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Abstract

In this paper, we investigate tradeoffs among dif-
ferential privacy (DP) and several important vot-
ing axioms: Pareto efficiency, SD-efficiency, PC-
efficiency, Condorcet criterion, and Condorcet
loser criterion. We provide upper and lower bounds
on the two-way tradeoffs between DP and each ax-
iom. We also provide upper and lower bounds on
three-way tradeoffs among DP and every pairwise
combination of all the axioms, showing that, while
the axioms are compatible without DP, their upper
bounds cannot be achieved simultaneously under
DP. Our results illustrate the effect of DP on the
satisfaction and compatibility of voting axioms.

1 INTRODUCTION

Voting is a popular method for collective decision mak-
ing. In a typical voting procedure, voters express their pref-
erences over alternatives, and a winner is determined ac-
cording to a voting rule. In modern social choice theory,
voting rules are evaluated and compared by the axiomatic
approach [Plott, 1976], w.r.t. their satisfaction of various
normative properties, known as voting axioms. For exam-
ple, Pareto efficiency mandates that any alternative which is
Pareto-dominated—that is, an alternative deemed inferior to
another by all voters—must not be selected as the winner.

Differential privacy (DP) has emerged as a de facto standard
for privacy preservation, with widespread applications in ma-
chine learning [Abadi et al., 2016, Vasa and Thakkar, 2023,
Sarwate and Chaudhuri, 2013], data mining [Friedman and
Schuster, 2010, Zhang et al., 2011], and recommendation
systems [Berlioz et al., 2015, Li et al., 2020], among oth-
ers. Recently, privacy concerns have also gained significant
attention in the context of voting schemes. For instance,
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Liu et al. [2020] demonstrate that traditional voting rules
are susceptible to background knowledge attacks. In their
example, Alice submits an anonymous ballot in an election.
However, by analyzing other voters’ social media activity,
an adversary infers that the remaining votes result in a tie.
Consequently, the adversary can deduce Alice’s vote, as it
must be the deciding vote that breaks the tie. This illustrates
that even the disclosure of voting outcomes, such as the
announcement of the winner, can compromise voter privacy.

To date, a significant body of research has explored differ-
ential privacy in the context of voting and rank aggrega-
tion [Shang et al., 2014, Hay et al., 2017, Yan et al., 2020].
These studies primarily focus on the privacy-utility tradeoff
in voting rules (or rank aggregations), where utility is typi-
cally measured by accuracy or mean square error. Although
some prior work [Lee, 2015, Li et al., 2023] has investigated
the tradeoff between DP and certain voting axioms through
specific mechanisms, the broader tradeoff between DP and
voting axioms remains largely unexplored. Additionally, the
relationship between voting axioms may be altered by the
introduction of DP. For instance, in traditional social choice
theory, the Condorcet criterion is compatible with Pareto
efficiency, where the Condorcet winner (the alternative that
defeats all others in pairwise comparisons) must win the
election. However, under DP, the optimal approximations of
the Condorcet criterion and Pareto efficiency become incom-
patible. This incompatibility arises because DP necessitates
randomness in voting rules, meaning that all alternatives
must have a nonzero probability to win. Consequently, under
DP, a stronger Condorcet criterion requires the Condorcet
winner to win with a higher probability, while a stronger
Pareto efficiency focuses on the pairwise differences in win-
ning probabilities (i.e., a Pareto-dominated alternative must
have a lower winning probability than its dominating coun-
terpart). Till now, the incompatibility between axioms in-
duced by DP has not been systematically studied. Thus, the
following question remains open.

What is the tradeoff among DP and voting axioms?



Table 1: Two-way tradeoffs between ϵ-DP and approximate voting axioms.

Axiom Upper Bound Lower Bound Reference

β-Pareto efficiency† supβ ⩽ e
nϵ

m−1 supβ ⩾ e
nϵ

2m−2 Mechanism 1 and Propositions 1–2

γ-SD-efficiency sup γ ⩽
(m− 1)enϵ

(m− 1)enϵ + 1
sup γ ⩾

(m− 1)eϵ

(m− 1)eϵ + 1
Mechanism 2 and Propositions 3–4

κ-PC-efficiency supκ = 0 Not applicable‡ Proposition 5

α-Condorcet criterion supα ⩽ eϵ [Li et al., 2023] supα = eϵ Mechanism 3 and Proposition 6

η-Condorcet loser criterion sup η ⩽ eϵ sup η = eϵ Mechanism 4 and Propositions 7–8
† This approximate axiom requires that the winning probability of each Pareto dominated alternative never exceeds 1/β of the winning

probability of its dominant alternative, where β ∈ (0,+∞). It is evident that a larger β represents a higher level of Pareto efficiency.
Other approximate axioms are defined in the similar way (by the ratio), see Definitions 2–6 for details.

‡ Since the upper bound is 0, there is no lower bound.

Table 2: Three-way tradeoffs between approximate voting axioms under ϵ.

Combination of Axioms† Compatibility‡ Upper Bound under ϵ-DP‡‡ Reference

α-Condorcet criterion η-Condorcet loser criterion ✓ α · η ⩽ eϵ Theorem 1

α-Condorcet criterion β-Pareto efficiency ✓ α · βm−2 ⩽ enϵ Theorem 2

η-Condorcet loser criterion β-Pareto efficiency ✓ η · βm−2 ⩽ enϵ Theorem 3

α-Condorcet criterion γ-SD-efficiency ✓ γ ⩽
α+m− 1− αe−nϵ

α+m− 1
Theorem 4

η-Condorcet loser criterion γ-SD-efficiency ✓ γ ⩽
enϵ − η

enϵ
Theorem 5

β-Pareto efficiency γ-SD-efficiency ✓ γ ⩽
enϵ − enϵβ2−m

enϵ − enϵβ2−m + β − 1
Theorem 6

† PC-efficiency is not considered in 3-way tradeoffs, since even its approximate version is not incompatible with DP.
‡ A “✓” indicates that the standard versions of the axioms are compatible in non-private settings (where DP is not required). The

compatibility between Condorcet criterion and SD-efficiency is shown in Proposition 9. The other compatibilities are quite evident.
‡‡ The lower bounds of 3-way tradeoffs are also given by Mechanisms 1–4. Please refer to Table 3 and Appendix B.1 for details.

Since DP inherently requires randomness in voting rules,
standard axioms are generally incompatible with DP [Li
et al., 2023]. Therefore, we propose the approximate ver-
sions of voting axioms and investigate the tradeoff among
DP and these approximate axioms.

Our contributions Our conceptual contribution involves
proposing approximate versions of Pareto efficiency, SD-
efficiency, PC-efficiency, and the Condorcet loser criterion
(Definitions 2–6).

Our theoretical contributions are two-fold. First, we explore
the 2-way tradeoff between DP and a single (approximate)
axiom. We establish tradeoff theorems with both upper and
lower bounds for the approximate Pareto, SD, and PC ef-
ficiencies (Propositions 1–5). For the Condorcet criterion
and Condorcet loser criterion, we derive tight bounds for
their tradeoffs with DP (Propositions 6–8). These results are
summarized in Table 1, where the expressions on the lines
illustrate the bounds of the approximate axioms under ϵ-DP.

Second, we investigate the 3-way tradeoff between DP and
pairs of axioms (referred to as tradeoff axioms under DP
in this paper). Since even the approximate version of PC-
efficiency cannot be achieved under DP, we only focus on
the Condorcet criterion, Condorcet loser criterion, Pareto
efficiency, and SD-efficiency in 3-way tradeoffs. We derive
lower bounds for these tradeoffs through several mecha-
nisms, as summarized in Table 3 in Section 4. Then we
establish upper bounds for all pairwise tradeoffs under DP
(Theorems 1–6). Our results demonstrate that while these
axioms are compatible without DP, a tradeoff exists between
each pair under DP. These findings are summarized in Table
2, where the expressions on the lines illustrate the upper
bounds of the three-way tradeoffs between the axioms.

Algorithmically, we propose a family of randomized vot-
ing rules capable of achieving smooth two-way tradeoffs
between DP and the aforementioned axioms (Mechanisms
1–4). For three-way tradeoffs, we introduce a mechanism
that flexibly balances the Condorcet criterion and Condorcet
loser criterion.



Related work and discussions To the best of our knowl-
edge, the application of DP to rank aggregation (a gener-
alized problem of voting) was first introduced by Shang
et al. [2014], who derived upper bounds on the error rate
under DP. In a similar vein, Lee [2015] proposed a tour-
nament voting rule that achieves both DP and robustness
to strategic manipulations. Hay et al. [2017] employed the
Laplace and exponential mechanisms to enhance the pri-
vacy of Quicksort and Kemeny-Young methods. Kohli and
Laskowski [2018] investigated DP, strategyproofness, and
anonymity in voting on single-peaked preferences. Torra
[2019] analyzed the privacy-preserving properties of ran-
dom dictatorship, a well-known randomized voting rule,
using DP. Their study identified conditions under which ran-
dom dictatorship satisfies DP and proposed improvements
for general cases. Wang et al. [2019] examined the privacy
of positional voting and introduced a noise-adding mech-
anism that outperforms the naive Laplace mechanism in
accuracy. Yan et al. [2020] addressed the tradeoff between
accuracy and privacy in rank aggregation by achieving lo-
cal DP through the Laplace mechanism and randomized
response mechanism.

Most prior works have not thoroughly examined the trade-
off between privacy and voting axioms, and their privacy
bounds are often not tight. Liu et al. [2020] introduced dis-
tributional DP [Bassily et al., 2013] to voting, analyzing
the privacy levels of several common voting rules but with-
out proposing methods to enhance privacy. Li et al. [2023]
proposed a novel family of DP voting rules, which satisfies
several “probabilistic” voting axioms, including (probabilis-
tic) Condorcet criterion, Pareto efficiency, monotonicity,
strategyproofness, and participation. However, among them,
only the approximate version (with an approximation pa-
rameter) of Condorcet criterion was considered. Though
the authors discussed the DP-axiom tradeoff shortly, their
discussions were limited to some incompatibility results and
an upper bound of approximate Condorcet criterion under
DP, which are incomplete. A more comprehensive investiga-
tion remains necessary. Beyond social choice, DP has been
applied to other economic domains, including mechanism
design [Pai and Roth, 2013, Xiao, 2013], matching [Hsu
et al., 2016], and resource allocation [Kannan et al., 2018,
Chen et al., 2023].

In social choice theory, randomized voting has been exten-
sively studied [Brandt, 2017], with much of the literature
focusing on standard axiomatic properties such as manip-
ulation complexity [Walsh and Xia, 2012], strategyproof-
ness [Aziz et al., 2014, 2015], Pareto efficiency [Brandl
et al., 2015, Gross et al., 2017], participation [Brandl et al.,
2019], and monotonicity [Brandl et al., 2022]. Fairness prop-
erties in sortition have also been investigated [Benadè et al.,
2019, Flanigan et al., 2020, 2021]. For approximate ax-
iomatic properties, Procaccia [2010] examined how closely
a strategyproof randomized rule could approximate a de-

terministic rule, while Birrell and Pass [2011] studied ap-
proximate strategyproofness for randomized rules. However,
these approximate axioms are not naturally aligned with DP,
as they rely on utility differences rather than ratios.

2 PRELIMINARIES

Let A = {a1, a2, . . . , am} denote a set of m ⩾ 2 alterna-
tives. For any n ∈ N, let N = {1, 2, . . . , n} be a set of
voters. For each j ∈ N , the vote of voter j is a linear order
≻j∈ L(A), where L(A) denotes the set of all linear orders
over A, i.e., all transitive, anti-reflexive, anti-symmetric, and
complete binary relations. P = {≻1,≻2, . . . ,≻n} denotes
the (preference) profile, which is the collection of n votes.
For any j ∈ N , let P−j = {≻1, . . . ,≻j−1,≻j+1, . . . ≻n}
denote the profile of removing the j-th vote from P .

Under the settings above, a (randomized) voting rule can
be defined as a mapping f : L(A)n → R(A), where R(A)
denotes the set of all random variables on A (usually called
lotteries in social choice theory). Given a voting rule f and
a profile P , the winning probability of alternative a ∈ A
is denoted by P[f(P ) = a]. A voting rule f is neutral if
for any profile P and any permutation σ on A, σ · f(P ) =
f(σ · P ).

Differential privacy (DP, [Dwork, 2006]) At a high level,
DP requires a function to have similar output (distribution)
when inputting neighboring databases. Here, we say two
databases are neighboring if one can be gotten by replacing
no more than one entry from the other database.

Definition 1 (ϵ-Differential Privacy [Dwork, 2006]).
Given a privacy budget ϵ ∈ [0,+∞), mechanism f : D →
O satisfies ϵ-differential privacy (ϵ-DP for short) if for all
O ⊆ O and each pair of neighboring databases P, P ′ ∈ D,

P[f(P ) ∈ O] ⩽ eϵ · P[f(P ′) ∈ O].

The probability of the above inequality is taken over the
randomness of the mechanism. The smaller ϵ is, the better
privacy guarantee can be offered. In the context of social
choice, the mechanism f in Definition 1 is a voting rule and
its domain is D = L(A)n. Further, the pair of neighboring
databases P, P ′ are two profiles differing on no more than
one vote, i.e., there exists a voter j ∈ N that P−j = P ′

−j .

Axioms of voting The axioms considered in the paper can
be roughly divided into two parts: axioms that only depend
on preferences over alternatives and axioms that depend on
preferences over lotteries in R(A). We adopt the notions in
[Brandt, 2017] here.

For clarity, we define the following notions before present-
ing the axioms. Given a profile P and two distinct alterna-
tives a, b ∈ A, let wP [a, b] denote the majority margin of a



over b, which equals to the number of voter that consider
a ≻ b minus the number of voter that consider b ≻ a, i.e.,

wP [a, b] = |{j ∈ N : a ≻j b}| − |{j ∈ N : b ≻j a}|.

Here, a ≻j b represents that the j-th voter prefers a to
b. The Condorcet winner of P (denoted as CW(P )) is an
alternative a ∈ A such that wP [a, b] > 0 for all b ̸= a.
Similarly, the Condorcet loser of P (denoted as CL(P )) is
the alternative a ∈ A which satisfies wP [a, b] < 0 for all
b ̸= a. Based on these notions, the first part of the axioms
are listed below.

• Condorcet criterion (CC): A voting rule f satisfies
Condorcet criterion if P[f(P ) = CW(P )] = 1 holds
for every profile P that CW(P ) exists;

• Condorcet loser criterion (CLC): A voting rule f satis-
fies Condorcet loser criterion if P[f(P ) = CL(P )] =
0 holds for every profile P that CL(P ) exists;

• Pareto efficiency (PE): A voting rule f satisfies Pareto
efficiency if P[f(P ) = b] = 0 for every profile P ∈
L(A)n, where b ∈ A is Pareto dominated by some
a ∈ A, i.e., a ≻j b for all j ∈ N .

The second part of axioms (efficiency notions except Pareto
efficiency) considers the relationship between lotteries. For
clarity, we define the following relationships before present-
ing the axioms.

Stochastic Dominance (SD): Given the j-th vote ≻j ∈ L(A)
and two lotteries ξ, ζ ∈ R(A), ξ is more desirable under
SD for the j-th voter (denoted by ξ ⪰SD

j ζ) if and only if
for every y ∈ A, the probability of ξ selecting an alternative
better than y is no less than the probability for ζ to select
such an alternative, i.e.,∑

x∈A,
x≻y

P[ξ = x] ⩾
∑
x∈A,
x≻y

P[ζ = x], for all y ∈ A. (1)

We say ξ is strictly more desirable than ζ by means of SD for
the j-th voter (denoted by ξ ≻SD

j ζ) if and only if ξ ⪰SD
j ζ

holds and ζ ⪰SD
j ξ does not hold.

Pairwise Comparison (PC): Given the j-th vote ≻j ∈ L(A)
and two lotteries ξ, ζ ∈ R(A), ξ is more desirable under PC
for the j-th voter (denoted by ξ ⪰PC

j ζ) if and only if the
probability that ξ yields a better alternative than ζ is no less
than the other way round, i.e.,∑

x,y∈A,
x≻y

P[ξ = x] · P[ζ = y] ⩾
∑

x,y∈A,
x≻y

P[ζ = x] · P[ξ = y].

Similarly, ξ is strictly more desirable than ζ by means of
PC for the j-th voter (denoted by ξ ≻PC

j ζ) if and only if
ξ ⪰PC

j ζ holds and ζ ⪰PC
j ξ does not hold.

Based on SD and PC, the second part of axioms (SD-
efficiency and PC-efficiency) are defined as follows.

• SD-Efficiency: A voting rule f satisfies SD-efficiency if
for every profile P ∈ L(A)n, there does not exist ξ ∈
R(A) satisfying both of the following two conditions.

1. For all j ∈ N , ξ ⪰SD
j f(P ).

2. There exists some j ∈ N that ξ ≻SD
j f(P ).

• PC-Efficiency: A voting rule f satisfies PC-efficiency
if for all profile P ∈ L(A)n, there does not exist ξ ∈
R(A) satisfying both of the following two conditions.

1. For all j ∈ N , ξ ⪰PC
j f(P ).

2. There exists some j ∈ N that ξ ≻PC
j f(P ).

The relationship among the notions of efficiency mentioned
in our paper can be visualized as the following diagram,
where a → b indicates that a implies b.

(Strongest)
PC-efficiency → SD-efficiency →

(Weakest)
Pareto efficiency

3 DP-AXIOMS TRADEOFF

This section investigates the tradeoff between privacy and
voting axioms (2-way tradeoff). The axioms considered here
can be divided into two parts, efficiency (Pareto efficiency,
SD-efficiency, and PC-efficiency), and Condorcet consis-
tency (Condorcet criterion and Condorcet loser criterion).
As all five axioms are not compatible with DP, we propose
their approximate versions (if has not yet been proposed in
literature). With the approximate axioms, we establish both
upper and lower bounds about their tradeoffs with DP, i.e.,
the upper and lower bounds of approximate axioms with
a given privacy budget ϵ. All of the missing proofs in this
section can be found in Appendix A.

3.1 DP-EFFICIENCY TRADEOFF

First of all, we discuss the tradeoff between DP and Pareto
efficiency. Li et al. [2023] introduced the concept of proba-
bilistic Pareto efficiency to address the inherent incompati-
bility between DP and Pareto efficiency. Probabilistic Pareto
efficiency stipulates that each Pareto dominating alterna-
tive must have a higher probability of winning compared
to the dominated alternative (standard Pareto efficiency re-
quires “always winning” instead of “a higher probability of
winning”). We further extend this notion by introducing a
parameter β to quantify the level of Pareto efficiency.

Definition 2 (β-Pareto Efficiency, β-PE for short). Given
β ∈ (0,+∞), a voting rule f : L(A)n → R(A) satisfies
β-Pareto efficiency, if for each pair of alternatives a, b ∈ A
that a ≻j b for all j ∈ N , it holds that

P[f(P ) = a] ⩾ β · P[f(P ) = b].



Mechanism 1: BordaEXP
Input: Profile P , Noise level parameter ϵ
Output: Winning alternative awin

1 Get Borda score BordaP (a) of each alternative a ∈ A;
2 Compute the probability distribution p ∈ ∆(A), such

that p(a) ∝ eBordaP (a)ϵ/(2m−2) for all a ∈ A;
3 Sample awin ∼ p;
4 return awin

In words, a voting rule satisfies β-PE if the winning prob-
ability of each Pareto dominated alternative never exceeds
1/β of the winning probability of its dominant alternative.
Therefore, a larger β is more desirable and represents a
higher level of Pareto efficiency. It’s easy to check that 1-PE
is equivalent to the probabilistic Pareto efficiency in [Li
et al., 2023] and ∞-PE is equivalent to standard PE.

Next, we trade off Pareto efficiency with DP under the no-
tion of β-PE. The following proposition provides an upper
bound of β-PE under the constraint of ϵ-DP.

Proposition 1 (β-PE, Upper Bound). For any ϵ, there is
no neutral rule satisfying ϵ-DP and β-PE with β > e

nϵ
m−1 .

Proof Sketch. Let f be a neutral rule satisfying ϵ-DP and
β-Pareto efficiency. By ϵ-DP and neutrality, we have

P[f(P ) = a] ⩽ enϵ · P[f(P ) = b], for all P, a, b. (2)

Then, by considering the profile P where all voters’ pref-
erences are the same, i.e., a1 ≻j a2 ≻j · · · ≻j am for all
j ∈ N , we have

P[f(P ) = a1] ⩽ enϵ · P[f(P ) = am].

Theorefore, we have βm−1 ⩽ enϵ, i.e., β ⩽ e
nϵ

m−1 .

Proposition 1 provides an upper bound on the achievable
level of Pareto efficiency when subject to the constraint of
ϵ-DP. Next, we propose a mechanism (Mechanism 1, Borda
score exponential mechanism or BordaEXP for short) to
show a lower bound of the achievable approximate Pareto
efficiency under DP. Technically, Mechanism 1 is an ex-
ponential mechanism that employs the Borda score as the
utility metric, where the Borda score of an alternative a ∈ A
for a given profile P is defined as follows.

BordaP (a) =
∑

≻j∈P

|{b ∈ A : a ≻j b}|.

The following Proposition illustrates the lower bound of
approximate Pareto efficiency achieved by Mechanism 1.
Both upper and lower bound for β-PE are exp(Θ(nϵ/m)).
We plot them in Figure 1, where we set m = 5, n = 10.

Proposition 2 (β-PE, Lower Bound). Given ϵ ∈ R+,
Mechanism 1 satisfies ϵ-DP and e

nϵ
2m−2 -PE.

0 1 2 3 4 5
Privacy Budget 

100

101

102

103

104

105

-P
ar

et
o 

Ef
fic

ie
nc

y Upper Bound
Lower Bound

Figure 1: Tradeoff curves (upper and lower bounds) between
β-PE and ϵ-DP, where m = 5, n = 10.
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Figure 2: Tradeoff curves (upper and lower bounds) between
γ-SDE and ϵ-DP, where m = 5, n = 10.

Secondly, we discuss the tradeoff between DP and SD-
efficiency. As a notion stronger than Pareto efficiency, SD-
efficiency is also incompatible with DP. In order to cap-
ture the incompatibility between DP and SD-efficiency, an
approximate version of SD-efficiency is needed. Li et al.
[2023] proposed approximate SD-strategyproofness, where
they introduced a parameter in Inequality (1) (the definition
of SD relationship). Their method inspires us to consider the
approximate SD relationship, which is defined as follows.

Let ξ, ζ ∈ R(A) be two lotteries and ≻∈ L(A) be a linear
order on A. Then ξ is said to γ-stochastically dominate ζ
(denoted by ξ ⪰γ−SD ζ), if and only if for any y ∈ A,∑

x∈A,x≻y

P[ξ = x] ⩾
1

γ
·

∑
x∈A,x≻y

P[ζ = x].

Then, we define γ-SD-efficiency as follows based on the
approximate SD relationship.

Definition 3 (γ-SD-Efficiency, γ-SDE for short). Given
γ ∈ (0, 1], a voting rule f : L(A)n → R(A) satisfies γ-SD-
efficiency if for each profile P , f(P ) is not γ-SD-dominated.

In the definition, a larger value of γ is more desirable , since
a larger γ imposes stricter conditions for a lottery to γ-
SD-dominate another one. Consequently, achieving γ-SDE
becomes comparatively easier as γ decreases. Especially,
when γ = 1, γ-SDE reduces to the standard SD-efficiency.



Mechanism 2: RD-Anti
Input: Profile P , Noise level parameter ϵ
Output: Winning alternative awin

1 Select a ballot ≻j∈ P randomly;
2 Get the last-ranked alternative of ≻j , denoted by a;
3 Compute the probability distribution p ∈ ∆(A), where

p(a) = 1
(m−1)eϵ+1 and p(b) = eϵ · p(a), for all b ̸= a;

4 Sample awin ∼ p;
5 return awin

Compared to the β-PE (Definition 2), the definition of γ-
SDE is a bit more sophisticated, which brings obstacles to
our exploration. Therefore, we develop a tool to help us
judge whether a voting rule satisfies γ-SDE with a given γ,
as shown in the following lemma.

Lemma 1. Given γ ∈ R+, a voting rule f : L(A)n →
R(A) satisfies γ-SD-efficiency if and only if

1

γ
⩾ sup

P∈L(A)n, ξ∈R(A)

inf
j∈N, y∈A

∑
x∈A,x≻jy

P[ξ = x]∑
x∈A,x≻jy

P[f(P ) = x]
.

Using Lemma 1, we are ready to capture the upper bound of
γ-SDE under ϵ-DP, as shown in the following proposition.

Proposition 3 (γ-SDE, Upper Bound). For any ϵ, there
is no neutral voting rule satisfying ϵ-DP and γ-SDE with
γ > (m−1)enϵ

(m−1)enϵ+1 .

Proposition 3 establishes an upper bound for SD-efficiency
under DP. Further, building on the well-known voting rule
of random dictatorship* (RD), we propose a mechanism
(Mechanism 2) to explore the lower bound of achievable ap-
proximate SD-efficiency under DP. Technically, Mechanism
2 replaces the dictatorial process in RD with an exponential
mechanism that adopts the anti-plurality score as its utility
measure, where the anti-plurality score is defined as

Anti≻(a) =

{
0, a is the last-ranked in ≻,

1, otherwise.

Then the following proposition shows the lower bound of
approximate SD-efficiency under ϵ-DP achieved by Mecha-
nism 2. Both the upper bound and lower bound for γ-SDE
are plotted in Figure 2, where we set m = 5, n = 10.

Proposition 4 (γ-SDE, Lower Bound). Given ϵ ∈ R+,
Mechanism 2 satisfies ϵ-DP and (m−1)eϵ

(m−1)eϵ+1 -SDE.

Finally, we investigate the tradeoff between DP and PC-
efficiency. Similar to SD, the approximate version of PC
relationship is also needed.

*Select a voter uniformly at random and declare their top-
ranked alternative as the winner.

Given κ ∈ R+, ≻∈ L(A), and two lotteries ξ, ζ ∈ R(A),
ξ is more desirable than ζ by means of κ-PC (denoted by
ξ ⪰κ-PC ζ) if and only∑
x,y∈A,
x≻y

P[ξ = x] · P[ζ = y] ⩾
1

κ

∑
x,y∈A,
x≻y

P[ζ = x] · P[ξ = y].

Further, the approximate PC-efficiency can be defined.

Definition 4 (κ-PC-Efficiency). Given κ ∈ (0, 1], a voting
rule f : L(A)n → R(A) satisfies κ-PC-efficiency if f(P )
is never κ-PC dominated for any profile P ∈ L(A)n.

Similar to the case of SD, a larger κ in Definition 4 is also
more desirable, and 1-PC-efficiency also reduces to stan-
dard PC-efficiency. In addition, our generalization of SD-
efficiency and PC-efficiency keeps the relationship between
them (PC-efficiency implies SDE), shown as follows.

Lemma 2. For all γ ∈ (0, 1], any voting rule satisfying
γ-PC-efficiency satisfies γ-SDE.

Therefore, the upper bound of κ-PC-efficiency under DP
must be smaller than the upper bound of γ-SDE. However,
the following proposition shows that even the approximate
version of PC-efficiency cannot be achieved under DP.

Proposition 5 (κ-PC-Efficiency, Upper Bound). Given
any κ, ϵ ∈ R+, there is no voting rule satisfying ϵ-DP and
κ-PC-efficiency simultaneously.

Proposition 5 also implies that PC-efficiency is the limit of
tradeoff between DP and efficiency. Any notion stronger
than PC-efficiency cannot be even approximately achieved
when DP is required.

3.2 DP-CONDORCET CONSISTENCY TRADEOFF

The Condorcet winner and Condorcet loser are fundamental
concepts in social choice theory. Based on these concepts,
Condorcet consistency typically refers to two axioms: the
Condorcet criterion and the Condorcet loser criterion. How-
ever, DP requires that the support set of f(P ) equals A
for every profile P , i.e., Pr[f(P ) = a] ̸= 0 holds for all
P ∈ L(A)n and a ∈ A. This implies that neither of these
axioms can be fully satisfied under the constraint of DP.
Li et al. [2023] introduced an approximate version of the
Condorcet criterion (α-pCondorcet) to quantify the level of
satisfaction of the Condorcet criterion. Furthermore, they
proved that if a voting rule satisfies ϵ-DP and α-pCondorcet,
then α ≤ eϵ. This axiom is referred to as the α-Condorcet
criterion in this work, and its formal definition is as follows.

Definition 5 (α-Condorcet Criterion, α-CC for short [Li
et al., 2023]). Given α ∈ R+, a voting rule f : L(A)n →



Mechanism 3: CWRR
Input: Profile P , Noise level parameter ϵ
Output: Winning alternative awin

1 if CW(P ) exists then
2 p(CW(P )) = eϵ

eϵ+m−1 ;
3 p(a) = 1

eϵ+m−1 , for all a ∈ A\{CW(P )};

4 else
5 p(a) = 1

m , for all a ∈ A;

6 Sample awin ∼ p;
7 return awin

R(A) satisfies α-Condorcet criterion if for all profiles P
that CW(P ) exists and each alternative a ∈ A\{CW(P )},

P[f(P ) = CW(P )] ⩾ α · P[f(P ) = a].

Next, we show the upper bound of approximate Condorcet
criterion (eϵ-CC) is achievable under DP (Proposition 6).
Technically, we study Mechanism 3 (Condorcet Winner Ran-
domized Response, abbreviated as CWRR), which applies
randomized response to CW(P ).

Proposition 6 (α-CC, Lower Bound). Given ϵ ∈ R+,
Mechanism 3 satisfies both ϵ-DP and eϵ-Condorcet.

Similar to α-CC, we propose the approximate Condorcet
loser criterion to measure the level of satisfaction of Con-
dorcet loser criterion.

Definition 6 (η-Condorcet Loser Criterion, η-CLC for
short). Given η ∈ R+, a voting rule f : L(A)n → R(A)
satisfies η-Condorcet loser criterion if for all profiles P such
that CL(P ) exists and each alternative a ∈ A\{CL(P )},

P[f(P ) = a] ⩾ η · P[f(P ) = CL(P )].

Notably, a larger η is more desirable, and ∞-CLC is equiva-
lent to the standard Condorcet loser criterion. Further, the
following proposition shows an upper bound of η under DP.

Proposition 7 (η-CLC, Upper Bound). For any ϵ, there is
no voting rule satisfying ϵ-DP and η-CLC with η > eϵ.

Proposition 8 shows the upper bound in Proposition 7 can
be achieved by Mechanism 4 (Condorcet loser randomized
response, CLRR), formally stated as follows.

Proposition 8 (η-CLC, Lower Bound). Given ϵ ∈ R+,
Mechanism 4 satisfies ϵ-DP and eϵ-CLC.

4 TRADEOFF BETWEEN AXIOMS
UNDER DP

This section investigates the 3-way tradeoffs among DP and
voting axioms. Concretely, we examine the distinction be-
tween the axiom tradeoffs in classical social choice theory

Mechanism 4: CLRR
Input: Profile P , Noise level parameter ϵ
Output: Winning alternative awin

1 if CL(P ) exists then
2 p(CL(P )) = 1

(m−1)eϵ+1 ;

3 p(a) = eϵ

(m−1)eϵ+1 , for all a ∈ A\{CL(P )};

4 else
5 p(a) = 1

m , for all a ∈ A;

6 Sample awin ∼ p;
7 return awin

and the axiom tradeoffs under DP. Since even the approxima-
tion of PC-efficiency cannot be achieved under DP, we only
take α-CC, η-CLC, β-PE, and γ-SDE into consideration.
On the one hand, we capture the lower bounds of 3-way
tradeoffs by proving the levels of satisfaction to all the ap-
proximate axioms achieved by Mechanisms 1–4, which are
summarized in Table 3. All of the detailed results and their
proofs corresponding to Table 3 are shown in Appendix B.1.

On the other hand, we investigate the upper bounds of the 3-
way tradeoff between DP and each pairwise combination of
the axioms. All of the missing proofs for the upper bounds
in this section can be found in Appendix B.2.

Lower bounds of 3-way tradeoffs In the previous section,
we showed that BordaExp, RD-Anti, CWRR, and CLRR
(Mechanisms 1–4) currently reach the best achievable levels
of β-PE, γ-SDE, α-CC, and η-CLC, respectively. Therefore,
these voting rules can provide the lower bounds of 3-way
tradeoffs. For example, CWRR satisfies 1-PE and eϵ-CC,
which indicates that the 3-way tradeoff among ϵ-DP, β-PE,
and α-CC has a lower bound, i.e., α = eϵ and β = 1.

Especially, the smoothed tradeoff between α-CC and η-CLC
can be achieved by the probability mixture of CWRR and
CLRR, which performs CWRR with probability ω ∈ [0, 1]
and performs CLRR with probability 1− ω.

Let fω
ϵ (P ) denote ω ·CWRR(P, ϵ)+ (1−ω) ·CLRR(P, ϵ).

Then for any profile P ,

P[fω
ϵ (P ) = a] =


ω·eϵ

eϵ+m−1 + (1−ω)·eϵ
(m−1)eϵ+1 , a = CW(P )

ω
eϵ+m−1 + 1−ω

(m−1)eϵ+1 , a = CL(P )
ω

eϵ+m−1 + (1−ω)·eϵ
(m−1)eϵ+1 , otherwise.

Therefore, fω
ϵ satisfies ϵ-DP, α-CC, and η-CLC, where we

have α · η = eϵ exactly. Please refer to Appendix B.1 for
the full results of lower bounds. In the rest of this section,
we will show the upper bounds of 3-way tradeoffs.

Tradeoff between Condorcet consistency First of all,
we discuss the tradeoff between Condorcet criterion and
Condorcet loser criterion. In fact, the standard forms of
these two axioms are compatible in standard social choice



Table 3: Lower bounds of 3-way tradeoff achieved by Mechanisms 1–4.

Voting Rule β-PE γ-SDE α-CC η-CLC Reference

BordaEXP e
nϵ

2m−2
e

n
2 + (m− 2) · e

n(m−2)
4m−4

e
n
2 + (m− 1) · e

n(m−2)
4m−4

e(⌊
n
2 ⌋+1)· m

2m−2−
n
2 e

n
2m−2−(⌈

n
2 ⌉−1) m

2m−2 Mechanism 1

RD-Anti 1
(m− 1)eϵ

(m− 1)eϵ + 1

(
⌊n
2 ⌋ − 1

)
eϵ + ⌈n

2 ⌉+ 1

neϵ

(
⌊n
2 ⌋ − 1

)
eϵ + ⌈n

2 ⌉+ 1

neϵ
Mechanism 2

CWRR 1
m− 1

m
eϵ 1 Mechanism 3

CLRR 1
(m− 2)eϵ + 1

(m− 1)eϵ + 1
1 eϵ Mechanism 4

theory (without DP), since for any profile P , the Condorcet
winner CW(P ) will never coincide with the Condorcet loser
CL(P ). However, when DP is required, the best α-CC (α =
eϵ) is not compatible with the best η-CLC (η = eϵ), since
Condorcet winner can sometimes be converted to Condorcet
loser by reversing only one voter’s vote (e.g., when P−j

are tied, reversing ≻j exchanges Condorcet winner and
Condorcet loser). Formally, we have the following theorem.

Theorem 1. There is no voting rule satisfying ϵ-DP, α-CC
and η-CLC with α · η > eϵ.

Proof Sketch. Consider the profile P (n = 2k + 1), where
k + 1 voters consider a1 ≻ a2 ≻ · · · ≻ am and k voters
consider am ≻ am−1 ≻ · · · ≻ a1. Let P ′ be another profile
(n = 2k + 1), where k voters consider a1 ≻′ a2 ≻′ · · · ≻′

am, and k + 1 voters consider am ≻ am−1 ≻ · · · ≻ a1.
Then P and P ′ are neighboring, and CW(P ) = CL(P ′).
By the definition of DP, we have α · η ⩽ eϵ.

Surprisingly, the upper bound shown in Theorem 1 coincides
with the lower bound achieved by the probability mixture
of CWRR and CLRR. In other words, this bound is tight for
Condorcet criterion and Condorcet loser criterion.

Condorcet consistency against Pareto efficiency Sec-
ondly, we discuss the three-way tradeoff between Condorcet
consistency and Pareto efficiency. In standard social choice
theory, Pareto efficiency and the Condorcet criterion are
compatible, as selecting the original Condorcet method (i.e.,
choosing CW(P ) as the winner with probability 1) satisfies
Pareto efficiency. However, under ϵ-DP, α-CC focuses only
on maximizing the winning probability of CW(P ), while β-
PE requires consideration of each pair of Pareto-dominating
and Pareto-dominated alternatives. Consequently, when DP
is required, the optimal β-PE and α-CC may not be achieved
simultaneously. Formally, we present the following theorem.

Theorem 2. There is no neutral voting rule satisfying ϵ-DP,
β-PE, and α-CC with α · βm−2 > enϵ.

Remark 1. According to Proposition 1 and [Li et al., 2023],
the upper bounds of β-PE and α-CC are β ⩽ e

n
m−1 and

α ⩽ eϵ, respectively. Therefore, there is a natural upper
bound of αβm−2,

αβm−2 ⩽ supα · (supβ)m−2 = e1+n− n
m−1 ,

i.e., Theorem 2 is non-trivial only when n ⩽ m− 1.

Similarly, the same phenomenon also occurs to the η-CLC.
Condorcet loser criterion is also compatible with Pareto
efficiency in social choice theory, since the Condorcet loser
will never be a Pareto dominator. However, due to the same
reason as Condorcet criterion, the best η-CLC may not be
compatible with the best β-PE under the same condition.
Formally, we have the following theorem.

Theorem 3. There is no neutral voting rule ϵ-DP, β-PE,
and η-CLC with η · βm−2 > enϵ.

Condorcet consistency against SD-efficiency The re-
lationship between SD-efficiency and Condorcet criterion
is also affected by ϵ-DP. The next proposition shows SD-
efficiency is compatible with Condorcet criterion in social
choice theory. To simplify notations, we let Condorcet do-
main DC denote the set of all profiles P where CW(P )
exists. We say a voting rule f : L(A)n → R(A) is a Con-
dorcet method if it satisfies P[f(P ) = CW(P )] = 1.

Proposition 9. Condorcet method is SD-efficient on DC .

However, when DP is required, we can not achieve the best
α-CC and γ-SDE simultaneously. The upper bound of this
tradeoff is shown in the following theorem.

Theorem 4. There is no neutral voting rule satisfying ϵ-DP,
α-CC, and γ-SDE with γ > α+m−1−αe−nϵ

α+m−1 .

The tradeoff curves between γ-SDE and α-CC subject to
ϵ-DP are shown in Figure 3, where we set m = 5, n = 10.

For Condorcet loser criterion, the situation is quite similar.
On the one hand, the compatibility between SD-efficiency
and Condorcet loser criterion without DP is proved via
the maximal-lottery mechanism [Brandt, 2017]. On the
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Figure 3: Tradeoff curves (upper bounds) between γ-SDE
against α-CC under ϵ-DP, where m = 5, n = 10.
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Figure 4: Tradeoff curves (upper bounds) between γ-SDE
against η-CLC under ϵ-DP, where m = 5, n = 10.

other hand, there is a difference between optimizing the
SD-efficiency and minimizing the winning probability of
the Condorcet loser under DP, which leads to a 3-way trade-
off among them. Formally, we have the following theorem.

Theorem 5. There is no neutral voting rule satisfying ϵ-DP,
η-CLC, and γ-SDE with γ > enϵ−η

enϵ .

The tradeoff curves between γ-SDE and η-CLC under ϵ-DP
are shown in Figure 4, where we set m = 5 and n = 10.

Pareto efficiency against SD-efficiency Finally, we in-
vestigate the 3-way tradeoff between Pareto efficiency, SD-
efficiency, and DP. Although the standard SD-efficiency
implies the standard Pareto efficiency in social choice the-
ory, their best approximate bounds are incompatible under
DP. Formally, we have the following theorem.

Theorem 6. There is no neutral voting rule satisfying ϵ-DP,
γ-SDE, and β-PE with γ > enϵ−enϵβ2−m

enϵ−enϵβ2−m+β−1 .

The upper bounds established in Theorem 6 are illustrated
in Figures 5–6. From the figure, we make the following two
observations:

1. Curves corresponding to larger values of ϵ (weaker
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Figure 5: Tradeoff curves (upper bounds) between γ-PE
against α-SDE under ϵ-DP, where m = 5, n = 10.
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Figure 6: Tradeoff curves (upper bounds) between γ-PE
against α-SDE under ϵ-DP, where m = 5, n = 20.

privacy guarantees) are positioned toward the top-right
compared to those with smaller ϵ, indicating that the
incompatibility between these axioms diminishes as
the privacy guarantee weakens.

2. Curves corresponding to larger values of n (more vot-
ers) are positioned toward the top-right compared to
those with smaller n (fewer voters), indicating that the
incompatibility decreases as the number of voters in-
creases. This trend is consistent across other figures.
Additional figures illustrating different values of n for
other axioms are provided in Appendix C.

5 CONCLUSION AND FUTURE WORK

This paper investigated the tradeoff between DP and va-
rieties of voting axioms, including Condorcet consistency
and three efficiencies. We found that DP is significantly
incompatible with all of these axioms and quantified their
2-way tradeoffs against DP. Further, we explored the 3-way
tradeoffs among DP and these axioms. Our results show that
the tradeoffs between axioms are different with or without
DP. It would be an interesting future direction to study the
tradeoffs between DP and other axioms. Besides, it is also
interesting to develop tighter bounds for the tradeoffs.
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A MISSING PROOFS IN SECTION 3

Proposition 1 (β-Pareto Efficiency, Upper Bound). There
is no neutral rule f : L(A)n → R(A) that satisfies ϵ-DP
and β-Pareto efficiency with β > e

nϵ
m−1 .

Proof. Let f : L(A)n → A be a voting rule satisfying ϵ-DP
and β-Pareto efficiency. Let P be a profile, where a1 ≻
a2 ≻ · · · ≻ am, for all i ∈ N . Since a1 Pareto dominates
a2, a2 Pareto dominates a3, etc., we have

P[f(P ) = a1] ⩾ β · P[f(P ) = a2]

⩾ β2 · P[f(P ) = a3]

· · ·
⩾ βm−1 · P[f(P ) = am].

Then we claim that for profile P ,

P[f(P ) = a1] ⩽ enϵ · P[f(P ) = am].

Theorefore, we have βm−1 ⩽ enϵ, i.e., β ⩽ e
nϵ

m−1 , as de-
sired.

Finally, we prove the claim above. In fact, for any voting
rule f : L(A)n → R(A) satisfying ϵ-DP and neutrality, we
have

P[f(P ) = a] ⩽ enϵ · P[f(P ) = b], for all a, b ∈ A. (3)

Now, we prove Equation (3). For any profile P, P ′ ∈ L(A)n,
let ℓ0(·, ·) represents the ℓ0-distance between them, i.e.,
ℓ0(P, P

′) = {j ∈ N :≻j ̸=≻′
j}. Then, by considering the

following operation Op, we can see that P can be trans-
ferred to P ′ through k = ℓ0(P, P

′) times of operations.

• Op: Choose a voter i ∈ N that ≻i ̸=≻′
i, let ≻i=≻′

i.

Letting P0, P1, . . . , Pk denote all of the profiles, we have
the following diagram.

P = P0
Op−−→ P1

Op−−→ P2
Op−−→ · · · Op−−→ Pk = P ′.

Notice that in each step, only one voter’s preference is
changed. Consequently, for each i, Pi and Pi+1 are neigh-
boring profiles. Since f satisfies ϵ-DP, we have

P[f(P ) = a] ⩽ eϵ · P[f(P1) = a]

⩽ e2ϵ · P[f(P2) = a]

⩽ . . .

⩽ ek·ϵ · P[f(P ′) = a].

Besides, for any given P, P ′ ∈ L(A)n, there are at most
n distinct voters j ∈ N that ≻j ̸=≻′

j . Therefore, for any
profile P, P ′ ∈ L(A)n and any a ∈ A, we have

P[f(P ) = a] ⩽ enϵ · P[f(P ′) = a].

Now, for any profile P ∈ L(A)n and an arbitrarily chosen
paif of alternatives a, b ∈ A, let P ′ be the profile transferred
from P by swapping a and b in each voter’s preference. By
the neutrality of f , we have

P[f(P ) = a] = P[f(P ′) = b],

P[f(P ′) = a] = P[f(P ) = b].

Then it follows that

P[f(P ) = a] ⩽ enϵ · P[f(P ′) = a]

= enϵ · P[f(P ) = b],

which completes the proof.

Proposition 2 (β-Pareto Efficiency, Lower Bound).
Given ϵ ∈ R+, Mechanism 1 satisfies ϵ-DP and e

nϵ
2m−2 -

Pareto efficiency.

Proof. Let EBorda : L(A)n → R(A) denote the mapping
introduced by BordaEXP. Then for any profile P ∈ L(A)n

and alternative a ∈ A, we have

P[EBorda(P ) = a] =
eBordaP (a)ϵ/(2m−2)∑

c∈A

eBordaP (c)ϵ/(2m−2)
.

First, we establish the bound for Pareto efficiency. Given
profile P ∈ L(A)n, suppose a, b ∈ A are a pair of alter-
natives that a ≻j b for all j ∈ N . It follows that, for each
voter j ∈ N , the number of alternatives that are considered
worse than b according to her preference order ≻j is strictly
less than the number of alternatives considered worse than
a. Formally, we have

|{c ∈ A : a ≻j c}| − |{c ∈ A : b ≻j c}| ⩾ 1, for all j ∈ N.

By the definition of Borda score, we have

BordaP (a)− BordaP (b) ⩾ n.

Then it follows that

P[EBorda(P ) = a] =
eBordaP (a)·ϵ/(2m−2)∑

c∈A

eBordaP (c)·ϵ/(2m−2)

⩾
eBordaP (b) · enϵ/(2m−2)∑
c∈A

eBordaP (c)·ϵ/(2m−2)

= enϵ/(2m−2) · P[EBorda(P ) = b],

which indicates that EBorda satisfies e
nϵ

2m−2 -Pareto effi-
ciency.

Then we prove the DP-bound. For all neighboring profiles



P, P ′ ∈ L(A)n,

P[EBorda(P ) = a]

P[EBorda(P ′) = a]

=
eBordaP (a)· ϵ

2m−2

eBordaP ′ (a)· ϵ
2m−2

·

∑
c∈A

eBordaP ′ (c)· ϵ
2m−2∑

c∈A

eBordaP (c)· ϵ
2m−2

⩽ eϵ/2 · sup
P∈L(A)n

∑
c∈A

eBordaP ′ (c)· ϵ
2m−2∑

c∈A

eBordaP (c)· ϵ
2m−2

⩽ eϵ,

which completes the proof.

Lemma 1. Given γ > 0, a voting rule f satisfies γ-SD-
efficiency if and only if

1

γ
⩾ sup

P∈L(A)n,ξ∈R(A)

inf
j∈N,y∈A

∑
x:x≻jy

P[ξ = x]∑
x:x≻jy

P[f(P ) = x]
.

Proof. Suppose that f is not γ-SD-efficient. Then there
must be some profile P ∈ L(A)n that f(P ) is γ-SD-
dominated by some ξ ∈ R(A), i.e., for all y ∈ A and
≻j∈ P , ∑

x:x≻jy

P[ξ = x] ⩾
1

γ
·

∑
x:x≻jy

P[f(P ) = x],

which is equivalent to

1

γ
⩽ inf

j∈N,y∈A

∑
x:x≻jy

P[ξ = x]∑
x:x≻jy

P[f(P ) = x]
.

Therefore, f is γ-SD-efficient if and only if for each P ∈
L(A)n, there does not exist such ξ, i.e., for all y ∈ A and
P ∈ L(A)n,

1

γ
⩾ inf

j∈N,y∈A

∑
x:x≻jy

P[ξ = x]∑
x:x≻jy

P[f(P ) = x]
,

which is equivalent to

1

γ
⩾ sup

P∈L(A)n,ξ∈R(A)

inf
j∈A,y∈A

∑
x:x≻jy

P[ξ = x]∑
x:x≻jy

P[f(P ) = x]
.

That completes the proof.

Proposition 3 (γ-SD-Efficiency, Upper Bound). Given
γ ∈ R+, there is no neutral voting rule f : L(A)n → R(A)

satisfying ϵ-DP and γ-SD-efficiency with γ > (m−1)enϵ

(m−1)enϵ+1 .

Proof. Consider two profiles, P1 and P2, where all voters
in P1 share the same preference order a1 ≻ a2 ≻ · · · ≻ am.
In contrast, in P2, the voters’ preferences are am ≻′ a2 ≻′

a3 ≻′ · · · ≻′ am−1 ≻′ a1. Then the unique SD-efficient
lottery for P1 and P2 should be Ia1

and Iam
, respectively.

Here, Ia1
and Iam

represent the indicator functions of a1
and am, formally defined as follows.

P[Ia1
= a] =

{
1 a = a1

0 otherwise
,

P[Iam
= a] =

{
1 a = am

0 otherwise
.

Let f be any neutral voting rule satisfying ϵ-DP. By Equation
(3), we have

P[f(P1) = a1] ⩽ enϵ · P[f(P2) = a1] (by ϵ-DP)
= enϵ · P[f(P1) = am]. (by neutrality)

By symmetry, for any a ̸= am, P[f(P1) = a] ⩽ enϵ ·
P[f(P1) = am]. Therefore,

1 =
∑
a∈A

P[f(P1) = a]

⩽ ((m− 1)enϵ + 1) · P[f(P1) = am],

i.e., P[f(P1) = am] ⩾ 1
(m−1)enϵ+1 . If there exists some

γ that f satisfies γ-SD-efficiency, there does not exist any
ξ ∈ R(A), such that∑
x:x≻y

P[ξ = x] ⩾
1

γ
·
∑

x:x≻y

P[f(P1) = x], for all y ∈ A.

Therefore, we have

1

γ
⩾ sup

P∈L(A)n
sup

ξ∈R(A)

inf
y∈A

∑
x:x≻y

P[ξ = x]∑
x:x≻y

P[f(P ) = x]

⩾ sup
ξ∈R(A)

inf
y∈A

∑
x:x≻y

P[ξ = x]∑
x:x≻y

P[f(P1) = x]

⩾ inf
y∈A

∑
x:x≻y

P[Ia1
= x]∑

x:x≻y
P[f(P1) = x]

=
1

max
y∈A

∑
x:x≻y

P[f(P1) = x]

=
1

1− P[f(P1) = am]

⩾
(m− 1)enϵ + 1

(m− 1)enϵ
.

In other words, we have γ ⩽ (m−1)enϵ

(m−1)enϵ+1 , as desired.



Proposition 4 (γ-SD-Efficiency, Lower Bound). Mecha-
nism 2 satisfies ϵ-DP and (m−1)eϵ

(m−1)eϵ+1 -SD-efficiency.

Proof. Letting EAnti : L(A)n → R(A) denote the mapping
introduced by Mechanism 2.

For any neighboring profiles P, P ′ ∈ L(A)n that P−j =
P ′
−j and ≻j ̸=≻′

j , suppose that the chosen ballot in the mech-
anism is ≻i. Then

P[EAnti(P ) = a | i ̸= j] = P[EAnti(P
′) = a | i ̸= j]

(use C to denote them)

Further, for any a ∈ A,

P[EAnti(P ) = a]

P[EAnti(P ′) = a]

=
P[i = j ∧ EAnti(P ) = a] + P[i ̸= j ∧ EAnti(P ) = a]

P[i = j ∧ EAnti(P ′) = a] + P[i ̸= j ∧ EAnti(P ′) = a]

=
1
nP[EAnti(P ) = a | i = j] + n−1

n P[EAnti(P ) = a | i ̸= j]
1
nP[EAnti(P ′) = a | i = j] + n−1

n P[EAnti(P ′) = a | i ̸= j]

=
1
nP[EAnti(P ) = a | i = j] + n−1

n · C
1
nP[EAnti(P ′) = a | i = j] + n−1

n · C
(P−j = P ′

−j)

⩽
eϵ · 1

nP[EAnti(P
′) = a | i = j] + n−1

n · C
1
nP[EAnti(P ′) = a | i = j] + n−1

n · C
⩽ eϵ,

which indicates that EAnti satisfies ϵ-DP. On the other hand,
given profile P , suppose the top-ranked and the last-ranked
alternative of ≻i are a⊤ and a⊥, respectively. Then, for any
ξ ∈ R(A), we have∑

x:x≻iy
P[ξ = x]∑

x:x≻iy
P[EAnti(P ) = x]

⩽
1∑

x:x≻iy
P[EAnti(P ) = x]

=

∑
x:x≻iy

P[Ia⊤ = x]∑
x:x≻iy

P[EAnti(P ) = x]
.

Theorefore,

sup
ξ∈R(A)

inf
y∈A

∑
x:x≻iy

P[ξ = x]∑
x:x≻iy

P[EAnti(P ) = x]

= inf
y∈A

1∑
x:x≻iy

P[EAnti(P ) = x]

=
1

1− P[EAnti(P ) = a⊥]

=
(m− 1)eϵ

(m− 1)eϵ + 1
.

By Lemma 1, EAnti satisfies (m−1)eϵ

(m−1)eϵ+1 -SD-efficiency,
which completes the proof.

Lemma 2. Given γ ⩽ 1, γ-PC-efficiency implies γ-SD-
efficiency.

Proof. In fact, we only need to prove that for any ξ, ζ ∈
R(A), ξ ⪰γ−SD ζ implies ξ ⪰γ−PC ζ . Let ξ and ζ be two
lotteries satisfying ξ ⪰γ−SD ζ, i.e.,∑

x≻y

P[ξ = x] ⩾
1

γ
·
∑
x≻y

P[ζ = y], for any y ∈ A.

Then, on the one hand, we have∑
x,y∈A∧x≻y

P[ξ = x] · P[ζ = y]

=
∑
y∈A

P[ζ = y] ·
∑
x≻y

P[ξ = x]

⩾
∑
y∈A

P[ζ = y] · 1
γ

∑
x≻y

P[ζ = y]

=
1

γ
·

∑
x,y∈A∧x≻y

P[ζ = y] · P[ζ = y].

On the other hand, we have

1

γ
·

∑
x,y∈A∧x≻y

P[ζ = y]P[ξ = y]

=
∑
x∈A

P[ζ = y] ·
∑
y≺x

P[ξ = y]

=
1

γ
·
∑
x∈A

P[ζ = y] ·
∑
y≺x

1−
∑
x⪰y

P[ξ = x]


⩽

1

γ
·
∑
x∈A

P[ζ = y] ·
∑
y≺x

1− 1

γ

∑
x⪰y

P[ζ = y]


⩽

1

γ
·
∑
x∈A

P[ζ = y] ·
∑
y≺x

1−
∑
x⪰y

P[ζ = y]


=

1

γ
·

∑
x,y∈A∧x≻y

P[ζ = y] · P[ζ = y].

Then it follows that∑
x,y∈A∧x≻y

P[ξ = x] · P[ζ = y]

⩾
1

γ
·

∑
x,y∈A∧x≻y

P[ζ = x] · P[ξ = y],

which completes the proof.

Proposition 5 (κ-PC-Efficiency, Upper Bound). Given
any κ, ϵ ∈ R+, there is no voting rule f : L(A)n → R(A)
satisfying ϵ-DP and κ-PC-efficiency.



Proof. Consider the profile P , where all voters share the
same prefereoce

a1 ≻ a2 ≻ · · · ≻ am.

Then the unique PC-efficient distribution on A is Ia1
. Fur-

ther, we have∑
x,y: x≻iy

P[Ia1 = x] · P[f(P ) = y]

=
∑

y: a1≻iy

P[f(P ) = y] = 1− P[f(P ) = a1].

However, ∑
x,y: x≻iy

P[f(P ) = x] · P[Ia1
= y]

=
∑
x∈A

P[f(P ) = x] ·
∑

y: x≻iy

P[Ia1
= y] = 0.

In other words, for all κ ∈ R+, the lottery Ia1
can κ-PC-

dominate any f(P ), which completes the proof.

Proposition 6 (α-Condorcet Criterion, Lower Bound).
Mechanism 3 satisfies eϵ-Condorcet criterion and ϵ-DP.

Proof. Let RCW : L(A)n → R(A) denote the mapping
introduced by CWRR. Then for any profile P ∈ L(A)n and
alternative a ∈ A, we have

P[RCW(P ) = a] =

{
eϵ

eϵ+m−1 , a = CW(P )
1

eϵ+m−1 , otherwise
,

for all P ∈ L(A)n that CW(P ) exists.

By definition, it is not hard to see that CWRR satisfies
eϵ-Condorcet criterion. Thus, we only need to prove that
CWRR satisfies ϵ-DP. In fact, for any neighboring profiles
P, P ′ ∈ L(A)n and a ∈ A,

P[RCW(P ) = a]

P[RCW(P ′) = a]
⩽

maxa∈A P[RCW(P ) = a]

maxa∈A P[RCW(P ′) = a]

⩽
eϵ

eϵ +m− 1
/

1

eϵ +m− 1

= eϵ,

which completes the proof.

Proposition 7 (η-Condorcet Loser Criterion, Upper
Bound). There is no voting rule satisfying ϵ-DP and η-
Condorcet loser criterion with η > eϵ.

Proof. Suppose f : L(A)n → A be a voting rule satisfying
ϵ-DP and η-Condorcet loser criterion. Consider the profile
P (n = 2k + 1):

• k + 1 voters: a1 ≻ a2 ≻ · · · ≻ am,

• k voters: am ≻ am−1 ≻ · · · ≻ a1.

By definition, we have wP [am, ai] = −1, for all ai ∈
A\{am}, i.e., am is the Condorcet loser. Now, letting one
voter change her preferece from a1 ≻ a2 ≻ · · · ≻ am to
am ≻ am−1 ≻ · · · ≻ a1, we can obtain another profile P ′:

• k voters: a1 ≻′ a2 ≻′ · · · ≻′ am,

• k + 1 voters: am ≻′ am−1 ≻ · · · ≻′ a1.

Now we have wP ′ [a1, ai] = −1, for all ai ∈ A\{a}, i.e.,
a1 is the Condorcet loser for P ′. Then

P[f(P ) = a1] ⩾ η · P[f(P ) = am]
(By η-Condorcet loser)

⩾ e−ϵ · η · P[f(P ′) = am] (By ϵ-DP)

⩾ e−ϵ · η2 · P[f(P ′) = a1]
(By η-Condorcet loser)

⩾ e−2ϵ · η2 · P[f(P ) = a1], (ϵ-DP)

which indicates that e−2ϵ · η2 ⩽ 1, i.e., η ⩽ eϵ. That com-
pletes the proof.

Proposition 8 (η-Condorcet Loser Criterion, Lower
Bound). Mechanism 4 satisfies eϵ-Condorcet loser criterion
and ϵ-DP.

Proof. Let RCL : L(A)n → R(A) denote the mapping in-
troduced by CLRR, we have

P[RCL(P ) = a] =

{
1

(m−1)eϵ+1 , a = CL(P )
eϵ

(m−1)eϵ+1 , otherwise
,

for all P ∈ L(A)n that CL(P ) exists.

By definition, it is not hard to see that CLRR satisfies eϵ-
Condorcet criterion. Thus, we only need to prove that CLRR
satisfies ϵ-DP. In fact, for any neighboring profiles P, P ′ ∈
L(A)n and a ∈ A,

P[RCL(P ) = a]

P[RCL(P ′) = a]
⩽

maxa∈A P[RCL(P ) = a]

maxa∈A P[RCL(P ′) = a]

⩽
eϵ

(m− 1)eϵ + 1
/

1

(m− 1)eϵ + 1

= eϵ,

which completes the proof.

B MISSING PROOFS IN SECTION 4

B.1 RESULTS IN TABLE 3 AND THEIR PROOFS

Proposition 9. Given ϵ ∈ R+, BordaEXP satisfies

(1) e
n
2 +(m−2)·e

n(m−2)
4m−4

e
n
2 +(m−1)·e

n(m−2)
4m−4

-SD-efficiency,



(2) e(⌊
n
2 ⌋+1)· m

2m−2−
n
2 -Condorcet criterion,

(3) e
n

2m−2−(⌈
n
2 ⌉−1) m

2m−2 -Condorcet loser criterion.

Proof. Let EBorda denote the voting rule introduced by Bor-
daEXP. First, we prove (1). In fact,

sup
P,ξ

inf
j,y

∑
x≻jy

P[ξ = x]∑
x≻jy

P[EBorda(P ) = x]

⩽ sup
P

inf
j,y

1∑
x≻jy

P[EBorda(P ) = x]

= sup
P

inf
j

1

1− P[EBorda(P ) = aj⊥]

⩽
1

1− sup
P

inf
j
P[EBorda(P ) = aj⊥]

.

where aj⊥ denote the last-ranked alternative in ≻j . By sym-
metry, we have

sup
P

inf
j
P[EBorda(P ) = aj⊥] =

e
n(m−2)
4m−4

e
n
2 + (m− 1) · e

n(m−2)
4m−4

.

Then BordaEXP satisfies e
n
2 +(m−2)·e

n(m−2)
4m−4

e
n
2 +(m−1)·e

n(m−2)
4m−4

. Second, we

prove (2). By definition, for any profile P that CW(P )
exists, CW(P ) must defeat each alternative a ̸= {CW(P )}
in at least half of the votes, i.e., BordaP (CW(P )) ⩾ (m−
1)

(
⌊n
2 ⌋+ 1

)
. And for each a ̸= CW(P ), BordaP (a) ⩽

(m− 1)n− (⌊n
2 ⌋+ 1). Therefore,

P[EBorda(P ) = CW(P )]

P[EBorda(P ) = a]

⩾ e
(m−1)(⌊n

2
⌋+1)

2m−2 −
(m−1)n−(⌊n

2
⌋+1)

2m−2

= e(⌊
n
2 ⌋+1)· m

2m−2−
n
2 ,

which indicates that BordaEXP satisfies e(⌊
n
2 ⌋+1)· m

2m−2−
n
2 -

Condorcet criterion. Finally, we prove (3). By definition,
for any profile P that CL(P ) exists, a ̸= CL(P ) must
be ranked than CL(P ) in at least a half of votes, i.e.,
BordaP (CL(P )) ⩽ (m − 1)

(
⌊n
2 ⌋ − 1

)
. And for each

a ̸= CL(P ), BordaP (a) ⩾ n− ⌈n
2 ⌉+ 1. Therefore,

P[EBorda(P ) = a]

P[EBorda(P ) = CL(P )]
⩾ e

n−⌈n
2

⌉+1

2m−2 −
(m−1)(⌊n

2
⌋−1)

2m−2

= e
n

2m−2−(⌈
n
2 ⌉−1) m

2m−2 ,

which indicates that the BordaEXP mechanism satisfies
e

n
2m−2−(⌈

n
2 ⌉−1) m

2m−2 -Condorcet loser criterion.

Proposition 10. Given ϵ ∈ R+, RD-Anti satisfies

(1) 1-Pareto efficiency,

(2) (⌊n
2 ⌋−1)eϵ+⌈n

2 ⌉+1

neϵ -Condorcet criterion,

(3) (⌊n
2 ⌋−1)eϵ+⌈n

2 ⌉+1

neϵ -Condorcet loser criterion.

Proof. First, given profile P , for any a, b ∈ A, a Pareto
dominates b means that a ≻j b for all j ∈ N . Then a, the
Pareto dominator, is never ranked last in any ≻j . Therefore,
P[EAnti(P ) = a] ⩾ P[EAnti(P ) = b], which completes the
proof of (1). Second, we prove (2). For any profile P ∈
L(A)n,

|{j ∈ N : aj⊥ = CW(P )}| ⩽ ⌈n
2
⌉ − 1,

otherwise CW(P ) will be the Condorcet loser. Therefore,

P[EAnti(P ) = CW(P )]

⩾
⌈n
2 ⌉ − 1

n
· 1

(m− 1)eϵ + 1
+

⌊n
2 ⌋+ 1

n
· eϵ

(m− 1)eϵ + 1
.

For any a ̸= CW(P ),

P[EAnti(P ) = a] ⩽
eϵ

(m− 1)eϵ + 1
.

Hence, we have

P[EAnti(P ) = CW(P )]

P[EAnti(P ) = a]
⩾

(
⌊n
2 ⌋ − 1

)
eϵ + ⌈n

2 ⌉+ 1

neϵ
,

which completes the proof. Finally, we prove (3). Given a
profile P that CL(P ) exists,

|{j ∈ N : aj⊥ = a}| ⩽ ⌈n
2
⌉ − 1,

otherwise a will be the Condorcet loser. Therefore,

P[EAnti(P ) = a]

⩾
⌈n
2 ⌉ − 1

n
· 1

(m− 1)eϵ + 1
+

⌊n
2 ⌋+ 1

n
· eϵ

(m− 1)eϵ + 1
.

However,

P[EAnti(P ) = CL(P )] ⩽
eϵ

(m− 1)eϵ + 1
.

Hence we have

P[EAnti(P ) = a]

P[EAnti(P ) = CL(P )]
⩾

(
⌊n
2 ⌋ − 1

)
eϵ + ⌈n

2 ⌉+ 1

neϵ
,

which completes the proof of (3).

Proposition 11. Given ϵ ∈ R+, CWRR satisfies 1-Pareto
efficiency, m−1

m -SD-efficiency, and 1-Condorcet loser crite-
rion.



Proof. The bounds of Pareto efficiency and Condorcet loser
criterion are evident, since for any profile P , neither a Pareto
dominated alternative nor the Condorcet loser can be the
Condorcet winner. Then we only need to prove the bound
of SD-efficiency. Given profile P , we have

sup
P,ξ

inf
j,y

∑
x≻jy

P[ξ = x]∑
x≻jy

P[RCW(P ) = x]

⩽
1

1− sup
P

inf
j
P[RCW(P ) = aj⊥]

.

Then there are two possible cases for the profile, discussed
as follows

1. If CW(P ) exists, then there must exist some j that
aj⊥ ̸= CW(P ). Therefore

inf
j
P[RCW(P ) = aj⊥] =

1

eϵ +m− 1
.

2. If CW(P ) does not exist, then

inf
j
P[RCW(P ) = aj⊥] =

1

m
⩾

1

eϵ+m−1
.

In other words, we have

sup
P

inf
j
P[RCW(P ) = aj⊥] =

1

m
,

which indicates that CWRR satisfies m−1
m -SD-efficiency.

That completes the proof.

Proposition 12. Given ϵ ∈ R+, CLRR satisfies 1-Pareto
efficiency, (m−2)eϵ+1

(m−1)eϵ+1 -SD-efficiency, and 1-Condorcet crite-
rion.

Proof. The bounds of Pareto efficiency and Condorcet
criterion are evident, since for any profile P , neither a
Pareto dominator nor the Condorcet winner can be the
Condorcet loser. Then we only need to prove the bound
of SD-efficiency. Given profile P , we have

sup
P,ξ

inf
j,y

∑
x≻jy

P[ξ = x]∑
x≻jy

P[RCL(P ) = x]

⩽
1

1− sup
P

inf
j
P[RCL(P ) = aj⊥]

.

Then there are two possible cases for the profile, discussed
as follows

1. If CL(P ) exists, considering the profile P , where each
aj⊥ ̸= CL(P ) for each j ∈ N , we have

inf
j
P[RCL(P ) = aj⊥] =

eϵ

(m− 1)eϵ + 1
.

2. If CL(P ) does not exist, then

inf
j
P[RCL(P ) = aj⊥] =

1

m
⩽

eϵ

(m− 1)eϵ + 1
.

In other words, we have

sup
P

inf
j
P[RCL(P ) = aj⊥] =

1

m
,

i.e., CWRR satisfies (m−2)eϵ+1
(m−1)eϵ+1 -SD-efficiency. That com-

pletes the proof.

B.2 PROOFS OF THEOREMS 1-6

Theorem 1. There is no voting rule satisfying ϵ-DP, α-
Condorcet criterion and η-Condorcet loser criterion with
α · η > eϵ.

Proof. Consider the profile P (n = 2k + 1):

• k + 1 voters: a1 ≻ a2 ≻ · · · ≻ am,

• k voters: am ≻ am−1 ≻ · · · ≻ a1.

By definition, we have CW(P ) = a1, since wP [a1, ai] = 1,
for all ai ̸= a1. Now consider another profile P ′ with the
same number of voters:

• k voters: a1 ≻′ a2 ≻′ · · · ≻′ am,

• k + 1 voters: am ≻ am−1 ≻ · · · ≻ a1.

Then wP [a1, ai] = −1, for all ai ∈ A\{a}, i.e., a1 is a
Condorcet loser. Since there is only one voter changes her
preference from P to P ′, we have

P[f(P ) = a1] ⩾ α · P[f(P ) = a2]
(α-Condorcet criterion)

⩾ αη · P[f(P ) = am]
(η-Condorcet loser criterion)

⩾ e−ϵ · αη · P[f(P ′) = am] (ϵ-DP)

⩾ e−ϵ · α2 · η · P[f(P ′) = a2]
(α-Condorcet criterion)

⩾ e−ϵ · α2 · η2 · P[f(P ′) = a1]
(η-Condorcet loser criterion)

⩾ e−2ϵ · α2 · η2 · P[f(P ′) = a1], (ϵ-DP)

which indicates that e−2ϵα2η2 ⩽ 1, i.e., αη ⩽ eϵ. That
completes the proof.

Theorem 2. If a neutral voting rule f : L(A)n → A sat-
isfies ϵ-DP, β-Pareto efficiency, and α-Condorcet criterion,
then αβm−2 ⩽ enϵ.

Proof. Consider the following profile P (n = 2k + 1):



• k + 1 voters: a1 ≻ a2 ≻ · · · ≻ am;

• k voters: a2 ≻ · · · ≻ am ≻ a1.

By definition, we have wP [a1, ai] = 1, for all ai ∈ A\{a1},
which indicates that CW(P ) = a1. Also notice that
wP [ai, aj ] = n for all i < j. Thus, ai Pareto dominates aj
for all i < j. The relations among all alternatives are shown
in the following graph.

a1
CW−−−→ a2

Pareto−−−−−→ a3
Pareto−−−−−→ · · · Pareto−−−−−→ am. (4)

Since f satisfies α-Condorcet criterion and β-Pareto effi-
ciency, we have

P[f(P ) = a1] ⩾ α · P[f(P ) = a2]

⩾ αβ · P[f(P ) = a3]

⩾ · · ·
⩾ αβm−2 · P[f(P ) = am].

Now, consider another profile P ′, where all voters’ prefer-
ences are exactly the same:

am ≻ am−1 ≻ · · · ≻ a1.

Then we have the following graph.

am
CW−−−→ am−1

Pareto−−−−−→ am−2
Pareto−−−−−→ · · · Pareto−−−−−→ a1.

Similarly, we have

P[f(P ′) = am] ⩾ αβm−2 · P[f(P ′) = a1].

Notice that |{j ∈ N :≻j ̸=≻′
j}| = n. Therefore,

P[f(P ) = a1] ⩾ αβm−2 · P[f(P ) = am]

⩾ e−nϵ · αβm−2 · P[f(P ′) = am] (ϵ-DP)

⩾ e−nϵ · α2β2m−4 · P[f(P ′) = a1]

⩾ e−2nϵ · α2β2m−4 · P[f(P ) = a1].
(ϵ-DP)

Then e−2nϵα2β2m−4 ⩽ 1, i.e., αβm−2 ⩽ enϵ, which com-
pletes the proof.

Theorem 3. If a neutral voting rule f : L(A)n → R(A)
satisfies ϵ-DP, β-Pareto efficiency, and α-Condorcet loser
criterion, then αβm−2 ⩽ enϵ.

Proof. Consider the following profile P (n = 2k + 1):

• k + 1 voters: a1 ≻ a2 ≻ · · · ≻ am;

• k voters: a2 ≻ · · · ≻ am ≻ a1.

By definition, we have wP [a1, ai] = 1, for all ai ∈
A\{a1}, which indicates that CL(P ) = a1. Also notice
that wP [ai, aj ] = n for all i < j. Thus, ai Pareto dominates

aj for all i < j. The relations among all alternatives are
shown in the following graph.

a1
Pareto−−−−−→ a2

Pareto−−−−−→ · · · Pareto−−−−−→ am−1
CL−−→ am.

Since f satisfies α-Condorcet loser criterion and β-Pareto
efficiency, we have

P[f(P ) = a1] ⩾ β · P[f(P ) = a2]

⩾ · · ·
⩾ βm−2 · P[f(P ) = am−1]

⩾ αβm−2 · P[f(P ) = am].

Now, consider another profile P ′, where all voters’ prefer-
ences are exactly the same:

am ≻ am−1 ≻ · · · ≻ a1.

Then we have the following graph.

am
Pareto−−−−−→ am−1

Pareto−−−−−→ · · · Pareto−−−−−→ a2
CL−−→ a1.

Similarly, we have

P[f(P ′) = am] ⩾ αβm−2 · P[f(P ′) = a1].

Notice that |{j ∈ N :≻j ̸=≻′
j}| = n. Therefore,

P[f(P ) = a1] ⩾ αβm−2 · P[f(P ) = am]

⩾ e−nϵ · αβm−2 · P[f(P ′) = am] (ϵ-DP)

⩾ e−nϵ · α2β2m−4 · P[f(P ′) = a1]

⩾ e−2nϵ · α2β2m−4 · P[f(P ) = a1].
(ϵ-DP)

Then e−2nϵα2β2m−4 ⩽ 1, i.e., αβm−2 ⩽ enϵ, which com-
pletes the proof.

Proposition 13. Condorcet method satisfies SD-efficiency
on DC .

Proof. Let P be an arbitrarily chosen profile in DC . Then
we only need to proof that there does not exist ξ ∈ R(A)
that SD-dominates CM(P ).

In fact, if there exists such a ξ, we can obtain by definition
that for all j ∈ N and a ∈ A,∑

b≻ja

P[ξ = b] ⩾
∑
b≻ja

P[CM(P ) = b],

Since for any a ∈ A that CW(P ) ≻j a, we have∑
b≻ja

P[CM(P ) = b] = P[CM(P ) = CW(P )] = 1,

which indicates that ∑
b≻ja

P[ξ = b] ⩾ 1.



Therefore, for any a ∈ A that CW(P ) ≻j a, P[ξ = a] = 0.
However, according to the definition of CW(P ), each a ∈
A must be ranked behind CW(P ) in some ≻j . Hence we
have ξ = CM(P ), a contradiction.

Theorem 4. There is no neutral voting rule f : L(A)n →
R(A) satisfying ϵ-DP, α-Condorcet criterion, and γ-SD
efficiency with γ > α+m−1−αe−nϵ

α+m−1 .

Proof. Consider the profile P , where all voters’ vote are
exactly the same, i.e.,

a1 ≻j a2 ≻j · · · ≻j am, for all j ∈ N.

It is not hard to see that CW(P ) = a1. Since f satisfies
α-Condorcet criterion, we have P[f(P ) = a] ⩽ P[f(P ) =
a1]/α, for all a ∈ A\{a1}. Therefore,

1 = P[f(P ) = a1] +
∑

a∈A\{a1}

p[f(P ) = a]

⩽

(
1 +

m− 1

α

)
P[f(P ) = a1],

i.e., P[f(P ) = a1] ⩾ α
α+m−1 . Further, by Equation (3), we

have

P[f(P ) = am] ⩾ e−nϵ · P[f(P ) = a1] ⩾
αe−nϵ

α+m− 1
.

However, for profile P , the unique SD-efficient lottery is
Ia1

. In other words, all lotteries ξ ∈ R(A) that ξ ̸= Ia1
are

γ-SD-dominated by Ia1
with γ > 1. Further,∑

x≻y
P[Ia1

= x]∑
x≻y

P[f(P ) = x]
⩾

inf
y∈A

∑
x≻y

P[Ia1
= x]

sup
y∈A

∑
x≻y

P[f(P ) = x]

=
1

1− P[f(P ) = am]

⩾
1

1− αe−nϵ

α+m−1

=
α+m− 1− αe−nϵ

α+m− 1
,

i.e., Ia1
can α+m−1−αe−nϵ

α+m−1 -dominates f(P ), which com-
pletes the proof.

Theorem 5. There is no neutral voting rule f : L(A)n →
R(A) satisfying ϵ-DP, η-Condorcet loser criterion, and γ-
SD-efficiency with γ > enϵ−η

enϵ .

Proof. Let m > 2. Consider the following profile P with
k(m− 2) voters (k ⩾ 1).

• k voters: y ≻ a1 ≻ a2 ≻ · · · ≻ x ≻ am−2,

• k voters: y ≻ a2 ≻ a3 ≻ · · · ≻ x ≻ a1,

• k voters: y ≻ a3 ≻ a4 ≻ · · · ≻ x ≻ a2,

• k voters: · · · ,

• k voters: y ≻ am−2 ≻ a1 ≻ · · · ≻ x ≻ am−3.

Then it is quite evident that CL(P ) = x. Since f satisfies
η-Condorcet loser criterion, we have P[f(P ) = a] ⩾ η ·
P[f(P ) = x], for all a ∈ A\{x}. By Equation (3), we have
P[f(P ) = x] ⩾ e−nϵ. Since f satisfies η-Condorcet loser
criterion, for all a ∈ A\{x}, we have

P[f(P ) = a] ⩾ η · P[f(P ) = x] ⩾ αe−nϵ.

However, the unique SD-efficient lottery of P is Iy, since
Iy can SD-dominates any other lotteries on A. Further,∑

b≻a

P[Iy = b]∑
b≻a

P[f(P ) = b]
⩾

inf
a∈A

∑
b≻a

P[Iy = b]

sup
a∈A

∑
b≻a

P[f(P ) = b]

=
1

1− inf min
1⩽i⩽m−2

P[f(P ) = ai]

⩾
1

1− αe−nϵ
.

In other words, Iy can enϵ−η
enϵ -SD-dominates f(P ), which

completes the proof.

Theorem 6. There is no neutral voting rule f : L(A)n →
R(A) satisfying ϵ-DP, γ-SD-efficiency, and β-Pareto effi-
ciency with γ > enϵ−enϵβ2−m

enϵ−enϵβ2−m+β−1 .

Proof. Consider the profile P , where all voters’ preferences
are the same, i.e.,

a1 ≻j a2 ≻j · · · ≻j am, for all j ∈ N.

By definition, for all i < j, any ai Pareto dominates aj in
profile P . In other words, we have the following diagram

a1
Pareto−−−−−→ a2

Pareto−−−−−→ · · · Pareto−−−−−→ am.

Since f satisfies β-Pareto efficiency, P[f(P ) = ai+1] ⩽
β · P[f(P ) = ai] holds for any i < m. By Equation (3),
P[f(P ) = am] ⩾ e−nϵ · P[f(P ) = a1]. Further,

P[f(P ) = a1] ⩽ enϵ · P[f(P ) = am],

P[f(P ) = a2] ⩽
1

β
· P[f(P ) = a1]

⩽
enϵ

β
· P[f(P ) = am],

· · ·

P[f(P ) = am−1] ⩽
1

βm−2
· P[f(P ) = a1]

⩽
enϵ

βm−2
· P[f(P ) = am].



By summing up the above inequalities, we have

1 =
∑
a∈A

P[f(P ) = a]

⩽

(
1 +

(
1 +

1

β
+ · · ·+ 1

βm−2

)
enϵ

)
P[f(P ) = am],

i.e., P[f(P ) = am] ⩾ β−1
enϵ−enϵβ2−m+β−1 . However, the

unique SD-efficient lottery of P is Ia1 , since it can SD-
dominate any other lottery. Further, we have∑

b≻a

P[Iy = b]∑
b≻a

P[f(P ) = b]
⩾

inf
a∈A

∑
b≻a

P[Iy = b]

sup
a∈A

∑
b≻a

P[f(P ) = b]

=
1

1− P[f(P ) = am]

⩾
1

1− β−1
enϵ−enϵβ2−m+β−1

.

In other words, Ia1
can enϵ−enϵβ2−m

enϵ−enϵβ2−m+β−1 -SD-dominates
f(P ), which completes the proof.

C MORE FIGURES FOR THE
TRADEOFF CURVES
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Figure 7: Tradeoff curves between α-Condorcet criterion
and γ-SD-efficiency under ϵ-DP (upper bounds). Above:
m = 5, n = 10. Below: m = 5, n = 20.

The Python codes for drawing these curves are included in
the supplementary materials.
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Figure 8: Tradeoff curves between η-Condorcet loser cri-
terion and γ-SD-efficiency under ϵ-DP (upper bounds).
Above: m = 5, n = 10. Below: m = 5, n = 20.
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