e., ⟨𝑏⟩
and ⟨/𝑏⟩, marking the beginning and end of the brain embedding,
respectively. The two special tokens are randomly initialized as one-
dimensional vectors aligned with the dimensional structure of token
embeddings in the language model. As a result, the prompt sequence

𝑆 can be represented as:

𝑆 = {⟨𝑏⟩, 𝑣𝐵1 , . . . , 𝑣
𝐵
𝑡 , ⟨/𝑏⟩, 𝑣

𝑄

1 , . . . , 𝑣
𝑄
𝑛 }. (3)

This sequence, integrating both brain information and textual data,
can be input to the language model for generating the query continu-
ation.

3.4 Training
To effectively leverage brain signals for query augmentation, we
design a two-stage training process. The first is a unsupervised
training stage and is to warm-up the brain adapter for aligning the
brain input to the latent space of the language model. The second
is a supervised learning stage and is to guide the model to decode
semantic information from brain signals for query augmentation.

3.4.1 Unsupervised training to warm-up the brain adapter.
We design an unsupervised warm-up stage to align the distribution
of the brain embedding with that of the text token’s embeddings,
ensuring that the brain embedding is suitable as the input of a lan-
guage model. We construct training pairs in an unsupervised manner.
Each pair consists of a series of brain signals and the associated
text. Formally, let 𝑉 𝐵 be the mapped brain signals. Each 𝑣𝐵

𝑖
∈ 𝑉 𝐵 is

trained to be close to the mean value of the corresponding query em-
beddings, i.e., 1

𝑛

∑𝑛
𝑗=1 𝑣

𝑄

𝑗
. Mean square loss (MSE) loss is adopted

for training, which can be formulated as:

𝐿MSE = 1
𝑡

∑𝑡
𝑖=1

(
𝑣𝐵
𝑖
− 1

𝑛

∑𝑛
𝑗=1 𝑣

𝑄

𝑗

)2
. (4)

The inclusion of a warm-up stage in the adapter training phase of
a language model with multimodal input is crucial, as illustrated by
Liu et al. [28]. Our experimental results corroborate these findings.
We observe that omitting the adapter training phase can result in
problems like unstable training, exemplified by gradient explosion,
and inferior performance compared to models that include a warm-
up stage.

3.4.2 Query augmentation as next token prediction. Given
the input 𝑆 as formulated in Eq. (3), we train the model with the
next token prediction task using a prompt tunning setup. Let 𝑀∗ =
{𝑚∗

1, . . . ,𝑚
∗
𝑘
} be the ground truth outputs. The language model is

trained to predict 𝑀 on the condition of 𝑆 . The training objective is
to maximize the likelihood of generating the ground truth, which
can be formulated as:

max
Θ

=

𝑘∑︁
𝑖=1

log(𝑃LM (𝑚∗
𝑖 | {𝑚

∗
1, . . . ,𝑚

∗
𝑖−1}, 𝑆 ;Θ)), (5)

where Θ is the model parameters. Constructing ground-truth labels
presents a significant challenge, as our task assumes that users are
not good at writing clear queries. Consequently, we cannot simply
ask users to write a clearer ground-truth query. To address this issue,
we hypothesize that an accurate representation of user intent corre-
sponds to the documents they consider relevant. Therefore, we set
the ground truth to be these relevant documents and train the model
to reconstruct relevant documents based on user’s brain signals and
initial query. This approach effectively avoids the difficulty of having
users directly annotate clear queries, as it is comparatively easier for
them to identify relevant documents.
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The training process follows the “prompt tuning” approach [29]
by freezing the parameters of the language model and fine-tuning
only the prompt representation 𝑆 . This indicates that only the pa-
rameter of the brain adapter (Θ𝑓𝑏 ) and the parameter of the special
tokens (Θ𝑠𝑝 ) are updated. In this way, we can train Brain-Aug ef-
ficiently with limited training data constructed from brain imaging
datasets.

3.5 Ranking-oriented inference
During the inference stage, the generated continuations should also
be able to distinguish between different documents. Therefore, we
incorporate the IDF information [46] of each token in the vocabulary
when generating query continuation �̂� = {�̂�1, . . . , �̂�𝑘 }. Let IDF(�̂�)
be the IDF of token �̂�, then the generation likelihood of each token
in �̂�𝑖 ∈ �̂� during the inference stage can be estimated as:

𝑃inf (�̂�𝑖 )=
𝑃LM (�̂�𝑖 )+𝛼 IDF(�̂�𝑖 )∑

𝑚∈Vocab (𝑃LM (𝑚)+𝛼 IDF(𝑚)) , (6)

where 𝑃𝐿𝑀 (𝑚) = 𝑃𝐿𝑀 (𝑚 | {�̂�1, . . . , �̂�𝑖−1}, 𝑆 ;Θ) represents the esti-
mated likelihood of the next token 𝑚 given the previously generated
tokens {�̂�1, . . . , �̂�𝑖−1}, 𝛼 is a hyperparameter, Vocab indicates the
language model’s vocabulary. This approach ensures that the query’s
continuation is not only contextually relevant but also effective in
distinguishing documents in the retrieval process.

4 EXPERIMENTAL SETUP
Next, we detail our experimental settings, which are designed to
address three research questions: (RQ1) Is it possible to generate
an augmented query with user’s brain signals? (RQ2) Can we im-
prove document ranking performance using the augmented query?
(RQ3) How do brain signals improve different queries for docu-
ment ranking? Together, these questions help us to understand the
effectiveness of Brain-Aug to refine a query and improve ranking
performance. Below, we describe the datasets and baselines. More
implementation details are provided in Section A.4.

4.1 Datasets
Three publicly available fMRI datasets are adopted, namely Pereira’s
dataset [42], Huth’s dataset [24], and the Narratives dataset [41]. We
process the text stimuli in these datasets to transform them into
ranking datasets consists of a document corpus and a set of queries.
The dataset information is provided in Section A.1.

4.2 Data processing
We extract queries and documents from existing fMRI datasets fol-
lowing Izacard et al. [18] and Lee et al. [25]. Specifically, we select
a text span in the document as a pseudo query and the corresponding
document is treated as relevant for this query. Formally, for a docu-
ment 𝐷 = {𝑤1, . . . ,𝑤𝑚}, we extract a span 𝑄 = {𝑤𝑙 ,𝑤𝑙+1, . . . ,𝑤𝑟 }
to form a relevant query-document pair {𝑄, 𝐷\𝑄}, where 𝐷\𝑄 =

{𝑤1, . . . ,𝑤𝑙−1,𝑤𝑟+1, . . . ,𝑤𝑚}.
In Pereira’s dataset, each document consists of 3-4 sentences,

which are presented to the user as visual stimuli one by one. Due to
the length of a sentence being too long as a query, we truncate the
first one-third and two-thirds of the sentence to construct two queries
for each sentence, resulting in 6-8 relevant query-document pair

for each document. In Huth’s and Narratives datasets, continuous
contents are presented to the user as auditory stimuli. We utilize a
fixed time interval of 20 seconds, which corresponds to 10 fMRI
scans, to segment the stimuli into documents. Then, smaller time
intervals of 2, 4, and 6 seconds are employed to segment queries of
varying lengths from the document. We provide more details and
statistical data for the document corpus and queries constructed in
each dataset in Section A.2.

Due to the variability in brain data across participants, we trained
separate models for each participant and evaluated Brain-Aug us-
ing a five-fold cross-validation on each participant’s data. The data
samples are randomly split into five folds according to which doc-
ument they belong to. Each fold of the cross-validation involves
selecting one fold of the data as the test set, while the remaining
four folds are split into training and validation sets. The sizes of the
training, validation, and testing sets were roughly proportional to
3:1:1, respectively.

4.3 Training and evaluation setup
We train Brain-Aug with a next token prediction task. A data sample
during this task consists of the query, its ground truth continuation,
and corresponding brain signals. The ground truth continuation is
selected as the textual content presented within a fixed period of time
after the query (see Section A.2 for details). Taking into account the
delayed effect of fMRI signals[37], we collect user’s brain signals in
a period of several seconds after the user perceives the textual content
of the query. During this period, the user’s brain representation has
the potential to encode semantic information related to the query
itself, as well as its continuation.

We first conduct query generation analysis to investigate the abil-
ity of Brain-Aug to generate query continuation that matches the
ground truth label. The logarithm perplexity [34] is used to measure
the likelihood of generating the ground truth continuation. The lower
perplexity indicates the language model deems the ground truth con-
tinuation as more expected. We also investigate language similarity
to demonstrate the extent to which the generated continuation is
similar to the ground truth using the Rouge score [27].

Next, we augment the original query with its generated contin-
uation and evaluate its performance in terms of document ranking.
We employ document ranking metrics, including NDCG at different
cutoffs (10 and 20) [19], Recall@20, and MAP [20].

4.4 Baselines and controls
Given the augmented query, we select two ranking models for docu-
ment ranking, i.e., a sparse ranking model, BM25 [47], and a dense
ranking model, RepLLaMA [32]. To assess whether Brain-Aug
helps document ranking, we compare its document ranking perfor-
mance with several baselines and controls.

As baselines we select (i) the original query, and (ii) the query
augmented with pseudo-relevance signals (denoted as Unsup-Aug).
When using BM25 as the ranking model, we implemented RM3 [23]
as Unsup-Aug, which expands the query by selecting relevant terms
from the top-ranked documents in the initial retrieval. When us-
ing RepLLaMA as the ranking model, we implement Rocchio [7]
as Unsup-Aug, which refines the query vector to be closer to the
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top-ranked documents. (iii) We also reported the additional re-
sults by first using Brain-Aug, followed by Unsup-Aug, denoted
as Unsup+Brain-Aug.

As controls we select variants or ablations of Brain-Aug. The first
control is Brain-Aug without any brain input (denoted as w/o Brain),
and thus the query continuation is generated solely depending on the
original query and the language model. The second control is Brain-
Aug with randomly sampled brain input (denoted as RS Brain).
RS Brain involves sampling brain input that does not correspond to
the query but is randomly selected from the same dataset. The last
control is Brain-Aug without ranking-oriented generation in which
the generation likelihood of each token is estimated without the IDF
weight (denoted as w/o IDF).

5 EXPERIMENTS AND RESULTS
We first analyze the performance of the generated query continuation
by comparing it with the ground truth label. Then we investigate the
document ranking performance with Brain-Aug and examine the
relationship between query features and their ranking performance.

5.1 Query generation analysis
Next, we evaluate the performance of Brain-Aug according to the
similarity of the generated continuation and the ground truth label
of continuation. The query generation analysis results are presented
in Table 1. From Table 1, we have the following observations.

(1) Brain-Aug exhibits lower perplexity and higher Rouge-L than
its ablations without brain input (w/o Brain) and randomly sampled
brain signals as input (RS Brain). This indicates that the semantic
information decoded from brain signals can be integrated with a
query to construct a more effective prompt for generating query
continuation.

(2) The overall perplexity and Rouge-L on the Pereira dataset are
lower and higher than on the other two datasets, respectively. This
implies that the Pereira dataset, derived from Wikipedia data, ex-
hibits superior performance in the task of query generation compared
to the other two datasets, which are based on spoken stories.

(3) The RS Brain outperforms w/o Brain across three datasets.
Although RS Brain uses brain signals that do not correspond to the
current query context, the unified prompt can enable generating con-
tent that aligns with the common data distribution of language usage
in the dataset (e.g., all stimuli in Pereira’s dataset are Wikipedia-
style). On other other hand, w/o Brain is equivalent to a standard
language model that generates continuations soly based on the query
text. This difference explains RS Brain’s superior performance com-
pared to the w/o Brain. However, in the discussion in Section 5.2, we
will show that this performance improvement in query generation
does not necessarily lead to an improvement in document ranking.

Answer to RQ1. The results show that queries augmented with
semantics decoded from brain signals are more aligned with the
content of the relevant document with the help of brain signals.

5.2 Document ranking performance
5.2.1 Overall performance. Table 2 shows the document ranking
performance with original queries, queries augmented with unsu-
pervised signals (Unsup-Aug), and queries augmented with brain
signals (Brain-Aug). We observe:

Table 1: Query generation performance averaged across partici-
pants in different datasets. Best results in boldface. * indicates
𝑝 ≤ 0.05 for the paired t-test of Brain-Aug (Ours) and the con-
trols. PPL indicates perplexity.

Dataset Query log(PPL)(↓) Rouge-L(↑)

Pereira’s
w/o Brain 2.219∗ 0.213∗

RS Brain 1.967∗ 0.267∗

Brain-Aug 1.946 0.272

Huth’s
w/o Brain 3.573∗ 0.148∗

RS Brain 3.111∗ 0.159∗

Brain-Aug 2.997 0.167

Narratives
w/o Brain 4.328∗ 0.083∗

RS Brain 3.532∗ 0.105∗

Brain-Aug 3.471 0.109

(1) Regardless of whether BM25 or RepLLaMa is used as the
ranking model, Brain-Aug substantially outperforms the original
query and Unsup-Aug. According to NDCG@20 results, Brain-Aug
improved the original query by 0.027 on Pereira’s dataset, 0.014
on Huth’s dataset, and 0.024 on the Narratives dataset. The only
exception is observed when using RepLLaMa and metric MAP on
Pereira’s dataset. A possible explanation for this exception is the
RepLLaMA’s high performance on the Pereira dataset, which we
discuss in observation (3).

(2) When considering various datasets and metrics, the Unsup-
Aug query does not consistently outperform the original query. Sig-
nificant differences between the performance achieved by the Unsup-
Aug query and the original query emerge on the metric of Recall@20
when using BM25 as the ranking model. This observation suggests
that Unsup-Aug, which improves query representation by tackling
term mismatch issues, leads to an improvement in recall. When
Brain-Aug is combined with Unsup-Aug (Unsup+Brain-Aug), we
observe a performance gain when compared to Unsup-Aug. This
highlights the effectiveness of brain signals in query augmentation
and underscores the potential of combining them with traditional
signals.

(3) We observe little difference in performance between Re-
pLLaMa and BM25 on Huth’s dataset and Narratives’s dataset. This
implies that in a zero-shot setting and cross-domain scenario (the
datasets are derived from spoken stories, which differs from the
training data of RepLLaMa), dense retrieval models like RepLLaMa
are not necessarily better than traditional sparse retrieval models like
BM25. This phenomenon is also observed in the BEIR dataset [51].
However, in Pereira’s dataset, RepLLaMa shows significant im-
provement over BM25 with different query inputs. The impressive
performance of RepLLaMa on Pereira’s dataset can likely be attrib-
uted to the fact that the data in Pereira are likely to be used in the
original construction of RepLLaMa.

5.2.2 Decomposing Brain-Aug. Next, we investigate the contri-
bution of brain signals and the ranking-oriented inference approach
to Brain-Aug. Experimental results are presented in Table 3. First,
we observe that removing (w/o Brain) or random sampling the brain
inputs (RS Brain) leads to a decrease in performance. This indicates
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Table 2: Document ranking performance averaged across participants, with our method (Brain-Aug & Brain+Unsup) marked by
a ★. Best results are in boldface, and the second-best results are underlined. ∗/† indicates Brain-Aug / Brain+Unsup significantly
outperforms the baseline (𝑝 ≤ 0.05, paired t-test), respectively.

Dataset Query BM25 RepLLaMA

N@10 N@20 R@20 MAP N@10 N@20 R@20 MAP

Pereira’s

original 0.643∗,† 0.664∗,† 0.888∗,† 0.594∗,† 0.878 0.881∗,† 0.964∗,† 0.858
Unsup-Aug 0.646∗,† 0.655∗,† 0.924∗,† 0.590∗,† 0.872∗,† 0.877∗,† 0.951∗,† 0.855
Brain-Aug★ 0.671 0.691 0.941 0.618 0.883 0.887 0.980 0.859
Unsup+Brain-Aug★ 0.673 0.686 0.936 0.615 0.878 0.882 0.975 0.853

Huth’s

original 0.297∗,† 0.326∗,† 0.536∗,† 0.264∗,† 0.299∗,† 0.328∗,† 0.520∗,† 0.275∗,†

Unsup-Aug 0.291∗,† 0.320∗,† 0.575† 0.259∗,† 0.302∗,† 0.333∗,† 0.537∗,† 0.276∗,†

Brain-Aug★ 0.306 0.340 0.569† 0.273 0.310 0.342 0.550 0.281
Unsup+Brain-Aug★ 0.309 0.342 0.580 0.269 0.308 0.340 0.552 0.279

Narratives

original 0.419∗,† 0.434∗,† 0.629∗,† 0.355∗,† 0.413∗,† 0.426∗,† 0.611∗,† 0.351∗,†

Unsup-Aug 0.440 0.452† 0.670† 0.367∗,† 0.416∗,† 0.431∗,† 0.629∗,† 0.356∗,†

Brain-Aug★ 0.441 0.458 0.669 0.382 0.430 0.446 0.641 0.382
Unsup+Brain-Aug★ 0.445 0.462 0.678 0.382 0.432 0.446 0.642 0.380

Table 3: Document ranking performance of Brain-Aug (ours) and
its controls with ranking model BM25. Best results in boldface.
* indicates 𝑝 ≤ 0.05 for the paired t-test of Brain-Aug and the
baseline.

Dataset Query NDCG@20 MAP

Pereira’s

w/o Brain 0.665∗ 0.586∗

RS Brain 0.678∗ 0.604∗

w/o IDF 0.684∗ 0.609∗

Brain-Aug 0.691 0.618

Huth’s

w/o Brain 0.332∗ 0.265∗
RS Brain 0.321∗ 0.256∗

w/o IDF 0.332∗ 0.266∗

Brain-Aug 0.340 0.273

Narratives

w/o Brain 0.452∗ 0.368∗
RS Brain 0.448∗ 0.367∗

w/o IDF 0.450∗ 0.373∗

Brain-Aug 0.458 0.382

that semantic information decoded from brain signals within the
query context enhances the query. Furthermore, while RS Brain
consistently outperforms w/o Brain approach in terms of generation
perplexity (see Section 5.1), it struggles to achieve better document
ranking performance on the Huth’s and Narratives datasets. This can
be attributed to the fact that RS Brain, despite generating content
that closely matches the token distribution of the whole dataset and
reducing perplexity, fails to effectively differentiate between differ-
ent documents within the dataset without semantics related to the
query context. Last, we also observe a significant performance im-
provement when comparing Brain-Aug against its ablation without
ranking-orient generation (w/o IDF). This suggests the importance
of generating content that can be used to differentiate between docu-
ments.

(a) Brain-Aug vs. original (b) Brain-Aug vs. RS B

Figure 2: Relationship between document ranking performance
and perplexity of ground-truth query continuation in Pereira’s
dataset. “RS B” indicates the ablation of Brain-Aug that ran-
domizes brain inputs. Δ NDCG@20 indicates performance gains
of Brain-Aug.

5.2.3 Relationship between document ranking and query
generation performance. Fig. 2 illustrates the relationship be-
tween the document ranking performance of Brain-Aug and RS
Brain and the perplexity of query continuation measured using RS
Brain. The lower perplexity of query generation indicates a higher
likelihood of generating more accurate query continuation. This
higher likelihood, as shown in Fig. 2a, further leads to an increase
in document ranking performance. Conversely, Fig. 2b shows a dif-
ferent trend: when the perplexity is higher, the performance gain of
Brain-Aug with its ablation RS Brain is higher. This implies that
when generating accurate query continuations is difficult, semantics
decoded from the query context with brain signals is more beneficial.
This observation is consistent with findings by Ye et al. [54] that
the addition of brain signals lead to a more substantial performance
improvement when generating continuations with higher uncertainty
.

5.2.4 Example cases. Table 4 presents example cases with the
original query “The shaking can” which is sampled from document
𝑑13 in Pereira’s dataset. Brain-Aug leverages brain signals to expand
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Table 4: Examples of document ranking with BM25 using the original query or the augmented query in Pereira’s dataset. Text in blue
and in purple indicates content in the original query and generated by the query augmentation method, respectively.

Method Query Content Top-ranked document Relevance

Original The shaking can
𝑑21: The wind from the hurricane shook the house, shattering a window
... Later that night, with the wind shaking the house, ...

0

Unsup-Aug
The shaking can from house
wind

𝑑21: The wind from the hurricane shook the house, shattering a window
... Later that night, with the wind shaking the house ...

0

RS Brain
The shaking can last any-
where from a few seconds to
several minutes

𝑑21: The wind from the hurricane shook the house, shattering a window
in the kitchen. ... Later that night, with the wind shaking the house, we
fell asleep huddled on the sofa.

0

Brain-Aug
The shaking can be caused
by an earthquake

𝑑13: Earthquakes shake the ground and can knock down buildings and
other structures. also trigger landslides and volcanic activity. Most
earthquakes are caused by ...

1

(a) Avg ICTF (b) Avg IDF

(c) Specificity (d) Clarify

Figure 3: Document ranking performance w.r.t. different query
features in Pereira’s dataset.

the query with “be caused by an earthquake”. As a result, the relevant
document with the topic of the earthquake, 𝑑13, is appropriately
ranked at the top of the search results. In contrast, when using
the original query or augmenting it with unsupervised signals or
randomly sampled brain signals, the document 𝑑21, which discusses
shaking wind, is erroneously ranked as the top result. This case study
demonstrates the significant impact of incorporating brain signals
into the query augmentation process. Example cases for Huth’s and
Narratives dataset are provided in Section A.6.

Answer to RQ2. We verified that a query augmented with seman-
tics decoded from brain signals can significantly enhance document
ranking performance. This performance enhancement is more pro-
nounced when the generated query continuation is more accurately
aligned with the query context.

5.3 Query performance analysis
Next, we investigate the performance improvement achieved by
Brain-Aug for different queries by grouping queries according to
their features. We select four query features: three pre-retrieval fea-
tures (calculated based on query tokens), i.e., ICTF, IDF, and speci-
ficity score [49], and one post-retrieval feature (calculated based on
the information of retrieved documents), i.e., clarify score [11, 35].
For details on the query features, see Section A.3. We conjecture
that larger feature values correspond to a more clarified query and
usually result in better retrieval quality.

Fig. 3 depicts the document ranking performance w.r.t. different
query features on Pereira’s dataset. We have two key observations.
(i) When the averaged IDF, specificity score, and clarity score in-
crease, both Brain-Aug and the RS Brain show an improvement
in retrieval performance. This indicates that a more specific query
usually has a better retrieval performance. (ii) The performance
gain of Brain-Aug compared to RS Brain is more pronounced when
these features experience a decrease. This observation is supported
by a significant negative Pearson’s 𝑟 between the improvement in
NDCG@20 for Brain-Aug compared to RS Brain and the averaged
ICTF, averaged IDF, specificity score, and clarity score, which are
−0.14, −0.19, −0.17, and −0.32, respectively. This indicates that
the performance improvement brought by brain signals is larger in
queries prone to be vague or ambiguous.

Answer to RQ3. We have observed that queries prone to ambigu-
ity (e.g., containing tokens with lower IDF scores or with low clarify
scores) stand to gain more from Brain-Aug.

6 DISCUSSION AND CONCLUSION
6.1 Summary of Contributions
Existing research incorporating physiological signals in IR tasks,
whether based on eye-tracking [6] or brain signals [14, 55], has relied
on predicting relevance of presented information. Here, we have
investigated an alternative approach for directly augmenting queries
based on the semantic information decoded from fMRI brain signals.
Our findings revealed that decoding semantic representations from
brain signals can enhance the generation of queries and subsequently
improving document ranking. Moreover, we have observed that
brain signals are more effective when the content to be generated has
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higher perplexity, indicating that decoded semantic information for
unlikely query augmentations is more effective than it is for likely
query augmentations. In conclusion, our findings open a horizon for
new types of methods for understanding users by decoding semantics
associated with information needs directly from brain signals. This
process can kick off naturally as it happens as part of perceiving
information and without requiring users to engage with any particular
interaction technique or user interface.

6.2 Limitations and Future work
Our work has the following limitations pointing towards promising
avenues for future research: (i) Our study utilized fMRI signals,
which are not readily accessible in real-world human-computer inter-
action scenarios and have a significant delay of 2-8 seconds. More
commonly used signals, such as electroencephalogram (EEG), have
lower signal-to-noise ratios, which may limit their utility for seman-
tic decoding. Currently, there is a lack of evidence that EEG can
effectively decode semantics. The significant component of Brain-
Aug is designed to be independent of the type of signal employed.
This paper chose to use fMRI signals because fMRI has been exten-
sively studied in semantic decoding among various physiological
signals (e.g., EEG, MEG, ECoG, and fNIRS). In recent years, sen-
sor technology like Functional near Infrared Spectroscopy (fNIRS)
and MEG may become promising directions for future research.
With the advancement in the quality of brain data collected by these
lightweight devices, we believe that Brain-Aug has the potential to
be applied in more realistic scenarios, including IR, virtual reality,
disabled services, and intelligent assistants. (ii) Our experiments
simulate the the ranking task on fMRI datasets following Izacard
et al. [18] and Lee et al. [25]. The simulation shows significant im-
provements in Brain-Aug over the baselines and carefully designed
controls. Although the simulation methodology is commonly used
to test retrieval performance, it is different from realistic user inter-
actions. This simulation was driven by its advantage in building a
sufficient number of queries and obtaining the corresponding query
context to construct a substantial amount of training data. In the fu-
ture, we plan to explore evaluations that closely resemble real-world
tasks for search engine users. Despite the high cost of conducting
these experiments, we believe it can help advance this promising
field.

6.3 Ethical considerations
Recently, there has been a series of works attempting to utilize
brain–computer interface (BCI) technology to enhance information
accessing performance in various language-related applications, such
as search [3, 13, 44] and communication [42]. Such technology
is currently at a very early stage where such applications feel a
long way off. However, it is important to discuss the associated
concerns regarding privacy issues as the collection of brain signals is
inherently susceptible to the actions of malicious third parties, which
increases the risk of potential misuse or mishandling of sensitive
information.

On the one hand, raw data collected via neurophysiological de-
vices should be treated as private information, as such data can
potentially be used to identify an individual [4] as well as their phys-
iological disorders and thoughts [59]. This technology may lead to

risks such as influencing people’s political opinions, and discrim-
ination during recruiting based on their neural profiles. Therefore,
the raw data should be avoided from being uploaded to the cloud
for computation. It is necessary to filter sensitive information and
decode only the information that helps the user accomplish their
task with local computing. For publicly available datasets, ethical re-
view and informed consent from each participant should be obtained,
such as the dataset used in this paper (see Section A.1). Additionally,
datasets should be used strictly for research purposes following their
respective licenses.

On the other hand, there is a concern regarding the interaction log
that might be recorded in applications like search engines. Although
such interactions, such as clicks, comments, and submitted queries,
are frequently recorded for improving individual user experience,
the utilization of BCI can potentially pose greater risks. For example,
it can be employed to capture users’ genuine opinions on content
within information systems, which can then be adopted in applica-
tions such as selective exposure and targeted advertising. Hence,
users should have the right to decide whether they are willing to
provide their interaction history to service providers. This is already
specified in the legislation of many countries. In addition, the inter-
action history, even with users’ permission, should undergo post-hoc
filtering to remove any sensitive information before being utilized to
train a model aimed at enhancing the commercial product.

7 REPRODUCIBILITY
Our experiments use open-source datasets (Pereira’s dataset [42],
Huth’s dataset [24], and the Narratives dataset [41], which can be
downloaded from the paper websites or OpenNeuro1). The data
from Pereira et al. [42] is available under the CC BY 4.0 license.
The Huth’s dataset and Narratives dataset are provided with a “CC0”
license. Code is released using an anonymous link during the review
process: https://anonymous.4open.science/r/Brain-Query-Augmentation-
B6CC/. All codes used in the paper are available under the MIT
license after the review process.
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