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Abstract

Diffusion models have had remarkable success over the last decade in generating
a diverse set of visually plausible images. These models work by transforming
the data to a centered Gaussian and then learning the reverse process by training a
neural network to approximate the score of the underlying distribution. A variety
of architectures from CNNs, to U-Nets, to transformers have been used as the
score-approximation network in diffusion modeling. We propose an analytically
solvable parameterization of the score function using an expansion in a wavelet
basis. In particular, we derive interpretable optimal score functions in a 2D,
orthogonal wavelet basis in terms of the moments of the data distribution. We
use this parametrization to provide an an architecture-agnostic, moment-based
analysis that reveals which attributes of the data distribution tend to matter most
for denoising. Our score machine is flexible enough to partially mimic the relevant
inductive biases of multiple architectures, including U-Nets, and CNNs, taking a
step towards understanding why different score architectures can exhibit distinct
generative behavior. Since our score is solvable in terms of the moments of the
data, we can begin to understand how the data distribution interacts with the score
network to produce the behavior we observe in diffusion models.

1 Introduction

Diffusion models have rapidly advanced image generation (and many other generative tasks) in recent
years [5, 13]. However, it is still not clear what causes their remarkable ability to generalize beyond
their training distribution and constructing visually coherent samples. This generalization property
clearly depends both on the score network used and on the underlying property of the data distribution.
It is clear that a diffusion model trained on one image would not generalize well.

Recent work has explored both architectural contributions to the kind of creativity displayed in
diffusion [8] and data-determined contributions [14]. On the architectural side Kamb and Ganguli [8]
demonstrate that a CNN encodes certain inductive biases into a diffusion network when used as a
diffusion backbone, encouraging a certain ‘patch mosaic’ form of creativity; building on prior work
[9] which demonstrates that under certain conditions, the ideal score simply memorizes the training
data.

On the data distribution side, Niedoba et al. [11] demonstrate empirically that spatially local informa-
tion is most relevant for denoising across most time scales. In (Wang and Vastola [14]) the authors
demonstrate that the first order Gaussian approximation of the score function is sufficient to explain a
great deal of the behavior of diffusion models. Meanwhile, Bonnaire et al. [1] have demonstrated that
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the capacity to generalize beyond the training set scales with the training set size. Kadkhodaie et al.
[7] suggest that diffusion models learn a “shrinkage operation in an orthonormal basis consisting of
harmonic functions that are adapted to the geometry of features in the underlying image.” However, it
still remains unclear exactly what information about the underlying data distribution is most important
to learning the score function. This question is key to understanding and improving diffusion models.

In this work, we propose an interpretable parameterization of the score function using an expansion in
a wavelet basis, which is remarkably flexible. We can optimize this score function over the standard
L2 loss and derive an ideal score function particular to our functional form and identify how different
architectural changes effect the ideal score. In particular, we implement a wavelet based score
machine and run extensive experiments across different families of denoiser to understand which
components of the data distribution are most relevant in which settings.

1.1 Diffusion Background

We first provide a short overview of score-based generative modeling. Diffusion models operate
by corrupting all of the input data over time according to a noising process, given by an Ornstein-
Uhlenbeck stochastic differential equation.

dXt = f(Xt, t)︸ ︷︷ ︸
drift

dt+ g(t)︸︷︷︸
diffusion

dW (1)

The reverse process is given by

dXt =

f(Xt, t)−
1

2
g(t)2 ∇Xt log(pt(Xt))︸ ︷︷ ︸

score function

 dt+ g(t)dW̄ (2)

We parametrize a neural network sθ to approximate the score function, and in our setup, we use the
score matching objective:

L(θ) =
∫ T

0

λ(t)Ept(X)[||s(X, t)− sθ(X, t)||22] (3)

Where λ is a time dependent weight. For simplicity, in our case, we’ll simply use λ(t) = 1∀t.
To further simplify, we’ll divide our time interval [0, 1] into N discrete steps, and treat each step
independently, so the loss decouples across time. Our loss at any particular timestep is

L(t)(θ) = Ept(X)[||s(X, t)− sθ(X, t)||22] (4)

and our overall loss is simply the sum of all such L(t). In the subsequent work, we’ll instead
parametrize our score function in a wavelet basis and optimize our learnable parameters directly.

1.2 Wavelets and Denoising

Wavelets have long been used for image denoising and representation. Mallat introduced multiresolu-
tion analysis (MRA) and a fast algorithm for the discrete wavelet transform [10]. Classical wavelet
denoising by soft thresholding was developed by Donoho and Johnstone [2]. More recently, Phung
et al. [12] have attempted to use wavelets to speed up diffusion sampling and other score-based gen-
erative frameworks, as in (Guth et al. [4]). Like Fourier methods, wavelet decompositions represent
square-integrable functions in a basis indexed by “frequencies,” but unlike Fourier bases, wavelets
are localized in both space and scale, providing joint spatial–frequency resolution.

We adopt compactly supported Daubechies wavelets. Let ϕ denote the scaling (“father”) function and
ψ the wavelet (“mother”) function in one dimension. In two dimensions we form tensor products to
obtain one scaling atom and three detail atoms at each location/scale. The translates and dilates of
these functions form an orthogonal basis of the entirety of L2(R2).

For scale j ∈ Z and translation k = (k1, k2) ∈ Z2, define

ϕj,k(u) = 2j ϕ(2ju1 − k1)ϕ(2
ju2 − k2),

ψ
(ℓ)
j,k(u) = 2j g(ℓ)(2ju1 − k1, 2

ju2 − k2), ℓ ∈ {0, 1, 2},
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where g(0)(a, b) = ψ(a)ϕ(b), g(1)(a, b) = ϕ(a)ψ(b), and g(2)(a, b) = ψ(a)ψ(b). While the func-
tions ϕ and ψ are not available in closed form for the Daubechies wavelets, for integer N ≥ 1, the
Daubechies–N wavelet ψ(x) and scaling function ϕ(x) are defined by the two-scale relations

ϕ(x) =
√
2

2N−1∑
n=0

hn ϕ(2x− n), ψ(x) =
√
2

2N−1∑
n=0

gn ϕ(2x− n),

With periodic boundary handling on [0, 1]2 (our default), the set

BJ0
=

{
ϕJ0,k

}
k
∪

{
ψ
(ℓ)
j,k

}
j≥J0, k, ℓ

forms an orthonormal basis of L2([0, 1]2). (Here J0 is the coarsest scale; only the scaling atoms at
J0 are kept, while all finer detail wavelets ψ(ℓ)

j,k are included for j ≥ J0.) At each fixed (j, k), the

triple
(
ψ
(1)
j,k , ψ

(2)
j,k , ψ

(3)
j,k

)
are the three orientation components often called the “horizontal”, “vertical”,

and “diagonal” details. We refer to this per-location orientation triplet as the detail band at (j, k).
Empirically, many U-Nets implement wavelet-like multiresolution computations with Haar-like filters
[3].

1.3 Our Contributions

We provide an interpretable, analytic parameterization of diffusion scores in an orthonormal wavelet
basis. By exploiting orthogonality and a score–integration-by-parts (Stein) identity, each wavelet-
coefficient score reduces to a closed-form least-squares system whose right-hand side is a vector of
data moments. This yields a spectrum of models—from independent sub-bands to band-tied and
local-coupled—that reveal which scales and orientations drive denoising across noise levels.

2 A Wavelet Expansion of the Score

2.1 Expanding the Score

Let ⟨f, g⟩ =
∫
[0,1]2

f(u) g(u) du denote the L2 inner product. For a grayscale image Xt at noise
level t and score strue(·, t), since wavelets form an orthonormal basis of L2 the score at time t in a
grayscale image can be expanded as

s(t)(Xt) =
∑
i∈I

ci(Xt)wi, ci(Xt) =
〈
strue(Xt, t), wi

〉
, (5)

where {wi}i∈I = BJ0
indexes (J0, k) for scaling atoms and (j, k, ℓ) for detail atoms. The way in

which we choose to model ⟨strue(Xt), wi⟩ determines the properties of the score function estimator.
We model each coefficient by features φi(Xt) ∈ Rdi and parameters α(t)

i ∈ Rdi :

ĉi(Xt) = α
(t)⊤
i φi(Xt), s

(t)
θ (Xt) =

∑
i∈I

ĉi(Xt)wi. (6)

Because {wi} is orthonormal, the population squared loss decouples across i and so taking the
gradient w.r.t. α(t)

i yields the simultaneous equations

L(t)(θ) = EXt∼pt

∥∥∥s(Xt)−
∑
i

α
(t)⊤
i φi(Xt)wi

∥∥∥2
L2

(7)

=⇒ ∂L(t)

∂α
(t)
i

= −2E
[
φi(Xt)

(
⟨s(Xt), wi⟩ − α

(t)⊤
i φi(Xt)

)]
= 0 (8)

Solving for the optimal coefficients α(t)∗
i , we find, if Σi = E[φiφ

⊤
i ] is invertible:

E[φiφ
⊤
i ]︸ ︷︷ ︸

Σi

α
(t)
i = E

[
φi(Xt) ⟨s(Xt), wi⟩

]
=⇒ α

(t)⋆
i = Σ−1

i E
[
φi(Xt) ⟨s(Xt), wi⟩

]
(9)
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We can further simplify, by applying a more general form of Stein’s Identity as in [6] to the expectation
of the inner product. In particular, for some function f , Stein’s Score Identity says

EX∼pt

[
st(X) · f(X)

]
= −EX∼pt

[
∇· f(X)

]
(10)

for pt smooth and under vanishing boundary flux (e.g., periodic boundaries). In our case, we write
φi(Xt) = [φi,1(Xt), . . . , φi,di

(Xt)]
⊤. For each component j, apply Stein’s identity with the vector

field
fj(x) = φi,j(x)wi, ∥wi∥2 = 1.

Then

E
[
φi,j(Xt) ⟨st(Xt), wi⟩

]
= −E

[
∇·

(
φi,j(Xt)wi

)]
= −E

[
⟨∇φi,j(Xt), wi⟩

]
.

Stacking over j = 1, . . . , di gives the vector form

E
[
φi(Xt) ⟨st(Xt), wi⟩

]
= −E

[
(∇φi(Xt))

⊤wi

]
(11)

Thus, we find that our solution is

α
(t)⋆
i = −E[φiφ

⊤
i ]

−1 E
[
(∇φi(Xt))

⊤wi

]
(12)

In practice, expectations are replaced by sample averages over n training images at time t, E[f(Xt)] ≈
1
n

∑n
r=1 f

(
X

(r)
t

)
. We also add a ridge regularization term, because Σ̂i can be singular or ill-

conditioned with high-degree features or correlated wavelet coefficients, we stabilize and control
variance by adding a ridge regularization, as follows

α̂
(t)
i =

(
Σ̂i + γI

)−1
b̂i, γ > 0,

which guarantees an invertible system and mitigates overfitting.

Thus, for samples {X(n)
t }Nn=1 and ridge γ ≥ 0,

α̂
(t)
i (γ) =

(
1

N

N∑
n=1

φ
(n)
i φ

(n)⊤
i + γI

)−1(
− 1

N

N∑
n=1

(∇φi(X
(n)
t ))⊤wi

)
. (13)

We estimate ∇φi(X
(n)
t ) analytically from the chosen features using the method of moments.

Diagonalizing Σi = UΛU⊤ shows that (Σi + γI)−1 weights eigen-directions by 1/(λ+ γ). Thus,
given that the features are well suited to the data such that Σi in (9) is well conditioned and its columns
are not highly correlated, the estimator weights eigen directions by 1

λ+γ . Small-λ directions receive
higher coefficients but are more noise sensitive, which the ridge regression helps to limit. Intuitively,
what this says is that this score approximator emphasizes lower-variance feature directions (small λ)
and down weights higher-variance directions (large λ). This aligns with the observation that natural
images exhibit approximately power-law spectral decay and sparse wavelet coefficients, whereas
white noise spreads energy more uniformly; consequently, informative structure often concentrates in
a subset of scales and orientations. The model learns to correct more strongly along low-variance
modes of the data distribution and ignore the high-variance ones.

2.2 Correlation Structures in the Data

Natural images exhibit structured dependencies in the wavelet domain: heavy–tailed marginals
per coefficient, co-activation across orientations at a fixed location, and spatial persistence along
edges and textures. As the noise level decreases, these dependencies become more pronounced. We
therefore study three families that isolate, then incrementally reintroduce, these correlations.

(i) Independent (diagonal). We model each coefficient y(i)t = ⟨Xt, wi⟩ in isolation using
degree–D monomials (or probabilists’ Hermite polynomials for numerical stability). This
“mean-field” score approximator is the right baseline when pt is close to a product distribution
(early time steps, near-Gaussian), and it makes failures highly interpretable: any gap to stronger
models directly measures the predictive value of cross-coefficient structure that a diagonal
model cannot use.
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(ii) Band-tied. At a fixed scale and location (j, k), we couple the three detail orientations ℓ ∈
{1, 2, 3} with degree–D interactions (each monomial includes the target coordinate). This
targets cross-orientation co-activation caused by edges and corners and mirrors the channel-
mixing inductive bias of CNN/U-Net score networks at a single spatial site. Improvements
here isolate the contribution of within-pixel, within-scale structure—testing whether local
orientation interactions alone explain denoising gains as t decreases.

(iii) Local-coupled. At fixed scale and orientation, we allow the coefficient at location k to depend
on neighbors k + δ within a Chebyshev ball ∥δ∥∞ ≤ r. This realizes a small neighborhood in
wavelet space and emulates the increasing receptive field of convolutional (or locally attentive)
score networks. Gains that grow then saturate with r quantify how much spatial context the
score actually needs for accurate denoising and globally consistent structure as noise recedes.

We use (11) to build families of models that probe how scale/orientation structure in the data influences
the score. We propose three families of models which can provide insight into what properties of the
data distribution are relevant for score-based diffusion. In the Daubechies wavelet setting, we have

sθ(Xt, t)
(t)(u) =

(2J0−1,2J0−1)∑
k=(0,0)

θk(Xt, t)ϕJ0,k(u) +

Jmax∑
j=J0

(2j−1,2j−1)∑
k=(0,0)

3∑
l=1

ζj,k,l(Xt, t)ψ
(l)
j,k(u)

(14)
where J0 is the coarsest scale of the approximation, analogous to the spatial resolution at the network’s
bottleneck and for an image of dimension H ×W Jmax = ⌊log2(min(H,W )⌋, which corresponds
to the highest level of wavelet detail encoded.

2.2.1 Independent Baseline

Assume (unrealistically) that coefficients decouple across scale j, location k, and detail band l. Let
y
(i)
t = ⟨Xt, wi⟩ with moments µ(i)

r (t) = E
[
(y

(i)
t )r

]
and model our coefficients as

θk(Xt, t) =

D∑
m=0

b(k)m (t) ⟨Xt, ϕJ0,k⟩m, ζj,k,ℓ(Xt, t) =

D∑
m=0

d(j,k,ℓ)m (t) ⟨Xt, ψ
(ℓ)
j,k⟩

m.

Using (11) with monomial features gives the normal equations analogous to (7)for each index i and
r = 0, . . . , D,

D∑
m=0

a(i)m (t)µ
(i)
m+r(t) = − r µ

(i)
r−1(t), a

(i)
• ∈ {b(k)• , d

(j,k,ℓ)
• }, (15)

This is a Hankel system H(i)(t) a(i)(t) = −h(i)(t), where

H(i)
r,m(t) = µ

(i)
r+m(t), h(i)(t) =

[
0, µ

(i)
0 (t), 2µ

(i)
1 (t), . . . , Dµ

(i)
D−1(t)

]⊤
.

Observe that all entries of H(j,k,l)(t) and h(j,k,l)(t) are computable from clean-data raw moments of
Y0 = ⟨X0, ψ

(l)
j,k⟩.

µ(i)
r (t) =

r∑
m=0

(
r

m

)
ᾱ
m/2
t (1− ᾱt)

(r−m)/2E
[
⟨X0, wi⟩m

]
E[Zr−m]. (16)

For small D, we can easily compute a(i)(t) = −(H(i)(t))−1h(i)(t) (or (H(i) + γI)−1 with ridge
γ≥0). The co-factor formula for the coefficients reads

α̂i(t) = − 1

detH(i)(t)

D∑
r=1

r µ
(i)
r−1(t) C

(i)
r,m(t) (17)

with C(j,k,ℓ)
r,m (t) the (r,m)-cofactor of H(i)(t). This closed form can be used to investigate how

higher order moments of the data distribution impact the score. Though clearly independence is an
unrealistic assumption, this model is fast and interpretable, and serves as (i) an initial baseline, and (ii)
a diagnostic lower bound. We can investigate the value of different kinds of correlation by measuring
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the difference in performance between models with different kinds of limited dependence. Allowing
each coefficient to depend arbitrarily on all wavelet coordinates yt = (⟨Xt, w1⟩, . . . , ⟨Xt, wn⟩)—i.e.,
learning n functions fi : Rn→R or even degree–D multivariate polynomials—leads to combinatorial
parameter growth and brittle estimation. We therefore restrict to structured, computationally tractable,
and interpretable dependencies (diagonal/independent, band-tied, and local-coupled), which retain
closed-form or efficient normal-equation solvers while capturing the dominant correlations.

2.2.2 Wavelet Band Coupling

One very natural form of correlation is to allow wavelet coefficients at the same scale j and location
k to depend on one another. Let y0 = ⟨Xt, ψ

(0)
j,k ⟩, y1 = ⟨Xt, ψ

(1)
j,k ⟩, y2 = ⟨Xt, ψ

(2)
j,k ⟩, At each

scale/location in the detail bands (j, k, l), we assume a polynomial coefficient form of degree D:

ζ
(t)
j,k,0(Xt) = C

(t)
0 +

D∑
a=1

D−a∑
b=0

D−a−b∑
c=0

β
(0)
a,b,c y

a
0y

b
1y

c
2,

ζ
(t)
j,k,1(Xt) = C

(t)
1 +

D∑
b=1

D−b∑
a=0

D−b−a∑
c=0

β
(1)
a,b,c y

a
0y

b
1y

c
2,

ζ
(t)
j,k,2(Xt) = C

(t)
2 +

D∑
c=1

D−c∑
a=0

D−c−a∑
b=0

β
(2)
a,b,c y

a
0y

b
1y

c
2.

(18)

The constraint ensures each monomial contains the target coordinate yℓ at least once; cross terms are
allowed but pure “other-orientation” terms are excluded.) We define our θ coefficients as polynomials
with the same optimal values as in the independent case. Estimation proceeds via the same normal-
equation machinery as in (11), but with mixed moments at (j, k):

µ(j,k)
pqr (t) := E

[
yp0y

q
1y

r
2

]
, p+ q + r ≤ D + 1,

which, under the forward process with orthonormal {ψ(ℓ)
j,k}, expand into clean-data mixed moments

and factorized Gaussian noise moments.

2.2.3 Local Coupling

Another natural choice of coupling is to allow wavelets in the same local neighborhood. For a radius
r ∈ N, define the neighborhood ∆r = {δ ∈ Z2 : ∥δ∥∞ ≤ r, δ ̸= (0, 0)} We allow wavelets in
the same neighborhood to interact. Fixing a scale j and orientation ℓ ∈ {0, 1, 2}, let the oriented
wavelet/detail coefficient at spatial location k ∈ K be yk = ⟨Xt, ψ

(ℓ)
j,k⟩. Let D ≥ 1 be the total

degree. Define SD = {(d, e) ∈ N2 : d, e ≥ 1, d+ e ≤ D}. We define the functional forms of θ as
follows:

θJ0,k(Xt, t) =

D∑
i=0

αi

〈
Xt, ϕJ0,k

〉i
+

∑
δ∈∆r

∑
(d,e)∈SD

βδ,d,e
〈
Xt, ϕJ0,k

〉 d 〈
Xt, ϕJ0,k+δ

〉 e
(19)

where αi and βδ,d,e are the parameters over which we optimize. Similarly for ζ we define

ζj,k,l(Xt, t) =

D∑
i=0

ξi
〈
Xt, ψj,k,l

〉i
+

∑
δ∈∆r

∑
(d,e)∈SD

ωδ,d,e

〈
Xt, ψj,k,l

〉 d 〈
Xt, ψj,k+δ,l

〉 e
(20)

where ξi and ωδ,d,e are the parameters over which we optimize. As in the wavelet band coupling,
estimation proceeds via the same machinery as in (11), but with mixed moments.
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3 Experiments

Figure 1: Original and
noised MNIST image.

Model Linear Quadratic Cubic Quartic

Diagonal,
Mono

MSE = 0.4818 MSE = 0.4944 MSE = 0.5045 MSE = 0.5085

Diagonal,
Hermite

MSE = 0.4872 MSE = 0.4843 MSE = NA MSE = 0.3904

Table 1: MSE with thumbnail per independent model; reconstruction MSE
shown below each thumbnail.

With these closed-form equations and model families in hand, we now test which scales/orientations
matter across noise levels and how much band/local coupling improves over the independent baseline.
We first test the quality of the denoising.

We resize MNIST images so that they have dimension (32, 32) and linearly scaled to [−1, 1]. We use
compactly supported Daubechies (db2) wavelets with periodized boundaries. The 2-D tensor-product
basis BJ0

includes scaling atoms at the coarsest kept scale J0 and detail atoms for j ≥ J0 up to
Jmax = ⌊log2 min(H,W )⌋ (here Jmax = 3 at 32× 32 in order to avoid boundary effects) with three
orientations ℓ ∈ {0, 1, 2}.

We adopt the variance preserving noise schedule which gives Xt =
√
ᾱtX0 +

√
1− ᾱt Z, and

discretize the time interval [0, 1] into N = 500 points. All models are fit independently for each time
point. We add a ridge term to improve numerical stability, and we also experiment with the proba-
bilists’ Hermite polynomials to expand our θ and ζ with increased stability. The probabilists’ Hermite
polynomials {Hen(x)}n≥0 are defined by Hen(x) = (−1)nex

2/2 dn

dxn e
−x2/2 and are orthogonal for

Z ∼ N (0, 1) with E[Hem(Z)Hen(Z)] = n! δmn. Using Hen in place of raw monomials makes
feature vectors orthogonal in expectation under near-Gaussian coordinates y(i)t , reducing covariance
and bringing Σi = E[φiφ

⊤
i ] closer to diagonal (hence a smaller condition number). In practice this

improves the conditioning of the matrix equations (9) and yields coefficients less sensitive to scaling
and polynomial degree, especially when combined with a small ridge penalty.

3.1 Denoising

We begin by denoising one MNIST digit with all six models, across four degrees. We use the same
hyper parameters for each denoising and the same set of 8, 000 MNIST images for our method
of moments estimates. We use the db2 family of wavelets with J0 = 1 and Jmax = 3, with ridge
coefficient γ = 0.02. The original image and noised version are shown in Figure 3.

Changing the Degree of the Approximation As evidenced in Table 1 increasing the degree of the
expansion in the independent case only helps marginally for independent monomials. This suggests
that higher moments of the data are only valuable in the context of correlation information. In contrast,
The Hermite expansion decouples features in expectation and delivers clearer improvements as D
grows; however, the cubic system was ill-conditioned for this sample at the chosen γ and failed to
produce an image (reported as “NA”).

Detail Band Correlation As shown in Table 2 (right), coupling the three orientations at a location
improves visual quality across bases and degrees and often reduces MSE relative to the independent
counterpart. Qualitatively, edges and corners become sharper, consistent with the hypothesis that
cross-orientation co-activation carries most of the local predictive signal and is especially sensitive
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Deg r = 1 r = 2 r = 3

1

MSE = 0.8708 MSE = 0.7359 MSE = 0.8287

2

MSE = 0.9281 MSE = 0.8877 MSE = 0.8918

Deg Mono Herm

1

MSE = 0.5545 MSE = 0.5217

2

MSE = 0.6301 MSE = 0.5208

3

MSE = 0.5375 MSE = 0.4878

4

MSE = 0.5273 MSE = 0.6323

Table 2: MSE comparisons across spatially dependent local models parametrized in monomials
(varying receptive field size r, left) and band-tied models (right).

to sharp changes like corners. We also observe a degree sweet spot: moving from D=1 → 3
generally helps, while D=4 sometimes degrades (e.g., Hermite D=4), indicating overfitting or
residual conditioning issues.

Local Correlation Table 2 (left) shows that, with monomial features and fixed γ, adding spatial
neighbors can hurt MSE at this sample/setting. This is not entirely unexpected, since the feature
dimension di grows with r and D, inflating the condition number of the matrix without enough
data to support the extra parameters. We therefore anticipate local coupling to pay off only after (i)
switching to Hermite features or (ii) increasing γ (or using truncated-SVD) and tuning r; in digits,
small r should suffice, whereas texture-rich datasets may benefit from larger r.

Limitations and Further Experiments While these results are preliminary, they serve a good
example of the kind of hypotheses this theory can help to empirically validate or rule out. The
results above are single-image illustrations. In the camera-ready version we hope to report test-set
aggregates (mean ± 95% CI over 1k images, multiple seeds, etc) and include a ridge sweep to locate
the stability/accuracy frontier for band-tied and local models, plus per-(t, j) heatmaps of ∆MSE that
tie improvements to scale and timestep. We hypothesize that correlation contributions vary over the
noise schedule, with different modes becoming salient at different times. Further denoising and a few
generation results are available in the Appendix A.

4 Discussion

The above theory offers a promising first step towards a more grounded understanding of what
dataset distribution features are most important in score learning across noise scales. We introduced
an analytically tractable, wavelet–based parameterization of the score with closed-form moment
equations and three structured dependency families (independent, band-tied, local). The theory
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clarifies which distributional features (marginals, cross-orientation co-activation, and short-range
spatial correlations) can matter at different noise levels. Preliminary denoising results are consistent
with these predictions. While our experiments are limited to MNIST, the framework is general and
may provide insight for more data-efficient engineering decisions. Extending to diverse datasets,
reporting aggregates with uncertainty, and testing generation metrics are natural next steps that our
closed-form diagnostics can directly inform.
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Figure 2: Original and noised MNIST image.

Appendix
A Additional Results

We also include generation results using the same setup as detailed in Section 3.1. In particular, we
use band-coupling with 500 time steps, but the db4 wavelets, J0 = 1, Jmax = 2, and ridge 0.02. We
use a ddim sampler. In the figures below, each column corresponds to a different seed value and reach
row corresponds to the degree of the band-coupling Hermite model.
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Figure 3: Original and noised MNIST image.
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