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Abstract
We investigate a physically-inspired recurrent neu-
ral network derived from a continuous-time ODE
modelling a network of coupled oscillators. En-
thralled by the Reservoir Computing paradigm,
we introduce the Randomly Coupled Oscillators
(RCO) model, which leverages an untrained recur-
rent component with a smart random initialization.
We analyse the architectural bias of RCO and its
neural dynamics. We derive sufficient conditions
for the model to have a unique asymptotically uni-
formly stable input-driven solution. We also de-
rive necessary conditions for stability, that permit
to push the system of oscillators slightly beyond
the edge of stability. We empirically assess the
effectiveness of RCO in terms of its stability and
its long-term memory properties. We compare its
performance against both fully-trained and ran-
domized recurrent models in a number of time
series processing tasks. We find that RCO pro-
vides an excellent trade-off between robust long-
term memory properties and ability to predict the
behavior of non-linear, chaotic systems.

1. Introduction
Machine learning (ML) is nowadays ubiquitous in our soci-
ety covering applications from healthcare (De Fauw et al.,
2018) to chatbots (Lund & Wang, 2023). Major break-
throughs have been made especially on feed-forward neu-
ral network architectures leveraging on convolutions, e.g.
AlexNet, VGG (Krizhevsky et al., 2017; Simonyan & Zis-
serman, 2014), residual connections, e.g. ResNet, Efficient-
Net (He et al., 2016a; Tan & Le, 2019), and on attention
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mechanisms, e.g. Transformers (Vaswani et al., 2017). Con-
trariwise, Recurrent Neural Network (RNN) architectures
witnessed a slight disinterest in the last years. The soaring
computational power provided by modern hardware acceler-
ators made less appealing RNN architectures, due to their
intrinsic difficulty to be implemented in parallel. Neverthe-
less, RNNs represent more plausibly the way microcircuits
in the brain perform computations (Mante et al., 2013). Un-
like feed-forward neural networks, the key characteristic of
RNNs is to spatially encode into the RNN parameters and
its hidden state the temporal information present in the in-
put. In theory, the current recurrent hidden state conveys the
context of the input signal from the infinite past to present
time.

In this paper, we investigate a physically-inspired RNN de-
rived from a continuous-time ODE describing a network of
oscillators. We cast this model into the Reservoir Comput-
ing (RC) framework and we dub it Randomly Coupled Oscil-
lators (RCO). Oscillators represent an archetypal dynamical
behaviour ubiquitous in nature that can be found in chem-
ical reactions such as Belousov–Zhabotinsky, electronic
circuits like amplifiers, business cycles, central nervous sys-
tem diseases like Parkinson’s, pendulum clocks, fireflies’
light pulses, and many others (Pikovsky et al., 2002). This
motivates us to inspect to what extent an untrained ensem-
ble of randomly coupled heterogeneous oscillators can be
exploited for time series processing. We take inspiration
from a recently proposed deep learning model based on os-
cillators (Rusch & Mishra, 2023), called coupled oscillatory
RNN (coRNN), and extend this model to the case of het-
erogeneous oscillators coupled only in the position variable,
but being uncoupled in the damping terms. Moreover, our
RCO follows the principles of RC by leveraging untrained
hidden parameters.
The contribution of our paper can be summarised as follows:

• We introduce the RCO model and, in Section 3.4, we
demonstrate that it can be interpreted as a generalisa-
tion of a popular RC model called Leaky-ESN. As such,
the RCO model has the potential to be implemented on
a variety of tasks involving time series, among which
classification (Jaeger et al., 2007), and chaotic attractor
reconstruction (Lu et al., 2018).
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• In Section 4, we provide a theoretical analysis of RCO
linear stability. We discover that RCO exhibits an archi-
tectural bias towards the identity (see in particular The-
orem 4.1), a widely recognised important feature in the
context of deep learning (He et al., 2016b). Moreover,
we provide a characterisation of the eigenspectrum of
the linearised RCO model in Theorem 4.4.

• In Proposition 4.2, we derive sufficient conditions to
impose on the hyperparameters of the RCO model to
ensure the existence of a unique asymptotically uni-
formly stable input-driven solution. In Proposition 4.5,
we also derive necessary conditions for the same prop-
erty, that are less restrictive than the sufficient ones.

• In Sections 5-6, we test our RCO model on popular
time series benchmarks. In time series classification
tasks, RCO outperforms randomized models and suf-
fers only a slight degradation in performance with re-
spect to fully-trained models, while being two orders of
magnitude more efficient. On chaotic systems forecast-
ing, RCO clearly outperforms fully-trained recurrent
models and performs similarly to randomized recurrent
models.

2. Reservoir Computing background
From a purely mathematical perspective, universal approxi-
mation theorems prove that feed-forward neural networks
can learn any function within a given precision (Hornik et al.,
1990), as RNNs can learn any dynamical system (Funahashi
& Nakamura, 1993), provided a sufficient number of param-
eters. Dynamical systems and RNNs are intimately linked
together by the internal state which traces an input-driven
trajectory in phase space. Adopting this perspective allows
to use standard tools from dynamical systems theory, like
bifurcation theory, Lyauponov stability analysis, and control
theory, to get insights on the inner functioning of RNNs.
The key idea of Reservoir Computing (RC) (Lukoševičius
& Jaeger, 2009) is to treat the internal dynamics as fixed,
i.e. untrained. RC leverages on smart random instantiations
of the recurrent part of the model, called in this context
the reservoir, and only train an output layer, usually with
simple linear regression techniques, to decode the internal
dynamics into an output signal. A good reservoir must bal-
ance between two contrasting properties: fading memory,
and input separation. The former forces the reservoir to
weight more the present information at the expenses of far-
in-the-past information. This property of gradually fading
the memory of the past is closely related to the concept
of asymptotic convergence in dynamical systems, thus a
property of stability. The latter equips the reservoir with
the ability to map different inputs into internal states that
separate enough one other. This is particularly important
in classification tasks involving long time series where ap-

parently slight differences in the input might be crucial for
the assignment to the appropriate class. In a sense, mildly
unstable reservoir dynamics can be beneficial to the ability
to separate inputs. However, these instabilities should not be
systematic of the model, but rather temporary, allowing to
exploit transient dynamics for the purpose of the classifica-
tion. In summary, it is desirable to design reservoirs whose
input-driven dynamics occur at the edge of the stability re-
gion, which has been recognised to be useful for time series
processing (Bertschinger & Natschläger, 2004; Legenstein
& Maass, 2007).

We take inspiration from a particular class of RC models
called Echo State Networks (ESNs) (Jaeger, 2002). An ESN
is a discrete-time recurrent model whose reservoir state
update is computed as follows:

yk = tanh(Wyk−1 +Vuk + b), (1)

where yk ∈ RN ,uk ∈ RI are the internal state and input tra-
jectories at time-step k, respectively and W ∈ RN×N ,V ∈
RN×I ,b ∈ RN are fixed, randomly-initialised parameters.
ESNs work under the fundamental assumption of the Echo
State Property (ESP), which is defined as follows (Yildiz
et al., 2012).

Definition 2.1. An input-driven system yk+1 =
G(yk,uk+1) has the ESP if there exists a sequence δk con-
verging to zero such that, for all input sequences uk, and all
pairs of initial states y0,y0, it holds that

||yk − yk|| ≤ δk (2)

where yk, and yk, are the uk-driven trajectories starting
from y0, and y0, respectively, and ||·|| denotes the Euclidean
norm.

Remark 2.2. The ESP of definition 2.1 is a property of
asymptotic uniform contraction in phase space for an input-
driven system. Note in fact that, although δk → 0, it is
not necessary for δk to be monotonically decreasing. The
ESP implies that, in the long term, eventually all trajectories
starting from all initial conditions will synchronise to a
unique input-driven solution.

Throughout the paper, we will use the notation || · || to
denote the Euclidean norm of a vector, or the matrix norm
induced by it, if the argument is a matrix. One sufficient
condition to ensure the ESP for the input-driven system
yk+1 = G(yk,uk+1) is to impose that (Ceni et al., 2020)

sup
y,u

∥∥∥∥∂G∂y (y,u)

∥∥∥∥ < 1. (3)

However, eq. (3) is a much stronger condition than asymp-
totic uniform contraction, since it implies contraction at
each time step. As such, this strong contraction property
might harm the expressiveness of an RC model. Notably,
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the same sufficient condition of eq. (3) can be derived ap-
plying known results from the control theory literature, for
example see section 4.2 of the book (Slotine et al., 1991).

It is common practice in RC with ESN to initialise the
hidden matrix W such that its spectral radius ρ is smaller
than 1. This is not a sufficient condition for the ESP, but
in practice it has been shown to work well. Moreover, the
matrix V is scaled by a scalar value v. Both ρ and v are task-
specific and are usually determined by a model selection
phase (e.g., with random/grid search).

3. From harmonic oscillator to Randomly
Coupled Oscillators

In this section we trace a path from the classical harmonic
oscillator to our proposed recurrent neural network mod-
els. In Section 3.1 we provide a gentle introduction to the
damped harmonic oscillator, framing it in the context of
fading memory systems. Section 3.2 introduces the coRNN
model, while in Section 3.3 we describe our proposed mod-
els, hcoRNN and RCO. Finally, in Section 3.4 we link our
RCO model to a well-known RC model called Leaky-ESN.

3.1. Damped harmonic oscillator

Harmonic oscillators are at the core of classical mechanics.
They describe simple oscillatory motions around an equilib-
rium point without experiencing any dissipation of energy.
The equation of an harmonic oscillator reads as follows:

ÿ = −γy. (4)

The general solution of eq. (4) is given by

y(t) = A cos(
√
γt+ ψ), (5)

where the amplitude A, and phase ψ, are uniquely deter-
mined by the initial conditions. Here different initial condi-
tions give rise to different solutions.

A key feature required for a dynamical system to be ex-
ploited for computational purposes is the fading memory. In
rough terms, we aim for a stable dynamical system which is
able to wash out in the long term any dependencies from the
initial conditions. Therefore, exploiting a network of ran-
domised oscillators of the form of eq. (5) for computational
purposes is impractical. Fading memory can be brought
by a damping term into eq. (4), thus introducing a source
of energy dissipation. The equation of a damped harmonic
oscillator reads as follows:

ÿ = −γy − εẏ. (6)

In eq. (6), the γ scalar term relates with the intrinsic fre-
quency of the underlying harmonic oscillator, while the ε
scalar term refers to the strength of the damping force (also

called friction) exerting against the harmonic oscillator. Any
value of ε > 0 induces the system of eq. (6) to converge
towards the resting state of y = 0. According to the value
of ε, two main behaviours can be observed: overdamped
dynamics (when ε > 2

√
γ) characterised by exponential

decay towards y = 0 without any oscillations, or under-
damped dynamics (when 0 < ε < 2

√
γ) characterised by

an oscillatory behaviour with decreasing amplitude in time.
In this sense, the damped harmonic oscillator possesses a
fading memory property. Often, an external time-varying
force f(t) drives the damped oscillator giving rise to the
following equation:

ÿ = f(t)− γy − εẏ. (7)

The driven damped harmonic oscillators of eq. (7) emerges
in many physical, engineering and biological systems.

3.2. Coupled oscillatory RNN

The next step is to build a network of input-driven damped
harmonic oscillators, and use this physically-inspired neural
network model to perform computations. Let us denote
with vectors γ, ε ∈ RN , the characteristic frequencies and
damping ratios of each oscillator in the network. Then, the
following equation describes a network of heterogeneous
driven damped harmonic oscillators:

ÿ = f(t)− γ ⊙ y − ε⊙ ẏ, (8)

where ⊙ denotes the point-wise multiplication of vectors.

In Rusch & Mishra (2023), the authors introduce a
parametrisation of the function f(t) as an input-driven non-
linear layer as follows:

f(t) = tanh(Wy +Wẏ +Vu(t) + b), (9)

where u(t) is the external input driving the network. Note
that in eqs. (8)-(9) the coupling between neurons is non-
linear, due to tanh, and defined by the matrices W and
W . Eqs. (8)-(9) describe an RNN model with hidden
state y ∈ RN , with N being the number of neurons.
W ∈ RN×N and W ∈ RN×N are the hidden-to-hidden
connections, V ∈ RN×I are the input-to-hidden connec-
tions, and b ∈ RN the bias vector of the RNN. The hyper-
bolic tangent mediates a nonlinear bounded response in the
oscillators. This approach has the advantage to architec-
turally constraint the driving force to be bounded in (−1, 1)
for each neuron, regardless of the other neurons and the
external input.

Introducing the variable z = ẏ, we get the following first
order system of ODEs

ẏ =z, (10)
ż =tanh(Wy +Wz+Vu(t) + b)− γ ⊙ y − ε⊙ z,

(11)
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that we discretise with an implicit (the ẏ equation), and an
explicit (the ż equation) Euler numerical scheme. The result
is the coRNN model.
Definition 3.1. coupled oscillatory RNN (coRNN), from
Rusch & Mishra (2023). A coRNN with unique scalar
values γ ≡ γ, ε ≡ ε is defined by the following equation:

yk+1 = yk+τzk+1,

zk+1 = zk+τ
(
tanh(Wyk +Wzk +Vuk+1 + b)

−γyk − εzk
)
.

(12)

3.3. Randomly Coupled Oscillators

We will consider the particular case of W = 0, with het-
erogeneous oscillators (i.e. γ, ε, vectors), and we will use
the name hcoRNN (heterogeneous coRNN) to refer to this
model.
Definition 3.2. Heterogeneous coRNN (hcoRNN). We in-
troduce the hcoRNN model, whose update reads as follows:

yk+1 = yk+τzk+1,

zk+1 = zk+τ
(
tanh(Wyk +Vuk+1 + b)

−γ ⊙ yk − ε⊙ zk
)
.

(13)

In practice, in an hcoRNN the coupling occurs only by
means of the activations y, while the damping terms remains
decoupled, i.e. characteristic to each neuron regardless of
the behaviour of the other neurons.

The coRNN and hcoRNN models are fully trained with
the backpropagation through-time algorithm, which realises
a stochastic gradient descent. In contrast, we propose an
alternative variant of hcoRNN where we leverage fixed,
untrained hidden parameters (W,V,b).
Definition 3.3. Randomly Coupled Oscillators (RCO).
An RCO is an hcoRNN (Definition 3.2) with fixed, random
parameters. In line with the RC framework, the matrix W
is tuned by simply rescaling its spectral radius ρ, and the
matrix V is scaled with a scalar value ν.

In eqs. (13) of hcoRNN and RCO, the scalar value τ is
linked to the step size of the numerical integration. There-
fore, if one wants to discretise the continuous-time model
for the sake of merely reproducing the continuous-time dy-
namics, then an opportunely small value of the step size is
required, i.e. τ ≪ 1. However, here we are not interested
in reliably simulating trajectories of the continuous-time
dynamical system defined by eqs. (10)-(11), but rather to
investigate the expressiveness of the physically-inspired
discrete-time RNN model of eqs. (13) that we derived. As
a consequence, in the remainder of this paper we will treat
τ > 0 as an hyperparameter of the RNN model.

From the point of view of ML applications, the hidden states
computed by eqs. (13) are exploited as features encoding

crucial temporal information for the processing of the input
time series uk. To solve time series tasks, we consider a
linear transformation of the hidden state y to an output state
r as follows:

rk+1 = Woyk+1 + bo (14)

where Wo,bo, are weights and biases of the output layer.
Eqs. (13)-(14) describe an RNN model mapping input se-
quences uk into output sequences rk. The parameters
Wo,bo are the only trainable parameters of an RCO.

3.4. RCO as Leaky-ESNs

In the particular case of eqs. (13) with ε ≡ 1

τ
, the

z-dynamics become completely determined by the y-
dynamics. Therefore, the hcoRNN equation becomes

yk+1 = yk + τ2 tanh(Wyk +Vuk+1 + b)− τ2γ ⊙ yk.

Interestingly, setting further γ ≡ 1, we recover a popular
RC model named Leaky-ESN (Jaeger et al., 2007), whose
state-update equation reads as follows:

yk+1 = τ2 tanh(Wyk+Vuk+1+b)+(1−τ2)yk. (15)

In the context of eq. (15), the hyperparameter τ is inter-
preted as the squared root of the leak rate of the model.
The sufficient condition of eq. (3) is ensured for eq. (15)
whenever ||W|| < 1. The Leaky-ESN model has been
successfully used in many ML tasks involving time series
processing. Remarkably, the Leaky-ESN with linear out-
put layer as in eq. (14) can accurately learn the climate of
chaotic attractors (Lu et al., 2018).

The above remarks established the discrete-time model of
eqs. (13) as a bridge between the coRNN model and the
Leaky-ESN model. From this perspective, the hcoRNN and
RCO stand out as powerful models able to describe both
stable complex oscillatory dynamics and chaotic dynamics,
provided with an opportune choice of hyperparameters.

4. Linear stability analysis
In this section we perform a linear stability analysis of the
hcoRNN model (Definition 3.2) and RCO model (Definition

3.3). Let us denote Xk =

(
yk

zk

)
. Then, the hcoRNN and

RCO models can be defined by the input-driven state-update
equation Xk+1 = G(Xk,uk+1), where G : R2N × RI →
R2N is defined by eqs. (13). The Jacobian of the G map
computed on (Xk,uk+1), denoted with Jk, reads:

Jk =

[
∂yk+1

∂yk

∂yk+1

∂zk
∂zk+1

∂yk

∂zk+1

∂zk

]
=

[
I+ τ2Ak τ

(
I− τdiag(ε)

)
τAk I− τdiag(ε)

]
,

(16)
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where

Ak =SkW − diag(γ), (17)

Sk =diag
(
1− tanh2(Wyk +Vuk+1 + b)

)
. (18)

In the following theorem we provide an upper bound for the
Euclidean norm of the Jacobian. Let us define the following
quantities

ξ =max
j

|1− τεj |, (19)

η =max
j

|1− τ2γj |, (20)

σ =||W||. (21)

Theorem 4.1. The norm of the Jacobian matrix of the
hcoRNN and RCO models admits the following upper bound

||Jk|| ≤ max(η + τ2σ, ξ) + τ max(ξ, γmax + σ). (22)

In particular, for τ ≪ 1, and assuming εmin > 0, and
γmax ≥ 1, the bound reads

1 + τ(γmax + σ) +O(τ2). (23)

The proof of Theorem 4.1 can be found in appendix B. A
widely known stability condition, sufficient for the ESP to
hold, is given by imposing that the Jacobian of eq. (16) is a
contraction. One way to ensure this condition is to impose
the Euclidean norm of the Jacobian to be uniformly less
than 1, i.e. eq. (3). As can be deduced from Theorem 4.1,
the RCO model results disinclined to this strong condition
of stability, even for very small values of τ . The linearised
RCO model is indeed strongly biased towards the identity
for small values of τ . Although, the entire spectrum can be
uniformly bounded around a neighbourhood of the identity
by means of τ , it is an hard task to find combinations of
hyperparameters ensuring that ||Jk|| < 1, and so ensuring
the ESP for the RCO model. One interesting example is

given by the particular case of ε ≡ 1

τ
, where the Jacobian

of eq. (16) becomes Jk =

[
I+ τ2Ak 0
τAk 0

]
, reflecting

the decoupling of the variable y from the variable z, as
discussed in section 3.4. In such a case, the y-dynamics
(and so the z-dynamics) are contracting whenever ||I +
τ2Ak|| < 1, i.e. whenever ||W|| < γmin, for τ2(γmin +
γmax) ≤ 2. We prove this fact within Appendix C, which

is dedicated to the particular case of ε ≡ 1

τ
. In the general

case, imposing the upper bound of Theorem 4.1 to be less
than 1, we can obtain sufficient conditions for the asymptotic
uniform stability of the RCO model. We summarise in
the proposition below a scheme of sufficient conditions
to impose to have a contractive RCO, thus an uniformly
asymptotically stable RCO in particular.

Proposition 4.2. Sufficient conditions. If
ξ − η

τ2
≤ ξ−γmax

then the hcoRNN and RCO models are asymptotically uni-
formly stable whenever one of the following three conditions
hold:

• σ ≤ ξ − η

τ2
, and ξ <

1

1 + τ
,

•
ξ − η

τ2
< σ ≤ ξ − γmax, and σ <

1− τξ − η

τ2
,

• σ ≥ ξ − γmax, and σ <
1− η − τγmax

τ(1 + τ)
.

If ξ − γmax <
ξ − η

τ2
then the hcoRNN and RCO models are

stable whenever one of the following three conditions hold:

• σ ≤ ξ − γmax, and ξ <
1

1 + τ
,

• ξ − γmax < σ ≤ ξ − η

τ2
, and σ <

1− ξ

τ
− γmax,

• σ ≥ ξ − η

τ2
, and σ <

1− η − τγmax

τ(1 + τ)
.

The proof of Proposition 4.2 can be found in appendix D.
The eigenspectrum for a combination of hyperparameters
satisfying Proposition 4.2 is plotted in the upper left plot of
Figure 2. The sufficient conditions that we found in Propo-
sition 4.2 define a very narrow region of hyperparameters.
The difficulty to satisfy these bounds reflects how closely
the RCO model is biased around the identity. We might
relax the request of contracting at each time step in favour
of the less stringent requirement of having a spectral radius
less than 1. Note however that, for a generic linear non-
autonomous system, having a spectral radius less than 1 is
not sufficient to imply asymptotic stability (Slotine et al.,
1991; Kozachkov et al., 2022). In fact, there might be strong
asymmetries promoting expanding dynamics in phase space
that eventually lead to unstable behaviour. Here below, we
introduce a variation of the RCO model that promotes fad-
ing memory via slightly pushing the eigenvalues towards
the inside of the unit circle.

Definition 4.3. Fading RCO (F-RCO). An F-RCO is an
RCO where stability is promoted, but not guaranteed, by
an additional term. The state update of an F-RCO reads as
follows:

yk+1 = yk+τzk+1 − τyk,

zk+1 = zk+τ
(
tanh(Wyk +Vuk+1 + b)

−γ ⊙ yk − ε⊙ zk
)
−τzk.

(24)

The last term of each equation (−τyk,−τzk) has the effect
to push the eigenvalues slightly more towards the inside
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of the unitary circle (but not ensuring them to be inside).
In this sense, we are enforcing a fading memory property
without constraining the hyperparameters τ, ε,γ, ∥W∥.

We provide a more precise picture of the eigenvalues distri-
bution of the RCO model in the following theorem.

Theorem 4.4. For all µ eigenvalues of the Jacobian
of the hcoRNN and RCO models there exists a point
λ ∈ { 1 − τ2 γj , 1 − τ εj }Nj=1 such that

|µ− λ| ≤ C, (25)

where C = τ2σ + τ max
(
ξ, γmax + σ

)
.

The proof of Theorem 4.4 can be found in appendix E. Ac-
cording to Theorem 4.4, the eigenspectrum of the Jacobian
of an RCO model is contained inside the union of disks
of radius C centered on the points 1 − τεi, 1 − τ2γi, see
Figure 1 for a visual representation of this fact.

Figure 1. Depiction of the eigenspectrum’s bound given by Theo-
rem 4.4 for the Jacobian of an RCO model.

Theorem 4.4 allows us to impose conditions for the entire
eigenspectrum of the RCO to be inside the unit circle via
the inequality max(ξ, η) + C ≤ 1. However, it turns out
that these conditions are almost equivalent to those derived
in Proposition 4.2. Imposing such strict conditions on the
RCO model might harm its expressiveness. For this reason,
we rather consider simpler necessary conditions to impose
to the RCO model for asymptotic stability. Specifically, we
exploit the characterisation of the eigenspectrum given by
Theorem 4.4 to derive more loose necessary conditions for
linear asymptotic stability, by simply imposing that all the
points 1 − τεi, 1 − τ2γi, lie inside the unit circle. More
precisely, we refer to the necessary conditions as stated in
the following proposition.

Proposition 4.5. Necessary conditions. If the hcoRNN and
RCO models are asymptotically uniformly stable, then all

the following hold true

εmin ≥ 0, (26)
γmin ≥ 0, (27)
τεmax ≤ 2, (28)

τ2γmax ≤ 2. (29)

The proof of Proposition 4.5 can be found in appendix F.
Although, the inequalities of eqs. (26)-(29) do not ensure
linear asymptotic stability of an RCO model, following
them as guidelines make sure to exclude RCO models that
are undoubtedly linearly unstable. Moreover, selecting τ
values small enough while satisfying eqs. (26)-(29) will
generate typically RCO models with an underlying Jacobian
just marginally unstable with eigenvalues at most slightly
beyond the unitary circle in a neighbourhood of the value
of 1, see Figure 2. Therefore, promoting the computation at
the edge of stability.
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Figure 2. Plots of the eigenspectrum of the Jacobian eq. (16) for
various combinations of hyperparameters. The bias vector inside
the tanh has ben set to the value of β in all its components, while
the input-to-hidden matrix V has been set to zero.

5. Experiments
Our empirical evaluation focuses on two key RCO proper-
ties, which have been the subject of the theoretical analysis
of Section 31:

1. We study the impact of weight randomization by com-
paring the performance of an RCO against fully-trained
hcoRNN, coRNN and LSTM. We used both sequence
classification and time series forecasting benchmarks.

2. We study the role played by the dynamical system
stability in an RCO. To this end, we leverage the F-
RCO model, which enforces stability, and we compare

1The code to reproduce the experiments can be
found at https://github.com/AndreaCossu/
RandomizedCoupledOscillators.

https://github.com/AndreaCossu/RandomizedCoupledOscillators
https://github.com/AndreaCossu/RandomizedCoupledOscillators
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Table 1. Test Accuracy for sMNIST, psMNIST and npCIFAR-10 and test NRMSE for Lorenz96. Hidden size of LSTM and coRNN is
256, while hidden size for the other models is 362 (accounting for the lack of friction in the non-linearity). We did not experiment with
hcoRNN on Lorenz96, since coRNN is already surpassed by an ESN.

MODEL SMNIST ↑ PSMNIST ↑ NPCIFAR-10 ↑ LORENZ96 ↓

LSTM (RUSCH & MISHRA, 2023) 0.99 0.93 0.12 6.8× 10−2

CORNN (RUSCH & MISHRA, 2023) 0.99 0.97 0.59 9.8× 10−2

HCORNN (OUR) 0.99 0.95 0.55 —
ESN 0.85 0.75 0.22 3.8× 10−2

RCO (OUR) 0.94 0.90 0.36 4.9× 10−2

Table 2. Number of adaptive parameters and total training time (in minutes) for each benchmark and model. Number of parameters
include linear classifier/predictor. hcoRNN is trained for 120 epochs, as the original coRNN from Rusch & Mishra (2023).

MODEL SMNIST PSMNIST NPCIFAR-10 LORENZ96

HCORNN (OUR) 135,388 / 230M 135,388 / 230M 52,128 / 360M —
ESN 3,620 / 2M 3,620 / 2M 1,810 / 1M 300 / 0.16M
RCO (OUR) 3,620 / 3M 3,620 / 3M 1,810 / 2M 300 / 0.17M

its performance against an RCO (possibly unstable) on
the same benchmarks used in the previous point.

To guarantee a fair comparison, we adopt the experimental
setup of Rusch & Mishra (2023), where the coRNN model
was first introduced. We use the sequential MNIST (sM-
NIST), permuted sequential MNIST (psMNIST) and the
noise padded CIFAR-10 (npCIFAR-10) as our sequence
classification benchmarks. In such tasks, the recurrent
model is required to show robust long-term memory capabil-
ities. In sMNIST, the model observes one pixel at a time and
it is required to predict the digit class after having processed
all the 784 pixels. The psMNIST benchmark is the same
as sMNIST, except that the pixels in an image are shuffled
according to a fixed, random permutation. The npCIFAR-10
benchmark presents each RGB image of CIFAR-10 in a
row-wise fashion (flattening the RGB channels into a single
vector), leading to sequences of 32 elements. A randomly
generated suffix is added to each sequence, reaching a final
sequence length of 1,000 time steps. In npCIFAR-10, the
information required to classify the image is contained in
the very beginning of the sequence. Therefore, the model
needs to extend its memory over hundreds of steps.

In their paper, Rusch & Mishra (2023) discussed how
coRNN models are not tailored to time series forecasting
for chaotic systems, due to their inability (by design) to gen-
erate chaotic dynamics. We know that randomly initialised
models like ESN are usually very effective in predicting
chaotic systems. Following Rusch & Mishra (2023), we ran
experiments on the Lorenz96 system, in order to assess the
effectiveness of RCO in chaotic systems forecasting.
The Lorenz96 system is defined by the following differential

equation:

ẋi = (xi+1 − xi−2)xi−1 − xi + F, (30)

with i = 1, . . . , 5 and F an external driving force. We
replicated the experiments in Rusch & Mishra (2023) with
the Lorenz96 dynamical system, by choosing the chaotic
regime with F = 8. The Lorenz96 task consists in pre-
dicting the next 25-th state of the system. The training,
validation and test sets are composed by 128 trajectories of
length 2000. Each trajectory is independently generated by
solving eq. (30) with a random initial condition sampled
uniformly from [F −0.5, F +0.5] and a discretization time-
step of 0.01. As commonly done for time series forecasting,
we used an initial washout of length 200 (the first 200 steps
are used to warm-up the model, but are not used when eval-
uating its performance). The performance of the models
is measured by the Normalized Root Mean Squared Error
(NRMSE), where normalization is performed by diving the
RMSE by the root mean square of the target trajectory.

For the hcoRNN, we ran a model selection around the op-
timal hyper-parameters found by Rusch & Mishra (2023).
Since we removed the adaptive parameters contained in W ,
we increased the hidden size of the models accordingly, to
match the total number of parameters of the original coRNN.
For RCO, we ran a wider model selection, since we could
not leverage any available results. We report all the details
related to model selection for all models in Appendix A.

6. Results
Table 1 reports the results on the sMNIST, psMNIST,
npCIFAR-10 and Lorenz96 benchmarks for LSTM, coRNN,
hcoRNN and RCO. The results for the first two models are
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taken from Rusch & Mishra (2023).

Impact of randomization. Our RCO model surpasses
the performance of an ESN in sMNIST, psMNIST and
npCIFAR-10. As expected, fully-trained models like
coRNN and hcoRNN achieve better results than RCO. The
difference is larger for npCIFAR-10, which is the most diffi-
cult benchmark in terms of long-term memory requirements.
However, RCO is able to outperform LSTM and ESN by a
large margin in npCIFAR-10, showing that randomization
does not completely ruin the excellent long-term memory
capabilities present in coRNN models. In fact, on sMNIST
and psMNIST the RCO model is able to achieve very good
performance, reaching competitive accuracies with respect
to fully-trained models. As showed by the Lorenz96 re-
sults in Table 1, RCO obtains a strong performance when
modelling chaotic dynamical systems. While ESNs are still
able to achieve a lower NRMSE, RCO clearly surpasses
both (h)coRNN and LSTM. Hence the intrinsic inability of
the coRNN family models to generate chaotic dynamics is
not as detrimental as in Rusch & Mishra (2023) for chaotic
systems forecasting. The randomization of the recurrent
component seems in fact beneficial. Moreover, we observed
that increasing the number of units in the ESN and RCO
quickly reduces the NRMSE. Even 500 units are sufficient
to get a NRMSE of 2.5× 10−2 for ESN and 3.3× 10−2 for
RCO.

RCO stability. We verified whether or not the best RCO
configurations (Appendix A) satisfy the necessary condi-
tions of Proposition 4.5. Although we cannot state that the
RCO is truly stable (Proposition 4.5 provides necessary,
but not sufficient conditions for stability), we can observe
from Table 3 that the best RCO in our experiments behave
similarly to a stable RCO, since the conditions are satisfied
in most cases. We then compared the performance of our
best RCO with the Stable-RCO, that is an RCO that satis-
fies the sufficient conditions of Proposition 4.2. We also
leveraged the F-RCO model, where stability is enforced
but not guaranteed. Table 4 shows that the Stable-RCO is
overly restrictive and does not allow to learn properly any
of the time series tasks. The F-RCO model performs better
than Stable-RCO, but it still does not match the best, un-
constrained RCO. This supports that RCO needs to possess
some degree of instability in order to tackle our time series
tasks.

Computational efficiency. The number of adaptive pa-
rameters is two orders of magnitude smaller in RCO than
in fully-trained models (Table 2). We already noticed that
this comes at the cost of a compromise, which is however
often favorable: an RCO exhibits less robust long-term
memory capabilities, but it is able to outperform (h)coRNN
in time series forecasting. Moreover, the small number of

Table 3. Validity of conditions of Proposition 4.5 for best RCO con-
figurations from Table 1. The value of the best hyper-parameters
can be found in Appendix A.

SMNIST PSMNIST NPCIFAR-10 LORENZ96

ϵMIN ≥ 0 × × ✓ ✓
γMIN ≥ 0 ✓ ✓ ✓ ✓
τϵMAX ≤ 2 ✓ ✓ ✓ ✓
τ2γMAX ≤ 2 ✓ ✓ ✓ ✓

Table 4. Test Accuracy for sMNIST, psMNIST and npCIFAR-10
and test NRMSE for Lorenz96. Stable-RCO refers to an RCO
configuration that satisfies the sufficient conditions of Proposition
4.2.

STABLE-RCO F-RCO RCO

SMNIST ↑ 0.15 0.88 0.94
PSMNIST ↑ 0.22 0.85 0.90
NPCIFAR-10 ↑ 0.10 0.26 0.36
LORENZ96 ↓ 3.9× 10−1 6.1 ×10−2 4.9 ×10−2

adaptive parameters makes the RCO a much more efficient
model, both in terms of memory and computational time
(Table 2). In fact, training time for (h)coRNNs scales as
O(N2L) (back-propagation through time), where N is the
recurrent matrix dimension and L is the length of the input
sequence. On the contrary, RCO can be trained very quickly
in O(NL) with closed-form solutions that do not require
back-propagation through time (e.g., least-mean squares).
The lower training time for RCO allow to explore more con-
figuration than in fully-trained models. This appears to be
crucial, since the (h)coRNN is quite sensitive to the choice
of its hyper-parameters, in particular τ .

7. Conclusion and future works
We developed a theoretical and empirical analysis of recur-
rent dynamical systems based on randomly coupled oscil-
lators. We introduced the RCO model, which endows the
coRNN model (Rusch & Mishra, 2023) with randomiza-
tion properties. We provided a theoretical analysis of RCO
and derived both necessary and sufficient conditions for its
linear stability. We empirically evaluated RCO on a set of
sequence classification and time series forecasting bench-
marks. Our results show that RCO exhibits an effective
long-term memory while greatly improving the performance
in chaotic systems prediction. The computational efficiency
of RCO in terms of training time and number of parameters
is orders of magnitude better than the coRNN model.
Following the principles of deep RC, in the future we plan
to study deep versions of RCO, where multiple layers of
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randomized oscillators are stacked together. This would
lead to a more expressive model, able to learn richer la-
tent representations. Due to its physically-inspired design,
RCO could also be implemented in analogical and neuro-
morphic devices, which can mimic the behavior of coupled
oscillators. We believe RCO to be a promising model for
time series processing which provides an excellent trade-off
between long-term memory capabilities and the ability to
model nonlinear relationships.
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Table 5. Model selection configurations for sMNIST. α is the ESN leaky rate, ν is the input scaling, ρ is the spectral radius.
Model Configuration

hcoRNN ϵ = 4.7± {2,1}, γ = 2.7± {2,1}, τ = {0.42,0.042}
ESN α = {1, 0.5, 0.1, 0.01,0.001}, ρ = {900, 90, 9,0.999, 0.99, 0.9}, ν = {10,1, 0.1}
RCO τ = {0.42,0.042}, ρ = {900, 90,9, 0.9}, ν = {10,1, 0.1}, ϵ = {4.7,0.47} ± {2,1}, γ = {2.7, 0.27} ± {2, 1}

Table 6. Model selection configurations for psMNIST. α is the ESN leaky rate, ν is the input scaling, ρ is the spectral radius.
Model Configuration

hcoRNN ϵ = 8.0± {2,1}, γ = 0.4± {2, 1}, τ = {0.76,0.076}
ESN α = {1, 0.5, 0.1,0.01, 0.001}, ρ = {900, 90, 9,0.999, 0.99, 0.9}, ν = {10, 1,0.1}
RCO τ = {0.76,0.076}, ρ = {900, 90, 9,0.9}, ν = {10,1, 0.1}, ϵ = {8,0.8} ± {2, 1}, γ = {4, 0.4} ± {2, 1}

A. Model selection
We provide the complete experimental setup used for model selection. Table 5, 6, 7, 8 reports the grid search performed
during model selection, with the best value in bold.
The number of units is 362 for sMNIST and psMNIST, 181 for npCIFAR-10 for hcoRNN, RCO and ESN. On Lorenz96,
RCO and ESN use 300 units. The hcoRNN model has been trained for the same number of epochs (120) as the original
coRNN model from Rusch & Mishra (2023). For hcoRNN the grid search was performed around the best hyper-parameters
found by the original paper (Rusch & Mishra, 2023).

For the Stable-RCO model in Table 4, we used the following configuration: τ = 1.1, γ = 0.58± 0.03, ϵ = 0.77± 0.10, ρ =
0.01. These hyper-parameters satisfy the sufficient conditions of Proposition 4.2 but are overly restrictive for the model.

B. Proof of Theorem 4.1
We will make use of the following lemma.

Lemma B.1. Let be given two square matrices M,N of the same dimension. Then it holds that

(i)

∣∣∣∣∣
∣∣∣∣∣
[

M 0
0 N

] ∣∣∣∣∣
∣∣∣∣∣≤ max(||M||, ||N||),

(ii)

∣∣∣∣∣
∣∣∣∣∣
[

0 M
N 0

] ∣∣∣∣∣
∣∣∣∣∣≤ max(||M||, ||N||).

Proof. We notice that for any unitary vector X =

(
y
z

)
it holds

∣∣∣∣∣
∣∣∣∣∣
[

M 0
0 N

](
y
z

) ∣∣∣∣∣
∣∣∣∣∣
2

= ∥My∥2 + ∥Nz∥2 ≤ max(∥My∥, ∥Nz∥)2,

from which it follows that

∣∣∣∣∣
∣∣∣∣∣
[

M 0
0 N

] ∣∣∣∣∣
∣∣∣∣∣≤ max(||M||, ||N||). For the antidiagonal case, note that

[
0 M
N 0

]
=[

M 0
0 N

] [
0 I
I 0

]
, hence we have for any unitary vector X =

(
y
z

)
that

∣∣∣∣∣
∣∣∣∣∣
[

0 M
N 0

](
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z

) ∣∣∣∣∣
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=
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0 I
I 0
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[

0 I
I 0

](
y
z

) ∣∣∣∣∣
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= max(∥M∥, ∥N∥)2.
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Table 7. Model selection configurations for npCIFAR-10. α is the ESN leaky rate, ν is the input scaling, ρ is the spectral radius.
Model Configuration

hcoRNN ϵ = 12.7± {2,1}, γ = 1.3± {2,1}, τ = {0.76,0.076}
ESN α = {1, 0.5, 0.1, 0.01,0.001}, ρ = {900, 90, 9, 0.9}, ν = {10,1, 0.1}
RCO τ = {0.34,0.034}, ρ = {900, 90,9, 0.9}, ν = {10, 1,0.1}, ϵ = {12.7, 1.27} ± {2,1}, γ = {13,1.3} ± {2,1}

Table 8. Model selection configurations for Lorenz96. α is the ESN leaky rate, ν is the input scaling, ρ is the spectral radius.
Model Configuration

ESN α = {1,0.5, 0.1}, ρ = {900, 90, 9,0.9}, ν = {10, 1,0.1}
RCO τ = {1, 0.7, 0.5,0.17, 0.1, 0.05, 0.01, 0.001}, ρ = {90, 9, 0.999,0.99, 0.9}, ν = {10, 1,0.1}

ϵ = {10, 5, 2, 1} ± {2,1}, γ = {10, 5, 2, 1} ± {2, 1}

Lemma B.1 allows us to prove Theorem 4.1 as follows.

Proof. We decompose the Jacobian of eq. (16), with W = 0, in the sum of two matrices, one diagonal one anti-diagonal, as
follows

Jk =

[
I− τ2diag(γ) + τ2SkW 0

0 I− τdiag(ε)

]
+

[
0 τ

(
I− τdiag(ε)

)
τAk 0

]
. (31)

The upper left block of the diagonal matrix in eq. (31) admits the following bound.

||I− τ2diag(γ) + τ2SkW|| ≤ ||I− τ2diag(γ)||+ τ2||SkW|| ≤ max
j

|1− τ2γj |+ τ2||W|| = η + τ2σ, (32)

where we used the triangle inequality, and the fact that ||SkW|| ≤ ||W||, see definition of Sk in eq. (18).

The bottom right block of the diagonal matrix in eq. (31), is itself diagonal, and admits the following exact estimation.

||I− τdiag(ε)|| = max
j

|1− τεj | = ξ. (33)

The upper right block of the diagonal matrix in eq. (31), is itself diagonal, and admits the following exact estimation.

||τ(I− τdiag(ε))|| = τ max
j

|1− τεj | = τξ. (34)

The bottom left block of the diagonal matrix in eq. (31) admits the following bound.

||τ(SkW − diag(γ))|| ≤ τ(||SkW||+ ||diag(γ)||) ≤ τ(||W||+ γmax) = τ(σ + γmax). (35)

Putting together eqs. (32)-(35), and Lemma B.1, we obtain

||Jk|| ≤ max(η + τ2σ, ξ) + τ max(ξ, σ + γmax),

which is the thesis.

In particular, for small enough values of τ we have that τεmax ≤ 1, and τ2γmax ≤ 1, which in turns imply that ξ = 1− τεmin,
and that η = 1− τ2γmin, respectively. Furthermore, assuming that εmin > 0, and γmax ≥ 1, we have that ξ < 1 ≤ σ + γmax.
Therefore, the bound reads

max(1− τ2γmin + τ2σ, 1− τεmin) + τ(σ + γmax).

Finally note that for τ ≪ 1, and εmin > 0, we have that 1− τεmin ≤ 1− τ2γmin + τ2σ. Hence, the bound has the following
expansion for small values of τ

1 + τ(γmax + σ) +O(τ2). (36)
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C. Contractivity for the particular case of ε ≡ 1

τ

We already noticed that for the particular case of ε ≡ 1

τ
the z-dynamics in eqs. (13) become unidirectionally driven by the

y-dynamics. In such a case, we can focus only on the y-dynamics which reads

yk+1 = (I− τ2diag(γ))yk + τ2 tanh(Wyk +Vuk+1 + b). (37)

We provide the following sufficient conditions for contraction in the particular case of (37).

Proposition C.1. In the particular case of ε ≡ 1

τ
, the hcoRNN and RCO models are contractive whenever

(i) σ < γmin, if τ2(γmin + γmax) ≤ 2;

(ii) σ <
2− τ2γmax

τ2
, if τ2(γmin + γmax) > 2.

Proof. The Jacobian of eq. (37) reads Jk = I + τ2Ak = (I − τ2diag(γ)) + τ2SkW. Therefore, it holds

||Jk|| ≤ ||I− τ2diag(γ)||+ ||τ2SkW|| ≤ η + τ2σ. Thus, ||Jk|| < 1 holds whenever σ <
1− η

τ2
. Finally note that, due

to Definition 20, there are two possibilities for η, either η = 1 − τ2γmin, if τ2(γmin + γmax) ≤ 2, or η = τ2γmax − 1, if
τ2(γmin + γmax) > 2. The first case implies the thesis of (i), while the second case implies the thesis of (ii).

Note that, in order for (i) and (ii) to hold in Proposition C.1, two necessary conditions must hold, namely γmin ≥ 0, and
τ2γmax ≤ 2.

D. Proof of Proposition 4.2
Recall the upper bound of the Jacobian found in Theorem 4.1, that we denote for the purpose of the proof as

c = max(η + τ2σ, ξ) + τ max(ξ, σ + γmax). (38)

The proof is divided in 4 cases.

CASE 1.
Assume that η + τ2σ ≤ ξ and γmax + σ ≤ ξ. These assumptions hold if and only if σ ≤ min(

ξ − η

τ2
, ξ − γmax). If such

assumptions are true, then the constant (38) reads c = ξ + τξ. Therefore, by Theorem 4.1, the Jacobian has norm less than 1

whenever ξ <
1

1 + τ
.

CASE 2.
Assume that η + τ2σ ≥ ξ and γmax + σ ≤ ξ. These assumptions hold if and only if

ξ − η

τ2
≤ σ ≤ ξ − γmax. If such

assumptions are true, then the constant (38) reads c = η + τ2σ + τξ. Therefore, by Theorem 4.1, the Jacobian has norm

less than 1 whenever σ <
1− τξ − η

τ2
.

CASE 3.
Assume that η + τ2σ ≤ ξ and γmax + σ ≥ ξ. These assumptions hold if and only if ξ − γmax ≤ σ ≤ ξ − η

τ2
. If such

assumptions are true, then the constant (38) reads c = ξ + τ(σ + γmax). Therefore, by Theorem 4.1, the Jacobian has norm

less than 1 whenever σ <
1− ξ

τ
− γmax.

CASE 4.
Assume that η + τ2σ ≥ ξ and γmax + σ ≥ ξ. These assumptions hold if and only if σ ≥ max(ξ − γmax,

ξ − η

τ2
). If such



Randomly Coupled Oscillators for Time Series Processing

assumptions are true, then the constant (38) reads c = η+ τ2σ+ τ(σ+ γmax). Therefore, by Theorem 4.1, the Jacobian has

norm less than 1 whenever σ <
1− ξ − τγmax

τ(1 + τ)
.

The statement of Proposition 4.2 organises these results depending on whether
ξ − η

τ2
≤ ξ − γmax, or vice versa.

E. Proof of Theorem 4.4
The proof is a straightforward application of the Bauer-Fike’s theorem (Bauer & Fike, 1960) that we report here for ease of
comprehension.

Theorem E.1 (Bauer-Fike). Let D be a diagonalisable matrix, and let H be the eigenvector matrix such that D = HΛH−1

where Λ is the diagonal matrix of the eigenvalues of D. Let E be an arbitrary matrix of the same dimension of D. Then, for
all µ eigenvalues of D+E, there exists an eigenvalue λ of D such that

|µ− λ| ≤ ∥H∥∥H−1∥∥E∥. (39)

Let us denote

Ek =

[
τ2SkW τ

(
I− τdiag(ε)

)
τAk 0

]
. (40)

The norm of the matrix Ek can be bounded as stated in the following lemma.

Lemma E.2. The matrix Ek admits the following upper bound

||Ek|| ≤ C, (41)

where C is defined as follows
C = τ2σ + τ max

(
ξ, γmax + σ

)
, (42)

where ξ is defined in eq. (19), and σ is defined in eq. (21).

Proof. We decompose the matrix Ek in its diagonal and antidiagonal parts, and apply Lemma B.1 obtaining the thesis.

Then, Theorem E.1 in combination with Lemma E.2 give us all the ingredients to prove Theorem 4.4, as follows.

Proof. We decompose the Jacobian of eq. (16) in the sum of two matrices as follows

Jk =

[
I− τ2diag(γ) 0

0 I− τdiag(ε)

]
+

[
τ2SkW τ

(
I− τdiag(ε)

)
τAk 0

]
, (43)

and apply the Bauer-Fike’s theorem E.1, choosing D =

[
I− τ2diag(γ) 0

0 I− τdiag(ε)

]
, and E = Ek as defined in

eq. (40). Noticing that D is already diagonalized, i.e. D = Λ, thus H is the identity matrix, and the eigenspectrum of
D is the set of all the points {1−τ2γj , 1−τεj}j . The norm of the matrix Ek is bounded withC as stated in Lemma E.2.

F. Proof of Proposition 4.5
If the RCO is asymptotically stable, then there exists at least one point of the input-driven solution (yk, zk) for which the
linearised RCO evaluated on it has all the eigenvalues inside the unit circle. Otherwise, there is at each time step at least one
expanding direction, which contradicts the asymptotic uniform stability hypothesis. Now, due to Theorem 4.4 it must hold,
in particular, that 1− τ2γi ≤ 1, for all i, which translates in the condition γmin ≥ 0. In fact, if the point 1− τ2γi is outside
the unit circle, then there exists a smaller 0 < τ̃ < τ such that the same RCO with τ̃ is not asymptotically stable.
A similar argument implies that 1− τεi ≤ 1 must hold for all i, which translates in the condition εmin ≥ 0. On the other
hand, it must also hold that 1− τ2γi ≥ −1, for all i, which translates in the condition τ2γmax ≤ 2, and analogously, that
1− τεi ≥ −1, for all i, which translates in the condition τεmax ≤ 2.


