

000 DT-BEHRT: DISEASE TRAJECTORY-AWARE TRANS- 001 FORMER FOR INTERPRETABLE PATIENT REPRESENTA- 002 TION LEARNING

003
004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 The growing adoption of electronic health record (EHR) systems has provided un-
014 precedented opportunities for predictive modeling to guide clinical decision mak-
015 ing. Structured EHRs contain longitudinal observations of patients across hospital
016 visits, where each visit is represented by a set of medical codes. While sequence-
017 based, graph-based, and graph-enhanced sequence approaches have been devel-
018 oped to capture rich code interactions over time or within the same visits, they
019 often overlook the inherent heterogeneous roles of medical codes arising from
020 distinct clinical characteristics and contexts. To this end, in this study we pro-
021 pose the Disease Trajectory-aware Transformer for EHR (DT-BEHRT), a graph-
022 enhanced sequential architecture that disentangles disease trajectories by explic-
023 itly modeling diagnosis-centric interactions within organ systems and capturing
024 asynchronous progression patterns. To further enhance the representation robust-
025 ness, we design a tailored pre-training methodology that combines trajectory-level
026 code masking with ontology-informed ancestor prediction, promoting semantic
027 alignment across multiple modeling modules. Extensive experiments on multiple
028 benchmark datasets demonstrate that DT-BEHRT achieves strong predictive per-
029 formance and provides interpretable patient representations that align with clini-
030 cians' disease-centered reasoning.

031 1 INTRODUCTION

032 With the rapid growth of electronic health record (EHR) data, predictive modeling has become an
033 important tool for generating actionable insights to support clinical decision making. Structured
034 EHRs consist of trajectories of hospital visits, where each visit contains a collection of various med-
035 ical codes that capture patients' diagnoses, medications, procedures, and laboratory tests. Sequence
036 modeling has therefore become a prominent approach in EHR-based predictive analysis. Studies
037 such as BEHRT (Li et al., 2020), Med-BERT (Rasmy et al., 2021), and ExBEHRT (Rupp et al.,
038 2023) adapted the BERT (Devlin et al., 2019) framework and pre-trained models on structured EHR
039 datasets of varying sizes. However, existing sequence-based methods generally face two key chal-
040 lenges when dealing with multiple codes within the same visits: (1) the order of codes is often
041 unreliable since they are reported by coding practices rather than true clinical chronology, and (2)
042 code co-occurrence and dependencies are often inadequately captured when visits are represented
043 as multi-hot vectors. These challenges have motivated the development of graph-based approaches,
044 such as homogeneous (Song et al., 2023), heterogeneous (Chen et al., 2024), and hypergraph (Xu
045 et al., 2023) models that aim to explicitly leverage structural relationships in EHR data. However,
046 graph-based methods often struggle to capture sequential dependencies across visits.

047 Graph-enhanced sequence approaches have therefore been proposed to integrate the strengths of
048 both paradigms. G-BERT (Shang et al., 2019) incorporates a graph to enrich medical code embed-
049 dings with hierarchical ontology structures. GCT (Choi et al., 2020) was among the first to model
050 intra-visit code relationships with graphs, while TPGT (Hadizadeh Moghaddam et al., 2025) and
051 DeepJ (Li et al., 2025) strengthened temporal modeling capabilities. HEART (Huang et al., 2024)
052 connects multiple visit representations of the same patient into a graph to enable message passing
053 across visits. A more detailed overview of related work is provided in the Appendix A. However,

existing models largely overlook the fact that different types of medical codes play fundamentally distinct roles in shaping a patient’s health representation.

Medical codes are inherently heterogeneous, reflecting their diverse clinical roles and characteristics. For example, procedures and medications often reflect treatment pathways, therefore are inherently temporal related over time but exhibit limited interactions within a single visit. In contrast, diagnosis codes serve as the driving force in shaping a patient’s health trajectory. They are more interactive, with dense connections to other diseases within the same organ system, and also facilitate influence across different systems over time. These differences highlight the need for a code-type-specific algorithmic paradigm, supported by specialized modeling modules that explicitly account for the distinct roles of different code categories.

In this study, we introduce the Disease Trajectory-aware Transformer for EHR (DT-BEHRT), which directly addresses the aforementioned gaps. Unlike homogeneous modeling approaches that treat all codes uniformly, DT-BEHRT incorporates tailored modules to capture the fundamental differences between diagnosis and treatment codes. By explicitly encoding disease trajectories and corresponding treatment pathways, our framework models both the temporal dynamics and system-wise interactions of diagnoses across visits. This design is essential, as many downstream clinical prediction tasks, such as mortality prediction and disease phenotyping, are inherently dependent on rich representations of disease progression. Our key contributions are threefold:

- **Model architecture.** We introduce DT-BEHRT, a novel graph-enhanced sequence model that models and interprets longitudinal EHR by leveraging diagnosis-centric interactions in organ systems, and formulating personalized disease progression patterns for patient representation learning.
- **Pre-training framework.** We design a tailored pre-training framework that combines a novel masked code prediction task with ancestor code prediction. This objective enhances module alignment across functional components and consistently improves the robustness of patient representations.
- **Comprehensive evaluation.** We conduct extensive experiments across diverse clinical prediction tasks, where DT-BEHRT achieves competitive performance and maintains robustness across subgroups. Through case studies, we further demonstrate that its design aligns with clinicians’ diagnostic reasoning, providing both accuracy and interpretability.

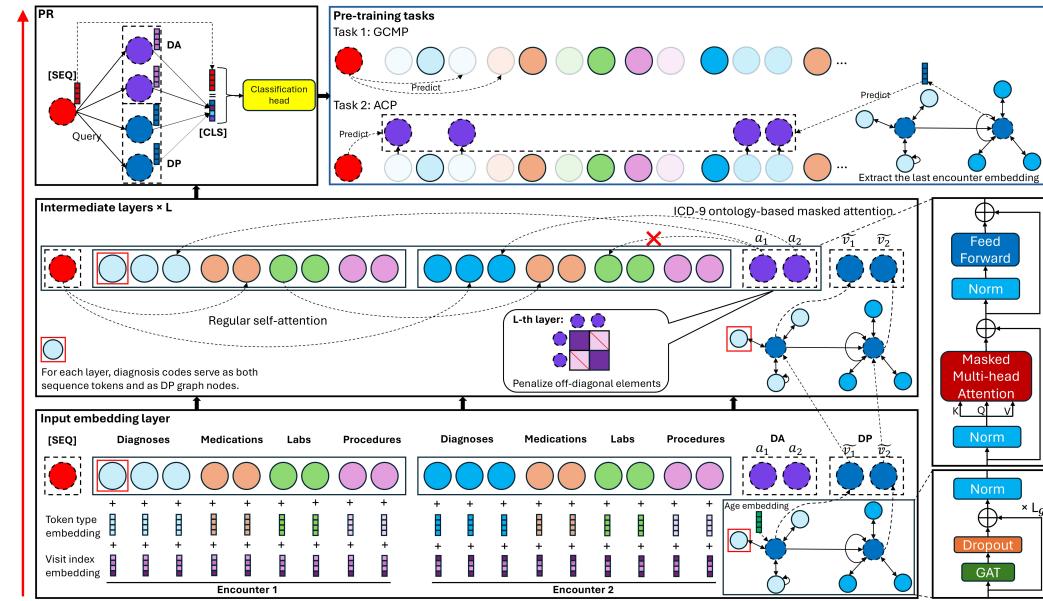
2 PRELIMINARY

In this section, we introduce key concepts and notations that are essential for introducing our method. In EHR data, each medical event c in a patient’s clinical trajectory is recorded as a code drawn from a vocabulary of unique medical codes, denoted as $\mathcal{C} = \{c_1, c_2, \dots, c_{|\mathcal{C}|}\}$, where $|\mathcal{C}|$ denotes the total size of the vocabulary. Meanwhile, each code can be categorized into one of four medical event categories: diagnosis (\mathcal{D}), medication (\mathcal{M}), laboratory test (\mathcal{L}), or procedure (\mathcal{P}). Formally, the vocabulary can be expressed as the union $\mathcal{C} = \mathcal{D} \cup \mathcal{M} \cup \mathcal{L} \cup \mathcal{P}$. Based on these notations, a patient’s clinical trajectory can be naturally modeled as a sequence of temporally ordered hospital visits, denoted as $\mathcal{V} = \{v_1, v_2, \dots, v_T\}$, where T denotes the total number of visits and each visit v_t contains a subset of medical codes, $v_t = \{c_{t,1}, \dots, c_{t,N_{v_t}}\}$, $c_{t,i} \in \mathcal{C}$, where N_{v_t} denotes the number of codes in v_t . EHR-based predictive analysis aims to predict future health outcomes given a patient’s clinical trajectory \mathcal{V} . Typical tasks include predicting hospital readmission risk or estimating the set of diagnoses at the subsequent hospital visit. See Appendix B for a complete table of notations.

3 METHODS

In this section, we first introduce the overall architecture of our proposed model, DT-BEHRT, which consists of four main components: the Sequence Representation (SR) module, the Disease Aggregation (DA) module, the Disease Progression (DP) module, and the Patient Representation (PR) module (see Figure 1). Each module is designed to capture complementary aspects of a patient’s evolving health trajectory, ranging from fine-grained event encoding to organ/system-level abstraction, temporal progression, and global patient summarization. We then present a novel pre-training framework specifically tailored to this architecture, including Global Code Masking Prediction (GCMP)

108 and Ancestor Code Prediction (ACP), which facilitates alignment across modules and improves the
 109 quality of patient representations for downstream predictive tasks.
 110



131 Figure 1: The architecture of DT-BEHRT. Each layer includes a Sequence Representation (SR), Dis-
 132 ease Aggregation (DA), and Disease Progression (DP) module. The Patient Representation (PR) is
 133 derived via sequence-guided attention. The pre-training framework includes Global Code Masking
 134 Prediction (GCMP) and Ancestor Code Prediction (ACP).

3.1 SEQUENCE REPRESENTATION

138 The input to our model is a patient’s medical code sequence \mathcal{V} , which is composed of T hospital
 139 visits. Each token c corresponds to a medical code drawn from the vocabulary \mathcal{C} , as defined in
 140 Section 2. To enrich the token representation, we incorporate two additional embeddings, similar as
 141 BEHRT (Li et al., 2020): a code-type embedding, $e_{type(c)}$, which specifies whether a token belongs
 142 to diagnosis, medication, laboratory test, or procedure categories, and a visit-index embedding,
 143 $e_{visit(c)}$, which encodes the relative temporal position of each visit in the patient’s trajectory. The
 144 final token representation is obtained by summation: $\mathbf{h}_c^{(0)} = \mathbf{e}_c + \mathbf{e}_{type(c)} + \mathbf{e}_{visit(c)}$. Within a single
 145 visit, we make no assumptions about the ordering of codes, since the recorded timestamps of events
 146 within a single visit may not reflect their true temporal order. Following the BERT-style architecture,
 147 we prepend a special token [SEQ] to \mathcal{V} , which is designed to summarize the entire sequence. The
 148 input sequence is then processed by a stack of L pre-normalization Transformer layers:

$$\mathbf{H}^{(0)} = [\mathbf{h}_{[SEQ]}^{(0)} \parallel \mathbf{h}_{c_{1,1}}^{(0)} \parallel \dots \parallel \mathbf{h}_{c_{1,N_{v_1}}}^{(0)} \dots \parallel \mathbf{h}_{c_{T,1}}^{(0)} \dots \parallel \mathbf{h}_{c_{T,N_{v_T}}}^{(0)}], \quad (1)$$

$$\widetilde{\mathbf{H}}^{(l)} = \mathbf{H}^{(l)} + \text{MMHSA} \left(\text{LN} \left(\mathbf{H}^{(l-1)} \right), \mathbf{M} \right), \quad (2)$$

$$\mathbf{H}^{(l)} = \widetilde{\mathbf{H}}^{(l)} + \text{FFN} \left(\text{LN} \left(\widetilde{\mathbf{H}}^{(l)} \right) \right), \quad 1 \leq l \leq L, \quad (3)$$

154 where \parallel is the vector concatenation operator, $\text{MMHSA}(\cdot, \cdot)$ denotes the masked multi-head self-
 155 attention with attention mask \mathbf{M} (to be introduced in the next subsection), $\text{FFN}(\cdot)$ is the position-
 156 wise feed-forward network, and $\text{LN}(\cdot)$ is the layer normalization. Thus, $\mathbf{H}^{(l)} \in \mathbb{R}^{(1+N_V) \times d}$, $N_V =$
 157 $\sum_{t=1}^T N_{v_t}$, is the hidden representation of all tokens at layer l , where d is the hidden size.

3.2 DISEASE AGGREGATION

161 The ICD-9 ontology organizes diagnosis codes into nineteen top-level ancestor codes, or “chap-
 162 ters”, denoted as $(\mathcal{J} = \{1, \dots, 19\})$, each corresponding to a specific organ/system-level dis-

ease class (e.g., cardiovascular diseases, see Appendix C for details) (CDC, 2013). Leveraging this rich hierarchical structure, we introduce a set of DA tokens, $\mathcal{A} = \{a_j : j \in \mathcal{J}\}$, with one token per top-level chapter, to summarize the progression and interactions of diseases within the same organ/system across visits, enabling the model to capture higher-level semantic patterns that extend beyond individual diagnosis codes. Let $\text{Anc} : \mathcal{D} \rightarrow \mathcal{J}$ map each diagnosis code to its unique ICD-9 chapter. Define, for each $j \in \mathcal{J}$, $\mathcal{D}_j = \{d \in \mathcal{D} : \text{Anc}(d) = j\} \subseteq \mathcal{D}$, and $\text{anc}_{\mathcal{V}}(j) := |\text{Supp}(\mathcal{V}) \cap \mathcal{D}_j|$ as the number of distinct codes from \mathcal{D}_j that appear in the patient trajectory \mathcal{V} . Whenever $\text{anc}_{\mathcal{V}}(j) \geq k$, where k is a threshold hyperparameter, we append the DA token a_j to the end of the visit-major vector $\mathbf{V} = ([\text{SEQ}], c_{1,1}, \dots, c_{1,N_{v_1}}, \dots, c_{T,1}, \dots, c_{T,N_{v_T}})$, flattened from the trajectory \mathcal{V} in visit order. The resulting concatenated vector is as follows: $\mathbf{V}_a = [\mathbf{V} \parallel \mathbf{a}_{\mathcal{V}}]$, where $\mathbf{a}_{\mathcal{V}} = (a_{j_1}, \dots, a_{j_{N_a}})$, $j_1 < \dots < j_{N_a}$ are the categories satisfying the threshold condition, and $N_a = |\mathbf{a}_{\mathcal{V}}|$. For the concatenated vector \mathbf{V}_a , we apply an attention mask, $\mathbf{M} \in \mathbb{R}^{(1+N_V+N_a) \times (1+N_V+N_a)}$, that restricts attention to diagnosis codes within each DA token’s ICD-9 chapter and to the token itself:

$$\mathbf{M}[l, m] = \begin{cases} 0, & \text{if } l = m \text{ and } l > N_V + 1, \\ 0, & \text{if } l \leq N_V + 1 \text{ and } m \leq N_V + 1, \\ 0, & \text{if } l > N_V + 1, m \leq N_V + 1, \text{ and } \mathbf{V}_a[m] \in \mathcal{D}_{\phi(l)}, \\ -\infty, & \text{otherwise.} \end{cases} \quad (4)$$

where $\phi(l)$ denote the ICD-9-chapter index of the DA token placed at row l (for $l > N_V + 1$). Equivalently, $a_{\phi(l)} = a_{j_{(l-N_V-1)}}$. A sample attention mask can be found in Appendix D.

In the SR module, the attention among diagnosis codes is unconstrained, which may lead to redundancy when similar information is aggregated through DA tokens. To encourage the DA tokens to encode rich and diverse information, we introduce a token-level covariance regularization. Formally, we extract $\mathbf{Z} \in \mathbb{R}^{N_a \times d}$ from $\mathbf{H}^{(L)}$. The regularization term ℓ_{cov} is defined as follows:

$$\ell_{cov} = \frac{1}{(N_a - 1)^2} \sum_{i \neq j}^{N_a} (\text{Cov}(\mathbf{Z})[i, j])^2, \quad (5)$$

where $\text{Cov}(\mathbf{Z}) = \frac{1}{d-1} \sum_{j=1}^d (\mathbf{Z}_{:,j} - \bar{\mathbf{Z}}_j) (\mathbf{Z}_{:,j} - \bar{\mathbf{Z}}_j)^T$, and $\bar{\mathbf{Z}}_j = \frac{1}{d} \sum_{j=1}^d \mathbf{Z}_{:,j}$. This regularization term encourages the off-diagonal elements of the covariance matrix $\text{Cov}(\mathbf{Z})$ to approach zero, thereby compelling the DA tokens to capture decorrelated organ/system-level abstractions.

3.3 DISEASE PROGRESSION

We construct a heterogeneous graph $\mathcal{G} = (\mathcal{U}, \mathcal{E}, \mathcal{X})$ to model a patient’s disease progression and better capture potential development trends. Here, $\mathcal{U}, \mathcal{E}, \mathcal{X}$ denote the node set, the edge set, and the node feature set, respectively. The graph consists of T virtual visit nodes, each corresponding to one hospital visit, together with the diagnosis nodes associated with that visit. Formally, $\mathcal{U} = \{\tilde{v}_1, \dots, \tilde{v}_T\} \cup \{\tilde{d}_{i,t} \mid i = 1, \dots, N_{d_t}, t = 1, \dots, T\}$, where N_{d_t} denotes the number of diagnosis codes for visit t . We hereafter refer to the virtual visit nodes \tilde{v}_t as DP nodes, emphasizing their role in encoding disease development trends through graph learning. Directed edges are added from each DP node to its diagnosis nodes, $\tilde{d}_{t,i}$, while DP nodes are connected sequentially in temporal order through forward-directed edges. In addition, self-loops are introduced for DP nodes starting from the second DP node, ensuring that these nodes can preserve their own information during message passing. Formally, $\mathcal{E} = \{(\tilde{v}_t \leftrightarrow \tilde{d}_{t,i}) \mid i = 1, \dots, N_{d_t}, t = 1, \dots, T\} \cup \{(\tilde{d}_{t,i} \rightarrow \tilde{d}_{t,i}) \mid i = 1, \dots, N_{d_t}, t = 1, \dots, T\} \cup \{(\tilde{v}_t \rightarrow \tilde{v}_{t+1}) \mid t = 1, \dots, T-1\} \cup \{(\tilde{v}_t \rightarrow \tilde{v}_t) \mid t = 2, \dots, T\}$. For layer $l = 1$, DP visit node features are initialized with patient age embeddings, $\mathbf{e}_{Age(t)}$, while disease node features come from the embedding of the corresponding diagnosis code in the SR module, $\mathbf{h}_{d_{t,i}}^{(0)}$. In higher layers ($2 \leq l \leq L$), node features are updated through message passing: visit node features are taken from

216 the previous DP layer, and diagnosis node features from the previous SR layer.
 217

$$218 \quad \mathcal{X}^{(l)} = \left\{ \mathbf{h}_{\tilde{d}_{t,i}}^{(l-1)}, \mathbf{h}_{\tilde{v}_t}^{(l-1)} \mid i = 1, \dots, N_{d_t}, t = 1, \dots, T \right\},$$

220 where $\mathbf{h}_{\tilde{d}_{t,i}}^{(l)} = \mathbf{h}_{d_{t,i}}^{(l)}$ and $\mathbf{h}_{\tilde{v}_t}^{(0)} = \mathbf{e}_{Age(t)}$. Furthermore, the representations of DP nodes, $\mathbf{h}_{\tilde{v}_t}^{(l)}$, is
 221 updated by a graph attention network (GAT) layer (Veličković et al., 2017) as follows:
 222

$$223 \quad Message_{\tilde{d}_{t,i} \rightarrow \tilde{v}_t}^{(l)} = \sum_{i=1}^{N_{d_t}} \text{GAT}^{(l)} \left(\tilde{d}_{t,i} \rightarrow \tilde{v}_t \right), \quad (6)$$

$$225 \quad Message_{\{\tilde{v}_{t-1}, \tilde{v}_t\} \rightarrow \tilde{v}_t}^{(l)} = \sum_{v' \in \{\tilde{v}_{t-1}, \tilde{v}_t\}} \text{GAT}^{(l)} \left(v' \rightarrow \tilde{v}_t \right), \quad (7)$$

$$227 \quad \tilde{\mathbf{h}}_{\tilde{v}_t}^{(l)} = Message_{\tilde{d}_{t,i} \rightarrow \tilde{v}_t}^{(l)} + Message_{\{\tilde{v}_{t-1}, \tilde{v}_t\} \rightarrow \tilde{v}_t}^{(l)}, \text{ and } \mathbf{h}_{\tilde{v}_t}^{(l)} = \text{LN} \left(\tilde{\mathbf{h}}_{\tilde{v}_t}^{(l)} + \mathbf{h}_{\tilde{v}_t}^{(l-1)} \right). \quad (8)$$

228 We then stack L_G such GAT blocks within each layer’s DP module, allowing each DP node representation
 229 $\mathbf{h}_{\tilde{v}_t}^{(l)}$ to incorporate information from visits up to L_G -hops away (e.g., from $\mathbf{h}_{\tilde{v}_{(t-L_G)}}^{(l)}$).
 230

232 3.4 PATIENT REPRESENTATION

234 At the final layer L , we integrate three complementary sources of information. The representation
 235 of the [SEQ] token, $\mathbf{h}_{[\text{SEQ}]}^{(L)}$, summarizes the entire medical code sequence \mathcal{V} of a patient. The
 236 representations of the DA tokens, $\left\{ \mathbf{h}_{a_j}^{(L)} \mid j \in \mathcal{J}, \text{anc}_{\mathcal{V}}(j) \geq k \right\}$, capture the progression and
 237 interactions of diseases within the same organ/system across visits. The representations of the DP
 238 tokens, $\left\{ \mathbf{h}_{\tilde{v}_t}^{(L)} \mid t = 1, \dots, T \right\}$, updated through GAT blocks, model potential disease development
 239 trends along the temporal trajectory. By integrating these components, we derive the final patient
 240 representation vector, $\mathbf{h}_{[\text{CLS}]}$, which serves as the input for downstream predictive tasks. We design
 241 an attention-based mechanism that leverages sequence-level information to differentiate the relative
 242 importance of DA tokens and DP tokens. We derive $\mathbf{h}_{[\text{CLS}]}$ by:
 243

$$245 \quad \mathbf{h}_{[\text{CLS}]} = \left[\mathbf{h}_{[\text{SEQ}]}^{(L)} \parallel \text{Attn} \left(\mathbf{h}_{[\text{SEQ}]}^{(L)}, \left\{ \mathbf{h}_{a_j}^{(L)} \mid j \in \mathcal{J}, \text{anc}_{\mathcal{V}}(j) \geq k \right\} \cup \left\{ \mathbf{h}_{\tilde{v}_t}^{(L)} \mid t = 1, \dots, T \right\} \right) \right], \quad (9)$$

247 where $\text{Attn}(\cdot, \cdot)$ denotes the attention pooling mechanism.
 248

249 3.5 PRE-TRAINING FRAMEWORK

251 To fully exploit the information contained in the dataset and to enhance alignment across the SR,
 252 DA, and DP modules, we design a novel pre-training framework tailored to our model architecture.
 253

254 *A. Global Code Masking Prediction:* Inspired by Med-BERT (Rasmy et al., 2021) and HEART
 255 (Huang et al., 2024), we adopt masked token prediction as one of the pre-training tasks. However,
 256 our design differs in key aspects. Since the timestamp order within a visit may not reflect true
 257 occurrences and repeated codes across visits may create shortcuts, we instead encourage the model
 258 to capture co-occurrence semantics at the trajectory level, which better encodes patterns such as
 259 comorbidities and treatment pathways. Specifically, given a patient’s medical code sequence, we
 260 first identify all unique codes. For each code type (i.e., diagnosis, medication, laboratory test, and
 261 procedure), we independently sample codes for masking at the unique-code level with rate α . Once
 262 a code is selected, all of its occurrences in \mathcal{V} are masked. Then, $\mathbf{h}_{[\text{CLS}]}$ is required to predict the
 263 masked codes across all four categories simultaneously, encouraging the learned representation to
 264 be broadly generalizable to diverse downstream tasks. The loss term ℓ_{mask} is defined as follows:
 265

$$266 \quad \ell_{\text{mask}} = \frac{1}{4} \sum_{\tau \in \mathcal{T}} \text{BCE} \left(P_{\tau}, Y_{\text{mask}, \tau} \right), \quad (10)$$

267 where $P_{\tau} = \sigma \left(\text{Linear}_{\tau} \left(\mathbf{h}_{[\text{CLS}]} \right) \right)$ denotes the prediction heads for code type τ , with $\tau \in \mathcal{T} =$
 268 $\{\tau_{\mathcal{D}}, \tau_{\mathcal{M}}, \tau_{\mathcal{L}}, \tau_{\mathcal{P}}\}$, corresponding to the four code types. The operator $\text{Linear}_{\tau}(\cdot)$ is the linear layer
 269 associated with the prediction head τ , $\sigma(\cdot)$ denotes sigmoid activation, $\text{BCE}(\cdot, \cdot)$ is the binary cross
 270 entropy loss function, and $Y_{\text{mask}, \tau}$ is the masked token label of code type $\tau \in \mathcal{T}$.
 271

B. Ancestor Code Prediction: In our architecture, the DA module explicitly incorporates ICD-9 high-level chapters, while the SR and DP modules are not directly exposed to this ontology information. This asymmetry may lead to misalignment when constructing the final patient representation $\mathbf{h}_{[\text{CLS}]}$, where $\mathbf{h}_{[\text{SEQ}]}^{(L)}$ serves as the query in the attention mechanism, potentially hurting downstream performance. To address this issue and make the other two modules aware of the ontology structure, we introduce an auxiliary ancestor code prediction task. Specifically, for each masked diagnosis code in the masked token prediction task, we require the model to predict its ancestor code in the ICD-9 ontology. The predictions are made from two perspectives: a) using the $\mathbf{h}_{[\text{SEQ}]}^{(L)}$ from the SR module, and b) using the representation of the last DP token, $\mathbf{h}_{\tilde{v}_T}^{(L)}$, which partially serves as a summary of the DP graph. This design encourages the representations across modules to jointly understand ontology-level knowledge, thereby promoting better alignment. The loss term ℓ_{anc} is defined as $\ell_{\text{anc}} = \ell_{\text{anc,SR}} + \ell_{\text{anc,DP}}$, where

$$\ell_{\text{anc,SR}} = \text{BCE} \left(\sigma \left(\text{Linear} \left(\mathbf{h}_{[\text{SEQ}]}^{(L)} \right) \right), \text{Anc} (Y_{\text{mask}, \tau_D}) \right), \quad (11)$$

$$\ell_{\text{anc,DP}} = \text{BCE} \left(\sigma \left(\text{Linear} \left(\mathbf{h}_{\tilde{v}_T}^{(L)} \right) \right), \text{Anc} (Y_{\text{mask}, \tau_D}) \right). \quad (12)$$

3.6 LEARNING OBJECTIVES

During the pre-training phase, the model is optimized with a joint objective that combines masked token prediction, ancestor node prediction, and DA token decorrelation. The strengths of the ancestor node prediction and DA decorrelation penalties are controlled by λ_{anc} and λ_{cov} , respectively. Formally, $\ell_{\text{pt}} = \ell_{\text{mask}} + \lambda_{\text{anc}} \ell_{\text{anc}} + \lambda_{\text{cov}} \ell_{\text{cov}}$. During the fine-tuning phase, the learning objective is given by $\ell_{\text{ft}} = \ell_{\text{task}} + \lambda_{\text{cov}} \ell_{\text{cov}}$, where $\ell_{\text{task}} = \text{BCE} \left(\sigma \left(\text{Linear} \left(\mathbf{h}_{[\text{CLS}]} \right) \right), Y_{\text{task}} \right)$ for ground truth label, Y_{task} , of the downstream task. The detailed pseudocode for DT-BEHRT pre-training and fine-tuning is provided in Algorithm 1 in Appendix G.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on the MIMIC-III (Johnson et al., 2016), MIMIC-IV (Johnson et al., 2023) and eICU (Pollard et al., 2018) datasets, three publicly available EHR databases hosted on PhysioNet (<https://physionet.org/>). The data preprocessing steps follow HEART (Huang et al., 2024), with details provided in the Appendix E. To comprehensively evaluate our model, we examine three standard outcome prediction tasks on the MIMIC-III and MIMIC-IV cohorts: in-hospital mortality, prolonged length of stay (PLOS; defined as hospitalization exceeding 7 days), and readmission. In addition, we perform phenotyping prediction for a set of acute, chronic, and mixed conditions at the next hospital encounter within 12 months, formulated as a multi-label classification task and aligned with the experimental setup in DrFuse (Yao et al., 2024). For the eICU dataset, we only evaluate ICU mortality and PLOS.

4.2 BASELINES

We comprehensively compare our model with state-of-the-art EHR-based predictive models across three categories: graph-based models, sequence-based models, and graph-enhanced sequence models. The implementation details of our model can be found in Appendix F. Since our method falls into the category of graph-enhanced sequence models, we place particular emphasis on recent advances in sequence-based and graph-enhanced sequence approaches. For graph-based approach, we select HypEHR (Xu et al., 2023) as a representative baseline, as it reflects the most recent endeavor in using hypergraph to capture the high-order interaction between codes and visits. For sequence-based approach, BEHRT (Li et al., 2020) represents one of the earliest transformer-based models for EHR. It organizes a patient’s historical diagnoses into a sentence fed into a transformer. Med-BERT (Rasmy et al., 2021) extends the BERT framework to pre-train on large-scale EHR data. ExBEHRT (Rupp et al., 2023) extends BEHRT (Li et al., 2020) by integrating additional types of codes through vertical summation of their embeddings. For graph-enhanced sequence approach, G-BERT (Shang et al., 2019) embeds hierarchical information of diagnosis and medication codes with a GAT and

324 encodes their sequences using BERT (Devlin et al., 2019). HEART (Huang et al., 2024) enriches
 325 medical code representations with heterogeneous relation embeddings that explicitly parameterize
 326 pairwise correlations between entities, and further enhances hospital visit representations by
 327 connecting them as a graph and applying a modified GAT. All baselines are trained and evaluated under
 328 exactly the same cohort construction, inclusion criteria, and prediction windows.

331 4.3 EXPERIMENT RESULTS

333 4.3.1 PERFORMANCE ON GENERAL OUTCOME PREDICTION

335 Table 1 shows that DT-BEHRT generally outperforms all baselines across tasks on both datasets.
 336 The largest performance gain is observed on the readmission task, which is known to be particularly
 337 challenging in EHR-based prediction due to the heterogeneous and multifactorial causes of read-
 338 mission. On the smaller dataset MIMIC-III, our model shows a clear advantage, while on the larger
 339 dataset MIMIC-IV, this advantage becomes less pronounced, suggesting that larger data availability
 340 partially compensates for the modeling gaps of baseline methods. On the eICU dataset, DT-BEHRT
 341 also attains the best overall performance, and the consistent results across MIMIC and eICU indicate
 342 that the model generalizes reasonably well across different clinical databases. The hypergraph-based
 343 approach HypEHR (Xu et al., 2023) exhibits high instability on the readmission task in MIMIC-III.
 344 A possible reason is that, with limited data and a large vocabulary, the resulting hypergraph suffers
 345 from low hyperedge density, weakening its ability to capture reliable high-order interactions as well
 346 as temporal dependencies—particularly for readmission, which requires robust modeling of long-
 347 term disease progression (Pham et al., 2016). Although HEART (Huang et al., 2024) employs a
 348 hierarchical design from codes to visits, it still underperforms compared to DT-BEHRT on the read-
 349 mission task. One reason may be that it does not explicitly differentiate the importance of diagnosis
 350 codes from other code types, leading to incomplete transmission of critical progression information
 351 during the transition from visit-level to patient-level representations.

353 Table 1: Results of general outcome prediction tasks.

355 Models			G-BERT	BEHRT	Med-BERT	HypEHR	ExBEHRT	HEART	DT-BEHRT
356 MIMIC-III	Mortality	F1	59.24±0.46	68.60±0.43	67.91±1.08	70.04±0.70	73.66±1.09	74.77±1.26	76.03±0.28
		AUROC	86.25±0.82	87.23±0.27	87.94±0.53	88.55±0.39	90.72±0.30	92.13±0.36	92.09±0.15
		AUPRC	72.13±1.51	75.33±0.33	75.28±1.01	76.39±1.06	81.44±0.62	82.76±0.63	84.50±0.19
	PLOS	F1	69.62±1.42	70.38±0.74	72.02±1.43	72.73±0.09	74.73±0.70	75.44±1.47	76.37±0.49
		AUROC	72.96±1.20	73.71±0.98	77.25±0.53	78.89±0.33	82.11±0.71	82.99±0.40	84.13±0.26
		AUPRC	72.48±1.27	72.49±1.47	76.98±0.56	78.70±0.28	83.52±0.79	83.83±0.59	85.00±0.22
	Readmission	F1	60.84±1.01	53.64±1.56	66.52±0.92	48.09±3.57	63.08±0.82	68.77±0.36	70.59±0.34
		AUROC	67.40±0.65	64.79±0.44	76.66±0.57	68.28±0.30	73.68±0.70	77.68±0.79	80.30±0.14
		AUPRC	57.19±0.77	51.59±0.47	62.90±1.50	56.00±0.11	62.13±0.91	64.05±1.46	69.62±0.20
362 MIMIC-IV	Mortality	F1	58.06±1.01	67.22±1.06	66.55±2.38	65.27±2.30	70.25±0.72	70.52±0.86	70.89±0.53
		AUROC	93.15±0.62	94.84±0.20	94.98±0.40	95.27±0.18	96.19±0.13	96.12±0.12	96.21±0.12
		AUPRC	68.52±3.78	71.66±0.93	71.52±2.53	71.63±0.78	77.00±0.86	76.94±0.59	78.35±0.37
	PLOS	F1	61.27±1.02	61.47±0.53	63.38±1.03	61.77±0.75	67.64±0.42	67.07±1.27	68.04±0.54
		AUROC	77.34±0.66	78.62±0.52	81.89±0.29	81.00±0.13	84.99±0.21	84.63±0.35	84.98±0.09
		AUPRC	66.68±0.84	66.19±0.97	70.82±0.37	69.39±0.24	75.97±0.54	74.48±0.96	74.78±0.23
	Readmission	F1	82.13±0.35	82.76±0.43	83.19±0.55	82.80±0.18	83.21±0.61	83.68±0.35	84.18±0.08
		AUROC	65.38±0.34	62.32±0.23	68.51±0.66	66.07±0.27	68.41±0.38	68.93±1.11	72.08±0.25
		AUPRC	71.49±0.31	78.23±0.17	81.89±0.46	80.50±0.16	81.86±0.16	82.07±0.53	84.85±0.14
372 eICU	Mortality	F1	66.46±0.73	60.01±1.06	75.04±1.73	75.83±0.78	71.21±0.14	73.08±0.34	81.27±0.21
		AUROC	89.28±0.72	78.11±0.22	91.04±0.47	90.39±0.48	87.53±0.24	88.65±0.12	93.73±0.06
		AUPRC	77.48±2.65	64.04±0.45	80.56±1.77	83.87±0.82	78.36±0.50	79.95±0.14	88.58±0.13
	PLOS	F1	65.73±1.22	49.04±1.04	67.98±1.23	67.25±1.19	60.77±2.90	69.71±0.64	72.49±0.23
373	AUROC		76.44±0.93	63.12±0.58	80.86±0.41	82.04±1.09	77.77±0.84	82.93±0.28	85.84±0.11
	AUPRC		70.76±1.05	50.58±0.98	75.08±0.47	75.61±1.54	68.83±1.44	77.53±0.33	81.07±0.22

374 To further assess the robustness of DT-BEHRT, we evaluate its performance across clinically relevant
 375 patient subgroups on the MIMIC-III dataset (Figure 2). The analysis includes nine conditions:
 376 hypertension, diabetes mellitus, chronic kidney disease (CKD), coronary artery disease (CAD), heart
 377 failure, chronic obstructive pulmonary disease (COPD), liver disease, and cancer. Across these sub-
 378 groups, DT-BEHRT generally achieves the competitive performance on mortality and PLOS, while
 379 for readmission it attains the best performance across all subgroups.

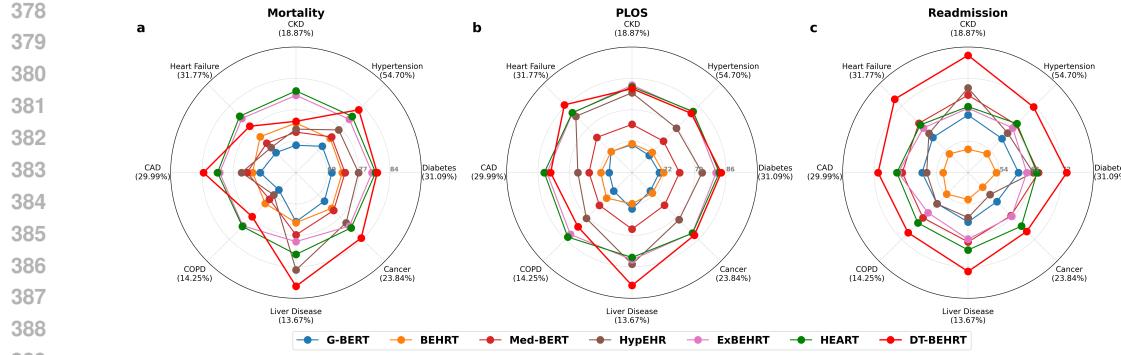


Figure 2: Subgroup performance radar plots for **a** mortality, **b** PLOS, and **c** readmission prediction tasks across major comorbidity groups.

4.3.2 PERFORMANCE ON PHENOTYPING PREDICTION

For phenotyping prediction, we evaluate the top three models from the general outcome prediction task—ExBEHRT (Rupp et al., 2023), HEART (Huang et al., 2024), and DT-BEHR. Using macro-AUPRC as the overall metric for multi-phenotype prediction, DT-BEHR consistently achieves the best performance in both the full cohort and in patients with three or more hospital visits (Table 2). The performance gain is particularly pronounced in the latter, suggesting that DT-BEHR effectively captures disease progression in patients with strong temporal dependencies characterized by repeated hospitalizations.

Table 2: Results of phenotyping prediction tasks.

	Prevalence	All patients			Patients with ≥ 3 visits		
		ExBEHRT	HEART	DT-BEHR	ExBEHRT	HEART	DT-BEHR
MIMIC-III							
Acute and unspecified renal failure	16.00%	49.96\pm0.96	47.29 \pm 1.81	44.62 \pm 1.91	46.98 \pm 4.75	46.52 \pm 2.52	54.26\pm4.55
Acute cerebrovascular disease	0.90%	3.95 \pm 2.30	3.21 \pm 0.91	7.53\pm2.11	2.11 \pm 0.96	3.82 \pm 2.99	17.74\pm33.72
Acute myocardial infarction	3.70%	18.49\pm1.40	16.61 \pm 1.41	17.27 \pm 1.18	17.81\pm7.67	16.21 \pm 4.25	11.28 \pm 3.64
Cardiac dysrhythmias	20.10%	74.68 \pm 1.48	74.98\pm1.47	72.81 \pm 1.87	71.35 \pm 6.60	77.02\pm6.09	70.47 \pm 2.39
Chronic kidney disease	12.40%	78.88\pm0.96	76.96 \pm 2.74	77.21 \pm 2.11	75.09 \pm 5.75	81.45 \pm 6.62	88.72\pm1.24
Chronic obstructive pulmonary disease	6.40%	42.85 \pm 1.72	43.31 \pm 3.21	43.66\pm2.79	45.34\pm6.44	40.24 \pm 8.77	44.68 \pm 6.92
Conduction disorders	1.40%	4.19 \pm 0.62	4.24 \pm 0.87	4.54\pm1.63	13.35\pm13.67	3.32 \pm 1.53	8.00 \pm 5.39
Congestive heart failure; non-hypertensive	20.10%	75.09\pm1.93	74.27 \pm 1.04	72.06 \pm 1.54	75.55 \pm 4.33	74.41 \pm 4.27	80.96\pm2.23
Coronary atherosclerosis and related	12.10%	61.11 \pm 1.70	61.87\pm1.33	60.20 \pm 1.83	61.94 \pm 4.15	61.88 \pm 3.66	66.90\pm4.77
Disorders of lipid metabolism	13.70%	59.13\pm1.37	57.82 \pm 1.83	56.56 \pm 2.80	55.65 \pm 8.81	62.16\pm10.29	55.09 \pm 3.78
Essential hypertension	18.90%	67.85\pm1.73	64.75 \pm 2.07	63.00 \pm 2.23	67.50 \pm 4.39	68.06\pm5.32	57.55 \pm 4.57
Fluid and electrolyte disorders	21.00%	48.32 \pm 1.37	46.37 \pm 0.59	48.45\pm1.50	44.38 \pm 3.28	46.60 \pm 3.22	57.55\pm2.99
Gastrointestinal hemorrhage	3.60%	8.75 \pm 0.52	9.02 \pm 0.59	12.06\pm1.95	12.28 \pm 6.66	10.37 \pm 6.11	17.18\pm4.97
Hypertension with complications	11.50%	72.17 \pm 2.10	72.26\pm3.77	71.16 \pm 3.22	66.82 \pm 9.06	78.94 \pm 1.88	82.88\pm2.60
Other liver diseases	0.90%	4.76 \pm 1.46	5.71\pm3.23	3.11 \pm 0.76	11.13\pm18.13	3.55 \pm 3.08	4.14 \pm 2.49
Other lower respiratory disease	21.40%	56.36 \pm 0.80	56.50 \pm 1.10	57.96\pm1.95	58.56 \pm 4.02	58.45 \pm 4.73	71.85\pm3.15
Pneumonia	7.10%	16.17 \pm 1.79	16.51\pm1.16	17.57 \pm 1.45	15.60 \pm 2.00	20.53\pm4.65	16.78 \pm 3.73
Septicemia (except in labor)	11.70%	35.34 \pm 0.85	33.50 \pm 1.19	36.25\pm1.51	32.63 \pm 4.14	31.36 \pm 5.10	43.89\pm3.59
Macro AUPRC	/	43.22 \pm 0.69	42.51 \pm 0.84	43.45\pm0.46	43.38 \pm 1.81	43.61 \pm 0.57	48.15\pm2.45
MIMIC-IV							
Acute and unspecified renal failure	12.50%	42.79\pm1.51	42.14 \pm 1.92	41.98 \pm 1.79	42.45 \pm 3.02	39.03 \pm 2.57	48.81\pm2.06
Acute cerebrovascular disease	0.40%	2.08 \pm 0.88	1.12 \pm 0.15	2.78\pm0.62	7.21\pm9.28	1.31 \pm 0.56	0.32 \pm 0.17
Acute myocardial infarction	2.10%	15.68\pm1.55	14.02 \pm 2.20	12.58 \pm 0.81	21.77\pm4.61	12.65 \pm 3.72	10.91 \pm 2.44
Cardiac dysrhythmias	14.30%	71.91 \pm 0.92	72.53 \pm 0.99	73.17\pm1.45	70.13 \pm 2.93	72.64 \pm 3.43	76.01\pm1.21
Chronic kidney disease	13.70%	85.56 \pm 1.17	85.72 \pm 2.35	86.15\pm1.56	85.51 \pm 3.15	84.69 \pm 2.19	89.53\pm0.85
Chronic obstructive pulmonary disease	4.60%	49.82 \pm 1.52	52.10\pm1.21	52.23\pm1.68	55.95\pm3.20	51.11 \pm 4.71	50.04 \pm 2.64
Conduction disorders	1.20%	6.45 \pm 0.96	8.53\pm2.21	7.64\pm0.73	8.59\pm4.33	12.46\pm13.86	5.13 \pm 1.86
Congestive heart failure; non-hypertensive	12.50%	75.76 \pm 1.83	77.93\pm1.19	77.53 \pm 1.23	74.39 \pm 2.29	76.86 \pm 1.24	87.03\pm1.64
Coronary atherosclerosis and related	13.50%	80.61 \pm 0.45	80.24 \pm 0.42	81.87\pm1.18	80.64 \pm 1.18	77.45 \pm 2.25	81.84\pm1.48
Disorders of lipid metabolism	19.80%	75.40 \pm 0.71	75.69\pm0.92	76.29\pm0.87	76.34 \pm 1.58	75.72 \pm 2.44	80.08\pm1.52
Essential hypertension	21.70%	76.19 \pm 0.72	76.91 \pm 1.84	79.20\pm1.11	75.96 \pm 2.50	77.91 \pm 2.96	80.30\pm1.63
Fluid and electrolyte disorders	17.10%	45.23\pm1.39	45.15\pm0.66	45.16 \pm 1.61	45.36\pm2.11	43.54 \pm 4.39	51.84\pm1.82
Gastrointestinal hemorrhage	2.20%	5.92 \pm 0.28	7.09\pm1.31	6.66 \pm 0.66	6.32 \pm 1.87	8.65 \pm 3.75	9.09\pm1.85
Hypertension with complications	11.50%	78.31 \pm 1.95	79.35 \pm 2.49	80.07\pm2.10	77.37 \pm 4.72	78.77 \pm 3.44	83.53\pm1.49
Other liver diseases	0.50%	2.01 \pm 0.11	2.67\pm1.55	2.05\pm0.52	2.22 \pm 1.15	6.73\pm7.80	5.36 \pm 2.91
Other lower respiratory disease	9.20%	34.60 \pm 1.41	35.05\pm1.33	35.20\pm2.17	34.84 \pm 2.56	36.79 \pm 4.02	46.80\pm2.18
Pneumonia	4.20%	12.45\pm0.63	11.26 \pm 0.59	12.35 \pm 0.57	12.38 \pm 1.06	11.16 \pm 2.54	13.56\pm0.90
Septicemia (except in labor)	4.70%	16.88\pm0.51	14.55 \pm 0.67	15.71 \pm 1.10	17.89 \pm 1.67	15.39 \pm 2.68	21.36\pm1.78
Macro AUPRC	/	43.20 \pm 0.41	43.45 \pm 0.65	44.57\pm0.08	44.18 \pm 0.26	43.49 \pm 0.93	47.23\pm0.28

432 4.3.3 ABLATION STUDY
433

434 As shown in Table 3, enabling the DA tokens without the covariance regularization loss (DA^{w/o cov})
 435 yields only modest improvements. When the full DA module is enabled, the model demonstrates
 436 a clear benefit on the mortality prediction task, whereas the performance on the other two tasks
 437 remains largely unchanged or shows slight degradation. This observation is consistent with clin-
 438 ical intuition, as certain disease categories (e.g., cardiovascular diseases) are more directly associated
 439 with fatal outcomes compared to others (e.g., endocrine disorders). By summarizing diagnosis infor-
 440 mation through DA tokens and directly propagating them into the patient representation, the model
 441 is able to leverage this critical information more effectively. When enabling only the DP module, the
 442 results confirm our earlier findings on the MIMIC-III readmission task: modeling disease pro-
 443 gression with forward-connected heterogeneous graphs provides the greatest benefit, as the DP module
 444 explicitly injects temporal dependencies into the final patient representation. Consistent with prior
 445 studies, the GCMP task—analogous to masked language modeling (MLM; Devlin et al. 2019)—serves
 446 as the primary source of performance gains. However, we also observe that a variant trained with
 447 GCMP alone, without the DA and DP modules, underperforms the full model, suggesting beneficial
 448 interactions between the architectural components and the pretraining objectives. In addition to the
 449 GCMP task, we introduce the novel ACP task, which yields the most pronounced improvements on
 the mortality prediction task.

450
451 Table 3: Ablation study for general outcome prediction tasks using MIMIC-III and MIMIC-IV.
452

Variant			Performance									
			Architectures		DA ^{w/o cov}		DA		DP		GCMP	
			×	✓	×	✓	×	✓	✓	✓	×	✓
MIMIC-III	Mortality	FI	71.59±1.29	72.01±1.76	73.51±1.69	72.06±0.82	73.48±0.47	74.17±0.09	75.40±0.49	76.03±0.28		
		AUROC	89.18±1.34	90.11±0.98	90.34±1.00	89.55±0.20	90.44±0.38	91.41±0.32	91.72±0.28	92.09±0.15		
		AUPRC	80.04±1.69	79.82±1.97	81.55±1.61	80.35±0.41	81.65±0.57	82.21±0.34	83.70±0.71	84.50±0.19		
	PLOS	FI	75.07±0.19	75.27±0.89	74.37±1.24	75.34±0.51	75.52±0.40	76.17±0.11	77.19±0.27	76.37±0.49		
		AUROC	81.67±0.56	81.95±0.96	80.98±1.51	82.12±0.68	82.41±0.41	83.51±0.44	84.35±0.31	84.13±0.26		
		AUPRC	82.43±0.47	82.30±1.21	82.24±1.34	83.17±0.78	83.52±0.34	84.22±0.43	85.05±0.40	85.00±0.22		
	Readmission	FI	70.39±0.32	68.37±0.93	69.88±0.67	70.18±0.44	70.54±0.14	69.75±0.26	70.32±0.64	70.59±0.34		
		AUROC	79.42±0.36	78.78±0.34	79.30±0.44	79.98±0.18	79.99±0.16	79.90±0.22	80.49±0.18	80.30±0.14		
		AUPRC	67.77±1.21	68.96±0.58	68.32±0.59	69.16±0.59	69.22±0.17	69.94±0.43	69.84±0.29	69.62±0.20		
MIMIC-IV	Mortality	FI	63.84±2.09	65.70±1.13	66.37±0.73	65.89±2.30	67.25±0.84	67.78±0.70	68.58±0.33	70.89±0.53		
		AUROC	93.83±0.37	94.58±0.54	94.66±0.27	94.48±0.79	95.05±0.37	95.13±0.18	95.78±0.11	96.21±0.12		
		AUPRC	69.86±1.69	72.27±1.74	72.77±0.79	72.21±2.25	74.33±0.83	74.07±0.54	76.16±0.38	78.35±0.37		
	PLOS	FI	66.39±0.87	67.92±0.19	67.06±0.53	67.19±0.35	67.28±0.55	67.86±0.26	68.09±0.34	68.04±0.54		
		AUROC	83.72±0.38	84.67±0.18	83.84±0.47	84.13±0.39	84.33±0.22	84.77±0.06	84.72±0.26	84.98±0.09		
	Readmission	FI	73.33±0.68	75.29±0.16	73.23±0.99	73.57±0.71	74.18±0.53	75.07±0.24	74.32±0.41	74.78±0.23		
		AUROC	70.15±0.84	71.45±0.23	70.89±0.39	70.48±0.66	71.20±0.16	70.94±0.36	72.12±0.18	72.08±0.25		
		AUPRC	83.61±0.65	84.24±0.15	84.19±0.23	83.84±0.45	84.28±0.06	83.86±0.28	84.70±0.14	84.85±0.14		

467 4.4 CASE STUDY
468

469 Beyond strong predictive performance, DT-BEHRT offers enhanced interpretability: its DA and
 470 DP modules mirror physicians’ reasoning by focusing on disease groups and their progression over
 471 time rather than scattered attention across lengthy code sequences. We demonstrate this advantage
 472 through case studies on the MIMIC-IV phenotyping prediction task.

473 *Case 1 (Subject ID: 10253803, male, 59 years old; Figure 3):* The patient had three hospital visits.
 474 In the subsequent visit, diagnoses included chronic obstructive pulmonary disease, congestive heart
 475 failure, other lower respiratory disease, and pneumonia. The DA module captured the relevance of
 476 existing respiratory conditions: within ICD-9 Chapter 460–519 (Diseases of the Respiratory Sys-
 477 tem), codes such as 496 (chronic airway obstruction) and 491.21 (obstructive chronic bronchitis with
 478 acute exacerbation) received higher attention, whereas short-term symptoms or complications like
 479 511.9 (unspecified pleural effusion) and 518.0 (pulmonary collapse) were assigned lower weights.
 480 The DP module highlighted cardiovascular progression across visits, from V45.81 (history of coro-
 481 nary artery bypass graft) in the first visit to 414.00 (coronary atherosclerosis) in the subsequent two
 482 visits, forming a clinically coherent trajectory. Finally, in the PR module, the most recent DP to-
 483 ken received the highest attention, indicating that the model effectively leveraged temporal disease
 484 progression patterns. An additional case study can be found in Appendix I.

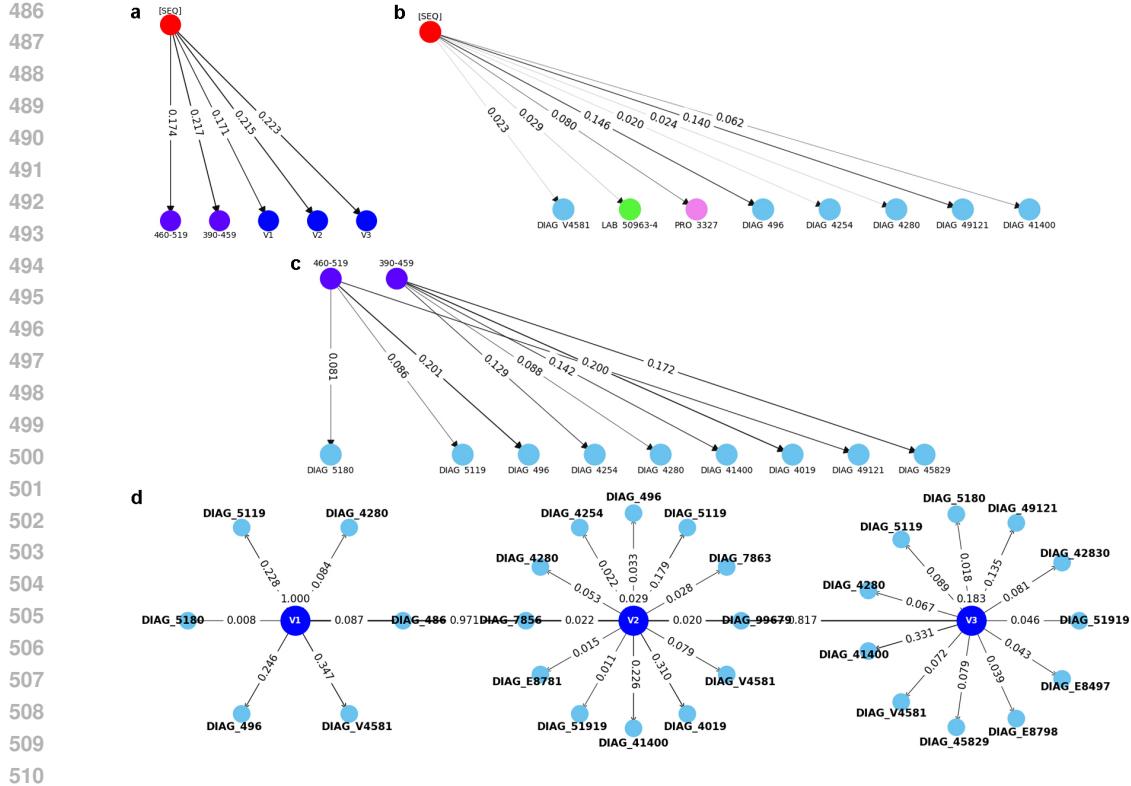


Figure 3: Illustration of Case 1 with attention scores of the **a** PR module, **b** SR module, **c** DA module, and **d** DP module. Only edges with scores > 0.001 are displayed, and self-loops are removed.

5 DISCUSSION

In this work, we present DT-BEHRT, a disease trajectory-aware transformer that integrates graph-enhanced modules into a sequential modeling framework. By explicitly centering diagnosis codes and modeling their progression and interactions across visits, DT-BEHRT addresses limitations of prior sequence-based and graph-based approaches that treat heterogeneous medical codes uniformly. We further design a tailored pre-training strategy combining global trajectory-level code masking and ontology-informed ancestor prediction, which encourages alignment across architectural components and improves the robustness of learned patient representations.

Across three benchmark EHR datasets, DT-BEHRT demonstrates competitive performance. Improvements are most notable for readmission prediction in MIMIC-III and for phenotyping prediction among patients with multiple hospital visits. Subgroup analyses further indicate that the benefits of its design are not limited to specific patient populations. In addition, case studies illustrate how the DA and DP modules highlight clinically coherent patterns, providing interpretability by aligning with common diagnostic reasoning processes.

While DT-BEHRT demonstrates strong performance, several limitations should be noted. First, the use of multi-head self-attention and graph attention across disease and visit nodes increases computational overhead and may limit scalability in resource-constrained settings. Second, the utility of the disease progression module is contingent on the presence of longitudinal trajectories. However, in the MIMIC datasets a substantial portion of patients have only one hospital visit, resulting in a degenerate graph structure with no temporal edges. Third, although this work is among the first to argue that different types of medical codes should be modeled differently, our design focuses primarily on diagnosis codes. Other code categories—such as medications, procedures, and laboratory tests—may also benefit from dedicated modeling structures, and exploring tailored mechanisms for these code types is an important direction for future work.

540 REPRODUCIBILITY STATEMENT
541542 The dataset used in this study is available on PhysioNet (<https://physionet.org/>), and the source code
543 is publicly accessible at <https://anonymous.4open.science/r/DT-BEHRT-C80F/README.md>.
544545 LARGE LANGUAGE MODEL USAGE STATEMENT
546548 Large language models were employed to support this work in limited ways. They were used for (i)
549 literature search assistance, (ii) code debugging support, and (iii) grammar checking and language
550 refinement of the manuscript. LLMs were not involved in research ideation, study design, data
551 analysis, or interpretation of results.
552553 REFERENCES
554555 Derun Cai, Chenxi Sun, Moxian Song, Baofeng Zhang, Shenda Hong, and Hongyan Li. Hypergraph
556 contrastive learning for electronic health records. In *Proceedings of the 2022 SIAM International
557 Conference on Data Mining (SDM)*, pp. 127–135. SIAM, 2022.558 CDC. International classification of diseases, ninth revision, clinical modification (icd-9-cm), 2013.
559560 Jiayuan Chen, Changchang Yin, Yuanlong Wang, and Ping Zhang. Predictive modeling with tempo-
561 ral graphical representation on electronic health records. In *IJCAI: proceedings of the conference*,
562 volume 2024, pp. 5763, 2024.563 Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
564 framework for hypergraph neural networks. *arXiv preprint arXiv:2106.13264*, 2021.
565566 Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter
567 Stewart. Retain: An interpretable predictive model for healthcare using reverse time attention
568 mechanism. *Advances in neural information processing systems*, 29, 2016.569 Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F Stewart, and Jimeng Sun. Gram:
570 graph-based attention model for healthcare representation learning. In *Proceedings of the 23rd
571 ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 787–795,
572 2017.573 Edward Choi, Zhen Xu, Yujia Li, Michael Dusenberry, Gerardo Flores, Emily Xue, and Andrew Dai.
574 Learning the graphical structure of electronic health records with graph convolutional transformer.
575 In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 606–613, 2020.577 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
578 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
579 the North American chapter of the association for computational linguistics: human language
580 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.582 Junyi Gao, Cao Xiao, Yasha Wang, Wen Tang, Lucas M Glass, and Jimeng Sun. Stagenet: Stage-
583 aware neural networks for health risk prediction. In *Proceedings of the web conference 2020*, pp.
584 530–540, 2020.585 Arya Hadizadeh Moghaddam, Mohsen Nayebi Kerdabadi, Bin Liu, Mei Liu, and Zijun Yao. Discov-
586 ering time-aware hidden dependencies with personalized graphical structure in electronic health
587 records. *ACM Transactions on Knowledge Discovery from Data*, 19(2):1–21, 2025.589 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
590 1735–1780, 1997.592 Tinglin Huang, Syed Asad Rizvi, Rohan Krishna Thakur, Vimig Socrates, Meili Gupta, David van
593 Dijk, R Andrew Taylor, and Rex Ying. Heart: Learning better representation of ehr data with a
heterogeneous relation-aware transformer. *Journal of Biomedical Informatics*, 159:104741, 2024.

594 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
 595 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
 596 a freely accessible critical care database. *Scientific data*, 3(1):1–9, 2016.

597 Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
 598 Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
 599 electronic health record dataset. *Scientific data*, 10(1):1, 2023.

600 Deyi Li, Zijun Yao, Muxuan Liang, and Mei Liu. Deepj: Graph convolutional transformers with
 601 differentiable pooling for patient trajectory modeling. *arXiv preprint arXiv:2506.15809*, 2025.

602 Yikuan Li, Shishir Rao, José Roberto Ayala Solares, Abdelaali Hassaine, Rema Ramakrishnan,
 603 Dexter Canoy, Yajie Zhu, Kazem Rahimi, and Gholamreza Salimi-Khorshidi. Behrt: transformer
 604 for electronic health records. *Scientific reports*, 10(1):7155, 2020.

605 Zheng Liu, Xiaohan Li, Hao Peng, Lifang He, and Philip S Yu. Heterogeneous similarity graph
 606 neural network on electronic health records. In *2020 IEEE international conference on big data*
 607 (*big data*), pp. 1196–1205. IEEE, 2020.

608 Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, and Jing Gao. Dipole: Di-
 609 agnosis prediction in healthcare via attention-based bidirectional recurrent neural networks. In
 610 *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and*
 611 *data mining*, pp. 1903–1911, 2017.

612 Fenglong Ma, Quanzeng You, Houping Xiao, Radha Chitta, Jing Zhou, and Jing Gao. Kame:
 613 Knowledge-based attention model for diagnosis prediction in healthcare. In *Proceedings of the*
 614 *27th ACM international conference on information and knowledge management*, pp. 743–752,
 2018.

615 Chao Pang, Xinzhuo Jiang, Krishna S Kalluri, Matthew Spotnitz, RuiJun Chen, Adler Perotte, and
 616 Karthik Natarajan. Cehr-bert: Incorporating temporal information from structured ehr data to
 617 improve prediction tasks. In *Machine Learning for Health*, pp. 239–260. PMLR, 2021.

618 Chantal Pellegrini, Nassir Navab, and Anees Kazi. Unsupervised pre-training of graph transformers
 619 on patient population graphs. *Medical Image Analysis*, 89:102895, 2023.

620 Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Deepcare: A deep dynamic mem-
 621 ory model for predictive medicine. In *Pacific-Asia conference on knowledge discovery and data*
 622 *mining*, pp. 30–41. Springer, 2016.

623 Tom J. Pollard, Alistair E. W. Johnson, Jesse D. Raffa, Leo A. Celi, Roger G. Mark, and Omar
 624 Badawi. The eicu collaborative research database, a freely available multi-center database for
 625 critical care research. *Scientific Data*, 5(1), September 2018. ISSN 2052-4463. doi: 10.1038/
 626 sdata.2018.178. URL <http://dx.doi.org/10.1038/sdata.2018.178>.

627 Raphael Poulain and Rahmatollah Beheshti. Graph transformers on ehrs: Better representation
 628 improves downstream performance. In *The Twelfth International Conference on Learning Repre-
 629 sentations*, 2024.

630 Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and Degui Zhi. Med-bert: pretrained contextualized
 631 embeddings on large-scale structured electronic health records for disease prediction. *NPJ digital*
 632 *medicine*, 4(1):86, 2021.

633 Maurice Rupp, Oriane Peter, and Thirupathi Pattipaka. Exbehrt: Extended transformer for electronic
 634 health records. In *International Workshop on Trustworthy Machine Learning for Healthcare*, pp.
 635 73–84. Springer, 2023.

636 Junyuan Shang, Tengfei Ma, Cao Xiao, and Jimeng Sun. Pre-training of graph augmented trans-
 637 formers for medication recommendation. *arXiv preprint arXiv:1906.00346*, 2019.

638 Qianqian Song, Xiang Liu, Zuotian Li, Pengyue Zhang, Michael Eadon, and Jing Su. Depot: graph
 639 learning delineates the roles of cancers in the progression trajectories of chronic kidney disease
 640 using electronic medical records. *medRxiv*, 2023.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
649 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
650 *tion processing systems*, 30, 2017.

651

652 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
653 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

654

655 Ran Xu, Mohammed K Ali, Joyce C Ho, and Carl Yang. Hypergraph transformers for ehr-based
656 clinical predictions. *AMIA Summits on Translational Science Proceedings*, 2023:582, 2023.

657

658 Zhichao Yang, Avijit Mitra, Weisong Liu, Dan Berlowitz, and Hong Yu. Transformehr: transformer-
659 based encoder-decoder generative model to enhance prediction of disease outcomes using elec-
660 tronic health records. *Nature communications*, 14(1):7857, 2023.

661

662 Wenfang Yao, Kejing Yin, William K Cheung, Jia Liu, and Jing Qin. Drfuse: Learning disentangled
663 representation for clinical multi-modal fusion with missing modality and modal inconsistency.
664 In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 16416–16424,
665 2024.

666

667 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
668 Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in neural*
669 *information processing systems*, 34:28877–28888, 2021.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
704
705
706
A DETAILED RELATED WORK
707
708
709
710711
As noted in the Section 1, research on EHR-based predictive modeling can be broadly classified into
712
707 three methodological categories: sequence-based approaches, graph-based approaches, and graph-
708 enhanced sequence approaches. In what follows, we provide a focused yet non-exhaustive review of
709 widely benchmarked studies within each category, with particular emphasis on those most relevant
710 to our proposed framework.
711712
Sequence-based approaches. Early work in this area leveraged recurrent neural architectures. RETAIN
713 (Choi et al., 2016), Dipole (Ma et al., 2017), and StageNet (Gao et al., 2020) are representa-
714 tive early sequence-based models developed without employing transformer architectures. RETAIN
715 (Choi et al., 2016) employs a two-level attention mechanism to identify influential past visits and
716 salient clinical variables within those visits. Dipole (Ma et al., 2017) leverages bidirectional re-
717 current neural networks to capture information from both past and future visits, while introducing
718 attention mechanisms to quantify inter-visit relationships for prediction. StageNet (Gao et al., 2020)
719 incorporates a stage-aware long short-term memory (LSTM; Hochreiter & Schmidhuber 1997) mod-
720 ule to extract health stage variations in an unsupervised manner, along with a stage-adaptive convo-
721 lutional module to integrate stage-specific progression patterns into risk prediction.
722723
With the emergence of transformers (Vaswani et al., 2017), BERT-style models quickly surpassed
724 the performance of these earlier approaches. BEHRT (Li et al., 2020) adapts the transformer ar-
725 chitecture to represent longitudinal patient records, treating medical codes as tokens and temporal
726 ordering as positional embeddings, thereby capturing long-range dependencies in patient trajec-
727 tories. Med-BERT (Rasmy et al., 2021) scales pretraining to millions of patient records, enabling
728 robust contextual embeddings of medical codes that can be fine-tuned for a wide range of down-
729 stream clinical prediction tasks. CEHR-BERT (Pang et al., 2021) incorporates temporal informa-
730 tion through a hybrid strategy that augments the input with artificial time tokens, integrates time,
731 age, and concept embeddings, and introduces an auxiliary learning objective for visit type predic-
732 tion. TransformEHR (Yang et al., 2023) departs from the encoder-only paradigm by adopting an
733 encoder-decoder framework and designing novel pretraining objectives to enhance performance.
734 ExBEHRT (Rupp et al., 2023) extends the feature space to multimodal records by unifying the
735 frequency and temporal dimensions of heterogeneous features, thereby facilitating comprehensive
736 patient representation. Collectively, these transformer-based approaches significantly advance the
737 state of the art by leveraging large-scale pretraining and contextualized representation learning to
738 outperform prior sequence models.
739740
Graph-based approaches. Graph-based modeling can be further categorized according to the un-
741 derlying graph structure, including homogeneous graphs, heterogeneous graphs, and hypergraphs.
742 Homogeneous graphs provide a relatively limited design space, as all nodes and edges share the
743 same type. Consequently, they are often employed at the patient level rather than the code level.
744 DEPOT (Song et al., 2023) exemplifies this line of work by constructing a patient similarity graph
745 using k -nearest neighbors based on demographic features such as age and subsequently learning
746 patient representations for prediction.
747748
In contrast, heterogeneous graphs offer a higher modeling resolution at the code level, as they
749 are more expressive than homogeneous graphs. HSGNN (Liu et al., 2020) and TRANS (Chen
750 et al., 2024) represent recent advances in this subfield. HSGNN (Liu et al., 2020) decomposes
751 a global EHR heterogeneous graph—consisting of medical code nodes, visit nodes, and patient
752 nodes—into subgraphs defined by meta-paths, which are then fed into an end-to-end model for
753 prediction. TRANS (Chen et al., 2024) constructs a temporal heterogeneous graph and explicitly
754 encodes temporal information on edges to facilitate the propagation of temporal relationships.
755756
Using hypergraphs to model EHR data is a relatively new direction. Unlike pairwise graphs, hy-
757 pergraphs naturally capture higher-order interactions by allowing a hyperedge to connect multiple
758 nodes. HCL (Cai et al., 2022) jointly learns patient embeddings and code embeddings by leveraging
759 patient-patient, code-code, and patient-code relationships, while incorporating contrastive learning
760 to enhance representation quality. Similarly, HypEHR (Xu et al., 2023) employs a hypergraph neu-
761 ral network, with SetGNN (Chien et al., 2021) as the backbone, to learn visit-level representations
762 through high-order interactions.
763

756 Graph-enhanced sequence approaches. To combine the strengths of both sequence-based and graph-
757 based modeling, a growing line of work has focused on graph-enhanced sequence models. At the
758 medical code level, GRAM (Choi et al., 2017) enriches code embeddings with hierarchical informa-
759 tion inherent in medical ontologies, which are represented as a knowledge-directed acyclic graph.
760 KAME (Ma et al., 2018) not only learns meaningful embeddings for nodes in the knowledge graph
761 but also leverages external knowledge through a knowledge-attention mechanism to improve pre-
762 diction accuracy. Similarly, G-BERT (Shang et al., 2019) incorporates graph neural networks to
763 represent the hierarchical structures of medical codes, and integrates these graph-based embeddings
764 into a transformer-based visit encoder. The model is then pretrained on EHR data to capture context-
765 tualized code representations.

766 Moving beyond the code level, GCT (Choi et al., 2020) is a pioneering work that applies graph
767 modeling at the visit level. It employs masked self-attention to learn a latent medical code graph
768 within a visit and regularizes attention scores to mimic real-world co-occurrence patterns. However,
769 temporal dependencies across visits are only weakly modeled. TPGT (Hadizadeh Moghaddam et al.,
770 2025) and DeepJ (Li et al., 2025) extend GCT (Choi et al., 2020) by enhancing temporal awareness
771 across visits. More recently, GT-BEHRT (Poulain & Beheshti, 2024) combines an architecture
772 inspired by GCT (Choi et al., 2020) with a novel pretraining framework to further improve predictive
773 performance.

774 At the patient level, Pellegrini et al. (2023) adopts a Graphomer (Ying et al., 2021) backbone to in-
775 tegrate heterogeneous, multimodal clinical data into population-level graphs, enabling unsupervised
776 patient outcome prediction at scale. In parallel, HEART (Huang et al., 2024) introduces modified
777 GAT layers to facilitate message passing across multiple visits of the same patient, thereby mod-
778 eling longitudinal dependencies more effectively. It also models code heterogeneity primarily by
779 augmenting code-type embeddings within a single attention-based aggregation, without introducing
780 architectural-level heterogeneity.

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
B NOTATION TABLE

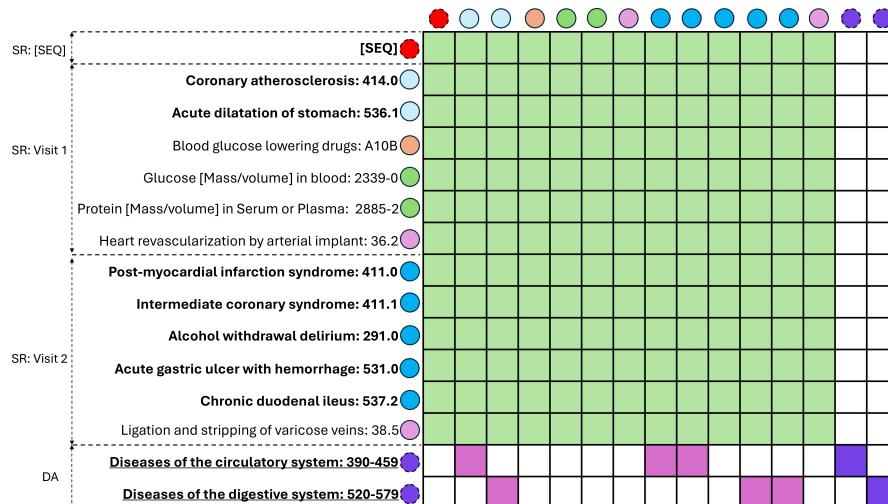
Table 4: Notations used in this paper.

Notation	Description
c, \mathcal{C}	A medical code; the medical code vocabulary
$\mathcal{D}, \mathcal{M}, \mathcal{L}, \mathcal{P}$	Sets of diagnosis, medication, laboratory test, and procedure codes
T	Total number of hospital visits
v_t, \mathcal{V}	Set of codes at visit t ; the entire sequence of visits / patient trajectory
N_{v_t}, N_V	Number of codes in visit v_t and total number of codes in trajectory \mathcal{V} , i.e., $N_V = \sum_{t=1}^T N_{v_t}$
$e_c, e_{type(c)}, e_{visit(c)}$	Embedding vector of code c , its type, and its visit index
L	Total number of hidden layers
L_G	Total Number of GAT blocks
$h_c^{(l)}$	Hidden representation vector at the l -th layer for code c
$\mathbf{H}^{(l)} \in \mathbb{R}^{(1+N_V) \times d}$	Hidden representation matrix at the l -th layer
\mathcal{J}, j	Index set of top-level ICD-9 categories; a top-level category index
a_j	The j -th ICD-9 ancestor category
\mathcal{D}_j	Diagnosis codes in category j
k	Threshold hyperparameter for triggering a DA token
$\mathbf{a}_{\mathcal{V}}$	Ordered DA-token vector for a patient trajectory \mathcal{V}
N_a	Number of DA-tokens in $\mathbf{a}_{\mathcal{V}}$, i.e., $N_a = \mathbf{a}_{\mathcal{V}} $
$\phi(l)$	Category index of the DA token at row l of attention mask ($l > 1 + N_V$)
$\mathbf{M} \in \mathbb{R}^{(1+N_V+N_a)^2}$	Attention mask
$\mathbf{Z} \in \mathbb{R}^{N_a \times d}$	Representation set of DA tokens at the last layer
d	Hidden representation dimension
α	Masking rate
\mathcal{A}	Global set (inventory) of DA tokens
$\text{Anc} : \mathcal{D} \rightarrow \mathcal{J}$	Ancestor-category map for diagnosis codes
$\text{anc}_{\mathcal{V}}(j)$	Number of distinct codes from \mathcal{D}_j that appear in trajectory \mathcal{V}
[SEQ]	Special sequence token
\mathbf{V}	The visit-major vector prepended with [SEQ] flattened from \mathcal{V}
$\mathbf{V}_a = [\mathbf{V} \parallel \mathbf{a}_{\mathcal{V}}$	Final concatenated sequence of length $1 + N_V + N_a$
$\mathcal{G} = (\mathcal{U}, \mathcal{E}, \mathcal{X})$	DP graph; node set; edge set; node-feature set
\tilde{v}_t	DP visit node for visit t
$d_{t,i}$	The i -th diagnosis code in visit t
$\tilde{d}_{t,i}$	The i -th diagnosis node connected to the t -th DP node
N_{d_t}	Number of diagnosis codes in visit t
$\tau_{\mathcal{D}}, \tau_{\mathcal{M}}, \tau_{\mathcal{L}}, \tau_{\mathcal{P}}$	Task type corresponding to the code sets $\mathcal{D}, \mathcal{M}, \mathcal{L}, \mathcal{P}$
$\sigma(\cdot)$	Sigmoid activation function
$Y_{\text{mask}, \tau}$	Masked token label for code type τ
$\ell_{\text{anc}}, \ell_{\text{anc,SR}}, \ell_{\text{anc,DP}}; \lambda_{\text{anc}}$	Ancestor diagnosis code prediction losses (overall / SR / DP); penalizing coefficient
$\ell_{\text{mask}}, \lambda_{\text{mask}}$	Masked token prediction loss; its weight
$\ell_{\text{cov}}, \lambda_{\text{cov}}$	DA decorrelation penalty; its weight
$\ell_{\text{task}}, \ell_{\text{pt}}, \ell_{\text{ft}}$	Binary prediction, pre-training, and fine-tuning losses

864 **C ICD-9 TOP-LEVEL CHAPTERS**
865
866
867
868

Table 5: Nineteen top-level ICD-9 chapters and their code ranges.

Code Range	ICD-9-CM Chapters
001-139	Infectious and parasitic diseases
140-239	Neoplasms
240-279	Endocrine, nutritional and metabolic diseases, and immunity disorders
280-289	Diseases of the blood and blood-forming organs
290-319	Mental, behavioral and neurodevelopmental disorders
320-389	Diseases of the nervous system and sense organs
390-459	Diseases of the circulatory system
460-519	Diseases of the respiratory system
520-579	Diseases of the digestive system
580-629	Diseases of the genitourinary system
630-679	Complications of pregnancy, childbirth, and the puerperium
680-709	Diseases of the skin and subcutaneous tissue
710-739	Diseases of the musculoskeletal system and connective tissue
740-759	Congenital anomalies
760-779	Certain conditions originating in the perinatal period
780-799	Symptoms, signs, and ill-defined conditions
800-999	Injury and poisoning
E000-E999	Supplementary classification of external causes of injury and poisoning
V01-V91	Supplementary classification of factors influencing health status and contact with health services

895 **D SAMPLE ATTENTION MASK**
896
897Figure 4: A sample attention mask with a DA token triggering threshold of $k = 3$. Each DA token is restricted to attend only to diagnosis codes within its corresponding ICD-9 chapter and to itself. In this case, ICD-9 code 291.0 (Alcohol withdrawal delirium) does not trigger a DA token.

918 **E DATA PREPROCESSING DETAILS**
919

920 We utilize two publicly available single-site EHR databases, MIMIC-III and MIMIC-IV, which con-
 921 tain records of patients admitted to the Beth Israel Deaconess Medical Center. Both datasets are
 922 structured hierarchically: each patient record consists of multiple hospital visits, and each visit in-
 923 cludes diverse entities such as age, diagnoses, procedures, medications, and laboratory test results.
 924 For both MIMIC-III and MIMIC-IV, we applied the same preprocessing pipeline. Patient visits were
 925 arranged in chronological order, and for each visit, we extracted ICD-9 codes for diagnoses and pro-
 926 cedures, NDC codes for medications, and item IDs for laboratory tests. Medications prescribed
 927 within the first 24 hours of a visit were retained, and NDC codes were subsequently mapped to ATC
 928 codes. We normalized age values greater than 90 to 90, and discretized the overall age range into 20
 929 evenly distributed bins. For laboratory tests, numerical results were quantized into five categories
 930 by default, whereas categorical results were kept unchanged. Finally, we applied frequency-based
 931 filtering to reduce sparsity: only diagnoses appearing more than 2,000 times, procedures more than
 932 800 times, and laboratory tests more than 1,500 times were retained. We also utilize a multi-site ICU
 933 database, eICU, following similar preprocessing procedures. The overall preprocessing strategy was
 934 consistent with that adopted in the HEART study (Huang et al., 2024). The statistics of the datasets
 935 are described in Table 6.

936 Table 6: Descriptive statistics of the MIMIC-III, MIMIC-IV, and eICU datasets.
937

938 Dataset characteristics	MIMIC-III	MIMIC-IV	eICU
939 Number of patients	33,067	60,709	85,839
940 Diagnosis vocabulary size	1,998	1,983	838
941 Medication vocabulary size	145	140	2,042
942 Procedure vocabulary size	801	801	/
943 Laboratory test vocabulary size	1,500	1,281	755
944 Average visits per patient	1.21	1.39	1.16
945 Average diagnoses per visit	10.83	10.26	3.31
946 Average medications per visit	7.82	2.98	24.12
947 Average procedures per visit	4.48	2.87	/
948 Average laboratory tests per visit	41.87	15.08	39.92
949 In-hospital mortality (%)	26.85	9.08	32.84
Prolonged hospital stay (%)	50.59	33.37	38.97
Readmission rate (%)	40.15	70.79	/

951 **F IMPLEMENTATION DETAILS**
952

953 For each of the baselines and our model, we perform 5 random runs and report the mean and standard
 954 deviation of test performance. The reported results correspond to the best model on the validation
 955 set, selected with an early stopping patience of 5. All experiments are conducted on a machine with
 956 a single NVIDIA A100 GPU (40GB memory). Our implementation is based on Python (3.10.18),
 957 PyTorch (1.13.1), and PyTorch Geometric (2.7.0). We adopt AdamW as the optimizer for all models.
 958 The hyperparameter search space of DT-BEHRT is summarized in Table 7.
 959

960 Table 7: Model parameters and their search space.
961

963 Parameters	Search Space
964 Learning rate	{0.01, 0.001}
965 Batch size	{32, 64}
966 Number of layers (L)	{2, 3}
967 Number of GAT blocks (L_G)	{2}
968 Hidden representation dimension (d)	{64, 128}
969 Threshold for triggering a DA token (k)	{3, 4}
970 GCMP masking rate (α)	{0.5, 0.6, 0.7}
971 Coefficient of the ACP loss (λ_{anc})	{0.05, 0.005}
Coefficient of the DA decorrelation loss (λ_{cov})	{0.05, 0.005}

972 G PSEUDOCODE OF DT-BEHRT PRE-TRAINING AND FINE-TUNING
973
974975 **Algorithm 1:** DT-BEHRT: Pre-training and Fine-tuning

976 **Input:** Hyperparameters ($epoch_{max}, L, d, L_G, k, \alpha, \lambda_{anc}, \lambda_{cov}$)977 **Output:** Trained parameters and patient representation $\mathbf{h}_{[CLS]}$ 978 **Stage: Pre-training (GCMP + ACP)**979 **Data:** Subset of patient trajectories \mathcal{V} of medical codes $c \in \mathcal{C}$ for pre-training.980 1 **Initialize** model weights; optimizer.981 2 **for** $epoch = 1, \dots, epoch_{max}$, **do**982 3 **for** mini-batch \mathcal{B} of patients, **do**983 4 For each code type $\tau \in \mathcal{T}$, sample unique codes $Y_{mask, \tau}$, at rate α and mask all
984 occurrences985 5 Initialize token embeddings $\mathbf{H}^{(0)}$ given in Equation 1; Initialize DP graph: visit nodes
986 6 $\{\tilde{v}_t\}_{t=1}^T$ with embeddings $\mathbf{h}_{\tilde{v}_t}^{(0)} = \mathbf{e}_{Age(t)}$ and diagnosis nodes $\{\tilde{d}_{t,i}\}$ with embeddings
987 7 $\mathbf{h}_{\tilde{d}_{t,i}}^{(0)} = \mathbf{h}_{d_{t,i}}^{(0)}$; Build chapter-restricted attention mask \mathbf{M} via Equation 4988 8 **for** $l = 1, \dots, L$, **do**
989 9 Pass through pre-norm transformer layer in SR module ℓ via Equations 2-3 to get
990 10 $\mathbf{H}^{(\ell)}$; Pass through a GAT layer in DP graph via Equations 6-8991 11 Obtain the patient-level representation $\mathbf{h}_{[CLS]}$ via Equation 9992 12 Predict masked codes with type-specific heads from $\mathbf{h}_{[CLS]}$ to get ℓ_{mask} as given in
993 13 Equation 10994 14 Predict ICD-9 chapter ancestors using $\mathbf{h}_{[SEQ]}^{(L)}$ and $\mathbf{h}_{\tilde{v}_T}^{(L)}$ to obtain
995 15 $\ell_{anc} = \ell_{anc, SR} + \ell_{anc, DP}$ via Equations 11-12996 16 Extract last-layer DA representations \mathbf{Z} from $\mathbf{H}^{(L)}$ and compute de-correlation loss
997 17 ℓ_{cov} via Equation 5998 18 Form $\ell_{pt} = \ell_{mask} + \lambda_{anc}\ell_{anc} + \lambda_{cov}\ell_{cov}$ and update parameters by backprop on ℓ_{pt} 999 19 **Return:** Pre-trained model weights1000 20 **Stage: Fine-tuning**1001 21 **Data:** Subset of Patient trajectories \mathcal{V} for fine-tuning.1002 22 13 **Initialize** with pre-trained model weights; optimizer.1003 23 14 **for** mini-batch (\mathcal{B}, Y_{task}) **do**1004 24 15 Recompute $\mathbf{h}_{[CLS]}$ as in Steps 4-7 above1005 25 16 Compute task head prediction $\sigma(\text{Linear}(\mathbf{h}_{[CLS]}))$ and form $\ell_{ft} = \ell_{task} + \lambda_{cov}\ell_{cov}$ 1006 26 17 Update parameters by backprop on ℓ_{ft} 1007 27 **Return:** $\mathbf{h}_{[CLS]}$

1008
1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

H MEDICAL CODE REFERENCE TABLE

Table 8: Reference table of medical codes appearing in figures/text.

Domain	Code	Code Type	Label
Diagnosis	041.11	ICD-9	Methicillin susceptible <i>Staphylococcus aureus</i> in conditions classified elsewhere and of unspecified site
Diagnosis	211.6	ICD-9	Benign neoplasm of pancreas, except islets of Langerhans
Diagnosis	250.00	ICD-9	Diabetes mellitus without mention of complication, type II or unspecified type
Diagnosis	250.40	ICD-9	Diabetes with renal manifestations, type II or unspecified type
Diagnosis	250.50	ICD-9	Diabetes with ophthalmic manifestations, type II or unspecified type
Diagnosis	250.60	ICD-9	Diabetes with neurological manifestations, type II or unspecified type
Diagnosis	272.4	ICD-9	Other and unspecified hyperlipidemia
Diagnosis	276.51	ICD-9	Dehydration
Diagnosis	278.00	ICD-9	Obesity, unspecified
Diagnosis	278.01	ICD-9	Morbid obesity
Diagnosis	285.9	ICD-9	Anemia, unspecified
Diagnosis	357.2	ICD-9	Polyneuropathy in diabetes
Diagnosis	362.01	ICD-9	Background diabetic retinopathy
Diagnosis	401.9	ICD-9	Unspecified essential hypertension
Diagnosis	414.00	ICD-9	Coronary atherosclerosis of unspecified type of vessel
Diagnosis	428.0	ICD-9	Congestive heart failure, unspecified
Diagnosis	428.30	ICD-9	Diastolic heart failure, unspecified
Diagnosis	425.4	ICD-9	Other primary cardiomyopathies
Diagnosis	458.0	ICD-9	Orthostatic hypotension
Diagnosis	458.1	ICD-9	Chronic hypotension
Diagnosis	458.29	ICD-9	Other iatrogenic hypotension
Diagnosis	486	ICD-9	Pneumonia, organism unspecified
Diagnosis	491.21	ICD-9	Obstructive chronic bronchitis with acute exacerbation
Diagnosis	496	ICD-9	Chronic airway obstruction, not elsewhere classified
Diagnosis	511.9	ICD-9	Unspecified pleural effusion
Diagnosis	518.0	ICD-9	Pulmonary collapse
Diagnosis	519.19	ICD-9	Other diseases of trachea and bronchus
Diagnosis	571.5	ICD-9	Cirrhosis of liver without mention of alcohol
Diagnosis	571.8	ICD-9	Other chronic nonalcoholic liver disease
Diagnosis	583.81	ICD-9	Nephritis and nephropathy, not specified as acute or chronic, in diseases classified elsewhere
Diagnosis	585.9	ICD-9	Chronic kidney disease, unspecified
Diagnosis	682.2	ICD-9	Cellulitis and abscess of trunk
Diagnosis	785.6	ICD-9	Enlargement of lymph nodes
Diagnosis	786.3	ICD-9	Hemoptysis
Diagnosis	787.91	ICD-9	Diarrhea
Diagnosis	810.02	ICD-9	Closed fracture of shaft of clavicle
Diagnosis	996.79	ICD-9	Other complications due to other internal prosthetic device, implant, and graft
Diagnosis	998.59	ICD-9	Other postoperative infection
Diagnosis	E849.7	ICD-9	Accidents occurring in residential institution
Diagnosis	E878.1	ICD-9	Surgical operation with implant of artificial internal device causing abnormal patient reaction, or later complication, without mention of misadventure at time of operation
Diagnosis	E878.8	ICD-9	Other specified surgical operations and procedures causing abnormal patient reaction, or later complication, without mention of misadventure at time of operation
Diagnosis	E885.9	ICD-9	Fall from other slipping, tripping, or stumbling
Diagnosis	E879.8	ICD-9	Other specified procedures as the cause of abnormal reaction of patient, or of later complication, without mention of misadventure at time of procedure
Diagnosis	V12.51	ICD-9	Personal history of venous thrombosis and embolism
Diagnosis	V45.81	ICD-9	History of coronary artery bypass graft
Diagnosis	V45.89	ICD-9	Other postprocedural status
Diagnosis	V58.61	ICD-9	Long-term (current) use of anticoagulants
Diagnosis	V58.67	ICD-9	Long-term (current) use of insulin
Diagnosis	V85.4	ICD-9	Body Mass Index 40 and over, adult
Lab	54963-4	LOINC	Diabetic foot ulcer(s) in last 7 days
Lab	54082-3	LOINC	Infectious diseases newborn screening panel
Medication	B01A	ATC	Antithrombotic agents
Medication	A04A	ATC	Antiemetics and antinauseants
Medication	N02A	ATC	Opioids
Medication	C03C	ATC	High-ceiling diuretics
Medication	C09A	ATC	ACE inhibitors, plain
Procedure	33.27	ICD-9	Closed endoscopic biopsy of lung
Procedure	52.59	ICD-9	Other and unspecified partial pancreatectomy
Procedure	99.04	ICD-9	Transfusion of packed cells
Procedure	41.5	ICD-9	Total splenectomy

I ADDITIONAL CASE STUDY

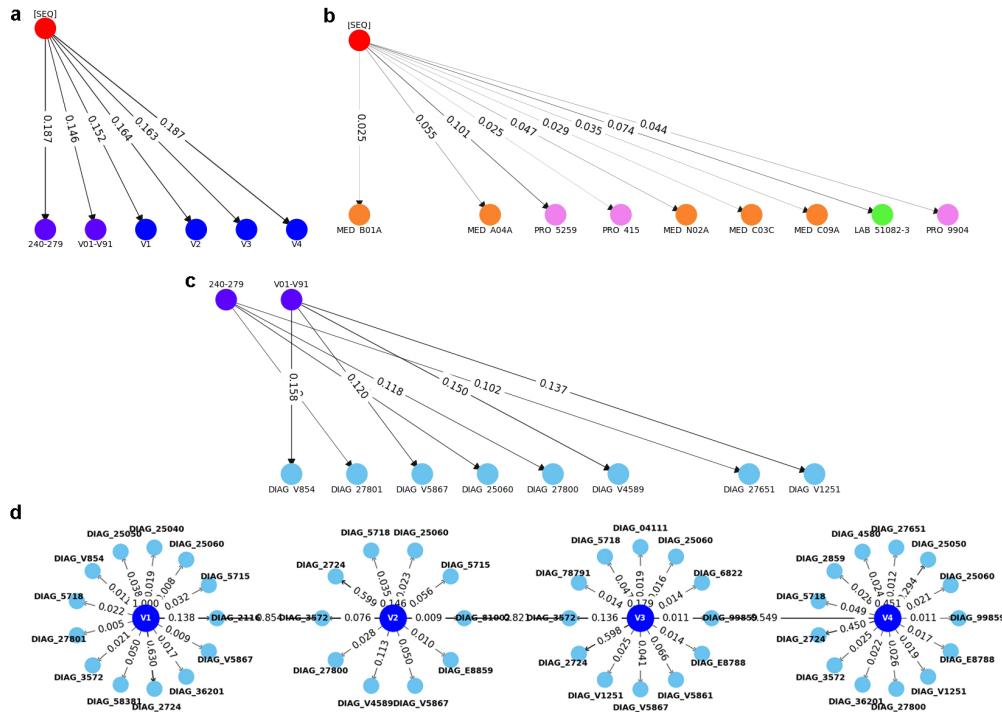


Figure 5: Illustration of Case 2 with attention scores of the **a** PR module, **b** SR module, **c** DA module, and **d** DP module. *Case 2 (Subject ID: 10725079, female, 63 years old).* The patient's subsequent diagnoses included Acute and unspecified renal failure, Cardiac dysrhythmias, Disorders of lipid metabolism, Fluid and electrolyte disorders, Gastrointestinal hemorrhage, and Septicemia (except in labor). In the PR module, we observe that codes within ICD-9 Chapter 240–279 (Endocrine, nutritional and metabolic diseases, and immunity disorders) received higher attention weights, which aligns with the patient's metabolic disorders likely secondary to renal failure. Furthermore, the attention assigned to DP tokens increased over time, indicating that the model captured the worsening trajectory of renal failure and its associated complications.