ENIGMATA: Scaling Logical Reasoning in Large
Language Models with Synthetic Verifiable Puzzles

Jiangjie Chen'* } Qianyu He'>* | Siyu Yuan'2*t, Aili Chen®*

Zhicheng Cai®°, Weinan Dai'->>t, Hongli Yu3>1, Qiying Yu'3>t, Xuefeng Li"*
Jiaze Chen' >, Hao Zhou®°, Mingxuan Wang'°
jiangjiec@bytedance.com
zhouhao@air.tsinghua.edu.cn wangmingxuan.89@bytedance.com
!ByteDance Seed
2Fudan University
3Institute for Al Industry Research (AIR), Tsinghua University
4Shanghai Jiao Tong University
SSIA-Lab of Tsinghua AIR and ByteDance Seed

Abstract

Large Language Models (LLMs), such as OpenAI’s ol and DeepSeek’s R1, excel
at advanced reasoning tasks like math and coding via Reinforcement Learning with
Verifiable Rewards (RLVR), but still struggle with puzzles solvable by humans
without domain knowledge. We introduce ENIGMATA, the first comprehensive
suite tailored for improving LLMs with puzzle reasoning skills. It includes 36 tasks
across 7 categories, each with: 1) a generator that produces unlimited examples with
controllable difficulty, and 2) a rule-based verifier for automatic evaluation. This
generator-verifier design supports scalable, multi-task RL training, fine-grained
analysis, and seamless RLVR integration. We further propose ENIGMATA-Eval,
a rigorous benchmark, and develop optimized multi-task RLVR strategies. Our
trained model, Qwen2.5-32B-ENIGMATA, consistently surpasses 03-mini-high and
ol on the puzzle reasoning benchmarks like ENIGMATA-Eval, ARC-AGI (32.8%),
and ARC-AGI 2 (0.6%). It also generalizes well to out-of-domain puzzle bench-
marks and mathematical reasoning, with little multi-tasking trade-off. When trained
on larger models like Seed1.5-Thinking (20B activated parameters and 200B total
parameters), puzzle data from ENIGMATA further boosts SOTA performance on ad-
vanced math and STEM reasoning tasks such as AIME (2024-2025), BeyondAIME
and GPQA (Diamond), showing nice generalization benefits of ENIGMATA. This
work offers a unified, controllable framework for advancing logical reasoning in
LLMs. Project page: https://seed-enigmata.github. io.

1 Introduction

Large Reasoning Models (LRMs) such as ol and R1, trained from Large Language Models (LLMs)
with Reinforcement Learning (RL), have demonstrated excellent performance in complex reasoning
tasks [1; 2; 3; 4; 5], such as mathematics, STEM, and coding. The success of LRMs highlights
the effectiveness of the Reinforcement Learning with Verifiable Rewards (RLVR) paradigm, which
stresses the great importance of obtaining high-quality verifiable prompts [6; 7; 8]. However, existing
LRMs still struggle to complete various puzzle tasks that require purely logical reasoning skills rather
than professional knowledge, which are easy and even obvious for human [9; 10; 11; 12]. Most

*Equal Contribution.
fWork done during internship at ByteDance Seed.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://seed-enigmata.github.io

MO0 3 (E.‘ lPUSD f/ q N\ FOLIO (K?A)
BB = (£ ﬁ premises: | TRUE UHUFEHJI.
BE 'FJB POP \ — . |:> ’ i EREPORTS...
NEE / —
8 NINEBEE 531427 (7 optimal Conclusion: = HUUTIMOOUT
Fill the Words _ 3@ \ J _ NexlSlEnD FALSE \ Y,
Full Crosswords Star Battle 8 Puzzle Nine Puzzle Stack Permutation Light Up Tic Tac Toe FOLIO Crypto KPA
ALERLRRY (T2 2 (0zee) (cooo) N (creckmate) (5 o) (@) [KA)
ofof1[2[2]2 7Y (@] AROE [oa]a] 1 | oy "{ = THIDCTHBPH
2[1fof1]2]o 7Y (@) =) '.']'j. 1’ 4 B CRESAR
1[1]2[1]0]0 = g% “Re ~ bt e G, Never telles
i t A4 15 e L —— 2242 Who is who? '\Esm»}[smn?
UL S \) \SIXTEEN) | @ng/ \) E = I\ ?) |\ Y,
Binario Campsite 15 Puzzle Sixteen Puzzle Twiddle Checkmate in One Hamiltonian Path Knights and Knaves Crypto KKA
anEnll e cononl (e G 2)) (G- 9)
DEEE 23 [7] | SIS L 3)(/‘ ces 2K -
alz2]1]s A 2 \ X =
N a} ? Max Move: 1 per car g e
2 3 R DENERE Min Color Shift a 1042 =
4f2|1 4 5 L2 Al3 3 0 «1¢ CALCULATE 24
L 1) " . | 2] [¢) | & a'E &) _ J &) _ J
Sudoku2 Sudoku Magic Square Car Painting Slant Kakurasu Hamiltonian Cycle Zebra Logic Game24
4 7 6 8 3 2 12 P o - —
(af3f241)10 (1] 2]4]5)2 Y s : = r"‘_() n.N
il bl M -
1424443 3faf2f1 120m X=
! ¢ il ol [
3t+4t1+2 |6 a|3|1]|2]3 P p— (@}
PEOE0E Where a < pmmmle ?
\2t11314)a \2| 1] 3[4)1 e — et e — CALCULATE ¢
ot SRt \ N e = ~
Sum Skyscraper Skyscraper Symbolic Hard Big Bench Symbolic Hitori Minesweeper Maze NL Navigation Countdown

Figure 1: Overview of the ENIGMATA dataset: 36 puzzle tasks across seven categories, designed to
enhance and evaluate diverse reasoning capabilities in large language models.

existing works targeting at puzzles mainly focus on designing benchmarks for evaluation [13; 10; 12],
lacking the training methods and resources for modern LLMs to tackle this challenge. Existing puzzle
datasets often lack diversity and scalability, covering limited puzzle types and offering little control
over generation or difficulty [12; 10; 11]. Few works target solving puzzles, yet with either designing
a prompting workflow and relying on a code interpreter [14], or training LLMs upon one or a few
puzzles [15; 16], which is difficult to generalize.

Based on the success of the “LLM+RLVR” paradigm, it has become crucial to obtain a large, diverse
and challenging set of verifiable puzzle prompts for training agents to master logical reasoning. To
meet this need, we introduce ENIGMATA —a comprehensive suite that pairs a scalable, controllable
puzzle dataset with a training recipe that equips LLMs with strong puzzle-solving abilities. ENIG-
MATA delivers fully synthesizable data across multiple categories, difficulty levels, and scales with
automatic evaluation, thus offering effortless integration into RL pipelines.

The whole ENIGMATA suite comprises of ENIGMATA-Data, ENIGMATA-Eval, and ENIGMATA-Model.
First, ENIGMATA-Data comprises 36 task types spanning seven broad categories, each probing a
distinct facet of logical reasoning. Every task is backed by an automated generator—verifier pair:
the generator can vary both the quantity and the difficulty of the puzzles it produces, while the
verifier instantly checks the correctness. This design yields three key benefits: 1) It can generate an
unlimited supply of self-verifying puzzle prompts, which plug seamlessly into the RLVR framework
and support long chain-of-thought training. 2) Programmatic difficulty control allows researchers to
mix puzzles in desired difficulty ratios and to conduct fine-grained experiments on how curriculum
design influences reinforcement learning. 3) Generators can emit arbitrary sample counts per task,
enabling studies of task balancing and cross-task generalization.

Based on ENIGMATA-Data, we present the ENIGMATA-Eval benchmark, a diverse collection of
puzzles that challenges even state-of-the-art LRMs such as 04-mini-high, providing a comprehensive
assessment of logical reasoning capabilities. We further introduce the ENIGMATA-Model recipe, a
systematic approach for training high-performance LLMs on puzzle tasks. This recipe incorporates
extensive research on multi-task training strategies, examining various training paradigms and data
mixing techniques regarding data amount and difficulty control. Built upon Qwen-2.5-32B [17], our
resulting models surpass current state-of-the-art LRMs on both the ENIGMATA-Eval benchmark and
the challenging ARC-AGI benchmark, while exhibiting remarkable improvements on out-of-domain
(OOD) puzzle tasks and maintaining robust generalization in mathematical reasoning. When scaling
the base model from Qwen2.5 (32B dense model) to Seed1.5-Thinking [5] (20B/200B Mixture-of-
Expert (MoE) model), we observe a nice generalization from knowledge-orthogonal puzzle data
from ENIGMATA to tasks that require advanced math and STEM domain knowledge and reasoning

skills. Such improvement over a SOTA model seems like a nice “free lunch”, since the puzzle data
are mostly synthetic.

Overall, our key contributions are: 1) We introduce ENIGMATA, the first suite for enabling LLMs
with advanced and comprehensive logical reasoning abilities for solving puzzles. 2) The ENIGMATA
suite consists of ENIGMATA-Data, featuring 36 distinct tasks across 7 categories with controllable
difficulty, scalable generation, and automatic verification, which seamlessly fit the RLVR training
paradigm. 3) We establish ENIGMATA-Eval, a benchmark that rigorously and comprehensively
evaluates puzzle reasoning abilities, and propose the ENIGMATA-Model recipe that trains models
with superior performance on in-domain and OOD puzzle reasoning tasks.

2 Related Work

Reinforcement Learning with Verifiable Rewards. Reinforcement Learning (RL) has become
a key method for improving models’ reasoning capabilities. Unlike Reinforcement Learning with
Human Feedback (RLHF), Reinforcement Learning with Verifiable Rewards (RLVR) removes the
need for a reward model by directly assigning rewards based on objectively verifiable answers [2;
5; 18], which has shown strong performance in mathematics [19; 20; 21], STEM [2; 22], and
coding [18; 5]. For example, mathematical models are rewarded when their answers match standard
solutions [20; 22], while coding models receive rewards when their code passes unit tests [23]. This
method is appealing due to its automation and resistance to reward hacking. Puzzles are particularly
well-suited for RLVR. They can be generated automatically without expert annotations [7; 8; 15],
follow clear rules with algorithmically verifiable solutions [11], and support precise control over
difficulty [15; 10]. However, most prior RLVR research has focused on other domains, overlooking
puzzles’ potential for delivering effective reward signals.

Puzzle Reasoning of LLMs. Unlike knowledge-intensive tasks, puzzles purely test a model’s
reasoning abilities rather than its knowledge or memory capacity [9; 11; 12]. Researchers have
proposed various benchmarks to assess different types of reasoning, including abstract [9; 12],
deductive [10], and compositional reasoning [13]. Some benchmarks support scalable generation
and difficulty control but lack puzzle diversity [12; 10], while others offer diverse formats without
controllable difficulty [11]. A comprehensive benchmark that balances diversity, scalability, and
controllability is still missing. Efforts to improve LLMs’ puzzle-solving abilities mainly fall into
two categories: tool integration and RLVR. Tool-based methods [14] incorporate external resources
such as code or symbolic solvers but do not directly enhance the model’s internal reasoning. Recent
RLVR approaches leverage the scalable generation and verification properties of puzzles [16; 15], but
often focus on a single task type, such as countdown [16] or zebra logic [15], limiting generalization.
ACES [24] generates code synthesis puzzles, while ENIGMATA provides RL-ready generator-verifier
pairs for broader logical reasoning.

3 ENIGMATA-Data: The Puzzle Dataset

In this section, we introduce ENIGMATA-Data, a comprehensive dataset designed to enhance and
evaluate complex reasoning capabilities of LLMs in RLVR training.

3.1 Puzzle Categories

As shown in Figure 1, the ENIGMATA-Data is composed of 36 puzzle tasks of 7 primary categories,
including:

* Crypto Puzzle is designed to evaluate models’ understanding of cryptography and pattern recog-
nition. Tasks such as Crypto KPA require models to decode encrypted messages or solve crypto-
graphic challenges, testing their ability to work with hidden or encoded information.

* Arithmetic Puzzle challenges models to solve problems that require numerical reasoning and basic
arithmetic operations. Puzzles like Game24 test a model’s ability to perform arithmetic calculations
under constraints.

* Logic Puzzle assesses deductive reasoning and the ability to infer conclusions based on premises.
Puzzles like Knights and Knaves test a model’s logical thinking through challenging scenarios
that require applying logical rules to solve problems.

* Grid Puzzle includes tasks that challenge models to solve problems involving structured grids.
Puzzles in this category, such as Sudoku, require models to reason about numbers, patterns, and
placements in a grid format, testing both logical and spatial reasoning abilities.

* Graph Puzzle involves tasks where models must reason about nodes, edges, and paths within
graph structures. Challenges such as Hamiltonian Path test a model’s ability to understand and
traverse graphs, evaluating its capacity for path-finding and network navigation.

* Search Puzzle includes tasks that require models to explore a state space efficiently to find a
correct solution under specific rules and constraints. Puzzles in this category, such as Minesweeper,
challenge models to simulate or search through potential action sequences, evaluate game or puzzle
states, and make optimal decisions.

* Sequential Puzzle focuses on tasks that involve understanding and predicting sequences of steps.
Examples include 8 Puzzle, which test models’ abilities to manipulate objects in a sequence or
follow a series of logical steps to reach a solution.

3.2 Data Construction

We outline our three-phase data construction pipeline
for ENIGMATA-Data: Table 1: Task statistics in ENIGMATA-Data.
Phase I: Tasks Collection and Design. First, we

curate and design 36 logic puzzle tasks that demand Data Type Task Number
complex reasoning capabilities. Among these, 30 All Puzzles 36
tasks are scalable with custom generators for creating Auto-Generated Puzzles 30
additional puzzle ipstances, while th_e 1_remaining 6 Crypto Puzzle 9
tasks draw puzzle instances from existing datasets. Atithmetic Puzzle 2
Most tasks feature multi-step reasoning that inte- Logic Puzzle 3
grates various complex reasoning skills. Grid Puzzle 10

. h Puzzl 4
Phase II: Auto-Generator and Verifier Develop- Sé:ﬁzh PILZZZZF R 7
ment. We equipped 30 tasks with custom auto- Sequential Puzzle 3

generators for scalable data creation, and all 36 tasks
with manually validated auto-verifiers that evaluate
solution correctness or provide reward scores for rea-
soning chains.

Phase III: Sliding Difficulty Control. For each puzzle task, we identify key variables that control
difficulty, such as grid size and blank cell count in Binario. These variables serve as parameters in
our auto-generator to create puzzle instances across difficulty levels. We evaluate model performance

on these puzzles using the pass@k= Ep;opjems {1 — ((fb))} metric (n = 200; k£ = 1, 10, 100) follow-

"
ing [25]. By analyzing performance trends across different parameter settings, we establish three
difficulty levels (Easy, Medium, Hard) for each task.

3.3 Task Statistics

Table 2 shows that ENIGMATA stands out as the only dataset that encompasses multiple task categories,
offers scalability, provides automatic verification, and is publicly available. Additionally, it uniquely
employs the RLVR approach to fundamentally enhance models’ puzzle reasoning capabilities. Table 1
presents the distribution of tasks across the ENIGMATA.

3.4 ENIGMATA-Eval

We develop ENIGMATA-Eval by systematically sampling from our broader dataset. For each task, we
aimed to extract 50 instances per difficulty level (Easy, Medium, Hard). However, due to inherent
constraints in some tasks, we collected a total of 4,758 puzzle instances rather than the theoretical
maximum of 5,400. This discrepancy arises because some tasks generate fewer than 50 instances per

Table 2: Comparison of different puzzle reasoning benchmarks.

Resources Categories Tasks Scalable Auto-Verifier Trainable Solution
KOR-Bench [11] 5 125 X v X N/A
NPR [12] 1 1 X X X N/A
ZebraLogic [10] 1 1 v v v N/A
SearchBench [13] 1 11 v v X N/A
FCoReBench [14] 5 40 v v X Prompt-based
Logic-RL [15] 1 1 v v v RLVR
ENIGMATA 7 36 v v v RLVR

difficulty level, while others rely on manually collected and annotated data rather than auto-generation.
Importantly, we ensured no data leakage between training and evaluation sets by implementing strict
separation protocols during the sampling process.

4 ENIGMATA-Model: The Training Recipe

Developing advanced logical reasoning in language models requires a carefully structured training
approach that develops diverse reasoning skills while avoiding overfitting to specific problem types.
Our training methodology follows a two-stage process designed to systematically build reasoning
abilities: (1) rejection fine-tuning to establish foundational reasoning patterns, and (2) multi-task RL
to develop general reasoning skills that transfer across diverse problem domains.

4.1 Rejection Fine-tuning

Directly applying reinforcement learning to a base model often results in training instability and
may not unlock the model’s full performance potential [2]. To address this, we begin with rejection
fine-tuning (RFT), i.e., leveraging high-quality solutions during supervised fine-tuning (SFT) to
establish solid foundational reasoning patterns. We strategically combine math problems with puzzles
in our training data, as mathematics elicits diverse reasoning patterns and contribute to the model
generalization [26].

For puzzles, we uniformly sample tasks and difficulty levels from the ENIGMATA dataset to ensure a
comprehensive coverage and balanced distribution of reasoning patterns. We also include the training
data of the ARC-AGI puzzle [9; 27] in the RFT data, since it is too difficult to learn without RFT as
cold-start. For each puzzle instance, we utilize DeepSeek-R1 [2] to generate 8 candidate solutions,
from which we select the correct solution for RFT. The mathematical component consists of carefully
curated examples from a high-quality R1-distilled mathematical dataset [28]. Throughout RFT, we
maintain a balanced 1:1 ratio between puzzles and mathematical problems to ensure comprehensive
reasoning development across domains. Detailed implementation and dataset specifications are
provided in Appendices B and C.

4.2 RL with Verifiable Puzzles

We use VC-PPO [29], a PPO variant [30], to train our models. Each of the 36 tasks in ENIGMATA has
an automated verifier v; that instantly scores a response as correct or incorrect. For 30 tasks we also
have a generator g; that can create examples at any difficulty; the other 6 tasks draw from fixed pools
F;. For each task 7 and difficulty level d € D;, we choose how many examples V; 4 to use. Then:

> 9i(Nia,d), i < 30,
g = deD;
' > Sample(Fy, min(N; 4, |[F{])), i > 30.
deD;

The full training set is S = |, s;, with total size |S| = >, |s;|. By changing the IV; 4, we can easily
adjust: 1) How many examples come from each task, 2) The mix of easy vs. hard items, 3) Overall
dataset size. During training, each generated example is fed to its verifier v;, which returns a reward
that VC-PPO uses to update the policy. This loop provides a fully automatic RL pipeline for puzzle
reasoning.

4.3 Multi-task Training

Developing general logical reasoning is hard because different puzzles require different thinking
skills. To build strong, transferable problem-solving abilities, we explore two multi-task training
methods: Mix-training RL and Multi-stage RL, since single-task training often leads to narrow
expertise and poor transfer to new puzzles [15].

A rich diversity of tasks can significantly enhance generalization and actively prevent overspecializa-
tion [2]. Therefore, we employ Mix-training RL to integrate multiple puzzle types simultaneously
during the training process. Our methodology involves a meticulously constructed dataset that
integrates three critical components: a) The training split of ENIGMATA, featuring balanced task
and difficulty distributions; b) The public training set of ARC-AGI 1 and 2, which improve the
generalization of existing reasoning abilities to unseen tasks; and ¢) AIME mathematical problems
(1983-2023), which are difficult enough to elicit diverse reasoning patterns and enhance generaliza-
tion. A strategic 1:1 puzzle-to-mathematics ratio is maintained throughout this training process to
foster the development of complementary reasoning systems within the model.

Mix-training RL offers broad exposure to different puzzle types, but the varied reasoning skills
required can cause conflicts between tasks. To address this, we adopt Multi-stage RL, a curriculum-
based approach that builds core skills before introducing new challenges. For difficult tasks like
ARC-AGI, we use a two-phase strategy: 1) train intensively on ARC-AGI 1, 2, and AIME until the
model generalizes well and performance stabilizes; 2) gradually introduce ENIGMATA-Data while
retaining earlier data to avoid forgetting. This step-by-step method helps the model learn complex
reasoning more effectively and maintain strong performance on earlier tasks. More implementation
details are provided in Appendix B.

5 Experiments

5.1 Experiment Setup

We adopt several challenging reasoning benchmarks for evaluation: ENIGMATA-Eval, and abstract
reasoning challenges ARC-AGI 1 [9] and ARC-AGI 2 [27] known for their extreme difficulty for
LLMs. We also include the knowledge-orthogonal reasoning benchmark KOR-Bench [11] and AIME
2024 to monitor OOD behaviors. We evaluate each AIME problem 32 times and others 4 times,
reporting the average performance.Baselines are described in Appendix E. We train our models
from Qwen2.5-32B-Instruct [17], a solid starting point for training strong reasoning models [31; 2].
After acquiring the RFT model (Qwen2.5-32B-RFT), we leverage the Mix-Training approach with
370 training steps and get the RL model (Qwen2.5-32B-ENIGMATA), showing superior overall
performance in our experiments. Note that each PPO step performs multiple gradient updates by
iterating over 4 mini-batches derived from the training batch. Details are in Appendix C.

5.2 Results

According to Table 3, our model outperforms most of the public models on ENIGMATA-Eval with
32B parameters, demonstrating the effectiveness of our dataset and training recipe. Besides, our
model stands out on the challenging ARC-AGI benchmark, surpassing strong reasoning models such
as Gemini 2.5 Pro, 03-mini, and ol. Additionally, both RFT and multi-task RL training strategies
yield significant performance gains on OOD benchmarks. This indicates that our training recipe
effectively enhances the model’s general logic reasoning abilities and can generalize to unseen tasks.
Moreover, after RL training, our models still maintain comparable math reasoning abilities gained
from rejection fine-tuning, showing that our training strategy preserves general reasoning capabilities
while enhancing logic-specific skills.

Next, let’s dive into detailed analysis across reasoning categories in ENIGMATA-Eval. In Table 4,
Qwen2.5-32B-ENIGMATA demonstrates exceptional performance in structured reasoning categories,
particularly excelling in Crypto, Arithmetic, and Logic tasks. This suggests our training approach
effectively develops capabilities in rule-based reasoning with clear constraints and patterns. Besides,
our model shows competitive performance in search tasks, outperforming most baseline models.
Search problems require strategic exploration of solution spaces and planning capabilities. The strong
performance suggests our approach effectively develops these higher-order reasoning skills. Notably,

Table 3: Performance of reasoning, generic, and our trained LLMs on reasoning benchmarks.

Puzzle Math

Model . .

In-Domain Out-of-Domain AIME 24

ARC-AGI1 ARC-AGI2 ENIGMATA-Eval KORBench
04-mini-high 54.7 2.6 65.1 72.7 92.3
03-mini-high 25.8 0.4 59.9 69.6 79.3
ol 29.0 0.4 54.9 69.9 78.0
DeepSeek-R1 17.8 0.2 49.2 71.7 60.2
Gemini 2.5 Pro 22.7 14 50.6 68.2 90.3
Claude-3.7-Sonnet-Thinking 37.6 1.4 53.2 67.8 60.3
DS-R1 Distilled Qwen 32B 7.9 0.0 31.1 63.5 72.0
QwQ-32B 7.0 0.0 43.8 61.8 69.2
Grok-2-1212 7.5 0.0 13.6 54.9 16.7
GPT-40-1120 7.3 0.0 14.2 57.9 10.0
Claude 3.7 Sonnet 12.9 0.0 22.7 56.9 23.0
Qwen2.5-32B-Instruct 6.0 0.0 12.6 54.7 16.6
Qwen2.5-32B-RFT 8.4 0.0 46.6 61.0 62.0
Qwen2.5-32B-ENIGMATA 32.8 0.6 62.6 65.0 60.6

Table 4: Performance of reasoning LLMs, generic LLMs, and our trained LLMs on ENIGMATA-Eval.

Model Crypto Arithmetic Logic Grid Graph Search Sequential Overall
04-mini-high 97.0 93.3 822 710 62.4 64.3 34.0 65.1
03-mini-high 88.1 76.9 743 655 63.1 61.5 29.6 59.9
ol 97.8 80.0 60.1 633 56.2 50.9 23.6 54.9
DeepSeek-R1 82.7 77.1 714 511 62.6 384 19.5 49.2
Gemini 2.5 Pro 75.2 95.4 71.5 589 37.3 494 17.5 50.6
Claude-3.7-Sonnet-Thinking 81.5 75.4 76.6 577 50.5 494 26.4 53.2
DS-R1 Distilled Qwen 32B 16.7 473 629 382 36.4 124 18.8 31.1
QwQ-32B 59.0 65.7 744 4715 473 28.2 244 43.8
Grok-2-1212 10.1 9.4 50.0 128 17.6 39 6.4 13.6
GPT-40-1120 26.2 1.9 34.5 17.8 19.3 6.0 39 14.2
Claude 3.7 Sonnet 38.1 16.7 60.0 229 224 7.8 15.0 22.7
Qwen2.5-32B-Instruct 4.0 10.3 464 153 7.3 2.5 8.2 12.6
Qwen2.5-32B-RFT 62.0 71.7 716 513 55.1 39.3 18.4 46.6
Qwen2.5-32B-ENIGMATA 96.0 93.7 90.2 626 54.0 70.4 29.7 62.6

we observe a consistent performance hierarchy across categories for most models. Tasks in Crypto
and Arithmetic tend to yield the highest accuracy, while spatial tasks and sequential tasks remain
more difficult. These challenges point to promising directions for future work.

5.3 Generalization with Scaling: Free Lunch from ENIGMATA

Can logical reasoning data, such as puzzles that do not require domain knowledge, benefit general
reasoning capabilities? We do not observe such a generalization for Qwen2.5-32B. Therefore, we
scale the experiments to a much larger model. We follow Seed1.5-Thinking [5] and train from the
same Mixture-of-Experts (MoE) model in the RL stage, which features 20B activated and 200B total
parameters. To make a fair comparison between Seed1.5-Thinking, we adopt the same base model
(20B/200B) and the same RL training data except for 20K ENIGMATA-Data, and train the models for
comparable PPO steps.

Surprisingly, the results in Table 5 show that our dataset enhances general capabilities like math and
STEM problem-solving. When compared to Seed1.5-Thinking, a leading reasoning model, additional
training with ENIGMATA, i.e., Seed1.5-Thinking-ENIGMATA, generally improves performance on
AIME 2024 and 2025, BeyondAIME [5] (an expert-curated, more challenging evaluation dataset), and
GPQA Diamond [32]. Given the difficulty of further improving SoTA models like Seed1.5-Thinking,
simply incorporating ENIGMATA’s synthetic puzzle data during the RL training stage appears almost

Table 5: Results on benchmarks for general reasoning capabilities. This demonstrates that additional
RL training on ENIGMATA-Data generalizes well on larger models, showing the benefits of puzzle
data for math and STEM reasoning.

Model AIME 2024 AIME 2025 BeyondAIME GPQA Diamond
04-mini-high 93.4 92.7 55.7 81.4
03-mini-high 87.3 86.5 63.6 79.7
ol 74.3 79.2 50.0 78.0
DeepSeek-R1 79.8 65.0 42.4 71.5
Seed1.5-Thinking 86.7 74.0 48.0 77.3
Seedl .S—Thil’lking—ENlGMATA 87~5(+0.8) 75.9(4’_1‘9) 48.4(+0,4) 78'1(-&-048)
60 Enigmata-Eval ARC-AGI1 ARC-AGI2 AIME 2024 KOR-Bench
60.0
3 / o6 oA | [T
c
© L 57.5 64
E 55 —e— Data Points 0.4
B --- Stagel 55 0 /\
s 0.2 '
3]
1] E— 0.0 52.5 62
0 20 0 20 0 20 0 20 0 20

Training Data(K) Training Data(K) Training Data(K) Training Data(K) Training Data(K)

Figure 2: Impact of training data size in the second stage of Multi-stage Training on model perfor-
mance across different benchmarks. The blue dashed line represents model performance after the
first training stage, while the red solid line shows performance after the second stage.

like a “free lunch” for expanding the capability spectrum of reasoning models, even leading to
generalization improvements in general advanced reasoning.’

5.4 Ablation Studies

Training Data Size. We study the impact of varying sizes of ENIGMATA-Train data during the sec-
ond stage of Multi-stage Training on model performance. To ensure fair comparison, all checkpoints
were evaluated using models obtained at step 150 from the sample stage-1 checkpoint, with equal
sampling across all difficulty levels. As shown in Figure 2, first, a small amount of ENIGMATA-Train
data in the second stage significantly improves ENIGMATA-Eval performance while better preserving
first-stage knowledge and OOD performance. Second, increasing ENIGMATA-Train data progres-
sively enhances in-domain ENIGMATA-Eval performance. Third, excessive ENIGMATA-Train data
leads to catastrophic forgetting and slightly degraded OOD performance.

Data Difficulty Control. We study how the distribution of data difficulty affects performance. As
described in § 4.2, we set the data size at different difficulty levels as NZ. With N; = 400 per task,
we compare two ratios in Multi-stage Training’s second stage: balanced (N;* : Nmed : Nhard=1:7:1)
versus medium-focused (INV;* : Nmed ; Nhard = 2:6:2). The latter setting quantifies how extreme
samples can undermine RL training [20]. We also compare with historical reward variation (HRV) [33]
as baseline data selection strategy, using the same stage-1 checkpoint and 150 second-stage steps. As
shown in Table 6, the balanced difficulty ratio (1:1:1) enables the model to demonstrate more robust
complex reasoning performance. Also, our effortless difficulty control method based on difficulty
tags in ENIGMATA data performs comparably to HRV on ENIGMATA-Eval while delivering superior
results on OOD benchmarks.

Multi-task Training. For the two training paradigms in § 4.3, we evaluate the impact of SFT/RFT
using two variants: 1) SFTp,r, which excludes three tasks (Countdown, Minesweeper, Light Up)
to test transfer ability; and 2) SFTay;, which includes all tasks as a full baseline. To ensure fair
comparison, all checkpoints were trained for identical total steps: (1) Multi-Stage training consisting
of 200 steps in stage 1 and 225 steps in stage 2; and (2) Mix-Training using the combined dataset

3Note that, we primarily experiment upon Qwen2.5-32B for further analysis due to the prohibitive resources
required to train a 20B/200B model.

Table 6: Comparison between different data mixing strategies in the stage 2 of Multi-stage RL.

Puzzle Math
Mixing Method . .
In-Domain Out-of-Domain AIME 24
ARC-AGI1 ARC-AGI2 ENIGMATA-Eval KORBench
HRV 347 0.1 57.7 60.1 50.1
Easy:Medium:Hard = 1:1:1 34.5 0.6 58.5 64.0 56.6
Easy:Medium:Hard = 2:6:2 35.1 0.3 58.9 63.8 48.0

Table 7: Comparison between different training strategies.

Puzzle Math
Model . .
In-Domain Out-of-Domain AIME 24
ARC-AGI1 ARC-AGI2 ENIGMATA-Eval KORBench
Mix Training + SFT-Part 22.7 0.0 46.7 56.7 51.8
Multi-Stage + SFT-Part 27.5 0.0 56.1 51.6 45.9
Mix Training + SFT-All 34.5 0.1 62.6 60.4 58.8
Multi-Stage + SFT-All 334 04 61.1 60.2 55.6

across all 425 steps. As shown in Table 7, first, Multi-Stage and Mix-Training approaches show
complementary strengths. Multi-Stage builds deeper task-specific reasoning, while Mix-Training
improves generalization. Second, With limited pre-training data, Multi-Stage transfers better to
unseen tasks, especially complex ones like ENIGMATA and ARC-AGI, reflecting curriculum learning
benefits. Third, Mix-Training generalizes better to OOD tasks, suggesting that diverse training helps
models learn broader reasoning strategies beyond specific tasks.

Moreover, Figure 4 shows the training dynamics of Mix-Training RL and Multi-Stage RL. We observe
a positive correlation between rewards and response length. Both approaches achieve similar final
rewards, showing the signs of test-time scaling effect [34; 35] where models learn to explore more
tokens to find better solutions. However, the more volatile response length under Multi-Stage RL
suggests instability in generation. In contrast, Mix-Training RL yields more consistent outputs with
smoother length curves, indicating greater training stability.

5.5 Analysis

How does SFT affect RL training? We further analyze the influence of SFT on RL training to
explore the reason behind the performance gap in Table 4.3. We represent the reward curves across
different training steps for different training approaches in Figure 3. For simple tasks like Countdown,
all methods achieve similar improvements, suggesting SFT is not essential for these tasks. For
medium-complexity tasks like Minesweeper, Mix-Training struggles without SFT, while Multi-stage
RL still learns effectively. When the task is included in SFTy;, both approaches start from a higher
baseline and quickly optimize to near-perfect accuracy. This pattern is typical for tasks with fixed
solution patterns or shortcuts once the model grasps the solving approach, performance improves
dramatically. For high-complexity tasks like Light Up, the combination of comprehensive SFT and
Multi-stage RL dramatically outperforms all other approaches, particularly for difficult variants of the
task. Interestingly, Mix-Training RL without relevant SFT (c) fails entirely, highlighting that complex
reasoning tasks require both strong foundational knowledge (from relevant SFT) and structured
learning approaches (from Multi-stage RL) to achieve optimal results.

Response Length Analysis. Figure 5 presents the
distribution of reasoning token lengths for both cor- Taple 8: Impact of code utilization on
rect and incorrect responses in ARC-AGI 1. Tasks Qwen2.5-32B-ENIGMATA accuracy

where the model produces more concise reasoning

showed significantly higher accuracy compared to Condition ARC-AGI1 ENIGMATA
th.ose': requiring long§r reasoning (fhal'ns. This anatl— Overall 345 626
ysis identifies potential inefficiencies in the model’s .

. L . With code 12.5 41.8
reasoning process and highlights opportunities for 400t code 357 63.6

reasoning optimization.

® Hard @ Medium () Easy
SFTpart + Multi-stage RL SFT,; + Multi-stage RL SFTpae + Mix-Training RL SFT,; + Mix-Training RL

1.00

@]
075 = S " 2
0.50 E E E g
0.25 . . . g
° 0.00 T T T T T T T T >
T 1.00 A 4 4 — §
g 075 -/ = g . 3
o 0.50 E E E s
& 0.25 - . . . §
g 000 T T T T T T T T T T T T 2
< 1.00
0.75 - E E E &
0.50 - E E E Es
0.25 _/]] b :
000 T T T T T T T T T T T
0 75 150 2250 75 150 2250 150 300 4250 150 300 425

Training Steps Training Steps Training Steps Training Steps
(a) (b) (c) (d)

Figure 3: Learning curves across training approaches for representative puzzle tasks. Each row
represents a different task, and each column represents a different training approach. The curves
show how average reward changes with training steps for different difficulty levels.

Mix-Training RL

20k 1 Token Length Analysis Token Length vs Success Rate
—— Response Length N [0} 1.0 o
Average Reward 5 [Incorrect “r'u' w
15k g 00| w1 correct < o 3
5 5
\‘ J”M 0 S 100 § —— Fitted Curve o
10k] =)
:CSD IL/ E o) I s B s @ 0.0 aillic S

S 5k _1‘;" 0 10000 20000 30000 10k 20k 30k
ft . 2 I
gz()k Multi-Stage RL 19 &
o —— Response Length o B 0] 1.0 . 3
a Average Reward 5 [Incorrect 5 w —— Fitted Curve | &
g 15k vz € [Correct e« Accuracy b
« \/‘4\/’ i A 550 #0.5 - 2
O o [}
: M >
‘ ol] 0.0 o
5k 1 0 10000 20000 30000 10k 20k 30kw
0 200 400 Thinking Token Length Thinking Token Length w
Training Steps (a) (b)

Figure 4: The response length Figure 5: Performance analysis of Qwen2.5-32B-ENIGMATA on
and reward curves during Mix- ARC-AGI 1: (a) distribution of reasoning token lengths for correct
Training RL and Multi-Stage RL and incorrect responses, (b) and success rate by reasoning token
training. length.

Code Utilization in Puzzle Reasoning. We investi-

gate whether code utilization enhances model performance in reasoning tasks. Using pattern matching,
we identified code elements in model outputs and classified responses accordingly. According to
Table 8, code utilization actually hindered the performance on puzzle tasks. This suggests that current
models fail to effectively use the code without executing it for complex reasoning.

6 Conclusion

In this paper, we present ENIGMATA, a suite for equipping LLMs with advanced puzzle reason-
ing. ENIGMATA-Data features 36 tasks across seven reasoning categories, with its scalable generation,
automated verification, and adjustable difficulty. We also introduce the ENIGMATA-Eval benchmark
for assessing puzzle reasoning abilities and guiding research on generalizable reasoning models.
ENIGMATA-Model, trained with RLVR, demonstrates its superior performance and exhibits ro-
bust generalization and reasoning skills. We hope ENIGMATA serve as a solid foundation for the
community to push forth the research on reasoning models.

10

References
[1] OpenAl. Learning to reason with llms, 2024.

[2] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[3] Google. Gemini 2.5: Our most intelligent ai model, 2025.
[4] Anthropic. Claude 3.7 sonnet and claude code, 2025.

[5] ByteDance Seed, Yufeng Yuan, Yu Yue, Mingxuan Wang, Xiaochen Zuo, Jiaze Chen, Lin Yan,
Wenyuan Xu, Chi Zhang, Xin Liu, et al. Seed-thinking-v1. 5: Advancing superb reasoning
models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

[6] Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A di-
verse, challenging, and verifiable synthetic dataset for coding. arXiv preprint arXiv:2503.02951,
2025.

[7] Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato,
Anikait Singh, Chase Blagden, Violet Xiang, Dakota Mahan, et al. Big-math: A large-scale,
high-quality math dataset for reinforcement learning in language models. arXiv preprint
arXiv:2502.17387, 2025.

[8] Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song,
Dian Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging,
decontaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

[9] Frangois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

[10] Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. arXiv
preprint arXiv:2502.01100, 2025.

[11] Kaijing Ma, Xinrun Du, Yunran Wang, Haoran Zhang, Zhoufutu Wen, Xingwei Qu, Jian Yang,
Jiaheng Liu, Minghao Liu, Xiang Yue, et al. Kor-bench: Benchmarking language models on
knowledge-orthogonal reasoning tasks. arXiv preprint arXiv:2410.06526, 2024.

[12] Zixuan Wu, Francesca Lucchetti, Aleksander Boruch-Gruszecki, Jingmiao Zhao, Carolyn Jane
Anderson, Joydeep Biswas, Federico Cassano, Molly Q Feldman, and Arjun Guha. Phd
knowledge not required: A reasoning challenge for large language models. arXiv preprint
arXiv:2502.01584, 2025.

[13] Nasim Borazjanizadeh, Roei Herzig, Trevor Darrell, Rogerio Feris, and Leonid Karlinsky. Nav-
igating the labyrinth: Evaluating and enhancing llms’ ability to reason about search problems.
arXiv preprint arXiv:2406.12172, 2024.

[14] Chinmay Mittal, Krishna Kartik, Mausam, and Parag Singla. Fcorebench: Can large language
models solve challenging first-order combinatorial reasoning problems?, 2025.

[15] Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yugian Hong, Bryan Dai, Joey Zhou,
Kai Qiu, Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based
reinforcement learning. arXiv preprint arXiv:2502.14768, 2025.

[16] Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

[17] Qwen Team. Qwen2.5: A party of foundation models, September 2024.
[18] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,

Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

11

[19] Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang,
TianTian Fan, Zhengyin Du, Xiangpeng Wei, et al. Vapo: Efficient and reliable reinforcement
learning for advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025.

[20] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning
system at scale. arXiv preprint arXiv:2503.14476, 2025.

[21] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

[22] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

[23] Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. arXiv
preprint arXiv:2503.18470, 2025.

[24] Julien Pourcel, Cédric Colas, Gaia Molinaro, Pierre-Yves Oudeyer, and Laetitia Teodorescu.
Aces: Generating a diversity of challenging programming puzzles with autotelic generative
models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang,
editors, Advances in Neural Information Processing Systems, volume 37, pages 67627—67662.
Curran Associates, Inc., 2024.

[25] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[26] Wei Shen, Guanlin Liu, Zheng Wu, Ruofei Zhu, Qingping Yang, Chao Xin, Yu Yue, and Lin
Yan. Exploring data scaling trends and effects in reinforcement learning from human feedback.
arXiv preprint arXiv:2503.22230, 2025.

[27] Greg Kamradt. Abstraction and reasoning corpus for artificial general intelligence v2 (arc-agi-2).
https://github.com/arcprize/ ARC-AGI-2, 2025. Accessed: 2025-05-12.

[28] Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu,
Lifu Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang.
Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond. arXiv preprint
arXiv:2503.10460, 2025.

[29] Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in
long-cot? value optimization holds the secret. arXiv preprint arXiv:2503.01491, 2025.

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[31] Qwen Team. Qwqg-32b: Embracing the power of reinforcement learning, March 2025.

[32] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[33] Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng,
Xuehai He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large
language models with one training example. arXiv preprint arXiv:2504.20571, 2025.

[34] Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[35] Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang,
Irwin King, Xue Liu, and Chen Ma. What, how, where, and how well? a survey on test-time
scaling in large language models. arXiv preprint arXiv:2503.24235, 2025.

12

[36] Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hiillermeier. A survey of reinforcement
learning from human feedback. arXiv preprint arXiv:2312.14925, 10, 2023.

[37] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[38] OpenAl. GPT4 technical report. arXiv preprint arXiv:2303.08774, 2023.
[39] x.ai. Bringing grok to everyone, 2025.

[40] jeggers. full_crossword_puzzles. https://huggingface.co/datasets/jeggers/full_
crossword_puzzles. Accessed: 2025-05-15.

[41] Qiming Bao, Gael Gendron, Alex Yuxuan Peng, Wanjun Zhong, Neset Tan, Yang Chen, Michael
Witbrock, and Jiamou Liu. Assessing and enhancing the robustness of large language models
with task structure variations for logical reasoning. arXiv preprint arXiv:2310.09430, 2023.

[42] Gaél Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are
not strong abstract reasoners. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, IJCAI *24, 2024.

[43] BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities
of language models. Transactions on Machine Learning Research, 2023.

[44] Roxana Szomiu and Adrian Groza. A puzzle-based dataset for natural language inference. arXiv
preprint arXiv:2112.05742, 2021.

[45] Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
first-order logic. arXiv preprint arXiv:2209.00840, 2022.

13

https://huggingface.co/datasets/jeggers/full_crossword_puzzles
https://huggingface.co/datasets/jeggers/full_crossword_puzzles

A Reward Curves Across Individual Tasks in ENIGMATA

We conducted a detailed analysis of our model’s learning dynamics by examining reward curves
across all individual tasks in the ENIGMATA dataset. Figure 6 presents these learning trajectories,
revealing several important patterns in how models acquire puzzle-solving capabilities.

The reward curves across tasks reveal three distinct learning patterns:

1. Gradual Mastery Tasks: A number of tasks, such as Light Up and Zebra Logic show smooth
and consistent reward gains over the course of training. These tasks typically involve complex
reasoning chains or require integrating multiple constraints, making them suitable for long-horizon
learning. The steady upward trend suggests the agent is progressively refining its decision-making
strategy through extended exploration.

2. Difficulty-Stratified Tasks: Tasks like Car Painting, Star Battle, and Hitori demonstrate
clear separation between difficulty levels: easy instances are learned relatively early, while medium
and hard variants require significantly more training to improve. This stratification indicates that the
difficulty scaling mechanism is effective and yields meaningful distinctions in learning complexity.

3. Stagnant or Low-Learning Tasks: Some tasks, including Big Bench Symbolic and Magic
Square, show little to no improvement across all difficulty levels, particularly on the hard setting. This
suggests that these tasks may suffer from challenges such as sparse rewards, long-term dependencies,
or overly complex solution spaces that PPO struggles to handle without additional guidance.

These learning patterns offer actionable insights for curriculum design. Tasks that are mastered early
can serve as warm-up phases to bootstrap the agent’s core skills, while more challenging tasks can be
introduced later to push reasoning boundaries. Understanding which tasks exhibit positive transfer or
potential interference is key to optimizing multi-task training regimes.

Table 9: Training data distribution across different strategies and stages.

Method ENIGMATA-Data ARC-AGI1 ARC-AGI2 AIME
Mix-Training 11557 3160 5934 1738
Multi-Stage Stage 1 0 3160 5934 869
Multi-Stage Stage 2 11557 395 989 869

B Training Dataset Details

Rejection Fine-tuning. For the puzzle part of the Rejection Fine-tuning (RFT) dataset, we sample
1,000 instances from each task in the ENIGMATA dataset. We also include synthetic ARC-AGI data®.
We then use DeepSeek-R1 to generate 8 candidate solutions for each instance and select one correct
solution per instance. The final puzzle dataset contains 12,041 high-quality puzzle samples. For the
mathematical part of the RFT dataset, we collected mathematical problems from light-R1 [28] that
were answered by DeepSeek-R1. We included all data from stage2 of light-R1 and sampled 3,000
additional problems from stagel, resulting in a total of 12,533 mathematical samples.

Reinforcement with Verifiable Puzzles. For our reinforcement learning with verifiable puzzles,
we implemented two training paradigms. The detailed data mixing ratio is shown in Table 9 and
introduced below. As for the Mix-Training, the dataset for this approach consists of three components:
(1) ENIGMATA-Train: 400 samples per task with equal distribution across difficulty levels (2) ARC-
AGI 1 and 2: Official datasets upsampled 8x to address specific reasoning challenges (3) AIME
problems from 1983-2023 upsampled 2x as the mathematical component We maintained a 1:1 puzzle-
to-math ratio throughout training to ensure balanced exposure to different reasoning types. As for
the Multi-stage RL, this approach follows a curriculum strategy with two distinct stages: (1) Stage

*https://github.com/neoneye/arc-dataset-collection/blob/main/dataset/ ARC-Heavy/readme.md

14

1: Training on ARC-AGI 1 and 2 (upsampled 8x) along with AIME problems (upsampled 1x) (2)
Stage 2: Incorporating ENIGMATA-Train while maintaining the datasets from Stage 1 (ARC-AGI 1,
ARC-AGI 2, and AIME) without additional upsampling to prevent catastrophic forgetting

C Implementation Details

We fine-tune the model on this balanced dataset for 2 epochs using a maximum sequence length
of 32768 tokens and a learning rate of le-5. establishing a strong reasoning foundation before
proceeding to reinforcement learning.

We adopt a variant of Proximal Policy Optimization (PPO) [30], i.e., VC-PPO [29], to train our
reasoning agent on verifiable puzzles. This variant introduces several modifications tailored to
long-chain-of-thought generation, which improves both training stability and performance over long
sequences.

Standard PPO optimizes the following clipped objective:

ey

Topo(0) = E(ga)~D,0<,~rmey, lmin (rt(e)/it, clip(r(0),1 — e, 1+ E)At>

mo(ot|g,0<¢)
Weold(0t|q70<t)

compute flt using Generalized Advantage Estimation (GAE) [30]:

where r;(0) = is the importance sampling ratio, and A, is the estimated advantage. We

GAE("’ Z (vA) (5t+l7 where &, = R + vV (s141) — V(s1). 2)
1=0

To optimize long-CoT training, we follow the VC-PPO and adopt the following modifications to the
standard PPO algorithm:

* Removing KL Divergence Constraint. In traditional RLHF [36], a KL penalty is used to prevent
the policy from diverging too far from the reference model. However, in long-CoT settings, this
constraint often limits exploration and learning capacity. Following VC-PPO, we remove the KL
term by setting k1_loss_weight = 0.0, allowing the model to freely deviate from the initial policy
distribution.

* Value Pretraining. We observe that initializing the value model from the reward model causes
unstable training due to their objective mismatch. To address this, we adopt value pretraining: we
first sample responses from a fixed SFT policy 7y, compute Monte Carlo returns, and train the
value model until the loss and explained variance converge. The pretrained value model is then
used to initialize the critic for PPO.

* Decoupled GAE. To reduce reward decay and improve optimization over long token sequences,
we use different A values for the policy and the value model. Specifically, we set Aciic = 1.0 for
unbiased value estimation, and Apolicy = 0.95 to improve sample efficiency and learning speed.

Training Details. We set the maximum prompt length to 6,144 tokens and the maximum response
length to 26,624 tokens. PPO training is conducted for 425 steps with a batch size of 4,096 and
a mini-batch size of 512. The actor and critic are optimized using Adam, with learning rates of
1 x 1076 and 2 x 1079, respectively, and a linear warm-up schedule over 10 steps. Before PPO
begins, we perform value pretraining [29] for 15 steps by collecting Monte Carlo returns from a
fixed SFT policy and fitting the value model to these returns. Our implementation is based on the
VeRL > framework. We enable gradient checkpointing for both the actor and the critic to reduce
memory consumption. Rollouts are generated using temperature sampling (7 = 1.0), with enforced
end-of-sequence tokens. We leverage vLLM [37] for efficient batched decoding with 256 rollout
slots and paged attention.

15

Table 10: Cross-domain transfer when models are trained via SFT on a single puzzle domain. Entries
show absolute accuracy improvements (in percentage points) on held-out domains relative to the
Qwen2.5-32B-RFT baseline. Parentheses mark in-domain evaluation.

Train Domain Crypto Arithmetic ~ Logic Grid Graph Search Sequential Avg.

Search +6.67 +14.37 +14.71 +11.22 +25.97 (+26.38) +8.96 +13.65
Sequential +10.67 +18.37 +12.49 +6.33 +21.61 +3.88 (+9.16) +12.23
Grid +9.33 +10.70 +13.38 (+25.07) +25.25 +1.37 +9.16 +11.53
Graph +5.33 +15.03 +10.04 +5.07 (+37.79) +4.38 +7.38 +7.87
Crypto (+51.33) +16.03 +10.93 +4.70 +16.15 +0.38 +7.77 +9.33
Arithmetic +4.33 (+58.70) +8.49 -1.97 +11.25 -1.12 +4.90 +4.31
Logic +0.33 +2.37 (+18.27) -2.11 +6.70 -0.50 +3.21 +1.67

D Cross-Domain Transfer Study

Table 10 details how puzzle skills transfer when supervised fine-tuning is restricted to a single domain.
The Search domain provides the strongest average gains (+13.65 points) across unseen domains,
indicating that long-horizon planning and constraint satisfaction learned from Search puzzles readily
generalize. Sequential and Grid training also transfer broadly, while Logic-only supervision yields
limited improvements outside its home domain. These observations support constructing compact
yet diverse curricula by prioritizing high-transfer domains such as Search.

E Baselines
We categorize our baseline models into the following groups for comparison:

General-purpose LLMs. As reference benchmarks, we also included several top-tier general-
purpose models:

GPT-40-1120 [38]: OpenAI’s model, representing the current highest standard of general models.

* Gemini 2.5 Pro [3]: Google’s advanced model with excellent performance across various tasks.

Claude 3.7 Sonnet [4]: Anthropic’s high-performance model known for its reliability and compre-
hensiveness.

Grok-2-1212 [39]: xAI’s open-weight model, demonstrating the potential of open-source models.

* Qwen-2.5-32B-Instruct [17]: Alibaba’s moderate-scale language model with strong performance
in both Chinese and English tasks, which serves as our main backbone models for training.

Reasoning-specialized LLMs. We selected the current state-of-the-art models specialized in
reasoning:

* 0l [1], 03-mini [1], and 0o4-mini [1]: Representing OpenAI’s advancements in reasoning capabilities,
particularly excelling in solving complex problems.

* DeepSeek-R1 [2]: A model optimized for mathematical and reasoning tasks, with outstanding
performance in multi-step reasoning.

* Claude-3.7-Sonnet-Thinking [4]: Employing a specialized chain-of-thought design to enhance
capabilities in solving complex reasoning tasks.

* DeepSeek-R1-Distilled-Qwen2.5-32B [2]: Transferring DeepSeek-R1’s reasoning capabilities to a
smaller model through knowledge distillation.

QwQ-32B [31]: Alibaba’s reasoning model trained from Qwen-2.5-32B.

This categorized comparison allows us to comprehensively evaluate our model’s performance in both
specialized reasoning capabilities and general abilities, while comparing against different types of
state-of-the-art models. For evaluation, we use temperature sampling (7 = 1.0).

Shttps://github.com/volcengine/verl.

16

https://github.com/volcengine/verl

Limitations

Due to the limited time and resources, we did not train on other backbone models with ENIG-
MATA-Data, nor with other RL algorithms other than VC-PPO. But we believe the results from our
experiments can generalize to other back models and algorithms. Additionally, our data is all in
single-turn textual form, and we did not include multi-turn puzzles or visual puzzles into ENIGMATA,
which we leave for future research. Due to the research purpose of this work, we only train LLMs
with hundreds of competitive math problems along with ENIGMATA-Data. In practice, one could
easily include our training resources to an already comprehensive training set while maintaining (if
not surpassing) the original performance of tasks in the original dataset.

17

o Hard o Medium « Easy

Big Bench Symbolic Binario Campsite Car Painting
1.00 g e rr— 1
0.75 e | - T e]
0.501 1 1 _-—/“/
0.251 1 1 1

SEESENIERPRSe Ly

0.00 1 1 1 1

Checkmate In One Countdown Crypto Kka Crypto Kpa
1.00]]]
0.75 = 0 _ Iz
0.501 1 1 1
0.259 o= 1 1 1
0.00{ | 1 | | 1 | | 1 | |

Full Crosswords Hamiltonian Cycle Hamiltonian Path Hitori

1.001]]]

075]] _/
/-—-‘_——_-—_——

0.501 1 L—""1] e

0.251 7 I4 Lo

0.00 T T 1 1 1

Kakurasu Knights And Knaves Light Up Magic Square
1.00 L—==]]]
075t 1

0.501 1
0.251 1

0.00 1 1

Average Reward

Maze Minesweeper Skyscraper Stack Permutation

1.00 1

0.751 1 1 , 1
0.501 1 1 1
0.251 1 1/ 1
0.001 1 1 1

Star Battle Sudoku Sudoku2 Sum Skyscraper
PR (o1 R ———]
0.75 1 = 1 = 1 1

O.SO'M 1 1 1

0.251 1 1 1

S ——
0.00- _u___-'—'"‘-‘-"\\ | _/"‘”"’“""’

Symbolic Hard Tic Tac Toe Twiddle Zebra Logic
1.001]]

| ~ /’—
0.75_ i _W |
0.50-/]] V
0.25- 1 1| 1

0.001 ;] ;
0 150 300 425 0 150 300 425 0 150 300 425 0 150 300 425
Training Steps

Figure 6: Reward curves for Qwen2.5-32B-ENIGMATA across all individual tasks during training.
Each subplot represents a different puzzle task, with the x-axis showing training steps and the y-axis
showing average reward. Colors indicate different difficulty levels: Easy (green), Medium (blue), and
Hard (red).

18

F ENIGMATA Details

This section provides details about the ENIGMATA dataset, including task specifications, difficulty
estimation methodology, and example cases.

Table 11: Details of 36 tasks in ENIGMATA.

Task Categories Source Difficulty Vriables Rules

Binario Grid Auto grid size n, Given a partially filled binary grid, determine its unique
mask rate r, completion such that each row and column contains an equal
minimal filled cells f number of Os and 1s, no more than two identical digits are

adjacent, and all rows and columns are pairwise distinct.

Campsite Grid Auto grid height h, Given a grid with designated tree cells and empty cells, place
grid width w, tents on empty cells such that each tent is orthogonally adja-
tent count ¢ cent to exactly one tree, no two tents are adjacent (including

diagonally), and the number of tents in each row and column
matches the specified totals.

Magic Square Grid Auto grid size n, Complete the partially filled NxN magic square by assign-
mask rate v ing distinct integers to the empty cells such that all rows,

columns, and both main diagonals sum to magic number,
while preserving the given entries and satisfying all structural
constraints.

Skyscraper Grid Auto grid size n Given an NxN grid, assign each cell a unique building height
from 1 to N per row and column, such that the number of
visible buildings from each edge matches the provided visi-
bility constraints, with taller buildings obscuring shorter ones.
Return a valid configuration or report infeasibility.

Sum Skyscraper Grid Auto grid size n Given an N X N grid, fill it with numbers 1 to N without
repetition in any row or column, such that from each edge,
the sum of visible building heights—where taller buildings
block shorter ones behind—is equal to the corresponding
clue.

Star Battle Grid Auto grid size n, Given an NxN grid composed of empty cells and blocked

number of star s cells, place exactly one star in each row and each column
such that stars occupy only empty cells and no two stars are
adjacent horizontally, vertically, or diagonally.

Sudoku?2 Grid Auto mask rate r Given a partially filled 4x4 Sudoku grid with digits 1-4, fill
in the remaining cells so that each row, column, and 2x2
subgrid contains each digit exactly once.

Sudoku Grid Auto mask rate r Given a partially filled 9x9 Sudoku grid, complete it so that
each row, column, and 3x3 subgrid contains the digits 1
through 9 exactly once.

Full Crosswords Grid [40] grid sizen Given a fixed crossword grid with blank and blocked cells,
fill all blank cells with letters to form valid English words
that satisfy the provided across and down clues, ensuring
consistency at intersections.

Symbolic Hard Grid [41;42] passrate/pass @k Given a symbolic 2D grid of numbers, learn the transforma-
tion rule across rows and apply it to generate the consistent
output pattern, preserving vertical segment structures and
alternating Os in specific column bands.

Crypto KKA Crypto Auto plaintext length 1, Known Key Attack-style Decryption. Given an encrypted
encryption method e, ciphertext and the specification of an encryption method (e.g.,
keyword length k, Caesar, Vigenere, Hill, etc.), recover the original plaintext
shift in Caesar s, without being given the encryption algorithm or decryption
rails in Rail Fence r, procedure. The task requires understanding of classical ci-
a/b range in Affine r, phers and applying the correct decryption logic based on the
matrix size in Hill m cipher name and parameter settings.

Crypto KPA Crypto Auto plaintext length 1, Known Plaintext Attack-style Decryption. Given a ciphertext

encryption method e,
keyword length k,
hint range h,

shift in Caesar s,
rails in Rail Fence r,
a/b range in Affine r,
matrix size in Hill m

and a plaintext-ciphertext example pair only, reverse-engineer
the encryption transformation—without being given the algo-
rithmic rule or key—and apply the inferred pattern to decrypt
the target ciphertext. The task involves cryptanalytic gener-
alization: learning a transformation from a single annotated
example, and applying it to unseen input.

19

F.1 Task Details

We present the detailed specifications of all tasks in ENIGMATA in Tables 11, 12, and 13. These
tables provide comprehensive information about each task, including: (1) Task category: ENIGMATA
encompasses seven distinct reasoning categories. (2) Data source: Whether the task is automatically
generated or sourced from existing datasets. (3) Difficulty control variables: The specific parameters
used to adjust task difficulty. (4) Rule descriptions: Concise explanations of the rules governing
each puzzle type. These details illustrate the diversity and controllability of the ENIGMATA dataset,
highlighting how each task contributes to different aspects of reasoning assessment.

F.2 Difficulty Estimation

In Section § 3.2, we introduce our method for difficulty control in ENIGMATA: determining different
difficulty levels (easy, medium, hard) for puzzles through model pass @k metrics. Specifically, we
use GPT-40’s pass @k (k=1,10,100) to establish these difficulty tiers. Table 14 showcases specific
examples of puzzles at different difficulty levels. As demonstrated, there are clear distinctions in
model pass @k performance between easy, medium, and hard levels across various tasks.

20

Table 12: Details of 36 tasks in ENIGMATA.

Task Categories Source Difficulty Vriables Rules

Twiddle Sequential Auto grid size n , Given an NXN grid of distinct numbers from 1 to n?, restore it
number of rotations v to row-major order using a sequence of counterclockwise kxk

subgrid rotations, each specified by its top-left coordinate.

Car Painting Sequential Auto number of cars c, Given a fixed initial sequence of cars to be painted, each
number of color type t , car may be moved up to K positions forward or backward;
shift range k, the objective is to reorder the cars, within this constraint, to
skew range s minimize adjacent color transitions (color switches).

Stack Permutation Sequential Auto sequence length | Given an input sequence, determine whether a target output
sequence can be produced using a stack with only push (in
order) and pop operations, ensuring last-in-first-out (LIFO)
behavior.

Big Bench Symbolic Sequential [41;42] passrate/pass@k Given a sequence of input-output list pairs, identify and apply
the underlying symbolic transformation function to a new
input list to produce its corresponding output.

8 Puzzle Sequential Auto number of inversion n Given a 3x3 grid representing an 8-puzzle state, output the
shortest sequence of moves (Up, Down, Left, Right) to reach
the goal configuration [[1, 2, 3], [4, 5, 6], [7, 8, 0]], or indicate
if no solution exists.

15 Puzzle Sequential Auto number of inversion . Given a 4x4 grid representing a 15-puzzle state, output the
shortest sequence of moves (U, D, L, R) to reach the goal
configuration [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14,
15, 0]], or report if no solution exists.

Nine Puzzle Sequential Auto number of inversion n. Given a 3x3 grid of numbers 1-9, the player can circularly
shift any row or column by 1 or 2 positions. Determine a
sequence of moves that results in the grid sorted in ascending
order, or report that it is unsolvable.

Sixteen Puzzle Sequential Auto number of inversion n Given a 4x4 grid containing tiles numbered 1-16, players
may circularly shift any row or column by 1 to 3 positions
to sort the grid into ascending order; determine a valid move
sequence or prove it unsolvable.

Hitori Search Auto grid size n Given an NxN grid of numbers, black out cells to ensure
each row and column contains no duplicate numbers, no two
blacked cells are orthogonally adjacent, and all remaining
white cells form a single connected group.

Kakurasu Search Auto grid size n, Given a grid with row and column sum constraints, select

black rate r black cells such that the sum of their positions in each row
and column equals the respective targets, where each cell’s
value is its 1-based index.

Light Up Search Auto grid sizen , Given a rectangular grid with black numbered and unnum-
black cell ratio ry , bered cells, place bulbs on empty cells to illuminate all white
numbered ratio T3 cells without lighting another bulb, ensuring each numbered

black cell has exactly that many adjacent bulbs.

Minesweeper Search Auto board sizen , Given a partially revealed Minesweeper grid, identify all
mine density d , unrevealed cells that must contain mines, based solely on the
initial reveal ratior ~ numerical clues and adjacency constraints.

Slant Search Auto board row r , Given a grid with numeric constraints at intersections, assign
board col d, diagonal slashes(two directions) to each cell such that inter-
hint ratio h section counts are satisfied and no loops are formed.

Checkmate in One Search [43] passrate/pass @k Given a legal board configuration, find a move that results in
immediate checkmate—i.e., the opposing king is placed in
check and has no legal way to escape.

Tic Tac Toe Search Auto board size n , Given a partially filled NxN Tic Tac Toe board and the active
comparative potential p player, identify the optimal move that maximizes the player’s
center control c, winning chances or prevents immediate loss, according to
fork score f standard game rules.

Game24 Arithmetic Auto number of integers n. Given four to six integers, use each exactly once with +, —,

%, +, and parentheses to construct a valid expression that
evaluates to 24.
Countdown Arithmetic Auto number of integers n, Given five integers and a target value, form a valid arithmetic

range target value r

expression using each number exactly once and the operators
(+, —, X, +), such that all intermediate results are positive
integers and the final result equals the target.

21

Table 13: Details of 36 tasks in ENIGMATA.

Task Categories Source Difficulty Vriables Rules

Hamiltonian Cycle Graph Auto number of nodes n, Given an undirected graph, determine whether a Hamiltonian
edge density d cycle exists; if so, output one such cycle.

Hamiltonian Path Graph Auto number of nodes n, Given an undirected graph, determine whether a Hamiltonian
edge density d path exists; if so, output one such path.

NL Navigation Graph Auto shortest path length I~ Given a spatial description of a road network among city
landmarks, identify the shortest path from a designated start-
ing point to the nearest landmark of a specified type.

Maze Graph Auto obstacle percentage p Given a grid-based maze with designated start and end posi-
tions, the objective is to determine a valid path from start to
end. Movement is restricted to the four cardinal directions
(up, down, left, right), and traversal through blocked or im-
passable cells is not allowed.

Knights and Knaves Logic [44] ambiguity a, Given statements from individuals who are either knights

number of inhabitants n(truthful) or knaves (lying), decide if a specific conclusion is
logically entailed, contradicted, or undetermined.

FOLIO Logic [45] number of primises n Given a set of premises, determine whether a conclusion
logically follows from them.

Zebra Logic Logic Auto logic rule type t, Given a fixed table structure and a set of categorical items
columns ¢, with positional or equality constraints, deduce a unique one-
rows r, to-one assignment of all elements that satisfies all logical
minimal conditions | conditions without transposing rows and columns.

Table 14: pass@k cases of GPT-40
Task Names Easy Medium Hard
pass@1 pass@10 pass@100 pass@1 pass@10 pass@100 pass@1 pass@10 pass@100

Sudoku

Zebra Logic

Campsite

Crypto KKA

Crypto KPA

Maze

Magic Square

22

F.3 Task Cases

The following listings present examples of each puzzle type in the ENIGMATA dataset. Each task
includes a rule description and few-shot examples demonstrating puzzle mechanics. Color-coding
in prompts indicates different puzzle categories. These examples highlight our dataset’s diversity,
from grid-based challenges (Sudoku, Star Battle) to sequential puzzles (Eight Puzzle, Fifteen Puzzle).
Each puzzle challenges distinct cognitive faculties, collectively forming a comprehensive dataset that
spans a wide spectrum of reasoning capabilities.

Listing 1: Case of Binario

~
You are tasked with solving a Binario puzzle.
Rules:
1. The Binario puzzle is played on a grid of size NxN, where N is an even number.
2. Each cell in the grid must be filled with either a @ or a 1.
3. No more than half of the cells in any row or column can contain the same number.
4. No more than two identical numbers can be adjacent horizontally or vertically.
5. The puzzle must have a unique solution.
Task:
Solve the following Binario puzzle by filling in the missing cells (denoted by "_") with @s
and 1s according to the rules above.
Output Format:
Please output your answer within a code block (°°°) and format the grid as numbers, for
example:
1001
o110
1010
0101
If no solution exists, output within the code block:
No valid solution exists for the given Binario puzzle.
Puzzle:
00 1 _
00 _ _
1100
1100

Listing 2: Case of Campsite

~

-
You are tasked with solving a campsite puzzle.

Rules:

1. Notations
(1) Trees are represented by X', tents are represented by “*, and empty spaces are
represented by .7
(2) You will be given a board with trees and empty spaces, the total number of tents,
and indications for the number of tents in each row and column. Your goal is to place
tents on the empty spaces.

2. Constraints
(1) Every tree on the board is associated with one tent, which is always horizontally or
vertically adjacent to it.
(2) No tent can be horizontally, vertically or diagonally adjacent to another tent.
(3) The number of tents in each row and column should match the given indications.
(4) The number of tents on the board should match the given total number of tents.
(5) A tent can only be associated with one tree, but it can be adjacent to more than one
tree.

Output Format:

1. Your output should include a solution followed by the final board.
2. You must not change trees ("X) on the board, but only place tents (“*) on empty spaces
.7,

3. The final board should be wrapped between “<begin_board>" and ~<end_board>" tags.

Task:

23

- Place tents on the empty spaces according to the given grid and rules.

Final Board:
<begin_board>
[Final Board]
<end_board>

Puzzle:

Here is the puzzle:
total number of tents:
tents in each row: 1 1 2
tents in each column: 1 1 1 1

4
0

Listing 3: Case of Magic Square

You are provided with a 3x3 Magic Square puzzle. Some cells are filled with numbers, while
blank cells are represented by dots.
Your task is to find a valid solution for the puzzle based on the following rules.

Rules:

1. Magic square is a 3x3 partially filled matrix.

2. You need to fill in the blanks in the matrix so that the sum of the numbers in each row,
each column, and the two diagonals is equal.

3. You can only fill the blanks with integers, the filled matrix only consists of integers.
4. The filled numbers should not duplicate the already filled numbers.

5. Make sure that the sum of the numbers in each row, each column, and the two diagonals is
equal.

Task:
- Fill the blank cells according to the given numbers and rules.
- Find a valid magic square solution for the given puzzle.

Output Format:
Please output your answer within a code block (*°°), formatted as a grid of numbers, for
example:

2 4

N)
w N A=

Listing 4: Case of Skyscraper

Skycraper is a logic puzzle game where the goal is to fill a grid matrix based on the given
clues. Here are the basic rules:

Rules:

1. Game Board: It typically consists of an n x n grid matrix. Each cell represents a

building, and the building height is represented by a number ranging from 1 to n, where n is
the size of the matrix.

2. Building Heights: Each row and column must be filled with numbers that represent building
heights. Each number can only appear once in a row or column, similar to Sudoku constraints

3. Visibility Clues: The hint numbers outside the matrix indicate how many buildings can be
seen from that direction. Taller buildings block the view of shorter buildings behind them.
Thus, a hint number represents how many buildings are visible from one end of a row or
column.

For example, if the clue for a column is "3", it means that from the top or bottom of that
column, 3 buildings can be seen, and the building heights must increase, as shorter
buildings will be blocked by taller ones.

4. Objective: Fill the entire matrix based on the clues, ensuring that the heights of the
buildings are distinct in each row and column and follow the visibility clues at the edges.

24

Example:

[2] [11 [2] [3]

B e e
[21 | | I | | [2]
B e
[31 | | I | | [2]
B e A R
0 | I | | [2]
B s At
[41 | | I | | [1]
B R it At

[2] [3] [2] [1]

This is an example of a Skycraper puzzle:

- The numbers at the top and bottom of the columns indicate how many buildings can be seen
from that direction. For instance, the clue at the top of the first column is "2", meaning
that 2 buildings can be seen from the top, indicating that at least one building is hidden
by a taller one.

- The left and right clues for the rows work similarly, indicating how many buildings are

visible from that row's left or right side.

Task:

Now, given a Skycraper puzzle, your task is to reconstruct the height of the buildings in
each cell. If there are multiple solutions, return any one. If no valid solution exists,
state that no solution exists.

Output Format:

- Please output your answer within a code block (°°°), formatted as a grid of numbers, for
example:

2 43
2
1
4

w N A=

Puzzle:

The input
Top: 3
Left: 4
Right: 1
Bottom: 1

Listing 5: Case of Sum Skyscraper

-
Sum Skycraper is a logic puzzle game where the goal is to fill a grid matrix based on given
clues and the height and number restrictions of rows and columns. Here are the basic rules:

Rules:
1. Game Board: Typically, it is an n x n grid matrix. Each cell represents a building, with
its height represented by a number ranging from 1 to n, where n is the length of the matrix
side.
2. Building Heights: Each row and column must be filled with numbers representing the
heights of the buildings. Each number can only appear once in a row or column, similar to
Sudoku constraints.
3. Visibility Clues: The hint numbers outside the matrix tell you how many buildings can be
seen from that direction. Taller buildings will block shorter buildings behind them.
Therefore, a hint number indicates the total height of buildings visible from one end of the
row or column.
For example, if a column's hint is "11,” it means that looking from the top or bottom of
that column, the total height of the visible buildings is 11. Additionally, the building
heights need to be in increasing order, meaning shorter buildings are blocked by taller
ones in front.
4. Objective: Fill the entire matrix according to the clues, ensuring that the heights of
buildings in each row and each column are different, and that they comply with the
visibility clues on the sides.

Example:

[71 [41 [5]1 [9]

to——t———t-— -t -+

[71 | | | | | 6]
B e ka3

[91 | | I | | [5]
to——t———t-——t-——t

[41 | | I | | [71
B ek ettt 3

[10]] | I | | [4]
B Rk ettt 3

25

[51 [91 [7]1 [4]

The above is an example of a Sum Skycraper:

- The numbers at the top and bottom of the columns indicate how many buildings can be seen
from that direction. For example, the hint at the top of the first column is "7,"” meaning
that the total height of the visible buildings from top to bottom is 7.

- The hints on the left and right of the rows are similar to those for the columns,
indicating the total height of buildings visible from the left and right sides of that row.
For example, if the hint is 10, it means the visible buildings could possibly be 1, 2, 3, 4.

Task:

Now, given a Sum Skycraper scenario, please restore the height of each building in the
scenario. If there are multiple answers, output any one of them. If there is no valid
solution, then respond with "no valid solution.”

Output Format:

- The input data consists of four lines: the first line represents the height seen from top
to bottom, the second line from left to right, the third line from right to left, and the
fourth line from bottom to top.

- Using the previous example, the input data would be:

0

N~ O

9
]
4
4

oo N~
RIS NCREN

- Please output your answer within a code block (~~°), formatted as a grid of numbers
storing the heights of the buildings, for example:

2 431
3124
4 312
1243

- If no solution exists, the result should be: "No valid solution.”

INIENINN
o o o,

Please provide the answer according to the above requirements.
.

Listing 6: Case of Star Battle

You are tasked with solving a customized version of the star-battle puzzle. The star-battle
puzzle is a logic puzzle that requires the placement of stars in a grid.

There is only one solution to this puzzle.

Your goal is to determine the location of each star, adhering to the following rules:

Rules:
1. NOTATIONS:
- The initial board consists of empty cells and blocked cells.
- Empty cells are denoted by '.', blocked cells are denoted by 'X', and stars are
denoted by 'x'.
2. STAR MUST BE PLACED IN EMPTY CELL:
- Each star must be placed in an EMPTY cell.
- Blocked cells cannot contain stars.
- You can only change cells denoted by '.', and must not change cells denoted by 'X'.
3. EXACTLY 1 STAR IN EACH ROW AND COLUMN:
- Each row and column must contain EXACTLY one star.
- No two stars can be in the same row or column.
- There shouldn't be rows or columns without stars.
4. NO ADJACENT STARS ROW-WISE, COLUMN-WISE, OR DIAGONALLY:
No two stars can be adjacent to each other, even diagonally.
- Row-wise adjacency: two stars are in the same row, and there is no empty cell between
them.
- Column-wise adjacency: two stars are in the same column, and there is no empty cell
between them.
- Diagonal adjacency: two stars are in the same diagonal, and there is no empty cell
between them.
Note that you are prone to make mistakes in diagonal adjacency, so be extra careful.
Here are 2 examples of diagonal adjacency in a partial grid:

*

26

In both cases, the two stars are diagonally adjacent. You should avoid this situation.
5. CHECK FOR CONSTRAINTS AND BACKTRACK:

- In each step, you should check if it violates the constraints in 2., 3., and 4.

- If you find inconsistencies, you should backtrack and try a different placement.

- If you find that you can't place a star anywhere without violating the constraints,

you should backtrack and try a different placement.

- Since there is only one solution, there is great chance your first placement is

incorrect, which means you might need to start over.

Task:
Determin the location of each star and place them into the grid, adhering to the rules.

Output Format:

- Your output should include the final board.

- The final board is a revised version of the initial board in a way that if you need to
place a star in an empty cell, replace the '.' with a 'x'

- Don't change the blocked cells denoted by 'X'.

- Your final board should be wrapped between <begin_board> and <end_board> tags.

- Use the following structure:

Final Board:
<begin_board>
[Final Board]
<end_board>

Puzzle:
The input clues are:

Please provide the answer according to the above requirements.

Listing 7: Case of Sudoku2

You are provided with a 4x4 Sudoku puzzle. Some cells are filled with numbers, while empty
cells are represented by dots.
Your task is to find a valid solution for the puzzle based on the following rules:

Rules:

1. Board Structure: The Sudoku board is a 4x4 grid, divided into 4 smaller 2x2 subgrids (
regions).

2. Number Range: Each cell can only contain a number between 1 and

3. Row Rule: Each row must contain the numbers 1 through 4, with no repeats.

4. Column Rule: Each column must contain the numbers 1 through 4, with no repeats.

5. Subgrid Rule: Each 2x2 subgrid must contain the numbers 1 through 4, with no repeats.
Task:

- Find a valid Sudoku solution for the given puzzle.
- If there are multiple solutions, provide one.

Output Format:
- Please output your answer within a code block (
formatted as a grid of numbers, for example:

) representing the solved Sudoku board,

2 4

N)
w N A=

w
N = AW

Please provide the answer according to the above requirements.

27

Listing 8: Case of Sudoku

You are provided with a 9x9 Sudoku puzzle. Some cells are filled with numbers, while empty
cells are represented by dots.
Your task is to find a valid solution for the puzzle based on the following rules:

Rules:

1. Board Structure: The Sudoku board is a 9x9 grid, divided into 9 smaller 3x3 subgrids (
regions).

2. Number Range: Each cell can only contain a number between 1 and 9

3. Row Rule: Each row must contain the numbers 1 through 9, with no repeats.

4. Column Rule: Each column must contain the numbers 1 through 9, with no repeats.

5. Subgrid Rule: Each 3x3 subgrid must contain the numbers 1 through 9, with no repeats.
Task:

- Find a valid Sudoku solution for the given puzzle.
- If there are multiple solutions, provide one.

Output Format:
- Please output your answer within a code block (
formatted as a grid of numbers, for example:

) representing the solved Sudoku board,

12345617389
234567891
345678912
456789123
567 891234
678912345
7891234586
891234567
91234561738
Puzzle:
3126 . .594
.86 459 312
5942317286
125386947
86 37941 2.
947512863
47 8 . 6 .
6 . 18 . 259
259 6 4 7 8
Please provide the answer according to the above requirements.
- J
Listing 9: Case of Full Crosswords
~

-
Task:
Your task is to complete the crossword puzzle grid based on the given clues. Ensure that all
words are meaningful and semantically valid. The grid consists of fillable blank spaces ('_
') and blocked spaces ('*'). You must strictly follow the provided grid layout, with no
modifications allowed.

Rules:
1. Completing the Grid:
- Fill each blank space ('_') with a letter to form valid words according to the given
clues.
- Blocked spaces ('*') must remain unchanged and cannot contain any letters.
- The number of rows and columns must match the provided grid exactly.
- All blank spaces ('_') must be filled--no empty spaces are allowed.

2. Clue Mapping Logic:
(1) Across Clues:
- Rows without 'x' characters represent across words. These words correspond to across
clues in order from top to bottom.
- Rows containing '*' do not correspond to any across word or clue.

(2) Down Clues:
- Columns without '*' characters represent down words. These words correspond to down
clues in order from left to right.
- Columns containing '*' do not correspond to any down word or clue.

3. Matching Letters at Intersections:
- Letters at the intersections of across and down words must match, ensuring valid words
are formed both horizontally and vertically.

Output Format:
Please output your answer within a code block (

) as follows:

28

across: ANSWER1, ANSWER2, ., ANSWER_N

down: ANSWER1, ANSWER2,....,ANSWER_N

- "across"” contains the list of across words, ordered from top to bottom.
- "down"” contains the list of down words, ordered from left to right.
Puzzle:

Across clues:

1. "London farewell!"” (2001)

2. "Fossil mollusk” (1972)

3. "Radial's counterpart” (2013)

Down clues:

1. "Measure of electric charge” (1999)

2. "Is bookends?”

The grid is as follows:

* _ _ k*x _ _ %
* _ _ Kk _ _ %
* * *

(2014)
3. Law-abiding (2010)

Listing 10: Case of Symbolic Hard

Task and Rules:
Figure out the pattern in the following examples and apply it to the test case.
must follow the format of the examples.

Your answer

Output Format:
Please output

your answer

within a code block (~°7),

Puzzle:

Examples

Example 1:

[z, 2, 2, o, 2, 2, 2, 0, 2, 2, 21,
[2, o, 2, @, 2, 2, 2, 0, 2, 0, 2],
[2, 2, 2,0, 2,2,2,0, 2,2, 2],
[2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 21,
[2, 2, 2,0, 2,2, 2,0, 2,2, 21,
[2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 21,
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2]1]

->

ccz2, 2, 2, o, 2, 2, 2, 0, 2, 2, 21,
[2, 2, 2, o, 2, 0, 2, 0, 2, 0, 21,
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 21,
[2, 2, 2, o, 2, 0, 2, 0, 2, 0, 2],
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
[2, o, 2, 0, 2, 2, 2, 0, 2, 0, 2],
[2, 2, 2, 0, 2, 2, 2, o, 2, 2, 211

Example 2:

ccz2, 2, 2, o, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
(2, 2, 2, o, 2, 0, 2, 0, 2, 0, 2, 0, 2, 2, 21,
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
(2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2],
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 21,
[2, o, 2, 0, 2, o0, 2, o, 2, 0, 2, 0, 2, 2, 21,
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 21,
[2, o, 2, 0, 2, 2, 2, 0, 2, @0, 2, 0, 2, 2, 2],
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 211

->

ccz2, 2, 2, o, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
[2, 2, 2, o, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 21,
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 21,
[2, o, 2, @, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2],
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
[2, 2, 2, o, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2],
[2, 2, 2, o, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 21,
(2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 21,
[2, 2, 2, @, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2]1]

29

formatted as a grid of numbers.

Example 3:

[z, 2, 2, o, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
(2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 2],
[2, 2, 2, @0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
[2, 2, 2, o, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 21,
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 21,
[2, o, 2, @0, 2, 2, 2, 0, 2, @, 2, 0, 2, 0, 2],
(2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
[2, 2, 2, o0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 21,
[2, 2, 2, 0, 2, 2, 2, @0, 2, 2, 2, 0, 2, 2, 211
->
[z, 2, 2, o, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
(2, 2, 2, o, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2],
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 21,
[2, 2, 2, o, 2, 90, 2, 0, 2, 0, 2, 0, 2, 0, 21,
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
[2, o, 2, @0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 2],
(2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
[2, 2, 2, o, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 21,
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 211
Test Problem:
rcz, 2, 2, o, 2, 2, 2, @, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2],
(2, 2, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2],
[2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2,0, 2, 2,2, 0,2, 2, 2],
(2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2],
(2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, @0, 2, 2, 2],
[2, o, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 2, @, 2, 0, 2, 0, 2],
[2, 2, 2, o, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 21,
(2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2],
(2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2,0, 2, 2, 2],
[2, o, 2, @, 2, 2, 2, 0, 2, 2, 2, 0, 2, @0, 2, @0, 2, 0, 2],
[2, 2, 2, 0, 2, 2, 2, @, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2]]
->

[Your Answer Herel

Listing 11: Case of Crypto KKA

-
Task:
Your task is to apply the provided decryption rules to decipher the given ciphertext.

Rules:
1. Review the decryption rules carefully to understand how the encryption method works.
2. Decrypt the provided ciphertext according to the rules, and derive the correct plaintext.

Output Format:
Please output your answer within a code block (

) as follows:

<result>
- <result> should be the decrypted plaintext corresponding to the given ciphertext, for
example:
LOVE
Puzzle:
Ciphertext: DBUDIBUFO0O
Encryption Method: {'method': 'Caesar Cipher', 'shift': 13}
What's the corresponding plaintext?
-
Listing 12: Case of Crypto KPA
-
Task:
Your task is to decrypt the given ciphertext and provide the corresponding plaintext. You

will be given a sample hint that illustrates a pair of ciphertext and its matching plaintext
to guide you in solving the puzzle.

Rules:

1. Analyze the provided ciphertext.

2. Use the sample hint as a reference to understand the encryption pattern or method used.
3. Apply the deciphering technique to convert the ciphertext into plaintext.

Output Format:
Please output your answer within a code block (

) as follows:

30

<result>
- <result> should be the decrypted plaintext corresponding to the given ciphertext, for
example:

ABCIDEFG

Puzzle:

hint: Known plaintext and ciphertext pair:

Plaintext:
AJORBRITISHSTUDYHASADDEDTOTHEEVIDENCETHATHORMONEREPLACEMENTTHERAPYINCREASESTHERISKOFBREASTC
ANCERESPECIALLYWHENWOMENRECEIVEACOMBINATIONOFESTRO

Ciphertext:
NWBEOEVGVFUFGHQLUNFNQQRQGBGURRIVQRAPRGUNGUBEZBARERCYNPRZRAGGURENCLVAPERNFRFGUREVFXBSOERNFGP
NAPRERFCRPVNYYLJURAJBZRAERPRVIRNPBZOVANGVBABSRFGEB

Use the example above to decode:

RONYYGBERT
J
Listing 13: Case of Twiddle
(N
Given a 3x3 sliding puzzle where each cell contains a number (1 to 9), your goal is to
restore the puzzle to its original sorted order through a series of rotation operations.
Rules:
1. You can select a 2x2 region within the 3x3 puzzle and rotate the positions of these 4
cells counterclockwise.
2. The goal is to restore the puzzle to its initial state (as shown below):
123
456
7 89
Task:
Please provide the steps to restore the puzzle to its initial state.
Output Format:
- Please output your answer within a code block (*°°) as follows:
<result>
- Replace “<result>" with a sequence of rotation steps, where each step is represented by a
2D coordinate (i, j) indicating the selection of the 2x2 region with (i, j) as the top-left
corner for a counterclockwise rotation.
For example:
(0,0)->(1,1)->(0,1)
- The problem guarantees that a solution exists.
Puzzle:
361
8 45
79 2
Please provide the answer according to the above requirements.
J

Listing 14: Case of Car Painting

You are tasked with solving a Car Painting Problem.

In the Car Painting Problem, you play the role of a scheduler at a car painting factory.
Your job is to arrange the painting sequence for a batch of cars to minimize the number of
color switches, reducing paint waste and production time.

Rules:

1. There are N cars numbered from 1 to N that need to be painted.
2. Each car has a predetermined color (labeled as A, B, C, etc., for a total of M colors).

31

3. Cars enter the painting workshop in a fixed order, but can be rearranged within a range.
4. Each car can be moved forward or backward by at most K positions from its original
position.

5. A color switch occurs when two adjacent cars have different colors, adding to the cost.
6. Your goal is to minimize the number of color switches by optimally arranging the cars.

Task:
Find a rearranged sequence of cars that minimizes the number of color switches.

You must provide a list of car IDs in their new order (rearranged to minimize color switches

).

Puzzle:

Given the following information:

- Number of Cars (N): 14

- Number of Colors (M): 2

- Maximum Movement Range (K): 4

- Initial car sequence: [1, 2, 3, 4
- Corresponding color: ['B', 'B', '

10, 11, 12, 13, 14]

B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', "B', 'B', 'B', 'A

Please find a rearranged car sequence that minimizes the number of color switches.
Remember: Each car can only be moved at most 4 positions forward or backward from its
original position.

Output Format:
- Please output your answer within a code block ("), formatted as an array of integers
representing the new order of car IDs, for example:

[2, 3, 1, 5, 8, 4, 6, 9, 7, 10]

- Replace “<result>" with a sequence of rotation steps, where each step is represented by a
2D coordinate (i, j) indicating the selection of the 2x2 region with (i, j) as the top-left
corner for a counterclockwise rotation.

For example:

(0,0)->(1,1)->(0,1)

- The problem guarantees that a solution exists.

Listing 15: Case of Stack Permutation

Stack permutation is a permutation problem related to stacks (a last-in, first-out data
structure). Given an input sequence, the goal is to generate different output sequences
using stack operations (push and pop). A sequence is called a valid stack permutation if it
can be obtained through stack operations.

Task and Rules:
Given a sequence of natural numbers, such as [1, 2, 3, 4], we want to know if a particular
output sequence can be obtained through stack operations. The stack operations include:

1. Push: Add numbers from the input sequence to the stack in order.
2. Pop: Remove elements from the top of the stack and add them to the output sequence.

Example:

Suppose the input sequence is [1, 2, 3]. Here are some possible valid stack permutations:
- [1, 2, 3]: Directly push all elements into the stack and then pop them in order.

- [2, 1, 3]: Push 1 and 2 into the stack, pop 2, then pop 1, and finally push and pop 3

- [3, 2, 1]: Push all elements into the stack, then pop them in reverse order.

Output Format:
- Please output your answer within a code block (~~7), for

["Push(1)", "Pop ()", "Push(2)", "Push(3)", "Pop()", "Pop()"]
- If the output sequence is not a valid stack permutation of the input sequence, output
within the code block:

"The output sequence is not a valid stack permutation.”

Puzzle:
Input sequence: [5, 2, 1, 3, 4]
Output sequence: [5, 3, 1, 4, 2]

Please provide the solution according to the requirements below.

32

Listing 16: Case of Big Bench Symbolic

rTask and Rules:
Apply a function to the final input list to generate the output list. Use any preceding
inputs and outputs as examples to find what is the function used. All example outputs have
been generated using the same function.

Output Format:

- Please output your answer within a code block (°~7), formatted as a list of numbers, for
example:

[0, 2, 3]

Puzzle:
Examples

Example 1:
[z, 7, 9, 21, 7, 4, 4, 91, o] -> [7, 9, 21, 7, 4, 4, 91, o]

Example 2:
[z, 78, 78, 71 -> [78, 78, 7]

Example 3:
[9, 7, 72, 44, 7, 0, 7, 441 -> [9, 72, 44, 7, 0, 7, 44]

Example 4:
[z, 8, 7, 71 -> [8, 7, 7]

Test Problem:
[5, 37, 97, 48, 7, 11 ->

Listing 17: Case of 8 Puzzle

-
Task:
The 8 puzzle is a classic sliding puzzle game. It consists of a 3x3 grid containing 8
numbered tiles from 1 to 8 and one blank space (represented by ©). The player moves these
tiles with the ultimate goal of arranging them in order from 1 to 8. Below are the detailed
rules:

Rules:

1. Initial State:
- The initial state of the puzzle is 8 numbered tiles randomly distributed in a 3x3 grid
, with the blank space located anywhere.
- The puzzle usually starts from a scrambled state.

2. Movement:
- The player can move a tile adjacent to the blank space into the blank space.
- Tiles can only move in the four directions: up (U), down (D), left (L), and right (R)
- Only one tile can be moved at a time.

3. Goal:
- The ultimate goal is to arrange the tiles in order from left to right, top to bottom,
as follows:

1 2 3
4 5 6
7 8 0

Output Format:
- Please output your answer within a code block (

) as follows:

<result>

- If there is an answer, the 1is the sequence of moves, for example:

LRURDL

- If there is no answer, the is:

No feasible move path exists.

Puzzle:
4 1 5)
2 6 8
3 7 0

Listing 18: Case of 15 Puzzle

33

-
Task:
The 15 puzzle is a classic sliding puzzle game. It consists of a 4x4 grid containing 15
numbered tiles from 1 to 15 and one blank space (represented by 0). The player moves these
tiles with the ultimate goal of arranging them in order from 1 to 15. Below are the detailed
rules:

Rules:

1. Initial State:
- The initial state of the puzzle is 15 numbered tiles randomly distributed in a 4x4
grid, with the blank space located anywhere.
- The puzzle usually starts from a scrambled state.

2. Movement:
- The player can move a tile adjacent to the blank space into the blank space.
- Tiles can only move in the four directions: up (U), down (D), left (L), and right (R)
- Only one tile can be moved at a time.

3. Goal:
- The ultimate goal is to arrange the tiles in order from left to right, top to bottom,
as follows:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 0@

Output Format:

- Please output your answer within a code block (*°°) as follows:

<result>

- If there is an answer, the is the sequence of moves, for example:

LRURDL

- If there is no answer, the is:

No feasible move path exists.

Puzzle:

4 9 2 1

12 3 11 5

7 8 14 o

13 10 6 15

N

Listing 19: Case of Nine Puzzle

Task:

The nine puzzle is a classic sliding number puzzle. It consists of a 3x3 grid containing 9
tiles numbered from 1 to 9. Players can choose to move an entire row or column in a circular
fashion each time. The ultimate goal is to arrange the tiles in numerical order from 1 to

9. The detailed rules are as follows:

Rules:

1. Initial State:
- The initial state of puzzle consists of 9 number tiles randomly arranged on a 3x3 grid
- The puzzle typically starts from a scrambled state.

2. Movement:
- Players can choose to move an entire row or column, shifting it by 1 to 2 steps in a
circular manner. For example: 1 2 3, shifting by 1 step results in 2 3 1, shifting by 2
steps results in 3 1 2.
- We represent row moves as RAB, where A is the row number and B is the number of steps.

Similarly, column moves are represented as CAB, where A is the column number and B is

the number of steps.

3. Goal:
- The ultimate goal is to arrange the tiles in order from left to right, top to bottom
as follows:

1 2 3
4 5 6
7 8 9

Output Format:
- If a solution exists, output the sequence of moves within a code block (~~7), for example:

["R11", "C23", "R32", "C12", "R23", "C31"]

- If no solution exists, output within the code block:

34

"No valid sequence of moves exists.”

Puzzle:
301 4
5 7 6
2 8 9
Listing 20: Case of Sixteen Puzzle
Task:

The sixteen puzzle is a classic sliding number puzzle. It consists of a 4x4 grid containing
16 tiles numbered from 1 to 16. Players can choose to move an entire row or column in a
circular fashion each time. The ultimate goal is to arrange the tiles in numerical order
from 1 to 16. The detailed rules are as follows:

Rules:

1. Initial State:
- The initial state of the puzzle consists of 16 number tiles randomly arranged on a 4x4
grid.
- The puzzle typically starts from a scrambled state.

2. Movement:
- Players can choose to move an entire row or column, shifting it by 1 to 3 steps in a
circular manner. For example: 1 2 3 4, shifting by 1 step results in 2 3 4 1, shifting
by 2 steps results in 3 4 1 2, and shifting by 3 steps results in 4 1 2 3.
- We represent row moves as RAB, where A is the row number and B is the number of steps.

Similarly, column moves are represented as CAB, where A is the column number and B is

the number of steps.

3. Goal:
- The ultimate goal is to arrange the tiles in order from left to right, top to bottom
as follows:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Output Format:
- If a solution exists, output the sequence of moves within a code block (~~7), for example:

["R11", "C23", "R32", "C12", "R23", "C31"]

- If no solution exists, output within the code block:

"No valid sequence of moves exists.”

Puzzle:

11 6 2 7

12 4 5 16

1 3 10 15

8 9 13 14
.

Listing 21: Case of Hitori

You are tasked with solving a Hitori puzzle.

Rules:
1. The puzzle is played on an NxN grid (where N is an even number), with each cell
containing a number.
2. Your goal is to "black out” certain cells, following these rules:
- In each row and column, the same number cannot appear more than once. To eliminate
repetitions, you must black out some of the cells.
- Black cells cannot be adjacent, either horizontally or vertically.
- All white cells (cells that are not blacked out) must be connected, meaning you can
travel between any two white cells through horizontal or vertical moves.

Task:
- Solve the following Hitori puzzle by blacking out the cells where needed.
- You must provide the coordinates of the blacked-out cells.

Output Format:
- Please output your answer within a code block (), formatted as a list of coordinates,
for example:

35

[Ce, @, (1, 3), (3, 2)1]
- If no solution exists, output within the code block:

"No valid solution exists for the given Hitori puzzle.”

Puzzle:

ccs, 3, 1, 3, 51,
[1, 4, 3, 5, 31,
[1, 3, 2, 4, 31,
[3, 5, 1, 1, 21,
[3, 1, 4, 2, 211

Listing 22: Case of Kakurasu

You are tasked with solving a Kakurasu puzzle.

Task & Rules:
1. The puzzle is played on a rectangular grid (with arbitrary row and column sizes).
2. Your goal is to "black out"” certain cells, following these rules:
- The black cells in each row must sum up to the target number for that row.
- The black cells in each column must sum up to the target number for that column.
- To calculate the row sum:
- The value of the black cells in each row is determined by their position in the row.
For example, the first black cell in a row has a value of 1, the second black cell has
a value of 2, and so on.
- To calculate the column sum:
- The value of the black cells in each column is determined by their position in the
column. For example, the first black cell in a column has a value of 1, the second
black cell has a value of 2, and so on.
3. Coordinates are 1-based. For example, the first row is row 1, and the first column is
column 1.

Puzzle:

Solve the following Kakurasu puzzle by blacking out the cells where needed.
Board size: 4 X 4

Row sums: [0, 5, 10, 5]

Column sums: [5, 7, 7, 5]

You must provide the coordinates of the blacked-out cells.

Output Format:
- Please output your answer within a code block ("), formatted as a list of coordinates,
for example:

La, 1, @, 49, (4, 3)1]
- If no solution exists, output within the code block:

"No valid solution exists for the given Kakurasu puzzle."

Puzzle:

ccs, 3, 1, 3, 51,
[1, 4, 3, 5, 31,
[1, 3, 2, 4, 31,
[3, 5, 1, 1, 21,
[3, 1, 4, 2, 211

Listing 23: Case of Light Up

-
You need to solve a Light Up puzzle.

Task & Rules:
1. The puzzle is played on a rectangular grid (the number of rows and columns is not fixed).
2. The goal is to place light bulbs (represented by L) on the empty squares of the grid,
following these rules:
- Each numbered black square (represented by numbers 1-4) must have the specified number
of light bulbs around it. For example, a black square with "1"” means it must have exactly
1 light bulb around it, a "2" means exactly 2 light bulbs, and so on.
- Light bulbs can only be placed on empty squares (represented by .) and must only light
up empty squares; they cannot light up other light bulbs.
- Black squares (represented by #) cannot be illuminated and block the light of the light
bulbs.

36

Puzzle:
Solve the following Light Up puzzle by placing the required light bulbs (L):

You need to provide the coordinates of the light bulbs in the following format:

Output Format:
- - Please output your answer within a code block (°°7), formatted as a list of numbers, for
example:

L2, 4, (6, 2), (7, 5), (0, @), (4, 3), (0, 1), (2, 0, (5, 1), (1, 7), (3, 2)]

- If no solution exists, output within the code block:

"No solution, unable to solve the given Light Up puzzle."

Listing 24: Case of Minesweeper

You are playing a Minesweeper game.

On a grid composed of different cells, the player's goal is to deduce all cells that contain
mines and avoid clicking on mines.

Each cell in the game may either contain a mine or show the number of adjacent mines.

Rules:

1. Grid and Mines

The game grid consists of several cells, each of which may be:
- Mine: If the player clicks on a mine cell, the game ends.
- Numbered cell: This cell displays the number of mines adjacent to it. The number
indicates how many of the eight neighboring cells contain mines.

2. Current Grid State Representation

The grid state is represented as:
-2: Indicates the cell is unknown (not revealed).
0-8: Revealed non-mine cells, where the number indicates how many mines are adjacent to
that cell. For example, a cell with @ means no mines adjacent, a cell with 1 means one
mine adjacent, and so on.

Task:
Based on current grid state, infer positions of the mines that can be definitively
determined.

Puzzle:

The current grid state is:

[[-2, 1, -2, -2, -2, -2, -2, -2, el,
2 , -2, 0, -2, 01,
2 2, -2, -2, -2, -21,
-2, 2, -2, -2, -2, o, -2, -2, -21,
2 1, 1, -2, -2, -21,
2 1, -2, 1, -2, -21,
L o=2, 1, =2, -2, -2, 2, 1, -21,

, -2, -2, -2, -2, 0, 1, -2, -21,
2, =2, =2, 1, =2, 0, 1, 1, 111

Coordinate Explanation:

- Coordinates start from (@, ©), where the first row, first column is (@, @), the second row
, second column is (1, 1), and so on.

- You need to provide the coordinates of the determinable mines in the following format:

Output Format:
- Please output your answer within a code block (°°7), formatted as a list of coordinates (r
, ¢), for example:

[a, 1, (2, 4, (4, 3)]

- If no solution exists, output within the code block:

"Unable to determine any mine locations.”

37

Listing 25: Case of Slant

e
You need to solve a Slant puzzle.

Task & Rules:
1. Grid Numbers:
- Each cell in the grid may contain a number, indicating how many diagonal lines meet at
that intersection. The number ranges from @ to 4, representing the number of intersecting
diagonal lines.
2. Diagonal Line Rules:
- Each cell must contain one diagonal line, either a "/" (forward slash, representing top
-left to bottom-right) or a "\" (backslash, representing top-right to bottom-left).
3. Intersection Numbers:
- The number indicates how many diagonal lines meet at that intersection. For example:
- Number 1: Indicates 1 diagonal line intersects at that point.
- Number 2: Indicates 2 diagonal lines intersect at that point.
- Number ©: Indicates no diagonal lines intersect at that point.
- Numbers 3 and 4: Represent 3 and 4 intersecting diagonal lines, respectively.
4. No Loops:
- The diagonal lines must not form loops. All diagonal lines must connect, and no closed
cycle can be formed.

Puzzle:

Solve the following slant puzzle:
101 .020

3
1
4
1

ON® = = —

w o N =
—“ NN =
NSO wWwwoe
N~ V)

1
2
3
0
Output Format:

- Please output your answer within a code block (°°7), formatted as a grid of numbers, for
example:

T 1
11 -1
T -1 =11

- 1 represents "/" (forward slash, top-left to bottom-right)
- -1 represents "\" (backslash, top-right to bottom-left)

Listing 26: Case of Checkmate in One

Task:
You are tasked with finding a move in the chess position resulting in checkmate:

Output Format:
- Please output your answer within a code block (

) as follows, for example:

Rg5#

Puzzle:

Here is the chess position:
1. c4 cb5

2. g3 eb

3. Bg2 d5

4. cxd5 exd5
5. Nc3 Nf6

6. Nf3 b6

7. d4 c4

8. 0-0 Bb7
9. Ne5 Bd6
10. Bf4 0-0
11. Qc2 Ncé6

12. Nxd5 Nxd4
13. Nxf6+ Kh8
14. Qxc4 Bxeb
15. Bxe5 Rc8
16. Qxd4 Qe7
17. Nd5 Bxd5
18. Bxg7+ Kg8
19. Qxd5 Rfd8

20. Qe5 Qb4
21. Radl Re$
22. Qg5 Qed
23. Bh6+ Kh8
24.

38

Listing 27: Case of Tic Tac Toe

You are tasked with solving a Tic Tac Toe puzzle.

Task & Rules:

1. The board consists of 3x3 cells.

2. Players take turns placing their mark on an empty cell, one move per turn. The two
players use "0" or "X".

3. A player wins by placing three of their marks consecutively in a row, column, or diagonal

4. If the board is completely filled without a winner, the game is a draw.

You are playing tic-tac-toe as X.

Puzzle:
Current board:
0| X |

| | 0
X | X |0

Question: What is the best next move? Please provide only your move and display the board.

Output Format:
- Please output your answer within a code block (*°°), for example:

o mgn o mn

w oy

non mmomyn

Listing 28: Case of Game24

-
You are given four or five or six integers, ranging from 1 to 13, provide an arithmetic
expression that results in 24.

Task & Rules:

You must use all the given numbers, each exactly once.

The operators you can use include: addition (+), subtraction (-), multiplication (%), and
division (/).

You can use parentheses to change the order of operations.

Output Format:
Please output your answer within a code block (

) as follows:

<result>

- If there is a solution, <result> is the sequence of numbers and operators that results in
24, for example:

(8 /7 2) » (8 - 2)

- If there is no solution, <result> is "cannot form 24".

Puzzle:

Input: 7, 1, 7, 13

Please provide a solution for the 24 game according to the above rules and input.

Listing 29: Case of Countdown

You are given 5 integers and a target number. Your task is to create an arithmetic
expression that results in exactly the target number.

Task & Rules:

- You must use ALL the given numbers, each exactly once.

- The operators you can use include: addition (+), subtraction (-), multiplication (%), and
division (/).

- You can use parentheses to change the order of operations.

- All intermediate results must be positive integers (no fractions or negative numbers
allowed).

Output Format:
Please output your answer within a code block (

) as follows:

<result>

- If there is a solution, <result> is the sequence of numbers and operators that results in
24, for example:

39

(8 /7 2) = (8 - 2)

- If there is no solution, <result> is "cannot form 85".

Puzzle:
Numbers: 1@, 5, 15, 2, 9
Target: 85

Please provide a solution for the 24 game according to the above rules and input.

Listing 30: Case of Hamiltonian Cycle

You are tasked with solving a Hamiltonian Cycle Puzzle.

Task & Rules:

A Hamiltonian Cycle in an undirected graph is a cycle that visits every vertex exactly once
and returns to the starting vertex. The task is to determine whether a Hamiltonian Cycle
exists in the given graph.

The graph is represented as follows:

- The first line contains a single integer “N°, the number of vertices in the graph.

- The subsequent lines each describe an edge in the graph. Each edge is represented by two
space-separated integers “u” and “v°, which indicate that there is an undirected edge
between vertex “u” and vertex v~

- The vertices are numbered from @~ to “N-1°.

Output Format:
- Please output your answer within a code block (

) as follows:

<result>

- If a Hamiltonian Cycle exists, <result> should be a list of vertex indices that form the
cycle, where the last vertex is the same as the first vertex to complete the cycle, for
example:

[e, 2, 3, 1, o]

- If no Hamiltonian Cycle exists, <result> should be "NO".

Puzzle:

—_——_0O0 NS
[P ST
SRS

Listing 31: Case of Hamiltonian Path

-
You are tasked with solving a Hamiltonian Path Puzzle.

Task & Rules:
A Hamiltonian Path in an undirected graph is a path that visits every vertex exactly once.
The task is to determine whether a Hamiltonian Path exists in the given graph.

The graph is represented as follows:

- The first line contains a single integer “N°, the number of vertices in the graph.

- The subsequent lines each describe an edge in the graph. Each edge is represented by two
space-separated integers “u” and “v°, which indicate that there is an undirected edge

between vertex “u” and vertex v
- The vertices are numbered from @ to “N-1°

Output Format:
- Please output your answer within a code block (

) as follows:

<result>
- <result> should be a list of vertex indices that form the Hamiltonian Path if it exists,
for example:

[e, 2, 3, 1, o]

- If no Hamiltonian Path exists, <result> should be "NO".

Puzzle:

40

N

- = VUV WWOo U &

S OO NNNOODODUURWWWNNNN-_ =2 2000 —
S

N

e

Listing 32: Case of NL Navigation

You are tasked with solving a spatial reasoning puzzle involving navigation in a city.
Follow these guidelines to determine the shortest path to a specific landmark:

Task & Rules:
1. Landmarks Definition:
- Identify a set of landmarks which include: store, bank, house, cinema, garden, and
school.
- The total number of landmarks in the puzzle will range from 7 to 10.
2. Structure:
- The landmarks are organized in a binary tree structure.
- The root node of this tree represents the starting point for navigation.
3. Objective:
- Your goal is to find the shortest path from the starting point to the nearest specified
type of landmark.
4. Puzzle Input:
- You will receive a question.
- Use the information provided in the question to determine the path.

Output Format:
- Please output your answer "([A-Z, J]+)" within a code block (" "), containing only the path
letters, for example:

- Your answer should only include the uppercase letters representing the landmarks in the
path.
- If the path is direct with no intermediate landmarks, provide an empty code block:

Puzzle:

Here is the puzzle:

Story: There is a set of roads and a set of landmarks. The start point is cinema H.
There is a road which is 100 meters long from cinema H to house F.

There is a road which is 200 meters long from house F to store I.
There is a road which is 200 meters long from store I to cinema A.
There is a road which is 100 meters long from cinema A to bank J.
There is a road which is 100 meters long from bank J to house B.

There is a road which is 200 meters long from cinema H to house D.
There is a road which is 100 meters long from house D to bank E.

There is a road which is 200 meters long from house D to cinema C.

Question: From the start point, how to reach the nearest bank?

Please provide the solution according to the requirements above.

41

Listing 33: Case of Maze

You are tasked with solving a Maze Puzzle.

Puzzle:
Given a 5x5 maze map, as shown below:

S B

B .
B
E

Where:

S represents the start point (located in the top-left corner at coordinates (1, 1))
E represents the end point (located in the bottom-right corner at coordinates (5, 5))
B represents an obstacle (impassable)

represents open space (passable)

Rules:

1. You can only move up, down, left, or right, not diagonally.

2. You cannot pass through obstacles (B).

3. You can move freely on open spaces (.).

4. The goal is to find a path from the start point (S) to the end point (E).

Please find a valid path from the start point (S) to the end point (E). If there are
multiple paths, provide any one of them. If no valid path exists, state that it is
impossible to reach the end point.

Output Format:
- Please output your answer within a code block (

) as follows:

<result>

- If there is a path, <result> is the sequence of coordinates in the path. For example:

(1,1)->(1,3)->(3,5)
- If no path exists, output directly:

not exist the path from start to end.

Please provide the solution according to the requirements above.

Listing 34: Case of Knights and Knaves

rIn this puzzle, you are presented with a scenario involving inhabitants of an island where
each person is either a knight or a knave. Knights always tell the truth, while knaves
always lie. Your task is to determine the truth value of a given statement based on the
information provided.

& :
1. Knights always tell the truth.
2. Knaves always lie.
3. Use logical reasoning to determine the truth value of the statement.

- Please output your answer within a code block () as follows:

<result>

Options:

- "Entailment”: Use this if the statement is logically true based on the information
provided.

- "Contradiction”: Use this if the statement contradicts known facts or logical deductions.

- "Unknown": Use this if the truth value of the statement cannot be determined with the
given information.

On the island where each inhabitant is either a knave or a knight, knights always tell the
truth while knaves always lie.
You meet four inhabitants: Alice, Bill, Ted, and Mel.

- Bill tells you that Mel and Ted are not the same.

- Mel claims that it is false that Alice is a knave.

- Ted says that Alice is a knight and Mel is a knave.

- Alice tells you that only a knave would say that Ted is a knave.

Can you determine who is a knight and who is a knave?
Question: Is Ted the knight?
-

42

Listing 35: Case of FOLIO

-

Analyze the given premises and determine the validity of the conclusion. Your task is to
assess whether the conclusion is "True,” "False,” or "Unknown” based on the information
provided.

'

& :

1. Premises: You will be provided with a set of statements or premises. These premises are
the foundational truths or assumptions for the puzzle.
2. Conclusion: A statement will be presented as the conclusion. Your task is to evaluate
this conclusion in the context of the given premises.
3. Evaluation Criteria:

- True: The conclusion logically follows from the premises.

- False: The conclusion contradicts the premises.

- Unknown: The conclusion cannot be determined from the premises alone due to

insufficient information.

- Please output your answer within a code block (~°°

) as follows:

<result>

- Replace “<result>" with one of the following options: "True”, "False”, or "Unknown".

premises:

- Elephantopus is a genus of perennial plants in the daisy family.

- Elephantopus is widespread over much of Africa, southern Asia, Australia, and the Americas
- Several species of Elephantopus are native to the southeastern United States.

- Elephantopus scaber is a traditional medicine.

conclusion: No Elephantopus is native to the southeastern United States.

Note: Ensure that your evaluation is based solely on the information provided in the
premises without introducing external knowledge or assumptions.

Listing 36: Case of Zebra Logic

You are tasked with solving a grid puzzle. This type of puzzle requires careful analysis of
the provided background information and clues to deduce the correct arrangement of elements
in a grid format. Follow the steps below to solve the puzzle and present your solution in
the specified format.

& :
1. Background Information: Carefully read any introductory information provided with the
puzzle. This may include context or specific constraints that apply to the puzzle.
2. Clues: Analyze each clue given. These clues will guide you in determining the
relationships between different elements in the grid.
3. Logical Deduction: Use logical reasoning to deduce the correct placement of each element
in the grid. Consider all possible options and eliminate those that contradict the clues.
4. Consistency Check: Ensure that your solution is consistent with all the clues and
background information provided.
Your response should include a solution followed by the final answer in a markdown table
format. Use the following structure:
Assume column 1 is Year, column 2 is Wine, column 3 is Type.

- Please output your answer within a code block (°°°) as follows:
| 1984 | [Correct Wine] | [Correct Typel |
| 1988 | [Correct Winel | [Correct Typel |
| 1992 | [Correct Winel | [Correct Typel |
| 1996 | [Correct Winel | [Correct Typel |

Food: apricot, lemon

Hobby: baking, card-games

Job: bartender, writer
Nationality: canadian, egyptian

1. Nationality:canadian is on the left of Job:writer
2. Hobby:card-games is on the right of Food:apricot

Fill the following table to show your final answer.

Food	correct answer	correct answer
Hobby	correct answer	correct answer
Job	correct answer	correct answer
Nationality	correct answer	correct answer

You must stick to the given uncompleted table and must not transpose the table.

43

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Section 1
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix E
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

44

Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 5 and Appendix C

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

45

Answer: [Yes]

Justification: We will release the resources upon paper’s publication. We describe the data
details in Section 3.2.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 5 and Appendix B and Appendix C
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Section 5.4
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

46

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix C
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conduct our experiments according to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

47

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Section 3
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

48

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Section 3
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

49

	Introduction
	Related Work
	Enigmata-Data: The Puzzle Dataset
	Puzzle Categories
	Data Construction
	Task Statistics
	Enigmata-Eval

	Enigmata-Model: The Training Recipe
	Rejection Fine-tuning
	RL with Verifiable Puzzles
	Multi-task Training

	Experiments
	Experiment Setup
	Results
	Generalization with Scaling: Free Lunch from Enigmata
	Ablation Studies
	Analysis

	Conclusion
	Reward Curves Across Individual Tasks in Enigmata
	Training Dataset Details
	Implementation Details
	Cross-Domain Transfer Study
	Baselines
	Enigmata Details
	Task Details
	Difficulty Estimation
	Task Cases

