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Abstract

Large-scale vision language (VL) models use
Transformers to perform cross-modal interac-
tions between the input text and image. These
cross-modal interactions are computationally
expensive and memory-intensive due to the
quadratic complexity of processing the input
image. We present TiP: a Text-informed
Image Pruning method that progressively re-
moves text-irrelevant portions of the input im-
age, improving model inference speed and re-
ducing memory footprint. We design several
lightweight modules — token pruners — and
add them to the cross-modal layers in a VL
model to predict which image portions are
salient. To train TiP, we introduce a text-
informed contrastive learning technique that
optimizes the representation similarity between
the text and the salient text-relevant image
portions predicted by the token pruners. Our
neighbor-based continuity regularization loss
encourages the pruners to select contiguous seg-
ments of the image as relevant. Our evaluation
for two vision language models on three down-
stream VL tasks shows TiP prunes over 87%
of input image data, thus increasing inference
throughput by over 1.5x and reducing memory
footprint by over 36%, while incurring less than
a 1% accuracy drop. TiP is also interpretable
by construction. !

1 Introduction

Large-scale vision language (VL) models (Dou
et al., 2022; Wang et al., 2022; Zeng et al., 2021;
Kim et al., 2021; Wang et al., 2021; Zhang et al.,
2021) have shown substantial progress on many
vision language tasks such as visual question an-
swering, natural language visual reasoning, and
visual entailment. However, state-of-the-art lan-
guage and vision models are memory intensive and
computationally expensive because they use multi-
layer self-attention between many language and vi-
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Figure 1: TiP applies image pruning to VL models via
text-informed contrastive learning. TiP makes VL mod-
els run faster by progressively removing text-irrelevant
image portions and extracts text-informed image por-
tions to contrast with negative examples.

sion input tokens > with quadratic complexity. This
inefficiency limits high-throughput cloud deploy-
ments and makes it infeasible to run on resource-
constrained devices.

The key challenge in deep VL models is that
these models need to process the entire image over
all the layers. On the contrary, humans process
natural language and visual world in a coarse-to-
fine grained manner (Hegdé, 2008) and are able
to selectively pay attention to key parts in a visual
scene (Rensink, 2000). This selective attention
mechanism helps summarize key information and
makes humans process complex visual scenes more
efficiently. For example, for the visual question
“What sport are they playing?” in Figure 1, humans
easily answer “soccer” by focusing on the bottom-
center region of the image.

In this paper, we design TiP, a Text-informed Im-
age Pruning framework, that progressively prunes
image regions that are not related to the text and
are unimportant to the VL task predictions. At the
core of TiP is a set of simple and lightweight token
pruners that predict which image tokens are pruned
as the VL model forward computation proceeds.
We jointly train the token pruner and the underly-
ing VL model using a multi-task training objective
that optimizes for the end task performance, learns
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the task logits by distilling from the original VL
model, and encourages the model to only keep text-
grounded, continuous image regions.

To preserve text-grounded information in the in-
put image, we design a contrastive loss to align
the pruned image to the reference text as opposed
to other texts. Since salient objects in images can
span contiguous tokens of the image, we introduce
a continuity prior to reduce the discontinuity of
salient image tokens and encourage them to form
continuous image regions. To reduce abrupt image
information loss and improve the computational
efficiency, we scatter the token pruners at differ-
ent cross-modal layers in the VL. model and prune
the image tokens in a cascaded fashion. Fewer
tokens are pruned in earlier layers. During infer-
ence too, we prune image tokens progressively and
use salient tokens for cross-modal attention in sub-
sequent layers. This leads to improved inference
efficiency and inherent interpretability.

We evaluate TiP over two recent VL models
ViLT (Kim et al., 2021) and METER (Dou et al.,
2022) across three visual reasoning tasks: visual
question answering (VQAV2; Goyal et al. 2017),
natural language visual reasoing (NLVR2; Suhr
et al. 2019), and visual entailement (SNLI-VE; Xie
et al. 2019). Compared to baselines, TiP improves
the model inference throughput by over 1.5x and
reduces memory footprint by over 30% with mini-
mal (less than 1%) accuracy loss. We quantitatively
and qualitatively show TiP maintains grounding
capability and provides more interpretable results.
Our analysis indicates that original model distilla-
tion, text-informed contrastive loss and continuity
prior contribute to the effectiveness of TiP.

2 Background and Overview

Vision Language Models. Figure 2 shows the
backbone of a VL model consisting of a text en-
coder, an image encoder and a cross-modal en-
coder. The input sentence (e.g. a question or a
statement) is first tokenized as text tokens and fed
to the text encoder to create contextualized text rep-
resentations. Similarly, the input image is projected
into many small image patches, referred to as “im-
age tokens”, that are further contextualized by the
image encoder. Finally, the cross-modal encoder
takes the concatenated text and image tokens and
fuses information between image and text modal-
ities via Transformer-style (Vaswani et al., 2017)
cross-attention interactions.

Image Text Cross-Modal Encoder

Concatenated Text + Image Tokens
Text Encoder

Image Encoder

Text tokens Image Patches
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Figure 2: General architecture of vision language mod-
els. The input image is projected into many small im-
age patches (“tokens”) that are processed by the image
encoder. Transformer-style cross-modal encoder atten-
tion between concantenated text and image tokens has
quadratic time-complexity, which is computationally
expensive. Both VILT and METER models follow this
pattern.

For many VL tasks, the number of tokens of
the input image is an order of magnitude more
than that of the input text — a visual question
can have at most a dozen tokens but the associ-
ated image consists of a hundred image tokens.
For example, for an image with a resolution of
384x384 and patch size of 16, the number of to-
kens is (384/16)% = 576.

Image Pruning for Efficiency. In this paper, we
focus on pruning image tokens to improve compu-
tational efficiency of the model. However, naively
removing a large percentage of the image tokens
inside the cross-modal layers may cause abrupt im-
age information loss, as the VL model is trained
to build representations of the full image for the
downstream task. For example, if the soccer region
in Figure 1 gets pruned, the VL model is unlikely to
output the answer “soccer” for the question “what
sport are they playing?”.

Our Solution: Text-Informed Image Pruning.
Section 3.1 describes our approach. We design a set
of token pruners that remove image tokens that are
not salient to the end task, hence maintaining the
task performance. We measure saliency of image
tokens based on how much they are related to the
input text and how important they are to the end
task. TiP learns to align representations between
the input text and text-grounded image regions via
text-informed contrastive learning. Token pruners
are incorporated in the cross-modal attention layers
in a cascaded manner (dense to sparse image tokens
across layers) to avoid an abrupt information loss.
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Figure 3: TiP applies cascaded image pruning to the cross-modal layers of a VL model via token pruners.

3 Tex-Informed Image Pruning

This section describes our text-informed image
pruning approach (depicted in Figure 3). The basic
building blocks of our TiP are lightweight learn-
able token pruners that remove image tokens in a
cascaded manner to reduce the information loss
and improve the computational efficiency of a VL
model (Section 3.1). Our text-informed contrastive
learning objective encourages the token pruners to
keep text-relevant image tokens that are required
to maintain task performance (Section 3.2). Our
token pruners are jointly trained with a VL model
on the downstream VL tasksa using a multi-task
learning objective (Section 3.3).

3.1 TiP Design

Our goal is to improve the efficiency of VL. models
and keep their task performance intact. Given a VL
cross-modal encoder, we design TiP, that progres-
sively prunes image tokens going through the cross-
modal encoder. To do so, we design lightweight
token pruner modules (MLPs) and add them in dif-
ferent layers of the cross-modal encoder to predict
which image tokens are removed (Figure 3). To
prevent abrupt information loss in removing image
tokens, we start to prune the image only after the
first few cross-modal layers and prune the image
tokens in a cascading manner.

Image Token Pruners. Figure 3 illustrates the
image pruning procedure in TiP. For an n-layer
cross-modal encoder, after the first ¢ (¢ < n) layers,
a token pruner removes r% the image tokens at any
layer between ¢ and n. The image tokens removed
in layer j are not used in subsequent layers. We
scatter the token pruners across the cross-modal

layers to achieve a better accuracy and efficiency
trade-off. Intuitively, pruning at early layers in the
cross-modal encoder will have higher inference ef-
ficiency but may have bigger performance loss and
vice versa. We study this trade-off in more details
in §5.3. Each token pruner is a three-layer MLP
(denoted as P?) followed by a two-class softmax
layer to evaluate saliency — keeping or pruning
probability — of image tokens. At each pruning
layer ¢, the token pruner takes the contextualized
representation of every image token v;, and pre-
dicts the saliency probability pf = P*(v;).

Training and Inference. During training, we use
pf to derive a binary pruning mask m; that prevents
text and salient image tokens from attending to the
pruned image tokens.
{1 ifp! > 05
m; = , ey
0 otherwise

where 1 means the token should not be pruned. The
pruning mask is a discrete binary value and not dif-
ferentiable, hence we adopt the straight-through
Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016)
to reparameterize m; to facilitate end-to-end train-
ing. To guarantee the VL model is only conditioned
on the salient tokens, we apply this pruning mask
to the image self-attention and text-to-image cross-
attention in the cross-modal layers. Token pruners
do not require explicit supervision. Instead, we
leverage a multi-task training objective that opti-
mizes for the downstream VL task and learns the
task logits by distilling from the original VL model.

During inference, we keep the top-k image to-
kens {vy,va, - - -, vy} ranked by the saliency prob-
ability.



3.2 Text-Informed Contrastive Learning

The goal of our text-informed contrastive learning
is to encourage the VL model to focus more on the
text-relevant image tokens and supervise the token
pruners to remove text-irrelevant image tokens.

Text and Image Representations. Formally, we
denote T* = {t;,t,---,t,} for text tokens at

salient tokens removed tokens

layer £, V! = {1, va, -, Up, Vg1, - -, U} for
the image tokens?®, where t;, v; are hidden state
representations of layer £ in the cross-modal en-
coder. The image representation is obtained by
average pooling over salient image tokens: 6f; =
avgpool({v1,ve,---,vi}). The text representa-
tion is similarly encoded through average pooling:
i = avgpool({t1,ta, -+, tn}).

The goal is to enforce high similarity be-
tween salient image tokens and their correspond-
ing text representation. Therefore, we define
a similarity function for text-image pairs as
st = p, (ﬁf;)Tpt(#), where p, and p; are linear
projections that transform the vectors to lower-
dimensional (192-d) representations.

We form training batches by randomly sampling
text-image pair examples from the training dataset
of the VL task. We compute the in-batch text to
image similary as:

Sﬁ _ eXp (SZ/T) ’
> pey exp (s5/7)

where T is a learnable temperature parameter.

Contrastive Loss. Given a pair of text and its
aligned image (T', V'), T is the positive example of
V (labeled as 1), and the other (B — 1) texts within
the mini-batch are negative examples (labeled as 0).
Let y;, denote the ground-truth one-hot similarity
(positives are ones and negatives are zeros), the
contrastive loss is defined as the cross-entropy H
between S’ and y,,,.:

L
1
Letr = Z § E(T,V)ND[H(yctrv Se)] 2
(=1

3.3 TiP Multi-Task Training

We conduct multi-task training of the VL task and
the token pruning task. We minimizes the follow-
ing multi-task objective:

ETiP = ﬁtask + £distz‘ll + Espr + Ectr + >\£cnt (3)

3Note that the salient tokens might not be consecutive.

where L;,sr is the VL task-specific loss, Lg;stin
is a logit distillation loss that learns the task log-
its from the original VL model, the sparsity loss
Ly regularizes the token pruners to learn sparse
binary pruning masks, L, is our text-informed
contrastive loss that encourages the token pruners
to keep text-relevant image tokens, and the con-
tinuity loss L.,; regularizes the token pruners to
keep continuous image tokens and the A controls
the continuity regularization effect.

Task Loss and Distillation.
cross-entropy loss:

Liqsk 18 a standard

Liask = E[H(ytaskv ypred)] “)

where vy, 1S the ground truth task labels and
Yprea 18 the task predictions of the TiP VL model.

L 4ist;uy minimizes the KL-divergence the predic-
tion logits between TiP and the teacher VL model
(finetuned without token pruners):

Laistitt = DL (Ypredl|Ypred) )

where ygw .q 18 the prediction logits of the teacher
VL model. We observe that without distilling from
the original finetuned VL model, token pruners
remove image tokens that are important to the task
predictions and cause significant accuracy drop, we
analyze the effect in Section 5.3.

Sparsity Regularization. In order to force im-
age token pruners to learn a sparse mask, we add a
regularization loss over the learned salience prob-
abilities p;. Specifically, for a sparsity ratio of
r € (0,1) in layer £ in the cross-modal encoder,
we add the following mean square error loss for
sparsity regularization:

L m
ﬁspr = % Z Z(pf - r)Q (6)

(=1 i=1
Without sparsity regularization, token pruners
can predict all ones for the pruning mask 1, which
is no longer useful for image pruning.

Continuity Regularization. Humans typically
focus on salient portions of the image for more
efficient visual processing (Figure 1), which are
often small contiguous regions of the image corre-
sponding to individual objects or clusters of objects.
Previous work on grounding images to text has
also found that human-interpretable grounded units
are often contiguous parts of the image (Li et al.,



2021). To encourage the image token pruners to
select contiguous image tokens, we add a contigu-
ity regularization loss over the keep probability p;.
Inspired by the selection of consecutive words (Lei
et al., 2016), for a given image token 7 in location
{z,y} in the image, we minimize the mean square
error of its saliency probability with all its 8 neigh-
bors in locations N (z,y) = [(x + e,y +¢) | Ve €
{—1,0,1}] as follows:

L
Z E (pfx _pgx/ / )2
1 @ ) (zy) (="y")

4 Evaluation Setup

Ecnt = )

4.1 Backbone Vision-Language Models

We evaluate TiP for two different VL models:
ViLT (Kim et al., 2021) with 110 million parame-
ters and a state-of-the-art VL model, METER (Dou
et al., 2022) with 330 million parameters. We de-
note TiP-ViLT and TiP-METER as TiP applied
for VILT and METER respectively. More details
about these models are in Appendix A.2.

4.2 Evaluation Tasks

We evaluate the models on three visual reasoning
tasks: visual question answering (VQAv2; Goyal
et al. 2017), natural language visual reasoing
(NLVR2; Suhr et al. 2019), and visual entailement
(SNLI-VE; Xie et al. 2019). More details about
these datasets are in Appendix A.2.

4.3 TiP Implementation Details

We set the cascading pruning ratio to be 0.5 for
three pruning layers (4th, 7th, 10th for ViLT and
2nd, 4th, 6th for METER) by default (except for
VILT-NLVR2, where we set pruning ratio to 0.4
due to a larger accuracy drop). In Section 5.3, we
show ablations for pruning ratios and pruning layer
locations. The token pruner implementation and
more training details are in Appendix A.1.

4.4 Baselines

To compare the benefits of TiP, we additionally
evaluate three baselines:

Random Pruning: we use the same pruning ratio
and same pruning locations as TiP to randomly re-
move image tokens during inference. The random
pruning uses the finetuned TiP model but random
pruning masks instead of those predicted by the
token pruners.

Smaller Resolution: We downsample the input
image to smaller resolutions and finetune the VL.
models. Using smaller input images directly re-
duces the computation of VL models.

Pruning via Grounding: text-grounded image re-
gions are supposed to provide more important in-
formation for the VL task. We compare with a
grounded pruning baseline that can approximate
the upper bound of the task performance under
image pruning. This baseline uses the grounded
image regions as the gold labels for salient tokens.
We remove the image tokens at the same layers
as TiP. However, it is often challenging to obtain
text-grounded image regions because the datasets
we study do not come with annotated grounded
image data. Instead, we use a recent grounding
model ALBEF (Li et al., 2021) to generate text-
grounded image regions for the visual questions in
the VQAv?2 dataset. We show in Appendix A.4 the
image regions generated by the ALBEF grounding
model has high overlaps with human attention data
and can serve as a reasonable tool to automatically
generating grounded image regions.

4.5 Evaluation Metrics

Accuracy Metrics. We measure VQA accu-
racy (Goyal et al., 2017) for the VQAV2 dataset
and accuracy for both the VE and NLVR2 datasets.
Unlike previous works (Kim et al., 2021; Dou et al.,
2022), where their models are trained on the com-
bined training and validation sets, our focus is not
to obtain the state-of-the-art results, so we train the
two VL models on the training set and report the
results on the test set.

Resource Consumption. We measure the actual
inference throughput (examples per second) of the
VL models on the GPU hardware and compare
them to the finetuned models with no image prun-
ing. We also measure the peak memory consumed
during the model inference phase and report mem-
ory reduction ratio compared to the original model
without image pruning. These two runtime metrics
are found to be more accurate to compare resource
consumption instead of using the FLOPs complex-
ity metric (Graham et al., 2021). We describe the
detailed setup in Appendix A.5.

5 Experimental Results

5.1 Main Results

TiP is faster and remains accurate. Table 1
shows the main results comparing performance, in-



Model Datasets  Original Accuracy  TiP Accuracy  Throughput Increase =~ Memory Reduction

VQAV2 71.5 77.2 (-0.3) 1.57x 32%
METER (SoTA) VE 81.2 80.8 (-0.4) 1.52x 33%
NLVR2 82.8 82.4 (-0.4) 1.56x 32%
VQAv2 69.5 68.9 (-0.6) 1.51x 36%
ViLT VE 75.9 75.2 (-0.7) 1.54x 35%
NLVR2 75.6 74.9 (-0.7) 1.43x 29%

Table 1: Performance and efficiency comparison between the original fine-tuned vs TiP fine-tuned models for the

ViLT and METER over 3 downstream visual reasoning

Image VQAV2 Throughput Memory

Model Resolution Accuracy Increase  Reduction
192x192  72.7 (-3.0) 4.23x 75%

Resolution 224x224  73.7 (-2.0) 3.48x 66%
256x256 74.4 (-1.3) 2.67x 54%
320x320 75.2 (-0.5) 1.62x 40%

TiP (Ours) 320x320 74.8 (-0.9)  2.32x 56%

Random 50/ 304 694 (:63)  1.57x 32%

Pruning

Pruning via 5¢,384 758 (+0.1)  0.53x 25%

Grounding

TiP (Ours) 384x384 75.4(-0.3) 1.57x 32%

METER 384x384  75.7 1x 0%

Table 2: Performance and efficiency comparison be-
tween the baselines and TiP for the METER model on
VQAV2 dev set.

ference speed and memory reduction of TiP. Over-
all, we observe over 1.5x speedup in inference
throughput and over 30% reduction in memory
footprint for both ViLT and METER models on all
three datasets. Importantly, the task performance
of TiP remains competitive compared to the orig-
inal finetuned VL models with only <1% drop in
accuracy.

Baseline pruning methods incur large accuracy
drops. Table 2 shows downsampling the input
image to smaller resolution improves the infer-
ence throughput and reduces memory footprint but
comes with larger accuracy drops. The closest res-
olution is 320x320 which provides slightly more
(8%) memory reduction than TiP, but it still has
lower inference throughput and bigger accuracy
gap. Meanwhile, TiP is orthogonal to downsam-
pling strategies, and applying TiP to smaller im-
ages could provide additional efficiency gains (see
3rd row numbers in Table 2).

Compared to TiP, the random pruning baseline
(4th row in Table 2) has a much higher (6.3%)
accuracy drop. This indicates the token pruners

tasks.

in TiP are effective in identifying salient image
tokens for the VL tasks.

Grounded pruning baseline (5th row in Table 2)
shows the METER VQA model becomes even
more accurate when giving the grounded image
tokens. This validates that the grounded image re-
gions are sufficient for the VL model to achieve
high accuracy on the VL tasks. On the other hand,
the inference efficiency is slowed down by 53%
due to the use of the grounding model. Unlike
these models, TiP does not rely on explicit super-
vision signals of grounded image regions, learning
to prune image tokens that are not related to text
by solely using end task supervision.

5.2 Interpretability Analysis

TiP keeps image regions that overlap with hu-
man attention. We evaluate whether salient to-
kens identified by TiP align with human attention
using the VQA-HAT (Das et al., 2016) dataset that
contains human attention maps for the images of vi-
sual questions from the VQAv1 (Antol et al., 2015)
dataset. We apply the TiP-METER VQA model
on the VQA-HAT validation dataset and extract the
kept image portions (patches) (see details in Ap-
pendix A.3). We then extract image portions from
the human attended regions. For each image patch
kept by TiP-METER, if it overlaps with human
attention region, we count it as correct and calcu-
late the alignment precision as the total number
of correct patches divided by the total number of
kept patches. We average the precision score across
three human annotators on the validation set.
TiP-METER has an average of 69.2% preci-
sion. In contrast, a random pruning baseline only
achieves 39.8% average precision, indicating TiP-
METER has a high overlap with human attention.
We find the precision for TiP-ViLT model is lower
but still 2.7% higher than a random baseline. This
is likely because the ViLT model does not learn
fine-grained alignments like the METER model.



TiP keeps faithful and interpretable image re-
gions. In order to measure the faithfulness of the
salient image tokens as an explanation (Wiegreffe
and Marasovié, 2021) — whether the model only
uses the salient tokens for prediction, we compute
how comprehensive and sufficient this explanation
is (DeYoung et al., 2019). Sufficiency measures
difference in prediction accuracy (compared to us-
ing the full image) when only the salient tokens
are used for prediction. A low sufficiency score
implies that the salient tokens are indeed necessary
for the VL model to make a prediction. Compre-
hensiveness measures difference in accuracy com-
puted by using the pruned tokens for prediction.
A high comprehensiveness score indicates that the
salient tokens were sufficient for prediction. To ob-
tain comprehensiveness scores for TiP, we invert
the learned mask in the first pruning layer on the
validation set.

Both TiP-METER and TiP-ViLT have low suffi-
ciency and high comprehensiveness compared to
the random baseline (6.3%).* Specifically, TiP-
METER has a sufficiency accuracy of 0.3% (the
lower the better) and has a comprehensiveness ac-
curacy of 21.0% (the higher the better). TiP-ViLT
has a sufficiency accuracy of 0.6% and has a low
comprehensiveness accuracy of 13.4% which is
lower than TiP-METER, indicating that METER
produces more faithful explanations.

We visualize the salient image regions generated
by TiP-METER in Figure 4 by randomly sampling
visual questions from the VQA-HAT validation
set. TiP-METER prunes question-irrelevant im-
age portions and keeps portions that align with
human attention regions. More visualization of
TiP-METER images are in Appendix A.6.

5.3 Ablation Study

Learning Components in TiP. Table 3 indicates
the impact of different components of TiP. It shows
the performance drop of TiP ViLT by removing
the distillation loss (w/o distillation), text-informed
contrastive learning (w/o text contrastive) and the
continuity prior for fine-tuning (w/o continuity
loss) on the VQAV2 dataset. The distillation loss is
a key ingredient in TiP as the performance drops by
5.2% without it. The results also show that both the
contrastive learning and the continuity prior signif-
icantly contribute to TiP and the original fintuned

“Note that the comprehensiveness for the random baseline
is low because the inverse of random tokens still contains a lot
of useful information for the task prediction.
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Figure 4: Visualization of TiP-METER salient image
portions for visual questions in the VQA-HAT valida-
tion set. For each row, the first image is the original
input image, the last is the human attention regions,
three images in between are generated by TiP-METER
with cascaded pruning. Note that with different input
text, TiP-METER removes different image regions for
the same image.

VQA model.
Model VQA Accuracy
ViLT 69.5
TiP-ViLT 68.9 (-0.7)
w/o distillation 63.7 (-5.2)
w/o text contrastive loss 67.9 (-1.6)
w/o continuity loss 68.4 (-1.1)

w/o text contrastive & continuity loss 67.6 (-1.9)

TiP-ViLT (MLP) 68.9 (-0.7)
w/ linear layer 67.3 (-2.2)
w/ mean attention scores 67.4 (-2.1)
w/ single-head attention scores 67.1 (-2.4)

Table 3: Ablation analysis for applying text-informed
contrastive learning (text contrastive) and continuity
loss on the VQAv2 dataset for ViLT; and for different
token pruner architectures in TiP-ViLT on the VQAv2
dataset.

Token Pruner Architectures. TiP uses a 3-layer
MLP architecture for the token pruners (described
in Appendix A.1) that predict the pruning masks
taking the image representations as inputs. We com-



pare three alternative lightweight architectures for
the token pruner modules: (1) linear layer - we re-
place the MLP with a single linear layer; (2) mean
attention scores - we use the average text to image
attention scores across all attention heads as the to-
ken pruner inputs; (3) single-head attention scores
- we feed the text to image attention scores from
the first attention head to the token pruners. All of
these architectures added little (< 0.1%) runtime
overhead to the VL models. Table 3 shows that the
MLP architecture achieves the best performance.

Grou Pruning  Pruning VE Test  Throughput
P Locations Ratios  Accuracy Increase
ratios 4,7,10 0.7 72.2 (-3.7) 1.77x
4,7,10 0.3 75.7 (-0.2) 1.26x
4 0.7 74.5 (-1.4) 1.56x
#oflayers 4 7 06  750(:09)  155x
locations 4,5,6 0.5 74.2 (-1.7) 1.70x
89,10 0.5 75.3 (-0.6) 1.21x
TiP (Ours) 4,7,10 0.5 75.2 (-0.7) 1.54x
ViLT - - 75.9 -

Table 4: Ablation analysis of pruning ratios, # of prun-
ing layers, and pruning locations for the ViLT model on
VE task.

Design Choices of Pruning Ratios and Locations.
Given a 12 layer VL cross-modal encoder like ViLT,
many combinations of pruning locations and ratios
achieve similar inference speedups. Pruning at ear-
lier layers with lower ratios has similar computa-
tion efficiency to pruning at later layers with higher
ratios. For comparing the accuracy with different
number of pruning layers, we control the inference
throughput to be similar to TiP by selecting the
pruning ratios and locations. Table 4 shows cas-
caded pruning at 3 layers (4th,7th,10th) has higher
accuracy than pruning at one (4th) or two layers
(4th,7th) while having similar speedups.

The ratios row in Table 4 shows pruning more im-
age tokens (with ratio=0.7) leads to bigger through-
put increase but has significantly lower (-3.7%) ac-
curacy, while pruning fewer image tokens (with ra-
tio=0.3) is more accurate but causes lower through-
put. We find that pruning in the earlier layers leads
to bigger throughput but drops accuracy by 1.7%,
while pruning in the later layers is slightly more
accurate but provides fewer benefits in through-
put. Overall, we choose 3-layer cascaded pruning
strategy with a pruning ratio of 0.5 and scatter the
pruning locations more evenly to balance accuracy

and speed trade-offs.

6 Related work

Data Pruning. Prior work in data pruning (Rao
et al., 2021; Yin et al., 2021; Liang et al., 2021;
Goyal et al., 2020) focus on single-modality mod-
els by either pruning input text or image alone. Dy-
namicViT (Raoetal.,2021) and AdaViT (Yin et al.,
2021) both progressively remove the uninformative
content and keep salient regions in the input image.
This type of pruning does not apply to language
and vision tasks where the salient regions depend
on the input text. Our work shows different input
texts lead to pruning different image regions even
for the same input image. EViT (Liang et al., 2021)
reduces the image tokens progressively but requires
expensive pretraining. POWER-BERT (Goyal et al.,
2020) speeds up the inference of text-based Trans-
formers like BERT (Devlin et al., 2019) by remov-
ing the input text tokens, which are not the main
computation bottlenecks for most vision and lan-
guage tasks.

Efficient Inference. Many techniques have fo-
cused on model pruning (Lagunas et al., 2021; Yu
and Wu, 2021; Yu et al., 2022; TPr), dynamic com-
putation by early exiting (Xin et al., 2020; Zhou
et al., 2020; Schwartz et al., 2020; Liu et al., 2020)
or designing small and efficient VL models (Fang
et al., 2021; Wang et al., 2020). Combining these
orthogonal optimizations with our text-informed
image-pruning method could further accelerate the
inference in VL models. Meanwhile, our method
provides more interpretability power for VL tasks.

7 Conclusion

Large vision language models have been effec-
tive at visual reasoning tasks due to their complex
cross-modal interactions between the text and im-
age information across multiple Transformer self-
attention layers, which is computationally expen-
sive. We introduce a text-informed image pruning
approach -TiP- that progressively removes the re-
dundant image information and make VL models
run faster. TiP maintains task performance of the
original VL. models while also providing model
interpretability without explicit supervision.



8 Limitations

While we show our text-informed image pruning
method is interpretable both quantitatively and
qualitatively, there are still cases where the VL
models rely on the counter-intuitive image regions
(which humans never use) to predict the task label.
We suspect this is because the models overfit to
spurious correlations. Improvements in pretrained
models that overcome model biases might mitigate
these issues.

Our method does not apply to VL models
where the cross modal encoder layers are rela-
tively lightweight. For example, the vision en-
coder is much more computationally expensive
than the cross-modal encoder for VL. models like
ALBEF (Li et al., 2021) and X-VLM (Zeng et al.,
2021), thereforce, the end to end inference speed
improvement is marginal. Pruning the image inside
the vision encoder could further improve the model
efficiency, we leave this exploration to future work.
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A Appendix
A.1 TiP Details

Implementation. We implement the to-
ken pruner architecture as a 3-layer MLP:
Layer Norm(H) -> Linear(H, H) -> gelu ->
Linear(H, H/2) -> gelu -> Linear(H/2, H/4) ->
gelu -> Linear(2) -> LogSo ftmax(), where H is
hidden size set to 768.

Training. We use the Transformers (Wolf et al.,
2020) and Accelerate (Hug, 2022) with Deep-
Speed (Dee, 2022) library to implement the training
tasks. We conduct training jobs on 4 Nvidia A40
GPUs. For both VIiLT and METER model, we first
follow the training hyperparameters in their orig-
inal papers and finetune the pretrained model to
obtain task-specific models. These models are used
as baselines for measuring accuracy drop and also
used as the teacher model for TiP distillation.

For each task in TiP, we follow a two-stage fine-
tuning procedure. In the first stage, we first ini-
tialize the model weights from the finetuned task-
specific VL model, then we freeze the backbone
VL model and only finetune the token pruners and
the task-specific classifier for 5 epochs with all
the multi-task losses except the continuity regula-
tion loss (i.e, setting A to 0). In the second stage,
we unfreeze the cross-modal encoder weights of
the finetuned model in the first stage and finetune
the model with all the multi-task losses (setting
A to 1) for 60 epochs METER models and 200
epochs for VILT models. We apply early stopping
for the training and setting a stopping patience of
10 epochs (i.e. the training stops if the validation
performance does not improve for 10 epochs). For
both the VQAV2 and VE tasks, training for takes
roughly 2 days for TiP-METER models and 1 day
for TiP-ViLT models. For NLVR2 task, training
TiP-ViLT and TiP-METER takes 4 hours and 6
hours respectively. The token pruner learning rate
is set to the same as the cross-modal encoder of
the VL model. The warmup ratio is 0.1 for the first
stage and 0.01 for the second stage for all tasks and
models.

We list all training hyperparameters in Table 5.

A.2 Evaluation setup

We evaluate TiP for two different VL models:
ViLT (Kim et al., 2021) and METER (Dou et al.,
2022) on three visual reasoning tasks: Visual Ques-
tion Answering (VQA) (Goyal et al., 2017), Visual
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METER ViLT
VE,VQAv2 NLVR2 VE,VQAv2 NLVR2

token pruner Ir 2.5e-5 5e-5 le-4 le-4
cross-modal Ir 2.5e-5 5e-5 le-4 le-4
task classifier Ir 2.5e-4 le-4 le-3 le-4
end Ir le-7 le-7 le-6 le-6
batch size per gpu 32 16 64 64

total batch size 256 128 256 128
image size 384 288 384 384
patch size 16 16 32 32

Table 5: Hyperparameters for training TiP.

Entailment (VE) (Xie et al., 2019), and Natural
Language for Visual Reasoning (NLVR2) (Suhr
et al., 2019).

VIiLT is a recent efficient VL. model that uses
BERT (Devlin et al., 2019) embeddings to encode
text and a linear layer to project image patches.
ViLT then concatenates the text and image tokens
and uses 12-layer Transformer encoder to perform
cross-modal fusion. ViLT is a relatively lightweight
model and has 110 million parameters.

METER is a state-of-the-art VL model that uses
RoBERTa (Liu et al., 2019) as the text encoder and
CLIP (Radford et al., 2021) as the image encoder,
and 12 BERT-like cross-attention layers to fuse
the text and image modalities. METER is a large
model and has 330 million parameters.

Visual Question Answering dataset (VQAV2)
contains over 1 million diverse open-ended ques-
tions about images both from the MSCOCO (Lin
et al., 2014) and real world scenes. Answering
these questions requires an understanding of vision,
language and commonsense knowledge.

Visual Entailment is a visual inference task that
consists of 570K sentence image pairs constructed
from the Stanford Natural Language Inference cor-
pus (Bowman et al., 2015) and Flickr30k (Young
et al.,, 2014). The goal is to predict to predict
whether the image premise semantically entails
the text.

Natural Language for Visual Reasoning cor-
pora (NLVR2) have over 100K examples of linguis-
tically diverse English sentences written by human
and are grounded in pairs of visually complex im-
ages. The goal is to predict whether a sentence is
true about two input images.



A.3 Computing Overlap with Human
Attention

We filter the human attention maps by setting a
threshold of 0.2 as attention values smaller than
0.2 do not form a focus region on the image. We
then resize the attention map image into 384x384,
divide it into patches of 16x16 and 32x32 for the
comparing with METER and ViLT respectively.

A.4 Grounded Pruning Implementation

To implement grounded pruning, we need anno-
tated text-grounded image regions. Ideally, hu-
man attention data like in VQA-HAT (Das et al.,
2016) can be used as the gold grounded image
regions. However, human attention data does
not exist for the three datasets we evaluate. In-
stead, we focus on a recent grounding model — AL-
BEF (Li et al., 2021). To make sure ALBEF can
ground similar image regions as human attention,
we evaluate ALBEF grounding precision on the
validation set of the VQA-HAT (Das et al., 2016)
dataset. ALBEF uses the Grad-CAM (Selvaraju
et al., 2017) of the text to image cross-attention
maps in the cross-modal encoder. We take the
grounding model weakly supervised on the Re-
fCOCO+ (Kazemzadeh et al., 2014) dataset.We
append the answer label to the question, extract
Grad-CAM data and resize it into the same size as
the input image (384x384). We compute the pre-
cision of ALBEF grounding model as follows: an
image is first divided into 32x32 patches, an image
patch from the grounded region is count as correct
if it overlaps with human attention patch. ALBEF
grounding model has an average precision of 78.4%
across three human annotators. The high precision
indicates it can be used to generate grounded im-
age regions similar to the areas where humans pay
attention.

We use the ALBEF grounding model to auto-
matically generate grounded image regions for the
training and dev sets of VQAv2 dataset and use
them as gold labels for the image pruning dur-
ing training and inference (i.e., an image token
that does not appear in the grounded regions is re-
moved). To fairly compare with TiP, we gradually
expand the grounded image regions to their neigh-
bor patch by a radius of 2 (24 patches) and 1 (8
patches) for the pruning at 4th and 7th layers. We
use the grounded image regions for pruning at 10th
layer.
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A.5 Resource Measurement Details

For inference throughput measurements, we in-
crease the batch size until the model gets out
of GPU memory, and run the inference with the
largest batch size for 30 seconds on a GTX 1080
Ti with 12 GiB memory. For inference memory
footprint, we use the same batch size for the origi-
nal VL model and TiP version and report the peak
memory difference.

A.6 TiP-METER Visualization

We show in Figure 5 more visualizations of the TiP-
METER VQA model on the VQA-HAT validation
set.
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Figure 5: More visualization of TiP-METER kept image portions for visual questions in the VQAv1 validation set.
For each row, the first image is the original input image, the last one is the input image only revealing the human
attention regions, the middle three ones are TiP-METER images with removed regions (shaded grey).
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