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Abstract

Large-scale vision language (VL) models use001
Transformers to perform cross-modal interac-002
tions between the input text and image. These003
cross-modal interactions are computationally004
expensive and memory-intensive due to the005
quadratic complexity of processing the input006
image. We present TiP: a Text-informed007
Image Pruning method that progressively re-008
moves text-irrelevant portions of the input im-009
age, improving model inference speed and re-010
ducing memory footprint. We design several011
lightweight modules — token pruners — and012
add them to the cross-modal layers in a VL013
model to predict which image portions are014
salient. To train TiP, we introduce a text-015
informed contrastive learning technique that016
optimizes the representation similarity between017
the text and the salient text-relevant image018
portions predicted by the token pruners. Our019
neighbor-based continuity regularization loss020
encourages the pruners to select contiguous seg-021
ments of the image as relevant. Our evaluation022
for two vision language models on three down-023
stream VL tasks shows TiP prunes over 87%024
of input image data, thus increasing inference025
throughput by over 1.5x and reducing memory026
footprint by over 36%, while incurring less than027
a 1% accuracy drop. TiP is also interpretable028
by construction. 1029

1 Introduction030

Large-scale vision language (VL) models (Dou031

et al., 2022; Wang et al., 2022; Zeng et al., 2021;032

Kim et al., 2021; Wang et al., 2021; Zhang et al.,033

2021) have shown substantial progress on many034

vision language tasks such as visual question an-035

swering, natural language visual reasoning, and036

visual entailment. However, state-of-the-art lan-037

guage and vision models are memory intensive and038

computationally expensive because they use multi-039

layer self-attention between many language and vi-040

1Code is available at anonymized_url.
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Figure 1: TiP applies image pruning to VL models via
text-informed contrastive learning. TiP makes VL mod-
els run faster by progressively removing text-irrelevant
image portions and extracts text-informed image por-
tions to contrast with negative examples.

sion input tokens 2 with quadratic complexity. This 041

inefficiency limits high-throughput cloud deploy- 042

ments and makes it infeasible to run on resource- 043

constrained devices. 044

The key challenge in deep VL models is that 045

these models need to process the entire image over 046

all the layers. On the contrary, humans process 047

natural language and visual world in a coarse-to- 048

fine grained manner (Hegdé, 2008) and are able 049

to selectively pay attention to key parts in a visual 050

scene (Rensink, 2000). This selective attention 051

mechanism helps summarize key information and 052

makes humans process complex visual scenes more 053

efficiently. For example, for the visual question 054

“What sport are they playing?” in Figure 1, humans 055

easily answer “soccer” by focusing on the bottom- 056

center region of the image. 057

In this paper, we design TiP, a Text-informed Im- 058

age Pruning framework, that progressively prunes 059

image regions that are not related to the text and 060

are unimportant to the VL task predictions. At the 061

core of TiP is a set of simple and lightweight token 062

pruners that predict which image tokens are pruned 063

as the VL model forward computation proceeds. 064

We jointly train the token pruner and the underly- 065

ing VL model using a multi-task training objective 066

that optimizes for the end task performance, learns 067

2small image patches
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the task logits by distilling from the original VL068

model, and encourages the model to only keep text-069

grounded, continuous image regions.070

To preserve text-grounded information in the in-071

put image, we design a contrastive loss to align072

the pruned image to the reference text as opposed073

to other texts. Since salient objects in images can074

span contiguous tokens of the image, we introduce075

a continuity prior to reduce the discontinuity of076

salient image tokens and encourage them to form077

continuous image regions. To reduce abrupt image078

information loss and improve the computational079

efficiency, we scatter the token pruners at differ-080

ent cross-modal layers in the VL model and prune081

the image tokens in a cascaded fashion. Fewer082

tokens are pruned in earlier layers. During infer-083

ence too, we prune image tokens progressively and084

use salient tokens for cross-modal attention in sub-085

sequent layers. This leads to improved inference086

efficiency and inherent interpretability.087

We evaluate TiP over two recent VL models088

ViLT (Kim et al., 2021) and METER (Dou et al.,089

2022) across three visual reasoning tasks: visual090

question answering (VQAv2; Goyal et al. 2017),091

natural language visual reasoing (NLVR2; Suhr092

et al. 2019), and visual entailement (SNLI-VE; Xie093

et al. 2019). Compared to baselines, TiP improves094

the model inference throughput by over 1.5x and095

reduces memory footprint by over 30% with mini-096

mal (less than 1%) accuracy loss. We quantitatively097

and qualitatively show TiP maintains grounding098

capability and provides more interpretable results.099

Our analysis indicates that original model distilla-100

tion, text-informed contrastive loss and continuity101

prior contribute to the effectiveness of TiP.102

2 Background and Overview103

Vision Language Models. Figure 2 shows the104

backbone of a VL model consisting of a text en-105

coder, an image encoder and a cross-modal en-106

coder. The input sentence (e.g. a question or a107

statement) is first tokenized as text tokens and fed108

to the text encoder to create contextualized text rep-109

resentations. Similarly, the input image is projected110

into many small image patches, referred to as “im-111

age tokens”, that are further contextualized by the112

image encoder. Finally, the cross-modal encoder113

takes the concatenated text and image tokens and114

fuses information between image and text modal-115

ities via Transformer-style (Vaswani et al., 2017)116

cross-attention interactions.117

Text	Encoder Image	Encoder

Image	Text	Cross-Modal	Encoder

Concatenated	Text	+	Image	Tokens

Image	PatchesText	tokens

what		sport		are		they		playing?	

Figure 2: General architecture of vision language mod-
els. The input image is projected into many small im-
age patches (“tokens”) that are processed by the image
encoder. Transformer-style cross-modal encoder atten-
tion between concantenated text and image tokens has
quadratic time-complexity, which is computationally
expensive. Both ViLT and METER models follow this
pattern.

For many VL tasks, the number of tokens of 118

the input image is an order of magnitude more 119

than that of the input text — a visual question 120

can have at most a dozen tokens but the associ- 121

ated image consists of a hundred image tokens. 122

For example, for an image with a resolution of 123

384x384 and patch size of 16, the number of to- 124

kens is (384/16)2 = 576. 125

Image Pruning for Efficiency. In this paper, we 126

focus on pruning image tokens to improve compu- 127

tational efficiency of the model. However, naively 128

removing a large percentage of the image tokens 129

inside the cross-modal layers may cause abrupt im- 130

age information loss, as the VL model is trained 131

to build representations of the full image for the 132

downstream task. For example, if the soccer region 133

in Figure 1 gets pruned, the VL model is unlikely to 134

output the answer “soccer” for the question “what 135

sport are they playing?”. 136

Our Solution: Text-Informed Image Pruning. 137

Section 3.1 describes our approach. We design a set 138

of token pruners that remove image tokens that are 139

not salient to the end task, hence maintaining the 140

task performance. We measure saliency of image 141

tokens based on how much they are related to the 142

input text and how important they are to the end 143

task. TiP learns to align representations between 144

the input text and text-grounded image regions via 145

text-informed contrastive learning. Token pruners 146

are incorporated in the cross-modal attention layers 147

in a cascaded manner (dense to sparse image tokens 148

across layers) to avoid an abrupt information loss. 149
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Figure 3: TiP applies cascaded image pruning to the cross-modal layers of a VL model via token pruners.

3 Tex-Informed Image Pruning150

This section describes our text-informed image151

pruning approach (depicted in Figure 3). The basic152

building blocks of our TiP are lightweight learn-153

able token pruners that remove image tokens in a154

cascaded manner to reduce the information loss155

and improve the computational efficiency of a VL156

model (Section 3.1). Our text-informed contrastive157

learning objective encourages the token pruners to158

keep text-relevant image tokens that are required159

to maintain task performance (Section 3.2). Our160

token pruners are jointly trained with a VL model161

on the downstream VL tasksa using a multi-task162

learning objective (Section 3.3).163

3.1 TiP Design164

Our goal is to improve the efficiency of VL models165

and keep their task performance intact. Given a VL166

cross-modal encoder, we design TiP, that progres-167

sively prunes image tokens going through the cross-168

modal encoder. To do so, we design lightweight169

token pruner modules (MLPs) and add them in dif-170

ferent layers of the cross-modal encoder to predict171

which image tokens are removed (Figure 3). To172

prevent abrupt information loss in removing image173

tokens, we start to prune the image only after the174

first few cross-modal layers and prune the image175

tokens in a cascading manner.176

Image Token Pruners. Figure 3 illustrates the177

image pruning procedure in TiP. For an n-layer178

cross-modal encoder, after the first i (i < n) layers,179

a token pruner removes r% the image tokens at any180

layer between i and n. The image tokens removed181

in layer j are not used in subsequent layers. We182

scatter the token pruners across the cross-modal183

layers to achieve a better accuracy and efficiency 184

trade-off. Intuitively, pruning at early layers in the 185

cross-modal encoder will have higher inference ef- 186

ficiency but may have bigger performance loss and 187

vice versa. We study this trade-off in more details 188

in §5.3. Each token pruner is a three-layer MLP 189

(denoted as Pℓ) followed by a two-class softmax 190

layer to evaluate saliency — keeping or pruning 191

probability — of image tokens. At each pruning 192

layer ℓ, the token pruner takes the contextualized 193

representation of every image token vi, and pre- 194

dicts the saliency probability pℓi = Pℓ(vi). 195

Training and Inference. During training, we use 196

pℓi to derive a binary pruning mask mi that prevents 197

text and salient image tokens from attending to the 198

pruned image tokens. 199

mi =

{
1 if pℓi > 0.5

0 otherwise
, (1) 200

where 1 means the token should not be pruned. The 201

pruning mask is a discrete binary value and not dif- 202

ferentiable, hence we adopt the straight-through 203

Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016) 204

to reparameterize mi to facilitate end-to-end train- 205

ing. To guarantee the VL model is only conditioned 206

on the salient tokens, we apply this pruning mask 207

to the image self-attention and text-to-image cross- 208

attention in the cross-modal layers. Token pruners 209

do not require explicit supervision. Instead, we 210

leverage a multi-task training objective that opti- 211

mizes for the downstream VL task and learns the 212

task logits by distilling from the original VL model. 213

During inference, we keep the top-k image to- 214

kens {v1,v2, · · · ,vk} ranked by the saliency prob- 215

ability. 216
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3.2 Text-Informed Contrastive Learning217

The goal of our text-informed contrastive learning218

is to encourage the VL model to focus more on the219

text-relevant image tokens and supervise the token220

pruners to remove text-irrelevant image tokens.221

Text and Image Representations. Formally, we222

denote T ℓ = {t1, t2, · · · , tn} for text tokens at223

layer ℓ, V ℓ = {
salient tokens︷ ︸︸ ︷

v1,v2, · · · ,vk,

removed tokens︷ ︸︸ ︷
vk+1, · · · ,vm} for224

the image tokens3, where ti,vi are hidden state225

representations of layer ℓ in the cross-modal en-226

coder. The image representation is obtained by227

average pooling over salient image tokens: vℓ
k =228

avgpool({v1,v2, · · · ,vk}). The text representa-229

tion is similarly encoded through average pooling:230

t
ℓ
= avgpool({t1, t2, · · · , tn}).231

The goal is to enforce high similarity be-232

tween salient image tokens and their correspond-233

ing text representation. Therefore, we define234

a similarity function for text-image pairs as235

sℓ = pv(v
ℓ
k)

Tpt(t
ℓ
), where pv and pt are linear236

projections that transform the vectors to lower-237

dimensional (192-d) representations.238

We form training batches by randomly sampling
text-image pair examples from the training dataset
of the VL task. We compute the in-batch text to
image similary as:

Sℓ =
exp (sℓ/τ)∑B
b=1 exp (s

ℓ
b/τ)

,

where τ is a learnable temperature parameter.239

Contrastive Loss. Given a pair of text and its240

aligned image (T , V ), T is the positive example of241

V (labeled as 1), and the other (B−1) texts within242

the mini-batch are negative examples (labeled as 0).243

Let yctr denote the ground-truth one-hot similarity244

(positives are ones and negatives are zeros), the245

contrastive loss is defined as the cross-entropy H246

between Sℓ and yctr:247

Lctr =
1

L

L∑
ℓ=1

E(T,V )∼D[H(yctr,S
ℓ)] (2)248

3.3 TiP Multi-Task Training249

We conduct multi-task training of the VL task and250

the token pruning task. We minimizes the follow-251

ing multi-task objective:252

LTiP = Ltask+Ldistill+Lspr+Lctr+λLcnt (3)253

3Note that the salient tokens might not be consecutive.

where Ltask is the VL task-specific loss, Ldistill 254

is a logit distillation loss that learns the task log- 255

its from the original VL model, the sparsity loss 256

Lspr regularizes the token pruners to learn sparse 257

binary pruning masks, Lctr is our text-informed 258

contrastive loss that encourages the token pruners 259

to keep text-relevant image tokens, and the con- 260

tinuity loss Lcnt regularizes the token pruners to 261

keep continuous image tokens and the λ controls 262

the continuity regularization effect. 263

Task Loss and Distillation. Ltask is a standard 264

cross-entropy loss: 265

Ltask = E[H(ytask,ypred)] (4) 266

where ytask is the ground truth task labels and 267

ypred is the task predictions of the TiP VL model. 268

Ldistill minimizes the KL-divergence the predic- 269

tion logits between TiP and the teacher VL model 270

(finetuned without token pruners): 271

Ldistill = DKL(ypred∥y′
pred) (5) 272

where y′
pred is the prediction logits of the teacher 273

VL model. We observe that without distilling from 274

the original finetuned VL model, token pruners 275

remove image tokens that are important to the task 276

predictions and cause significant accuracy drop, we 277

analyze the effect in Section 5.3. 278

Sparsity Regularization. In order to force im- 279

age token pruners to learn a sparse mask, we add a 280

regularization loss over the learned salience prob- 281

abilities pi. Specifically, for a sparsity ratio of 282

r ∈ (0, 1) in layer ℓ in the cross-modal encoder, 283

we add the following mean square error loss for 284

sparsity regularization: 285

Lspr =
1

mL

L∑
ℓ=1

m∑
i=1

(pℓi − r)2 (6) 286

Without sparsity regularization, token pruners 287

can predict all ones for the pruning mask m, which 288

is no longer useful for image pruning. 289

Continuity Regularization. Humans typically 290

focus on salient portions of the image for more 291

efficient visual processing (Figure 1), which are 292

often small contiguous regions of the image corre- 293

sponding to individual objects or clusters of objects. 294

Previous work on grounding images to text has 295

also found that human-interpretable grounded units 296

are often contiguous parts of the image (Li et al., 297
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2021). To encourage the image token pruners to298

select contiguous image tokens, we add a contigu-299

ity regularization loss over the keep probability pi.300

Inspired by the selection of consecutive words (Lei301

et al., 2016), for a given image token i in location302

{x, y} in the image, we minimize the mean square303

error of its saliency probability with all its 8 neigh-304

bors in locations N (x, y) = [(x+ e, y+ e) | ∀e ∈305

{−1, 0, 1}] as follows:306

Lcnt =

L∑
ℓ=1

∑
(x′,y′)∈N (x,y)

(pℓ(x,y) − pℓ(x′,y′))
2

L · |N (x, y)|
(7)307

4 Evaluation Setup308

4.1 Backbone Vision-Language Models309

We evaluate TiP for two different VL models:310

ViLT (Kim et al., 2021) with 110 million parame-311

ters and a state-of-the-art VL model, METER (Dou312

et al., 2022) with 330 million parameters. We de-313

note TiP-ViLT and TiP-METER as TiP applied314

for ViLT and METER respectively. More details315

about these models are in Appendix A.2.316

4.2 Evaluation Tasks317

We evaluate the models on three visual reasoning318

tasks: visual question answering (VQAv2; Goyal319

et al. 2017), natural language visual reasoing320

(NLVR2; Suhr et al. 2019), and visual entailement321

(SNLI-VE; Xie et al. 2019). More details about322

these datasets are in Appendix A.2.323

4.3 TiP Implementation Details324

We set the cascading pruning ratio to be 0.5 for325

three pruning layers (4th, 7th, 10th for ViLT and326

2nd, 4th, 6th for METER) by default (except for327

ViLT-NLVR2, where we set pruning ratio to 0.4328

due to a larger accuracy drop). In Section 5.3, we329

show ablations for pruning ratios and pruning layer330

locations. The token pruner implementation and331

more training details are in Appendix A.1.332

4.4 Baselines333

To compare the benefits of TiP, we additionally334

evaluate three baselines:335

Random Pruning: we use the same pruning ratio336

and same pruning locations as TiP to randomly re-337

move image tokens during inference. The random338

pruning uses the finetuned TiP model but random339

pruning masks instead of those predicted by the340

token pruners.341

Smaller Resolution: We downsample the input 342

image to smaller resolutions and finetune the VL 343

models. Using smaller input images directly re- 344

duces the computation of VL models. 345

Pruning via Grounding: text-grounded image re- 346

gions are supposed to provide more important in- 347

formation for the VL task. We compare with a 348

grounded pruning baseline that can approximate 349

the upper bound of the task performance under 350

image pruning. This baseline uses the grounded 351

image regions as the gold labels for salient tokens. 352

We remove the image tokens at the same layers 353

as TiP. However, it is often challenging to obtain 354

text-grounded image regions because the datasets 355

we study do not come with annotated grounded 356

image data. Instead, we use a recent grounding 357

model ALBEF (Li et al., 2021) to generate text- 358

grounded image regions for the visual questions in 359

the VQAv2 dataset. We show in Appendix A.4 the 360

image regions generated by the ALBEF grounding 361

model has high overlaps with human attention data 362

and can serve as a reasonable tool to automatically 363

generating grounded image regions. 364

4.5 Evaluation Metrics 365

Accuracy Metrics. We measure VQA accu- 366

racy (Goyal et al., 2017) for the VQAv2 dataset 367

and accuracy for both the VE and NLVR2 datasets. 368

Unlike previous works (Kim et al., 2021; Dou et al., 369

2022), where their models are trained on the com- 370

bined training and validation sets, our focus is not 371

to obtain the state-of-the-art results, so we train the 372

two VL models on the training set and report the 373

results on the test set. 374

Resource Consumption. We measure the actual 375

inference throughput (examples per second) of the 376

VL models on the GPU hardware and compare 377

them to the finetuned models with no image prun- 378

ing. We also measure the peak memory consumed 379

during the model inference phase and report mem- 380

ory reduction ratio compared to the original model 381

without image pruning. These two runtime metrics 382

are found to be more accurate to compare resource 383

consumption instead of using the FLOPs complex- 384

ity metric (Graham et al., 2021). We describe the 385

detailed setup in Appendix A.5. 386

5 Experimental Results 387

5.1 Main Results 388

TiP is faster and remains accurate. Table 1 389

shows the main results comparing performance, in- 390
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Model Datasets Original Accuracy TiP Accuracy Throughput Increase Memory Reduction

VQAv2 77.5 77.2 (-0.3) 1.57x 32%
METER (SoTA) VE 81.2 80.8 (-0.4) 1.52x 33%

NLVR2 82.8 82.4 (-0.4) 1.56x 32%

VQAv2 69.5 68.9 (-0.6) 1.51x 36%
ViLT VE 75.9 75.2 (-0.7) 1.54x 35%

NLVR2 75.6 74.9 (-0.7) 1.43x 29%

Table 1: Performance and efficiency comparison between the original fine-tuned vs TiP fine-tuned models for the
ViLT and METER over 3 downstream visual reasoning tasks.

Model Image VQAv2 Throughput Memory
Resolution Accuracy Increase Reduction

Resolution

192x192 72.7 (-3.0) 4.23x 75%
224x224 73.7 (-2.0) 3.48x 66%
256x256 74.4 (-1.3) 2.67x 54%
320x320 75.2 (-0.5) 1.62x 40%

TiP (Ours) 320x320 74.8 (-0.9) 2.32x 56%

Random 384x384 69.4 (-6.3) 1.57x 32%Pruning

Pruning via 384x384 75.8 (+0.1) 0.53x 25%Grounding

TiP (Ours) 384x384 75.4 (-0.3) 1.57x 32%

METER 384x384 75.7 1x 0%

Table 2: Performance and efficiency comparison be-
tween the baselines and TiP for the METER model on
VQAv2 dev set.

ference speed and memory reduction of TiP. Over-391

all, we observe over 1.5x speedup in inference392

throughput and over 30% reduction in memory393

footprint for both ViLT and METER models on all394

three datasets. Importantly, the task performance395

of TiP remains competitive compared to the orig-396

inal finetuned VL models with only <1% drop in397

accuracy.398

Baseline pruning methods incur large accuracy399

drops. Table 2 shows downsampling the input400

image to smaller resolution improves the infer-401

ence throughput and reduces memory footprint but402

comes with larger accuracy drops. The closest res-403

olution is 320x320 which provides slightly more404

(8%) memory reduction than TiP, but it still has405

lower inference throughput and bigger accuracy406

gap. Meanwhile, TiP is orthogonal to downsam-407

pling strategies, and applying TiP to smaller im-408

ages could provide additional efficiency gains (see409

3rd row numbers in Table 2).410

Compared to TiP, the random pruning baseline411

(4th row in Table 2) has a much higher (6.3%)412

accuracy drop. This indicates the token pruners413

in TiP are effective in identifying salient image 414

tokens for the VL tasks. 415

Grounded pruning baseline (5th row in Table 2) 416

shows the METER VQA model becomes even 417

more accurate when giving the grounded image 418

tokens. This validates that the grounded image re- 419

gions are sufficient for the VL model to achieve 420

high accuracy on the VL tasks. On the other hand, 421

the inference efficiency is slowed down by 53% 422

due to the use of the grounding model. Unlike 423

these models, TiP does not rely on explicit super- 424

vision signals of grounded image regions, learning 425

to prune image tokens that are not related to text 426

by solely using end task supervision. 427

5.2 Interpretability Analysis 428

TiP keeps image regions that overlap with hu- 429

man attention. We evaluate whether salient to- 430

kens identified by TiP align with human attention 431

using the VQA-HAT (Das et al., 2016) dataset that 432

contains human attention maps for the images of vi- 433

sual questions from the VQAv1 (Antol et al., 2015) 434

dataset. We apply the TiP-METER VQA model 435

on the VQA-HAT validation dataset and extract the 436

kept image portions (patches) (see details in Ap- 437

pendix A.3). We then extract image portions from 438

the human attended regions. For each image patch 439

kept by TiP-METER, if it overlaps with human 440

attention region, we count it as correct and calcu- 441

late the alignment precision as the total number 442

of correct patches divided by the total number of 443

kept patches. We average the precision score across 444

three human annotators on the validation set. 445

TiP-METER has an average of 69.2% preci- 446

sion. In contrast, a random pruning baseline only 447

achieves 39.8% average precision, indicating TiP- 448

METER has a high overlap with human attention. 449

We find the precision for TiP-ViLT model is lower 450

but still 2.7% higher than a random baseline. This 451

is likely because the ViLT model does not learn 452

fine-grained alignments like the METER model. 453
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TiP keeps faithful and interpretable image re-454

gions. In order to measure the faithfulness of the455

salient image tokens as an explanation (Wiegreffe456

and Marasović, 2021) – whether the model only457

uses the salient tokens for prediction, we compute458

how comprehensive and sufficient this explanation459

is (DeYoung et al., 2019). Sufficiency measures460

difference in prediction accuracy (compared to us-461

ing the full image) when only the salient tokens462

are used for prediction. A low sufficiency score463

implies that the salient tokens are indeed necessary464

for the VL model to make a prediction. Compre-465

hensiveness measures difference in accuracy com-466

puted by using the pruned tokens for prediction.467

A high comprehensiveness score indicates that the468

salient tokens were sufficient for prediction. To ob-469

tain comprehensiveness scores for TiP, we invert470

the learned mask in the first pruning layer on the471

validation set.472

Both TiP-METER and TiP-ViLT have low suffi-473

ciency and high comprehensiveness compared to474

the random baseline (6.3%).4 Specifically, TiP-475

METER has a sufficiency accuracy of 0.3% (the476

lower the better) and has a comprehensiveness ac-477

curacy of 21.0% (the higher the better). TiP-ViLT478

has a sufficiency accuracy of 0.6% and has a low479

comprehensiveness accuracy of 13.4% which is480

lower than TiP-METER, indicating that METER481

produces more faithful explanations.482

We visualize the salient image regions generated483

by TiP-METER in Figure 4 by randomly sampling484

visual questions from the VQA-HAT validation485

set. TiP-METER prunes question-irrelevant im-486

age portions and keeps portions that align with487

human attention regions. More visualization of488

TiP-METER images are in Appendix A.6.489

5.3 Ablation Study490

Learning Components in TiP. Table 3 indicates491

the impact of different components of TiP. It shows492

the performance drop of TiP ViLT by removing493

the distillation loss (w/o distillation), text-informed494

contrastive learning (w/o text contrastive) and the495

continuity prior for fine-tuning (w/o continuity496

loss) on the VQAv2 dataset. The distillation loss is497

a key ingredient in TiP as the performance drops by498

5.2% without it. The results also show that both the499

contrastive learning and the continuity prior signif-500

icantly contribute to TiP and the original fintuned501

4Note that the comprehensiveness for the random baseline
is low because the inverse of random tokens still contains a lot
of useful information for the task prediction.

Figure 4: Visualization of TiP-METER salient image
portions for visual questions in the VQA-HAT valida-
tion set. For each row, the first image is the original
input image, the last is the human attention regions,
three images in between are generated by TiP-METER
with cascaded pruning. Note that with different input
text, TiP-METER removes different image regions for
the same image.

VQA model.

Model VQA Accuracy

ViLT 69.5

TiP-ViLT 68.9 (-0.7)
w/o distillation 63.7 (-5.2)
w/o text contrastive loss 67.9 (-1.6)
w/o continuity loss 68.4 (-1.1)
w/o text contrastive & continuity loss 67.6 (-1.9)

TiP-ViLT (MLP) 68.9 (-0.7)
w/ linear layer 67.3 (-2.2)
w/ mean attention scores 67.4 (-2.1)
w/ single-head attention scores 67.1 (-2.4)

Table 3: Ablation analysis for applying text-informed
contrastive learning (text contrastive) and continuity
loss on the VQAv2 dataset for ViLT; and for different
token pruner architectures in TiP-ViLT on the VQAv2
dataset.

502

Token Pruner Architectures. TiP uses a 3-layer 503

MLP architecture for the token pruners (described 504

in Appendix A.1) that predict the pruning masks 505

taking the image representations as inputs. We com- 506
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pare three alternative lightweight architectures for507

the token pruner modules: (1) linear layer - we re-508

place the MLP with a single linear layer; (2) mean509

attention scores - we use the average text to image510

attention scores across all attention heads as the to-511

ken pruner inputs; (3) single-head attention scores512

- we feed the text to image attention scores from513

the first attention head to the token pruners. All of514

these architectures added little (< 0.1%) runtime515

overhead to the VL models. Table 3 shows that the516

MLP architecture achieves the best performance.517

Group Pruning Pruning VE Test Throughput
Locations Ratios Accuracy Increase

ratios 4,7,10 0.7 72.2 (-3.7) 1.77x
4,7,10 0.3 75.7 (-0.2) 1.26x

# of layers 4 0.7 74.5 (-1.4) 1.56x
4,7 0.6 75.0 (-0.9) 1.55x

locations 4,5,6 0.5 74.2 (-1.7) 1.70x
8,9,10 0.5 75.3 (-0.6) 1.21x

TiP (Ours) 4,7,10 0.5 75.2 (-0.7) 1.54x

ViLT - - 75.9 -

Table 4: Ablation analysis of pruning ratios, # of prun-
ing layers, and pruning locations for the ViLT model on
VE task.

Design Choices of Pruning Ratios and Locations.518

Given a 12 layer VL cross-modal encoder like ViLT,519

many combinations of pruning locations and ratios520

achieve similar inference speedups. Pruning at ear-521

lier layers with lower ratios has similar computa-522

tion efficiency to pruning at later layers with higher523

ratios. For comparing the accuracy with different524

number of pruning layers, we control the inference525

throughput to be similar to TiP by selecting the526

pruning ratios and locations. Table 4 shows cas-527

caded pruning at 3 layers (4th,7th,10th) has higher528

accuracy than pruning at one (4th) or two layers529

(4th,7th) while having similar speedups.530

The ratios row in Table 4 shows pruning more im-531

age tokens (with ratio=0.7) leads to bigger through-532

put increase but has significantly lower (-3.7%) ac-533

curacy, while pruning fewer image tokens (with ra-534

tio=0.3) is more accurate but causes lower through-535

put. We find that pruning in the earlier layers leads536

to bigger throughput but drops accuracy by 1.7%,537

while pruning in the later layers is slightly more538

accurate but provides fewer benefits in through-539

put. Overall, we choose 3-layer cascaded pruning540

strategy with a pruning ratio of 0.5 and scatter the541

pruning locations more evenly to balance accuracy542

and speed trade-offs. 543

6 Related work 544

Data Pruning. Prior work in data pruning (Rao 545

et al., 2021; Yin et al., 2021; Liang et al., 2021; 546

Goyal et al., 2020) focus on single-modality mod- 547

els by either pruning input text or image alone. Dy- 548

namicViT (Rao et al., 2021) and AdaViT (Yin et al., 549

2021) both progressively remove the uninformative 550

content and keep salient regions in the input image. 551

This type of pruning does not apply to language 552

and vision tasks where the salient regions depend 553

on the input text. Our work shows different input 554

texts lead to pruning different image regions even 555

for the same input image. EViT (Liang et al., 2021) 556

reduces the image tokens progressively but requires 557

expensive pretraining. PoWER-BERT (Goyal et al., 558

2020) speeds up the inference of text-based Trans- 559

formers like BERT (Devlin et al., 2019) by remov- 560

ing the input text tokens, which are not the main 561

computation bottlenecks for most vision and lan- 562

guage tasks. 563

Efficient Inference. Many techniques have fo- 564

cused on model pruning (Lagunas et al., 2021; Yu 565

and Wu, 2021; Yu et al., 2022; TPr), dynamic com- 566

putation by early exiting (Xin et al., 2020; Zhou 567

et al., 2020; Schwartz et al., 2020; Liu et al., 2020) 568

or designing small and efficient VL models (Fang 569

et al., 2021; Wang et al., 2020). Combining these 570

orthogonal optimizations with our text-informed 571

image-pruning method could further accelerate the 572

inference in VL models. Meanwhile, our method 573

provides more interpretability power for VL tasks. 574

7 Conclusion 575

Large vision language models have been effec- 576

tive at visual reasoning tasks due to their complex 577

cross-modal interactions between the text and im- 578

age information across multiple Transformer self- 579

attention layers, which is computationally expen- 580

sive. We introduce a text-informed image pruning 581

approach -TiP- that progressively removes the re- 582

dundant image information and make VL models 583

run faster. TiP maintains task performance of the 584

original VL models while also providing model 585

interpretability without explicit supervision. 586

8



8 Limitations587

While we show our text-informed image pruning588

method is interpretable both quantitatively and589

qualitatively, there are still cases where the VL590

models rely on the counter-intuitive image regions591

(which humans never use) to predict the task label.592

We suspect this is because the models overfit to593

spurious correlations. Improvements in pretrained594

models that overcome model biases might mitigate595

these issues.596

Our method does not apply to VL models597

where the cross modal encoder layers are rela-598

tively lightweight. For example, the vision en-599

coder is much more computationally expensive600

than the cross-modal encoder for VL models like601

ALBEF (Li et al., 2021) and X-VLM (Zeng et al.,602

2021), thereforce, the end to end inference speed603

improvement is marginal. Pruning the image inside604

the vision encoder could further improve the model605

efficiency, we leave this exploration to future work.606
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A Appendix850

A.1 TiP Details851

Implementation. We implement the to-852

ken pruner architecture as a 3-layer MLP:853

LayerNorm(H) -> Linear(H, H) -> gelu ->854

Linear(H, H/2) -> gelu -> Linear(H/2, H/4) ->855

gelu -> Linear(2) -> LogSoftmax(), where H is856

hidden size set to 768.857

Training. We use the Transformers (Wolf et al.,858

2020) and Accelerate (Hug, 2022) with Deep-859

Speed (Dee, 2022) library to implement the training860

tasks. We conduct training jobs on 4 Nvidia A40861

GPUs. For both ViLT and METER model, we first862

follow the training hyperparameters in their orig-863

inal papers and finetune the pretrained model to864

obtain task-specific models. These models are used865

as baselines for measuring accuracy drop and also866

used as the teacher model for TiP distillation.867

For each task in TiP, we follow a two-stage fine-868

tuning procedure. In the first stage, we first ini-869

tialize the model weights from the finetuned task-870

specific VL model, then we freeze the backbone871

VL model and only finetune the token pruners and872

the task-specific classifier for 5 epochs with all873

the multi-task losses except the continuity regula-874

tion loss (i.e, setting λ to 0). In the second stage,875

we unfreeze the cross-modal encoder weights of876

the finetuned model in the first stage and finetune877

the model with all the multi-task losses (setting878

λ to 1) for 60 epochs METER models and 200879

epochs for ViLT models. We apply early stopping880

for the training and setting a stopping patience of881

10 epochs (i.e. the training stops if the validation882

performance does not improve for 10 epochs). For883

both the VQAv2 and VE tasks, training for takes884

roughly 2 days for TiP-METER models and 1 day885

for TiP-ViLT models. For NLVR2 task, training886

TiP-ViLT and TiP-METER takes 4 hours and 6887

hours respectively. The token pruner learning rate888

is set to the same as the cross-modal encoder of889

the VL model. The warmup ratio is 0.1 for the first890

stage and 0.01 for the second stage for all tasks and891

models.892

We list all training hyperparameters in Table 5.893

A.2 Evaluation setup894

We evaluate TiP for two different VL models:895

ViLT (Kim et al., 2021) and METER (Dou et al.,896

2022) on three visual reasoning tasks: Visual Ques-897

tion Answering (VQA) (Goyal et al., 2017), Visual898

METER ViLT
VE,VQAv2 NLVR2 VE,VQAv2 NLVR2

token pruner lr 2.5e-5 5e-5 1e-4 1e-4
cross-modal lr 2.5e-5 5e-5 1e-4 1e-4
task classifier lr 2.5e-4 1e-4 1e-3 1e-4
end lr 1e-7 1e-7 1e-6 1e-6
batch size per gpu 32 16 64 64
total batch size 256 128 256 128
image size 384 288 384 384
patch size 16 16 32 32

Table 5: Hyperparameters for training TiP.

Entailment (VE) (Xie et al., 2019), and Natural 899

Language for Visual Reasoning (NLVR2) (Suhr 900

et al., 2019). 901

ViLT is a recent efficient VL model that uses 902

BERT (Devlin et al., 2019) embeddings to encode 903

text and a linear layer to project image patches. 904

ViLT then concatenates the text and image tokens 905

and uses 12-layer Transformer encoder to perform 906

cross-modal fusion. ViLT is a relatively lightweight 907

model and has 110 million parameters. 908

METER is a state-of-the-art VL model that uses 909

RoBERTa (Liu et al., 2019) as the text encoder and 910

CLIP (Radford et al., 2021) as the image encoder, 911

and 12 BERT-like cross-attention layers to fuse 912

the text and image modalities. METER is a large 913

model and has 330 million parameters. 914

Visual Question Answering dataset (VQAv2) 915

contains over 1 million diverse open-ended ques- 916

tions about images both from the MSCOCO (Lin 917

et al., 2014) and real world scenes. Answering 918

these questions requires an understanding of vision, 919

language and commonsense knowledge. 920

Visual Entailment is a visual inference task that 921

consists of 570K sentence image pairs constructed 922

from the Stanford Natural Language Inference cor- 923

pus (Bowman et al., 2015) and Flickr30k (Young 924

et al., 2014). The goal is to predict to predict 925

whether the image premise semantically entails 926

the text. 927

Natural Language for Visual Reasoning cor- 928

pora (NLVR2) have over 100K examples of linguis- 929

tically diverse English sentences written by human 930

and are grounded in pairs of visually complex im- 931

ages. The goal is to predict whether a sentence is 932

true about two input images. 933
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A.3 Computing Overlap with Human934

Attention935

We filter the human attention maps by setting a936

threshold of 0.2 as attention values smaller than937

0.2 do not form a focus region on the image. We938

then resize the attention map image into 384x384,939

divide it into patches of 16x16 and 32x32 for the940

comparing with METER and ViLT respectively.941

A.4 Grounded Pruning Implementation942

To implement grounded pruning, we need anno-943

tated text-grounded image regions. Ideally, hu-944

man attention data like in VQA-HAT (Das et al.,945

2016) can be used as the gold grounded image946

regions. However, human attention data does947

not exist for the three datasets we evaluate. In-948

stead, we focus on a recent grounding model – AL-949

BEF (Li et al., 2021). To make sure ALBEF can950

ground similar image regions as human attention,951

we evaluate ALBEF grounding precision on the952

validation set of the VQA-HAT (Das et al., 2016)953

dataset. ALBEF uses the Grad-CAM (Selvaraju954

et al., 2017) of the text to image cross-attention955

maps in the cross-modal encoder. We take the956

grounding model weakly supervised on the Re-957

fCOCO+ (Kazemzadeh et al., 2014) dataset.We958

append the answer label to the question, extract959

Grad-CAM data and resize it into the same size as960

the input image (384x384). We compute the pre-961

cision of ALBEF grounding model as follows: an962

image is first divided into 32x32 patches, an image963

patch from the grounded region is count as correct964

if it overlaps with human attention patch. ALBEF965

grounding model has an average precision of 78.4%966

across three human annotators. The high precision967

indicates it can be used to generate grounded im-968

age regions similar to the areas where humans pay969

attention.970

We use the ALBEF grounding model to auto-971

matically generate grounded image regions for the972

training and dev sets of VQAv2 dataset and use973

them as gold labels for the image pruning dur-974

ing training and inference (i.e., an image token975

that does not appear in the grounded regions is re-976

moved). To fairly compare with TiP, we gradually977

expand the grounded image regions to their neigh-978

bor patch by a radius of 2 (24 patches) and 1 (8979

patches) for the pruning at 4th and 7th layers. We980

use the grounded image regions for pruning at 10th981

layer.982

A.5 Resource Measurement Details 983

For inference throughput measurements, we in- 984

crease the batch size until the model gets out 985

of GPU memory, and run the inference with the 986

largest batch size for 30 seconds on a GTX 1080 987

Ti with 12 GiB memory. For inference memory 988

footprint, we use the same batch size for the origi- 989

nal VL model and TiP version and report the peak 990

memory difference. 991

A.6 TiP-METER Visualization 992

We show in Figure 5 more visualizations of the TiP- 993

METER VQA model on the VQA-HAT validation 994

set. 995
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Figure 5: More visualization of TiP-METER kept image portions for visual questions in the VQAv1 validation set.
For each row, the first image is the original input image, the last one is the input image only revealing the human
attention regions, the middle three ones are TiP-METER images with removed regions (shaded grey).
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