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ABSTRACT

The growing adoption of electronic health record (EHR) systems has provided un-
precedented opportunities for predictive modeling to guide clinical decision mak-
ing. Structured EHRs contain longitudinal observations of patients across hospital
visits, where each visit is represented by a set of medical codes. While sequence-
based, graph-based, and graph-enhanced sequence approaches have been devel-
oped to capture rich code interactions over time or within the same visits, they
often overlook the inherent heterogeneous roles of medical codes arising from
distinct clinical characteristics and contexts. To this end, in this study we pro-
pose the Disease Trajectory-aware Transformer for EHR (DT-BEHRT), a graph-
enhanced sequential architecture that disentangles disease trajectories by explic-
itly modeling diagnosis-centric interactions within organ systems and capturing
asynchronous progression patterns. To further enhance the representation robust-
ness, we design a tailored pre-training methodology that combines trajectory-level
code masking with ontology-informed ancestor prediction, promoting semantic
alignment across multiple modeling modules. Extensive experiments on multiple
benchmark datasets demonstrate that DT-BEHRT achieves strong predictive per-
formance and provides interpretable patient representations that align with clini-
cians’ disease-centered reasoning.

1 INTRODUCTION

With the rapid growth of electronic health record (EHR) data, predictive modeling has become an
important tool for generating actionable insights to support clinical decision making. Structured
EHRs consist of trajectories of hospital visits, where each visit contains a collection of various med-
ical codes that capture patients’ diagnoses, medications, procedures, and laboratory tests. Sequence
modeling has therefore become a prominent approach in EHR-based predictive analysis. Studies
such as BEHRT (Li et al., [2020), Med-BERT (Rasmy et al., [2021), and ExXBEHRT (Rupp et al.,
2023)) adapted the BERT (Devlin et al.,[2019) framework and pre-trained models on structured EHR
datasets of varying sizes. However, existing sequence-based methods generally face two key chal-
lenges when dealing with multiple codes within the same visits: (1) the order of codes is often
unreliable since they are reported by coding practices rather than true clinical chronology, and (2)
code co-occurrence and dependencies are often inadequately captured when visits are represented
as multi-hot vectors. These challenges have motivated the development of graph-based approaches,
such as homogeneous (Song et al., [2023)), heterogeneous (Chen et al., 2024), and hypergraph (Xu
et al., 2023) models that aim to explicitly leverage structural relationships in EHR data. However,
graph-based methods often struggle to capture sequential dependencies across visits.

Graph-enhanced sequence approaches have therefore been proposed to integrate the strengths of
both paradigms. G-BERT (Shang et al.| |2019) incorporates a graph to enrich medical code embed-
dings with hierarchical ontology structures. GCT (Chot et al., 2020) was among the first to model
intra-visit code relationships with graphs, while TPGT (Hadizadeh Moghaddam et al., 2025) and
DeepJ (Li et al.l |2025) strengthened temporal modeling capabilities. HEART (Huang et al., [2024)
connects multiple visit representations of the same patient into a graph to enable message passing
across visits. A more detailed overview of related work is provided in the Appendix [A] However,
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existing models largely overlook the fact that different types of medical codes play fundamentally
distinct roles in shaping a patient’s health representation.

Medical codes are inherently heterogeneous, reflecting their diverse clinical roles and characteristics.
For example, procedures and medications often reflect treatment pathways, therefore are inherently
temporal related over time but exhibit limited interactions within a single visit. In contrast, diagnosis
codes serve as the driving force in shaping a patient’s health trajectory. They are more interactive,
with dense connections to other diseases within the same organ system, and also facilitate influence
across different systems over time. These differences highlight the need for a code-type-specific
algorithmic paradigm, supported by specialized modeling modules that explicitly account for the
distinct roles of different code categories.

In this study, we introduce the Disease Trajectory-aware Transformer for EHR (DT-BEHRT), which
directly addresses the aforementioned gaps. Unlike homogeneous modeling approaches that treat
all codes uniformly, DT-BEHRT incorporates tailored modules to capture the fundamental differ-
ences between diagnosis and treatment codes. By explicitly encoding disease trajectories and corre-
sponding treatment pathways, our framework models both the temporal dynamics and system-wise
interactions of diagnoses across visits. This design is essential, as many downstream clinical predic-
tion tasks, such as mortality prediction and disease phenotyping, are inherently dependent on rich
representations of disease progression. Our key contributions are threefold:

* Model architecture. We introduce DT-BEHRT, a novel graph-enhanced sequence model
that models and interprets longitudinal EHR by leveraging diagnosis-centric interactions
in organ systems, and formulating personalized disease progression patterns for patient
representation learning.

* Pre-training framework. We design a tailored pre-training framework that combines a
novel masked code prediction task with ancestor code prediction. This objective enhances
module alignment across functional components and consistently improves the robustness
of patient representations.

* Comprehensive evaluation. We conduct extensive experiments across diverse clinical
prediction tasks, where DT-BEHRT achieves competitive performance and maintains ro-
bustness across subgroups. Through case studies, we further demonstrate that its design
aligns with clinicians’ diagnostic reasoning, providing both accuracy and interpretability.

2  PRELIMINARY

In this section, we introduce key concepts and notations that are essential for introducing our method.
In EHR data, each medical event c in a patient’s clinical trajectory is recorded as a code drawn from
a vocabulary of unique medical codes, denoted as C = {c1, ¢z, . .., ¢¢| }, Where |C| denotes the total
size of the vocabulary. Meanwhile, each code can be categorized into one of four medical event
categories: diagnosis (D), medication (M), laboratory test (L), or procedure (P). Formally, the
vocabulary can be expressed as the union C = DU M U LUP. Based on these notations, a patient’s
clinical trajectory can be naturally modeled as a sequence of temporally ordered hospital visits, de-
noted as V = {vy,va,...,vr}, where T denotes the total number of visits and each visit v; contains
a subset of medical codes, v, = {ci1,. .., ¢, N, }, ¢t € C, where N, denotes the number of codes
in v;. EHR-based predictive analysis aims to predict future health outcomes given a patient’s clin-
ical trajectory V. Typical tasks include predicting hospital readmission risk or estimating the set of
diagnoses at the subsequent hospital visit. See Appendix [B]for a complete table of notations.

3 METHODS

In this section, we first introduce the overall architecture of our proposed model, DT-BEHRT, which
consists of four main components: the Sequence Representation (SR) module, the Disease Aggrega-
tion (DA) module, the Disease Progression (DP) module, and the Patient Representation (PR) mod-
ule (see Figure[I). Each module is designed to capture complementary aspects of a patient’s evolving
health trajectory, ranging from fine-grained event encoding to organ/system-level abstraction, tem-
poral progression, and global patient summarization. We then present a novel pre-training frame-
work specifically tailored to this architecture, including Global Code Masking Prediction (GCMP)
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and Ancestor Code Prediction (ACP), which facilitates alignment across modules and improves the
quality of patient representations for downstream predictive tasks.
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Figure 1: The architecture of DT-BEHRT. Each layer includes a Sequence Representation (SR), Dis-
ease Aggregation (DA), and Disease Progression (DP) module. The Patient Representation (PR) is
derived via sequence-guided attention. The pre-training framework includes Global Code Masking
Prediction (GCMP) and Ancestor Code Prediction (ACP).

3.1 SEQUENCE REPRESENTATION

The input to our model is a patient’s medical code sequence V, which is composed of 1" hospital
visits. Each token ¢ corresponds to a medical code drawn from the vocabulary C, as defined in
Section[2] To enrich the token representation, we incorporate two additional embeddings, similar as
BEHRT (Li et a1.|, 2020): a code-type embedding, €y,,¢(c), Which specifies whether a token belongs
to diagnosis, medication, laboratory test, or procedure categories, and a visit-index embedding,
€yisit(c)» Which encodes the relative temporal position of each visit in the patient’s trajectory. The

final token representation is obtained by summation: hff” = €cte€rype(c) T€uisit(c)- Within a single
visit, we make no assumptions about the ordering of codes, since the recorded timestamps of events
within a single visit may not reflect their true temporal order. Following the BERT-style architecture,
we prepend a special token [SEQ] to V, which is designed to summarize the entire sequence. The
input sequence is then processed by a stack of L pre-normalization Transformer layers:

0
HO = [hQo 1A, Nl R, RS, S, ] M
HO = HO 4 MMHSA (LN (H“—U) M ) : )
HO = H® 4 FFN (LN (ﬁ“))) , 1<1< 1L, ©)

where || is the vector concatenation operator, MMHSA(-, -) denotes the masked multi-head self-
attention with attention mask M (to be introduced in the next subsection), FFN(-) is the position-
wise feed-forward network, and LN(-) is the layer normalization. Thus, H() ¢ RO+Nv)xd Ny —

Zt 1 Vo, is the hidden representation of all tokens at layer /, where d is the hidden size.

3.2 DISEASE AGGREGATION

The ICD-9 ontology organizes diagnosis codes into nineteen top-level ancestor codes, or “chap-
ters”, denoted as (J = {1,...,19}), each corresponding to a specific organ/system-level dis-
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ease class (e.g., cardiovascular diseases, see Appendix [C] for details) (CDC, 2013). Leveraging
this rich hierarchical structure, we introduce a set of DA tokens, A = {a; : j € J}, with one
token per top-level chapter, to summarize the progression and interactions of diseases within the
same organ/system across visits, enabling the model to capture higher-level semantic patterns that
extend beyond individual diagnosis codes. Let Anc : D — J map each diagnosis code to
its unique ICD-9 chapter. Define, for each j € J,D; = {d€D:Anc(d) =4} C D, and
ancy(j) := | Supp(V) N D;| as the number of distinct codes from D; that appear in the patient
trajectory V. Whenever ancy (j) > k, where k is a threshold hyperparameter, we append the DA

token a; to the end of the visit-major vector V' = ([SEQ]7 Cliiy -3 CL Ny, s+ -3 CT 15+« + s CT, N, . ),
flattened from the trajectory V in visit order. The resulting concatenated vector is as follows:
Vo = [V || ay], where ay = (ajl, ce ajNa) ,J1 < ... < jn, are the categories satisfying the
threshold condition, and N, = |ay|. For the concatenated vector V,,, we apply an attention mask,

M e ROANv+Na)x(1+Nv+Na) that restricts attention to diagnosis codes within each DA token’s
ICD-9 chapter and to the token itself:

0, ifl=mandl > Ny + 1,

0, ifl<Ny+landm< Ny +1,
M{[l,m] = 4)
0, ifl>Ny+1,m<Ny+1, and Vo[m] € Dy,

—o00, otherwise.

where ¢(1) denote the ICD-9-chapter index of the DA token placed at row [ (for [ > Ny + 1).
Equivalently, ag ;) ,- A sample attention mask can be found in Appendix @

= Qi Ny -1

In the SR module, the attention among diagnosis codes is unconstrained, which may lead to redun-
dancy when similar information is aggregated through DA tokens. To encourage the DA tokens to
encode rich and diverse information, we introduce a token-level covariance regularization. Formally,
we extract Z € RNe*d from H) . The regularization term £, is defined as follows:

-
A Z (Cov(2)[i, 5])° . &)
a i#i

Ecov =

1 d

where Cov(Z) = — 37j- (Z.,—2,)(Z.;,-Z,)" ,and Z; = 1351 Z. ;. This regular-

ization term encourages the off-diagonal elements of the covariance matrix Cov(Z) to approach
zero, thereby compelling the DA tokens to capture decorrelated organ/system-level abstractions.

3.3 DISEASE PROGRESSION

We construct a heterogeneous graph G = (U,E,X) to model a patient’s disease progres-
sion and better capture potential development trends. Here, U,£, X denote the node set, the
edge set, and the node feature set, respectively. The graph consists of 7' virtual visit nodes,
each corresponding to one hospital visit, together with the diagnosis nodes associated with that

visit.  Formally, U4 = {¥1,...,0r} U {Jzt |i=1,...,Ng,t=1,... ,T}, where Ng, de-
notes the number of diagnosis codes for visit . We hereafter refer to the virtual visit nodes
U as DP nodes, emphasizing their role in encoding disease development trends through graph
learning. Directed edges are added from each DP node to its diagnosis nodes, d;;, while
DP nodes are connected sequentially in temporal order through forward-directed edges. In ad-
dition, self-loops are introduced for DP nodes starting from the second DP node, ensuring
that these nodes can preserve their own information during message passing. Formally, £ =
{(ﬁt e dp)|i=1,..., Ny, t = 1,...,T} U {(d’m —dp)|i=1,..., Ny, t = 1,...,T} U

{0t = V1) | t=1,..., T =1} U{(0y = 0¢) |t =2,...,T}. Forlayer [ = 1, DP visit node
features are initialized with patient age embeddings, e 44¢(+), While disease node features come

from the embedding of the corresponding diagnosis code in the SR module, hg:) In higher layers

(2 < 1 < L), node features are updated through message passing: visit node features are taken from
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the previous DP layer, and diagnosis node features from the previous SR layer.
Ny _ [pU=1) p0-1) . —
X()_{hd}’i B |z_1,...,th,t_17...,T},

) = hg), and h%?) = €Age(t)- Furthermore, the representations of DP nodes, hgt), is

.4 i

where hg
updated by a graph attention network (GAT) layer (Velickovi€ et al.,[2017) as follows:

Message) =0 GATO (dy; — 3,) (©)
Messagef{lﬁ)tfl,ﬁt}eat - vae{at,l,at} GAT® (v = ), (7
ﬁgt) = Messagegj,;aﬁt + Messagef{lgtihﬁt}ﬁﬁt, and hgt) =LN (izgt) + hg:l)) . 3)

We then stack Lg such GAT blocks within each layer’s DP module, allowing each DP node repre-
®
3 ).

sentation hfj} to incorporate information from visits up to Lg-hops away (e.g., from hv(t o)
t —~g

3.4 PATIENT REPRESENTATION

At the final layer L, we integrate three complementary sources of information. The representa-

tion of the [SEQ)] token, h'Y) | summarizes the entire medical code sequence V of a patient. The

[SEQ]’
representations of the DA tokens, {hgf) | j € J,ancy (j) > k}, capture the progression and in-
teractions of diseases within the same organ/system across visits. The representations of the DP
tokens, {hétL) |[t=1,...,T }, updated through GAT blocks, model potential disease development

trends along the temporal trajectory. By integrating these components, we derive the final patient
representation vector, h|crg), which serves as the input for downstream predictive tasks. We design
an attention-based mechanism that leverages sequence-level information to differentiate the relative
importance of DA tokens and DP tokens. We derive h|crg) by:

hiows) = [Pigag | Attn (Righq {RE) 15 € Toaney () = kfu{A{D [t =1,....T})],
9

where Attn (-, -) denotes the attention pooling mechanism.

3.5 PRE-TRAINING FRAMEWORK

To fully exploit the information contained in the dataset and to enhance alignment across the SR,
DA, and DP modules, we design a novel pre-training framework tailored to our model architecture.

A. Global Code Masking Prediction: Inspired by Med-BERT (Rasmy et al.| 2021) and HEART
(Huang et al., 2024)), we adopt masked token prediction as one of the pre-training tasks. However,
our design differs in key aspects. Since the timestamp order within a visit may not reflect true
occurrences and repeated codes across visits may create shortcuts, we instead encourage the model
to capture co-occurrence semantics at the trajectory level, which better encodes patterns such as
comorbidities and treatment pathways. Specifically, given a patient’s medical code sequence, we
first identify all unique codes. For each code type (i.e., diagnosis, medication, laboratory test, and
procedure), we independently sample codes for masking at the unique-code level with rate «. Once
a code is selected, all of its occurrences in )V are masked. Then, h(cyg) is required to predict the
masked codes across all four categories simultaneously, encouraging the learned representation to
be broadly generalizable to diverse downstream tasks. The loss term ¢,,,, is defined as follows:

1
gmas iy BCE P-,—, Yiask,r y 10
k=7 TEZT ( k,r) (10)

where P, = o (LinearT (h[CLS])) denotes the prediction heads for code type 7, with 7 € T =
{T>,Tpm, Tz, TP}, corresponding to the four code types. The operator Linear.(-) is the linear layer
associated with the prediction head 7, o(-) denotes sigmoid activation, BCE(-, ) is the binary cross
entropy loss function, and Y7,k - is the masked token label of code type 7 € 7.
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B. Ancestor Code Prediction: In our architecture, the DA module explicitly incorporates ICD-9
high-level chapters, while the SR and DP modules are not directly exposed to this ontology informa-
tion. This asymmetry may lead to misalignment when constructing the final patient representation
h(cLs), where hESLle] serves as the query in the attention mechanism, potentially hurting down-
stream performance. To address this issue and make the other two modules aware of the ontology
structure, we introduce an auxiliary ancestor code prediction task. Specifically, for each masked di-
agnosis code in the masked token prediction task, we require the model to predict its ancestor code

in the ICD-9 ontology. The predictions are made from two perspectives: a) using the h’ESLE)]Q] from

the SR module, and b) using the representation of the last DP token, hg;), which partially serves as
a summary of the DP graph. This design encourages the representations across modules to jointly
understand ontology-level knowledge, thereby promoting better alignment. The loss term £y, is

defined as fanc = fanc,SR + fanc,Dp, Where
Cune:sn = BOE (o (Linear (A&} ) s Ane (Vinaskro)) (11)

Lanc,pp = BCE (a (Linear (hé?)) ,Anc (Ymask,TD)) . (12)

3.6 LEARNING OBJECTIVES

During the pre-training phase, the model is optimized with a joint objective that combines masked
token prediction, ancestor node prediction, and DA token decorrelation. The strengths of the an-
cestor node prediction and DA decorrelation penalties are controlled by A, and Aoy, respectively.
Formally, £t = fmask + Aanclanc + Acovleov. During the fine-tuning phase, the learning objective
is given by lg = liask + Acovleov, Where lasc = BCE (o (Linear (h[CLS])) ,Ytask) for ground
truth label, Yi,sk, of the downstream task. The detailed pseudocode for DT-BEHRT pre-training and
fine-tuning is provided in Algorithm[I]in Appendix[G]

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on the MIMIC-IIT (Johnson et al.,2016), MIMIC-IV (Johnson et al., 2023)
and eICU (Pollard et al., 2018) datasets, three publicly available EHR databases hosted on Phy-
sioNet (https://physionet.org/). The data preprocessing steps follow HEART (Huang
et al., 2024), with details provided in the Appendix [El To comprehensively evaluate our model, we
examine three standard outcome prediction tasks on the MIMIC-III and MIMIC-IV cohorts: in-
hospital mortality, prolonged length of stay (PLOS; defined as hospitalization exceeding 7 days),
and readmission. In addition, we perform phenotyping prediction for a set of acute, chronic, and
mixed conditions at the next hospital encounter within 12 months, formulated as a multi-label clas-
sification task and aligned with the experimental setup in DrFuse (Yao et al., 2024). For the eICU
dataset, we only evaluate ICU mortality and PLOS.

4.2 BASELINES

We comprehensively compare our model with state-of-the-art EHR-based predictive models across
three categories: graph-based models, sequence-based models, and graph-enhanced sequence mod-
els. The implementation details of our model can be found in Appendix [F] Since our method falls
into the category of graph-enhanced sequence models, we place particular emphasis on recent ad-
vances in sequence-based and graph-enhanced sequence approaches. For graph-based approach, we
select HypEHR (Xu et al.,[2023) as a representative baseline, as it reflects the most recent endeavor
in using hypergraph to capture the high-order interaction between codes and visits. For sequence-
based approach, BEHRT (Li et al., 2020) represents one of the earliest transformer-based models for
EHR. It organizes a patient’s historical diagnoses into a sentence fed into a transformer. Med-BERT
(Rasmy et al.,[2021) extends the BERT framework to pre-train on large-scale EHR data. EXBEHRT
(Rupp et al.| [2023)) extends BEHRT (Li et al.,|[2020) by integrating additional types of codes through
vertical summation of their embeddings. For graph-enhanced sequence approach, G-BERT (Shang
et al., 2019) embeds hierarchical information of diagnosis and medication codes with a GAT and
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encodes their sequences using BERT (Devlin et al.| 2019). HEART (Huang et al., 2024) enriches
medical code representations with heterogeneous relation embeddings that explicitly parameterize
pairwise correlations between entities, and further enhances hospital visit representations by con-
necting them as a graph and applying a modified GAT. All baselines are trained and evaluated under
exactly the same cohort construction, inclusion criteria, and prediction windows.

4.3 EXPERIMENT RESULTS
4.3.1 PERFORMANCE ON GENERAL OUTCOME PREDICTION

Table [1| shows that DT-BEHRT generally outperforms all baselines across tasks on both datasets.
The largest performance gain is observed on the readmission task, which is known to be particularly
challenging in EHR-based prediction due to the heterogeneous and multifactorial causes of read-
mission. On the smaller dataset MIMIC-III, our model shows a clear advantage, while on the larger
dataset MIMIC-IV, this advantage becomes less pronounced, suggesting that larger data availability
partially compensates for the modeling gaps of baseline methods. On the eICU dataset, DT-BEHRT
also attains the best overall performance, and the consistent results across MIMIC and eICU indicate
that the model generalizes reasonably well across different clinical databases. The hypergraph-based
approach HypEHR (Xu et al., 2023) exhibits high instability on the readmission task in MIMIC-III.
A possible reason is that, with limited data and a large vocabulary, the resulting hypergraph suffers
from low hyperedge density, weakening its ability to capture reliable high-order interactions as well
as temporal dependencies—particularly for readmission, which requires robust modeling of long-
term disease progression (Pham et al., [2016). Although HEART (Huang et al.| [2024) employs a
hierarchical design from codes to visits, it still underperforms compared to DT-BEHRT on the read-
mission task. One reason may be that it does not explicitly differentiate the importance of diagnosis
codes from other code types, leading to incomplete transmission of critical progression information
during the transition from visit-level to patient-level representations.

Table 1: Results of general outcome prediction tasks.

Models G-BERT BEHRT | Med-BERT | HypEHR ExBEHRT HEART DT-BEHRT
F1 59.2440.46 | 68.60+0.43 | 67.91£1.08 | 70.0440.70 | 73.66+1.09 | 74.774+1.26 | 76.03£0.28
Mortality AUROC | 86.25+0.82 | 87.23+0.27 | 87.944+0.53 | 88.554-0.39 | 90.72+0.30 | 92.134+0.36 | 92.09+0.15
AUPRC | 72.13%1.51 | 75.33£0.33 | 75.28+1.01 | 76.39£1.06 | 81.4440.62 | 82.76+0.63 | 84.50+0.19

F1 69.62+£1.42 | 70.384+0.74 | 72.02£1.43 | 72.73£0.09 | 74.73£0.70 | 75.44+1.47 | 76.37+0.49
MIMIC-III | PLOS AUROC | 72.96+£1.20 | 73.71+0.98 | 77.2540.53 | 78.894+0.33 | 82.11+0.71 | 82.99+0.40 | 84.134+0.26
AUPRC | 72.48+1.27 | 72.49+1.47 | 76.98+0.56 | 78.70+0.28 | 83.52+0.79 | 83.834+0.59 | 85.00+0.22

F1 60.84+1.01 | 53.64£1.56 | 66.52£0.92 | 48.09+£3.57 | 63.08+0.82 | 68.77+0.36 | 70.59+0.34
Readmission | AUROC | 67.40+0.65 | 64.79+0.44 | 76.66+0.57 | 68.2840.30 | 73.68+0.70 | 77.68+0.79 | 80.30+0.14
AUPRC | 57.1940.77 | 51.59+0.47 | 62.90£1.50 | 56.00£0.11 | 62.13+0.91 | 64.05+1.46 | 69.62+0.20

F1 58.06+1.01 | 67.22£1.06 | 66.55+2.38 | 65.274+2.30 | 70.25+0.72 | 70.5240.86 | 70.89+£0.53
Mortality AUROC | 93.15£0.62 | 94.84+0.20 | 94.984+0.40 | 95.2740.18 | 96.19+0.13 | 96.12£0.12 | 96.21+0.12
AUPRC | 68.5243.78 | 71.66+0.93 | 71.52+2.53 | 71.63£0.78 | 77.00£0.86 | 76.94+0.59 | 78.35+0.37

F1 61.27£1.02 | 61.47+0.53 | 63.38£1.03 | 61.77+0.75 | 67.64£0.42 | 67.07£1.27 | 68.04+0.54
MIMIC-1V | PLOS AUROC | 77.34+0.66 | 78.62+0.52 | 81.8940.29 | 81.004+0.13 | 84.994+0.21 | 84.63+0.35 | 84.98+0.09
AUPRC | 66.68+0.84 | 66.19£0.97 | 70.82+0.37 | 69.39+0.24 | 75.97+0.54 | 74.4840.96 | 74.784+0.23

F1 82.13+0.35 | 82.76+£0.43 | 83.19+£0.55 | 82.80+0.18 | 83.21£0.61 | 83.68+0.35 | 84.18+0.08
Readmission | AUROC | 65.38+0.34 | 62.32+0.23 | 68.514+0.66 | 66.074+0.27 | 68.41+0.38 | 68.93+1.11 | 72.084+0.25
AUPRC | 71.4940.31 | 78.23+0.17 | 81.89+0.46 | 80.50+0.16 | 81.86+0.16 | 82.07+0.53 | 84.85+0.14

F1 66.46+£0.73 | 60.01+1.06 | 75.04£1.73 | 75.83£0.78 | 71.21£0.14 | 73.08£0.34 | 81.27+0.21
Mortality AUROC | 89.28+0.72 | 78.11+0.22 | 91.0440.47 | 90.3940.48 | 87.53+0.24 | 88.65+0.12 | 93.734+0.06
AUPRC | 77.4842.65 | 64.04+0.45 | 80.56+1.77 | 83.87+0.82 | 78.36+0.50 | 79.95+0.14 | 88.58+0.13

F1 65.73£1.22 | 49.04+1.04 | 67.98+£1.23 | 67.25+1.19 | 60.77£2.90 | 69.71£0.64 | 72.49+0.23
PLOS AUROC | 76.44+0.93 | 63.12+0.58 | 80.861+0.41 | 82.044+1.09 | 77.77+0.84 | 82.93+0.28 | 85.844+0.11
AUPRC | 70.76+1.05 | 50.58+0.98 | 75.08+0.47 | 75.61+1.54 | 68.83+1.44 | 77.534+0.33 | 81.07+0.22

eICU

To further assess the robustness of DT-BEHRT, we evaluate its performance across clinically rele-
vant patient subgroups on the MIMIC-III dataset (Figure[2). The analysis includes nine conditions:
hypertension, diabetes mellitus, chronic kidney disease (CKD), coronary artery disease (CAD), heart
failure, chronic obstructive pulmonary disease (COPD), liver disease, and cancer. Across these sub-
groups, DT-BEHRT generally achieves the competitive performance on mortality and PLOS, while
for readmission it attains the best performance across all subgroups.
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Figure 2: Subgroup performance radar plots for a mortality, b PLOS, and ¢ readmission prediction
tasks across major comorbidity groups.

4.3.2 PERFORMANCE ON PHENOTYPING PREDICTION

For phenotyping prediction, we evaluate the top three models from the general outcome prediction
task—ExBEHRT (Rupp et al., 2023), HEART (Huang et al., [2024), and DT-BEHRT. Using macro-
AUPRC as the overall metric for multi-phenotype prediction, DT-BEHRT consistently achieves the
best performance in both the full cohort and in patients with three or more hospital visits (Table [2).
The performance gain is particularly pronounced in the latter, suggesting that DT-BEHRT effec-
tively captures disease progression in patients with strong temporal dependencies characterized by
repeated hospitalizations.

Table 2: Results of phenotyping prediction tasks.

[ Prevalence | All patients I Patients with > 3 visits
| ExBEHRT | HEART [ DT-BEHRT | ExBEHRT | HEART [ DT-BEHRT
MIMIC-III
Acute and unspecified renal failure 16.00% | 49.96+0.96 | 47.29+1.81 | 44.62+1.91 | 46.98+4.75 46.52+2.52 | 54.26+4.55
Acute cerebrovascular disease 0.90% 3.954+2.30 3.21£0.91 7.53+2.11 2.114+0.96 3.824+2.99 17.74+33.72
Acute myocardial infarction 3.70% 18.49+1.40 | 16.61+1.41 | 17.27+1.18 | 17.81+7.67 16.21+4.25 11.28+3.64
Cardiac dysrhythmias 20.10% 74.68+1.48 | 74.98+1.47 | 72.81+1.87 | 71.35£6.60 | 77.02+6.09 | 70.47+2.39
Chronic kidney disease 12.40% | 78.88+0.96 | 76.964+2.74 | 77.21+2.11 | 75.09+5.75 81.45+6.62 | 88.72+1.24
Chronic obstructive pulmonary disease 6.40% 42.85+1.72 | 43.314+3.21 | 43.66+2.79 | 45.34+6.44 40.2448.77 44.68+6.92
Conduction disorders 1.40% 4.19+0.62 4.24+0.87 | 4.54+1.63 | 13.35+13.67 | 3.324+1.53 8.00+5.39
Congestive heart failure; non-hypertensive 20.10% 75.094+1.93 | 74.27£1.04 | 72.06£1.54 75.55+4.33 74.4144.27 80.96+2.23
Coronary atherosclerosis and related 12.10% 61.11+1.70 | 61.87+1.33 | 60.204+1.83 61.94+4.15 61.8843.66 66.90+4.77
Disorders of lipid metabolism 13.70% | 59.13+£1.37 | 57.824+1.83 | 56.564+2.80 | 55.65+8.81 |62.16+10.29 | 55.094+3.78
Essential hypertension 18.90% | 67.85+1.73 | 64.754£2.07 | 63.00£2.23 | 67.50+4.39 | 68.06+5.32 | 57.55+£4.57
Fluid and electrolyte disorders 21.00% 48.32+1.37 | 46.37+0.59 | 48.45+1.50 | 44.38+3.28 46.60+3.22 | 57.55+2.99
Gastrointestinal hemorrhage 3.60% 8.754+0.52 9.024+0.59 | 12.06+1.95 | 12.28+6.66 10.3746.11 17.18+4.97
Hypertension with complications 11.50% 72.174£2.10 | 72.26+3.77 | 71.16+3.22 | 66.82+9.06 78.944+1.88 | 82.88+2.60
Other liver diseases 0.90% 4.76+1.46 | 5.71+3.23 | 3.1140.76 |11.13+18.13 | 3.55£3.08 4.14+2.49
Other lower respiratory disease 21.40% 56.364+0.80 | 56.5041.10 | 57.96+1.95 | 58.56+4.02 58.454+4.73 71.85+3.15
Pneumonia 7.10% 16.17£1.79 | 16.51£1.16 | 17.57+1.45 : 2.00 | 20.53+4.65 16.78+3.73
Septicemia (except in labor) 11.70% 35.34+0.85 | 33.50+1.19 | 36.25+1.51 | 32.63+4.14 31.36+5.10 | 43.89+3.59
Macro AUPRC / 43.2240.69 | 42.51+0.84 | 43.45+0.46 | 43.38+1.81 43.61+0.57 | 48.15+2.45
MIMIC-IV

Acute and unspecified renal failure 1250% | 42.79+1.51 | 42.14+1.92 | 41.98+1.79 | 42.45+3.02 39.03+2.57 48.81+2.06
Acute cerebrovascular disease 0.40% 2.08+0.88 1.124+0.15 | 2.784+0.62 7.21+9.28 1.3140.56 0.3240.17
Acute myocardial infarction 2.10% 15.68+£1.55 | 14.02+2.20 | 12.58+0.81 | 21.77+4.61 12.65+3.72 10.91+2.44
Cardiac dysrhythmias 14.30% 71.9140.92 | 72.534+0.99 | 73.17+1.45| 70.13+2.93 72.6443.43 76.01+1.21
Chronic kidney disease 13.70% 85.56+£1.17 | 85.72+2.35 | 86.15+1.56 | 85.51+3.15 84.69+2.19 | 89.531+0.85
Chronic obstructive pulmonary disease 4.60% 49.82+1.52 | 52.10+1.21 | 52.23+1.68 | 55.95+3.20 51.114+4.71 50.04+2.64
Conduction disorders 1.20% 6.45+0.96 | 8.53+2.21 | 7.6440.73 8.59+4.33 |12.46+13.86 | 5.13+1.86
Congestive heart failure; non-hypertensive 12.50% 75.76+1.83 | 77.93+1.19 | 7 +1.23 74.39+2.29 76.86+1.24 87.03+1.64
Coronary atherosclerosis and related 13.50% 80.614+0.45 | 80.24+0.42 | 81.87+1.18 | 80.64+1.18 77.45+2.25 81.84+1.48
Disorders of lipid metabolism 19.80% 75.404£0.71 | 75.6940.92 | 76.29+0.87 | 76.34+1.58 75.7242.44 | 80.08+1.52
Essential hypertension 21.70% 76.1940.72 | 76.914+1.84 | 79.20+1.11 | 75.96+2.50 77.9142.96 | 80.30+1.63
Fluid and electrolyte disorders 17.10% | 45.23+1.39 | 45.154+0.66 | 45.1641.61 45.36+2.11 43.54+4.39 | 51.84+1.82
Gastrointestinal hemorrhage 2.20% 5.92+0.28 | 7.09+1.31 | 6.66+0.66 6.32+1.87 8.65+3.75 9.09+1.85
Hypertension with complications 11.50% 78.31+1.95 | 79.354+2.49 | 80.07+2.10 | 77.37+4.72 78.77+3.44 | 83.53+1.49
Other liver diseases 0.50% 2.01+0.11 | 2.67+1.55 | 2.0540.52 2.22+1.15 6.73+7.80 5.36+2.91
Other lower respiratory disease 9.20% 34.60+1.41 | 35.05+1.33 | 35.20+£2.17 | 34.8442.56 36.791+4.02 46.80+2.18
Pneumonia 4.20% 12.45+0.63 | 11.26+0.59 | 12.35+0.57 | 12.38%+1.06 11.16+£2.54 | 13.56+0.90
Septicemia (except in labor) 4.70% 16.88+0.51 | 14.5540.67 | 15.71+1.10 | 17.894+1.67 15.39+2.68 | 21.36+1.78
Macro AUPRC / 43.2040.41 | 43.454+0.65 | 44.57+0.08 | 44.1840.26 43.4940.93 | 47.23+0.28
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4.3.3 ABLATION STUDY

As shown in Table [3| enabling the DA tokens without the covariance regularization loss (DAY <)
yields only modest improvements. When the full DA module is enabled, the model demonstrates
a clear benefit on the mortality prediction task, whereas the performance on the other two tasks
remains largely unchanged or shows slight degradation. This observation is consistent with clini-
cal intuition, as certain disease categories (e.g., cardiovascular diseases) are more directly associated
with fatal outcomes compared to others (e.g., endocrine disorders). By summarizing diagnosis infor-
mation through DA tokens and directly propagating them into the patient representation, the model
is able to leverage this critical information more effectively. When enabling only the DP module, the
results confirm our earlier findings on the MIMIC-III readmission task: modeling disease progres-
sion with forward-connected heterogeneous graphs provides the greatest benefit, as the DP module
explicitly injects temporal dependencies into the final patient representation. Consistent with prior
studies, the GCMP task—analogous to masked language modeling (MLM; |Devlin et al.|2019)—serves
as the primary source of performance gains. However, we also observe that a variant trained with
GCMP alone, without the DA and DP modules, underperforms the full model, suggesting beneficial
interactions between the architectural components and the pretraining objectives. In addition to the
GCMP task, we introduce the novel ACP task, which yields the most pronounced improvements on
the mortality prediction task.

Table 3: Ablation study for general outcome prediction tasks using MIMIC-III and MIMIC-IV.

Performance
DAY < 7 X x X x x x
Architectures DA X X v X v X v v
Variant DP X X X v v X v v
L. GCMP X X X X X v v v
Pre-training Tasks ACP % % % % % % « v
F1 71.59£1.29 | 72.01£1.76 | 73.51£1.69 | 72.06+0.82 | 73.48+0.47 | 74.174+0.09 | 75.40£0.49 | 76.03+0.28
Mortality AUROC 89.184+1.34 | 90.11£0.98 | 90.34+1.00 | 89.5540.20 | 90.44+0.38 | 91.414+0.32 | 91.7240.28 | 92.094+0.15
AUPRC 80.04£1.69 | 79.824+1.97 | 81.55£1.61 | 80.354+0.41 | 81.65£0.57 | 82.2140.34 | 83.70£0.71 | 84.50+0.19
F1 75.07+£0.19 | 75.27+0.89 | 74.37£1.24 | 75.344+0.51 | 75.52+£0.40 | 76.174+0.11 | 77.19+0.27| 76.37+0.49
MIMIC-III | PLOS AUROC 81.67+0.56 | 81.95+0.96 | 80.98+1.51 | 82.1240.68 | 82.41+0.41 | 83.5140.44 | 84.35+0.31| 84.13+0.26
AUPRC 82.4340.47 | 82.30£1.21 | 82.244+1.34 | 83.1740.78 | 83.52+0.34 | 84.2240.43 | 85.05+0.40| 85.004+0.22
F1 70.39%£0.32 | 68.37£0.93 | 69.88+0.67 | 70.1840.44 | 70.54£0.14 | 69.75+0.26 | 70.32£0.64 | 70.59+0.34
Readmission AUROC 79.4240.36 | 78.78+0.34 | 79.304£0.44 | 79.98+0.18 | 79.9940.16 | 79.90+0.22 | 80.49+0.18| 80.30£0.14
AUPRC 67.77£1.21 | 68.96+0.58 | 68.32£0.59 | 69.16+0.59 | 69.2240.17 | 69.9440.43| 69.8440.29 | 69.62+0.20
F1 63.844+2.09 | 65.70£1.13 | 66.37+0.73 | 65.894+2.30 | 67.25+0.84 | 67.784+0.70 | 68.58+0.33 | 70.894+0.53
Mortality AUROC 93.8340.37 | 94.58+0.54 | 94.6640.27 | 94.48+0.79 | 95.054+0.37 | 95.13+0.18 | 95.7840.11 | 96.214+0.12
AUPRC 69.86+1.69 | 72.27£1.74 | 72.77+0.79 | 72.214+2.25 | 74.33+£0.83 | 74.07+0.54 | 76.16+0.38 | 78.354+-0.37
F1 66.39+0.87 | 67.92+0.19 | 67.06+0.53 | 67.19+0.33 | 67.2840.55 | 67.86+0.26 | 68.09+0.34| 68.044+0.54
MIMIC-IV | PLOS AUROC 83.72+0.38 | 84.67+0.18 | 83.84£0.47 | 84.13+0.39 | 84.33+£0.22 | 84.7740.06 | 84.72+0.26 | 84.98+0.09
AUPRC 73.334+0.68 | 75.2940.16| 73.23+0.99 | 73.574+0.71 | 74.1840.53 | 75.074+0.24 | 74.32+0.41 | 74.78+0.23
F1 83.79£0.11 | 83.82+0.08 | 83.71£0.28 | 83.52+0.16 | 84.02£0.14 | 83.80+0.06 | 84.12+0.17 | 84.18+0.08
Readmission AUROC 70.1540.84 | 71.454+0.23 | 70.89+0.39 | 70.484+0.66 | 71.20+0.16 | 70.9440.36 | 72.124+0.18| 72.08+0.25
AUPRC 83.61£0.65 | 84.2440.15 | 84.19£0.23 | 83.8440.45 | 84.28+0.06 | 83.8640.28 | 84.70+0.14 | 84.85+0.14

4.4 CASE STUDY

Beyond strong predictive performance, DT-BEHRT offers enhanced interpretability: its DA and
DP modules mirror physicians’ reasoning by focusing on disease groups and their progression over
time rather than scattered attention across lengthy code sequences. We demonstrate this advantage
through case studies on the MIMIC-IV phenotyping prediction task.

Case 1 (Subject ID: 10253803, male, 59 years old; Figure [3]): The patient had three hospital visits.
In the subsequent visit, diagnoses included chronic obstructive pulmonary disease, congestive heart
failure, other lower respiratory disease, and pneumonia. The DA module captured the relevance of
existing respiratory conditions: within ICD-9 Chapter 460-519 (Diseases of the Respiratory Sys-
tem), codes such as 496 (chronic airway obstruction) and 491.21 (obstructive chronic bronchitis with
acute exacerbation) received higher attention, whereas short-term symptoms or complications like
511.9 (unspecified pleural effusion) and 518.0 (pulmonary collapse) were assigned lower weights.
The DP module highlighted cardiovascular progression across visits, from V45.81 (history of coro-
nary artery bypass graft) in the first visit to 414.00 (coronary atherosclerosis) in the subsequent two
visits, forming a clinically coherent trajectory. Finally, in the PR module, the most recent DP to-
ken received the highest attention, indicating that the model effectively leveraged temporal disease
progression patterns. An additional case study can be found in Appendix
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Figure 3: Illustration of Case 1 with attention scores of the a PR module, b SR module, ¢ DA module,
and d DP module. Only edges with scores > 0.001 are displayed, and self-loops are removed.

5 DISCUSSION

In this work, we present DT-BEHRT, a disease trajectory-aware transformer that integrates graph-
enhanced modules into a sequential modeling framework. By explicitly centering diagnosis codes
and modeling their progression and interactions across visits, DT-BEHRT addresses limitations of
prior sequence-based and graph-based approaches that treat heterogeneous medical codes uniformly.
We further design a tailored pre-training strategy combining global trajectory-level code masking
and ontology-informed ancestor prediction, which encourages alignment across architectural com-
ponents and improves the robustness of learned patient representations.

Across three benchmark EHR datasets, DT-BEHRT demonstrates competitive performance. Im-
provements are most notable for readmission prediction in MIMIC-III and for phenotyping predic-
tion among patients with multiple hospital visits. Subgroup analyses further indicate that the benefits
of its design are not limited to specific patient populations. In addition, case studies illustrate how
the DA and DP modules highlight clinically coherent patterns, providing interpretability by aligning
with common diagnostic reasoning processes.

While DT-BEHRT demonstrates strong performance, several limitations should be noted. First, the
use of multi-head self-attention and graph attention across disease and visit nodes increases compu-
tational overhead and may limit scalability in resource-constrained settings. Second, the utility of
the disease progression module is contingent on the presence of longitudinal trajectories. However,
in the MIMIC datasets a substantial portion of patients have only one hospital visit, resulting in a
degenerate graph structure with no temporal edges. Third, although this work is among the first to
argue that different types of medical codes should be modeled differently, our design focuses pri-
marily on diagnosis codes. Other code categories—such as medications, procedures, and laboratory
tests—may also benefit from dedicated modeling structures, and exploring tailored mechanisms for
these code types is an important direction for future work.

10



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The dataset used in this study is available on PhysioNet (https://physionet.org/), and the source code
is publicly accessible at https://anonymous.4open.science/r/DT-BEHRT-C80F/README.md.

LARGE LANGUAGE MODEL USAGE STATEMENT

Large language models were employed to support this work in limited ways. They were used for (i)
literature search assistance, (ii) code debugging support, and (iii) grammar checking and language
refinement of the manuscript. LLMs were not involved in research ideation, study design, data
analysis, or interpretation of results.
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A DETAILED RELATED WORK

As noted in the Section[I] research on EHR-based predictive modeling can be broadly classified into
three methodological categories: sequence-based approaches, graph-based approaches, and graph-
enhanced sequence approaches. In what follows, we provide a focused yet non-exhaustive review of
widely benchmarked studies within each category, with particular emphasis on those most relevant
to our proposed framework.

Sequence-based approaches. Early work in this area leveraged recurrent neural architectures. RE-
TAIN (Choi et al., 2016)), Dipole (Ma et al.l 2017), and StageNet (Gao et al.l [2020) are representa-
tive early sequence-based models developed without employing transformer architectures. RETAIN
(Choit et al., 2016) employs a two-level attention mechanism to identify influential past visits and
salient clinical variables within those visits. Dipole (Ma et al.l 2017) leverages bidirectional re-
current neural networks to capture information from both past and future visits, while introducing
attention mechanisms to quantify inter-visit relationships for prediction. StageNet (Gao et al., 2020)
incorporates a stage-aware long short-term memory (LSTM; Hochreiter & Schmidhuber|1997)) mod-
ule to extract health stage variations in an unsupervised manner, along with a stage-adaptive convo-
lutional module to integrate stage-specific progression patterns into risk prediction.

With the emergence of transformers (Vaswani et al. [2017), BERT-style models quickly surpassed
the performance of these earlier approaches. BEHRT (Li et al.| [2020) adapts the transformer ar-
chitecture to represent longitudinal patient records, treating medical codes as tokens and temporal
ordering as positional embeddings, thereby capturing long-range dependencies in patient trajecto-
ries. Med-BERT (Rasmy et al., 2021) scales pretraining to millions of patient records, enabling
robust contextual embeddings of medical codes that can be fine-tuned for a wide range of down-
stream clinical prediction tasks. CEHR-BERT (Pang et al.l |2021)) incorporates temporal informa-
tion through a hybrid strategy that augments the input with artificial time tokens, integrates time,
age, and concept embeddings, and introduces an auxiliary learning objective for visit type predic-
tion. TransformEHR (Yang et al., |2023) departs from the encoder-only paradigm by adopting an
encoder—decoder framework and designing novel pretraining objectives to enhance performance.
ExBEHRT (Rupp et al.| 2023) extends the feature space to multimodal records by unifying the
frequency and temporal dimensions of heterogeneous features, thereby facilitating comprehensive
patient representation. Collectively, these transformer-based approaches significantly advance the
state of the art by leveraging large-scale pretraining and contextualized representation learning to
outperform prior sequence models.

Graph-based approaches. Graph-based modeling can be further categorized according to the un-
derlying graph structure, including homogeneous graphs, heterogeneous graphs, and hypergraphs.
Homogeneous graphs provide a relatively limited design space, as all nodes and edges share the
same type. Consequently, they are often employed at the patient level rather than the code level.
DEPOT (Song et al.| 2023)) exemplifies this line of work by constructing a patient similarity graph
using k-nearest neighbors based on demographic features such as age and subsequently learning
patient representations for prediction.

In contrast, heterogeneous graphs offer a higher modeling resolution at the code level, as they
are more expressive than homogeneous graphs. HSGNN (Liu et al., 2020) and TRANS (Chen
et al.l |2024)) represent recent advances in this subfield. HSGNN (Liu et al., 2020) decomposes
a global EHR heterogeneous graph—consisting of medical code nodes, visit nodes, and patient
nodes—into subgraphs defined by meta-paths, which are then fed into an end-to-end model for
prediction. TRANS (Chen et al., 2024) constructs a temporal heterogeneous graph and explicitly
encodes temporal information on edges to facilitate the propagation of temporal relationships.

Using hypergraphs to model EHR data is a relatively new direction. Unlike pairwise graphs, hy-
pergraphs naturally capture higher-order interactions by allowing a hyperedge to connect multiple
nodes. HCL (Cai et al.,|2022) jointly learns patient embeddings and code embeddings by leveraging
patient—patient, code—code, and patient—code relationships, while incorporating contrastive learning
to enhance representation quality. Similarly, HypEHR (Xu et al., [2023) employs a hypergraph neu-
ral network, with SetGNN (Chien et al., [2021]) as the backbone, to learn visit-level representations
through high-order interactions.
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Graph-enhanced sequence approaches. To combine the strengths of both sequence-based and graph-
based modeling, a growing line of work has focused on graph-enhanced sequence models. At the
medical code level, GRAM (Choi et al.|[2017) enriches code embeddings with hierarchical informa-
tion inherent in medical ontologies, which are represented as a knowledge-directed acyclic graph.
KAME (Ma et al., 2018) not only learns meaningful embeddings for nodes in the knowledge graph
but also leverages external knowledge through a knowledge-attention mechanism to improve pre-
diction accuracy. Similarly, G-BERT (Shang et al.l [2019) incorporates graph neural networks to
represent the hierarchical structures of medical codes, and integrates these graph-based embeddings
into a transformer-based visit encoder. The model is then pretrained on EHR data to capture contex-
tualized code representations.

Moving beyond the code level, GCT (Chot et al. 2020) is a pioneering work that applies graph
modeling at the visit level. It employs masked self-attention to learn a latent medical code graph
within a visit and regularizes attention scores to mimic real-world co-occurrence patterns. However,
temporal dependencies across visits are only weakly modeled. TPGT (Hadizadeh Moghaddam et al.}
2025)) and DeepJ (Li et al.l 2025) extend GCT (Choi et al.,[2020) by enhancing temporal awareness
across visits. More recently, GT-BEHRT (Poulain & Beheshti, [2024) combines an architecture
inspired by GCT (Choi et al.,|2020) with a novel pretraining framework to further improve predictive
performance.

At the patient level, |Pellegrini et al.|(2023) adopts a Graphormer (Ying et al., 2021) backbone to in-
tegrate heterogeneous, multimodal clinical data into population-level graphs, enabling unsupervised
patient outcome prediction at scale. In parallel, HEART (Huang et al. [2024) introduces modified
GAT layers to facilitate message passing across multiple visits of the same patient, thereby mod-
eling longitudinal dependencies more effectively. It also models code heterogeneity primarily by
augmenting code-type embeddings within a single attention-based aggregation, without introducing
architectural-level heterogeneity.
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B NOTATION TABLE

Table 4: Notations used in this paper.

Notation Description

c,C A medical code; the medical code vocabulary

DM, L, P Sets of diagnosis, medication, laboratory test, and procedure codes

T Total number of hospital visits

v, V Set of codes at visit ¢; the entire sequence of visits / patient trajec-
tory

N,,, Ny Number of codes in visit v; and total number of codes in trajectory
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V,ie, Ny =3[, N,

Embedding vector of code c, its type, and its visit index
Total number of hidden layers

Total Number of GAT blocks

Hidden representation vector at the [-th layer for code ¢
Hidden representation matrix at the [-th layer

Index set of top-level ICD-9 categories; a top-level category index
The j-th ICD-9 ancestor category

Diagnosis codes in category j

Threshold hyperparameter for triggering a DA token
Ordered DA-token vector for a patient trajectory V

Number of DA-tokens in ay, i.e., N, = |ay|

Category index of the DA token at row [ of attention mask (I >
1+ Ny)

Attention mask

Representation set of DA tokens at the last layer

Hidden representation dimension

Masking rate

Global set (inventory) of DA tokens

Ancestor-category map for diagnosis codes

Number of distinct codes from D; that appear in trajectory V
Special sequence token

The visit-major vector prepended with [SEQ] flattened from V
Final concatenated sequence of length 1 + Ny + N,

DP graph; node set; edge set; node-feature set

DP visit node for visit ¢

The ¢-th diagnosis code in visit ¢

The ¢-th diagnosis node connected to the ¢-th DP node
Number of diagnosis codes in visit ¢

Task type corresponding to the code sets D, M, L, P
Sigmoid activation function

Masked token label for code type T

Ancestor diagnosis code prediction losses (overall / SR / DP); pe-
nalizing coefficient

Masked token prediction loss; its weight
DA decorrelation penalty; its weight
Binary prediction, pre-training, and fine-tuning losses
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C ICD-9 ToP-LEVEL CHAPTERS

Table 5: Nineteen top-level ICD-9 chapters and their code ranges.

Code Range ICD-9-CM Chapters

001-139 Infectious and parasitic diseases

140-239 Neoplasms

240-279 Endocrine, nutritional and metabolic diseases, and immunity disorders
280-289 Diseases of the blood and blood-forming organs

290-319 Mental, behavioral and neurodevelopmental disorders

320-389 Diseases of the nervous system and sense organs

390-459 Diseases of the circulatory system

460-519 Diseases of the respiratory system

520-579 Diseases of the digestive system

580-629 Diseases of the genitourinary system

630-679 Complications of pregnancy, childbirth, and the puerperium

680-709 Diseases of the skin and subcutaneous tissue

710-739 Diseases of the musculoskeletal system and connective tissue

740-759 Congenital anomalies

760-779 Certain conditions originating in the perinatal period

780-799 Symptoms, signs, and ill-defined conditions

800-999 Injury and poisoning

E000-E999 Supplementary classification of external causes of injury and poisoning
VO01-V91 Supplementary classification of factors influencing health status and contact with

health services

D SAMPLE ATTENTION MASK

8000000000 O0OOS S

SR: [SEQ] ISEQI@®

Coronary atherosclerosis: 41 4.00

Acute dilatation of stomach: 536.10

SR: Visit 1 Blood glucose lowering drugs:A1OBO

Glucose [Mass/volume] in blood: 2339-OO

Protein [Mass/volume] in Serum or Plasma: 2885-20

Heart revascularization by arterial implant: 36420

Post-myocardial infarction syndrome: 411.0 .

Intermedi y synd m1.1@Q

Alcohol withdrawal delirium: 291.0@)

SR: Visit 2 R B
Acute gastric ulcer with hemorrhage: 531 .0.

Chronic duodenalileus: 537.2.

Ligation and stripping of varicose veins: 38450
Di of the circulatory 399-45&.
DA
Di of the digestive 520-579@)
Figure 4: A sample attention mask with a DA token triggering threshold of £ = 3. Each DA token

is restricted to attend only to diagnosis codes within its corresponding ICD-9 chapter and to itself.
In this case, ICD-9 code 291.0 (Alcohol withdrawal delirium) does not trigger a DA token.
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E DATA PREPROCESSING DETAILS

We utilize two publicly available single-site EHR databases, MIMIC-III and MIMIC-IV, which con-
tain records of patients admitted to the Beth Israel Deaconess Medical Center. Both datasets are
structured hierarchically: each patient record consists of multiple hospital visits, and each visit in-
cludes diverse entities such as age, diagnoses, procedures, medications, and laboratory test results.
For both MIMIC-IIT and MIMIC-1V, we applied the same preprocessing pipeline. Patient visits were
arranged in chronological order, and for each visit, we extracted ICD-9 codes for diagnoses and pro-
cedures, NDC codes for medications, and item IDs for laboratory tests. Medications prescribed
within the first 24 hours of a visit were retained, and NDC codes were subsequently mapped to ATC
codes. We normalized age values greater than 90 to 90, and discretized the overall age range into 20
evenly distributed bins. For laboratory tests, numerical results were quantized into five categories
by default, whereas categorical results were kept unchanged. Finally, we applied frequency-based
filtering to reduce sparsity: only diagnoses appearing more than 2,000 times, procedures more than
800 times, and laboratory tests more than 1,500 times were retained. We also utilize a multi-site I[CU
database, eICU, following similar preprocessing procedures. The overall preprocessing strategy was
consistent with that adopted in the HEART study (Huang et al.| |2024). The statistics of the datasets
are described in Table

Table 6: Descriptive statistics of the MIMIC-III, MIMIC-IV, and eICU datasets.

Dataset characteristics MIMIC-III MIMIC-IV eICU
Number of patients 33,067 60,709 85,839
Diagnosis vocabulary size 1,998 1,983 838
Medication vocabulary size 145 140 2,042
Procedure vocabulary size 801 801 /
Laboratory test vocabulary size 1,500 1,281 755
Average visits per patient 1.21 1.39 1.16
Average diagnoses per visit 10.83 10.26 3.31
Average medications per visit 7.82 2.98 24.12
Average procedures per visit 4.48 2.87 /
Average laboratory tests per visit  41.87 15.08 39.92
In-hospital mortality (%) 26.85 9.08 32.84
Prolonged hospital stay (%) 50.59 33.37 38.97
Readmission rate (%) 40.15 70.79 /

F IMPLEMENTATION DETAILS

For each of the baselines and our model, we perform 5 random runs and report the mean and standard
deviation of test performance. The reported results correspond to the best model on the validation
set, selected with an early stopping patience of 5. All experiments are conducted on a machine with
a single NVIDIA A100 GPU (40GB memory). Our implementation is based on Python (3.10.18),
PyTorch (1.13.1), and PyTorch Geometric (2.7.0). We adopt AdamW as the optimizer for all models.
The hyperparameter search space of DT-BEHRT is summarized in Table

Table 7: Model parameters and their search space.

Parameters Search Space
Learning rate {0.01, 0.001}
Batch size {32, 64}
Number of layers (L) {2,3}
Number of GAT blocks (Lg) {2}

Hidden representation dimension (d) {64, 128}
Threshold for triggering a DA token (k) {3, 4}

GCMP masking rate () {0.5,0.6, 0.7}
Coefficient of the ACP loss (Aanc) {0.05, 0.005}
Coefficient of the DA decorrelation loss (Acov) {0.05, 0.005}
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G PSEUDOCODE OF DT-BEHRT PRE-TRAINING AND FINE-TUNING

Algorithm 1: DT-BEHRT: Pre-training and Fine-tuning

Input:

Hyperparameters (epoch,aq, L, d, Lg, k, &, Aanc, Acov)

Output: Trained parameters and patient representation hcrg)

Stage: Pre-training (GCMP + ACP)

Data: Subset of patient trajectories V of medical codes ¢ € C for pre-training.
1 Initialize model weights; optimizer.

2 for epoch=1,. .., epochpq,, do

for mini-batch B of patients, do

For each code type 7 € T, sample unique codes Yask, 7, at rate « and mask all
occurrences

Initialize token embeddings H (*) given in Equation Initialize DP graph: visit nodes
{ﬁt}le with embeddings hgz) = e44e(t) and diagnosis nodes {d, ;} with embeddings
hg?) = hfi?,),,? Build chapter-restricted attention mask M via Equation

forl=1,...,L do

Pass through pre-norm transformer layer in SR module ¢ via Equations to get
H©®); Pass through a GAT layer in DP graph via Equations

Obtain the patient-level representation hjcrs) via Equation E]

Predict masked codes with type-specific heads from hjcrg) to get £iask as given in
Equation

Predict ICD-9 chapter ancestors using hESLE)Q and h%i) to obtain
Lane = Lanc,sR + Lanc,pp Via Equations

Extract last-layer DA representations Z from H (%) and compute de-correlation loss
£ ¢ov via Equation

Form €t = rmask + Aanclanc + Acovfcov and update parameters by backprop on £yt

Return: Pre-trained model weights

Stage: Fine-tuning

Data: Subset of Patient trajectories V for fine-tuning.

Initialize with pre-trained model weights; optimizer.

for mini-batch (B, Yias) do
Recompute h|cyg) as in Steps 4-7 above
Compute task head prediction o(Linear(hcrg))) and form lg; = Crask + Acovleov
Update parameters by backprop on £y

Return: hjcrg
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H MEDICAL CODE REFERENCE TABLE

Table 8: Reference table of medical codes appearing in figures/text.

Domain Code Code Type Label

Diagnosis 041.11 ICD-9 Methicillin susceptible Staphylococcus aureus in conditions classified elsewhere and of
unspecified site

Diagnosis 211.6 ICD-9 Benign neoplasm of pancreas, except islets of Langerhans

Diagnosis 250.00 ICD-9 Diabetes mellitus without mention of complication, type II or unspecified type

Diagnosis 250.40 ICD-9 Diabetes with renal manifestations, type II or unspecified type

Diagnosis 250.50 ICD-9 Diabetes with ophthalmic manifestations, type II or unspecified type

Diagnosis 250.60 ICD-9 Diabetes with neurological manifestations, type II or unspecified type

Diagnosis 272.4 ICD-9 Other and unspecified hyperlipidemia

Diagnosis 276.51 1ICD-9 Dehydration

Diagnosis 278.00 ICD-9 Obesity, unspecified

Diagnosis 278.01 ICD-9 Morbid obesity

Diagnosis 285.9 ICD-9 Anemia, unspecified

Diagnosis 357.2 ICD-9 Polyneuropathy in diabetes

Diagnosis 362.01 ICD-9 Background diabetic retinopathy

Diagnosis 401.9 ICD-9 Unspecified essential hypertension

Diagnosis 414.00 ICD-9 Coronary atherosclerosis of unspecified type of vessel

Diagnosis 428.0 ICD-9 Congestive heart failure, unspecified

Diagnosis 428.30 ICD-9 Diastolic heart failure, unspecified

Diagnosis 425.4 ICD-9 Other primary cardiomyopathies

Diagnosis 458.0 ICD-9 Orthostatic hypotension

Diagnosis 458.1 ICD-9 Chronic hypotension

Diagnosis 458.29 ICD-9 Other iatrogenic hypotension

Diagnosis 486 ICD-9 Pneumonia, organism unspecified

Diagnosis 491.21 ICD-9 Obstructive chronic bronchitis with acute exacerbation

Diagnosis 496 ICD-9 Chronic airway obstruction, not elsewhere classified

Diagnosis 511.9 ICD-9 Unspecified pleural effusion

Diagnosis 518.0 ICD-9 Pulmonary collapse

Diagnosis 519.19 ICD-9 Other diseases of trachea and bronchus

Diagnosis 571.5 ICD-9 Cirrhosis of liver without mention of alcohol

Diagnosis 571.8 ICD-9 Other chronic nonalcoholic liver disease

Diagnosis 583.81 ICD-9 Nephritis and nephropathy, not specified as acute or chronic, in diseases classified else-
where

Diagnosis 585.9 ICD-9 Chronic kidney disease, unspecified

Diagnosis 682.2 ICD-9 Cellulitis and abscess of trunk

Diagnosis 785.6 ICD-9 Enlargement of lymph nodes

Diagnosis 786.3 ICD-9 Hemoptysis

Diagnosis 787.91 ICD-9 Diarrhea

Diagnosis 810.02 ICD-9 Closed fracture of shaft of clavicle

Diagnosis 996.79 ICD-9 Other complications due to other internal prosthetic device, implant, and graft

Diagnosis 998.59 ICD-9 Other postoperative infection

Diagnosis E849.7 ICD-9 Accidents occurring in residential institution

Diagnosis E878.1 ICD-9 Surgical operation with implant of artificial internal device causing abnormal patient
reaction, or later complication,without mention of misadventure at time of operation

Diagnosis E878.8 ICD-9 Other specified surgical operations and procedures causing abnormal patient reaction,
or later complication, without mention of misadventure at time of operation

Diagnosis E885.9  ICD-9 Fall from other slipping, tripping, or stumbling

Diagnosis E879.8 ICD-9 Other specified procedures as the cause of abnormal reaction of patient, or of later
complication, without mention of misadventure at time of procedure

Diagnosis V1251 ICD-9 Personal history of venous thrombosis and embolism

Diagnosis V45.81 ICD-9 History of coronary artery bypass graft

Diagnosis V4589  ICD-9 Other postprocedural status

Diagnosis V58.61 ICD-9 Long-term (current) use of anticoagulants

Diagnosis V58.67 ICD-9 Long-term (current) use of insulin

Diagnosis V85.4 ICD-9 Body Mass Index 40 and over, adult

Lab 54963-4 LOINC Diabetic foot ulcer(s) in last 7 days

Lab 54082-3 LOINC Infectious diseases newborn screening panel

Medication BO1A ATC Antithrombotic agents

Medication ~ AO04A ATC Antiemetics and antinauseants

Medication NO2A ATC Opioids

Medication  C03C ATC High-ceiling diuretics

Medication C09A ATC ACE inhibitors, plain

Procedure 33.27 1CD-9 Closed endoscopic biopsy of lung

Procedure 52.59 ICD-9 Other and unspecified partial pancreatectomy

Procedure 99.04 ICD-9 Transfusion of packed cells

Procedure 41.5 ICD-9 Total splenectomy
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I ADDITIONAL CASE STUDY
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Figure 5: Illustration of Case 2 with attention scores of the a PR module, b SR module, ¢ DA module,
and d DP module. Case 2 (Subject ID: 10725079, female, 63 years old). The patient’s subsequent
diagnoses included Acute and unspecified renal failure, Cardiac dysrhythmias, Disorders of lipid
metabolism, Fluid and electrolyte disorders, Gastrointestinal hemorrhage, and Septicemia (except
in labor). In the PR module, we observe that codes within ICD-9 Chapter 240-279 (Endocrine, nu-
tritional and metabolic diseases, and immunity disorders) received higher attention weights, which
aligns with the patient’s metabolic disorders likely secondary to renal failure. Furthermore, the at-
tention assigned to DP tokens increased over time, indicating that the model captured the worsening
trajectory of renal failure and its associated complications.
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