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Abstract— Large language models (LLMs) trained on code-
completion have been shown to be capable of synthesizing simple
Python programs from docstrings [1]. We find that these code-
writing LLMs can be re-purposed to write robot policy code, given
natural language commands. Specifically, policy code can express
functions or feedback loops that process perception outputs (e.g.,
from object detectors [2], [3]) and parameterize control primitive
APIs. When provided as input several example language commands
(formatted as comments) followed by corresponding policy code
(via few-shot prompting), LLMs can take in new commands and
autonomously re-compose API calls to generate new policy code
respectively. By chaining classic logic structures and referencing
third-party libraries (e.g., NumPy, Shapely) to perform arithmetic,
LLMs used in this way can write robot policies that (i) exhibit
spatial-geometric reasoning, (ii) generalize to new instructions,
and (iii) prescribe precise values (e.g., velocities) to ambiguous
descriptions (‘“faster’”’) depending on context (i.e., behavioral
commonsense). This paper presents code as policies: a robot-centric
formalization of language model generated programs (LMPs)
that can represent reactive policies (e.g., impedance controllers),
as well as waypoint-based policies (vision-based pick and place,
trajectory-based control), demonstrated across multiple real robot
platforms. Central to our approach is prompting hierarchical
code-gen (recursively defining undefined functions), which can
write more complex code and also improves state-of-the-art to solve
39.8% of problems on the HumanEval [1] benchmark. Code and
videos are available at https://code-as-policies.github.io

I. INTRODUCTION

Robots that use language need it to be grounded (or situated)
to reference the physical world and bridge connections between
words, percepts, and actions [4]. Classic methods ground language
using lexical analysis to extract semantic representations that
inform policies [5]-[7], but they often struggle to handle unseen
instructions. More recent methods learn the grounding end-to-end
(language to action) [8]-[10], but they require copious amounts
of training data, which can be expensive to obtain on real robots.

Meanwhile, recent progress in natural language processing
shows that large language models (LLMs) pretrained on Internet-
scale data [11]-[13] exhibit out-of-the-box capabilities [14]-[16]
that can be applied to language-using robots e.g., planning a
sequence of steps from natural language instructions [16]-[18]
without additional model finetuning. These steps can be grounded
in real robot affordances from value functions among a fixed set
of skills i.e., policies pretrained with behavior cloning or rein-
forcement learning [19]-[21]. While promising, this abstraction
prevents the LLMs from directly influencing the perception-action
feedback loop, making it difficult to ground language in ways that
(1) generalize modes of feedback that share percepts and actions
e.g., from "put the apple down on the orange" to "put the apple
down when you see the orange", (ii) express commonsense priors
in control e.g., "move faster", "push harder", or (iii) comprehend
spatial relationships "move the apple a bit to the left". As aresult,
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for i in range(n_objs - 1):

0bj0 = obj_names[i + 1]
obj1 = obj_names[i]
(objo, obj1)

Fig. 1: Given examples (via few-shot prompting), robots can use code-writing
large language models (LLMs) to translate natural language commands into robot
policy code which process outputs, parameterize primitives,
recursively generate code for undefined functions, and generalize to new tasks.
incorporating each new skill (and mode of grounding) requires
additional data and retraining — ergo the data burden persists,
albeit passed to skill acquisition. This leads us to ask: how can
LLM:s be applied beyond just planning a sequence of skills?
Herein, we find that code-writing LLMs [1], [11], [22] are
proficient at going further: orchestrating planning, policy logic, and
control. LLMs trained on code-completion have shown to be capa-
ble of synthesizing Python programs from docstrings. We find that
these models can be re-purposed to write robot policy code, given
natural language commands (formatted as comments). Policy code
can express functions or feedback loops that process perception
outputs (e.g., open vocabulary object detectors [2], [3]) and param-
eterize control primitive APIs (see Fig.[T). When provided with
several example language commands followed by corresponding
policy code (via few-shot prompting, in ), LLMs can take in
new commands (in green) and autonomously re-compose the API
calls to generate new policy code (highlighted ) respectively:

# move rightwards until you see the apple.
while not detect_object("apple”):

robot.set_velocity(x=0, y=0.1, z=0)
Code-writing models can express a variety of arithmetic operations
as well as feedback loops grounded in language. They not only
generalize to new instructions, but having been trained on billions
of lines of code and comments, can also prescribe precise values
(e.g., velocities) to ambiguous descriptions ("faster”" and "to the
left") depending on context — to elicit behavioral commonsense:
# do it again but faster, to the left, and with a banana.
while not detect_object("banana”):

robot.set_velocity(x=0, y=-0.2, z=0)
Representing code as policies inherits a number of benefits from
LLMs: not only the capacity to interpret natural language, but also
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Fig. 2: Code as Policies can follow natural language instructions across diverse domains and robots: table-top manipulation (a)-(b), 2D shape drawing (c), and mobile
manipulation in a kitchen with robots from Everyday Robots (d). Our approach enables robots to perform spatial-geometric reasoning, parse object relationships, and form
multi-step behaviors using off-the-shelf models and few-shot prompting with no additional training. See full videos and more tasks at code-as-policies.github.io

the ability to engage in human-robot dialogue and Q&A simply
by using "say(text)" as an available action primitive API:

# tell me why you stopped moving.
robot.say("I stopped moving because I saw a banana.")

We present Code as Policies (CaP): a robot-centric formaliza-
tion of language model generated programs (LMPs) executed on
real systems. Pythonic LMPs can express complex policies using:

« Classic logic structures e.g., sequences, selection (if/else), and
loops (for/while) to assemble new behaviors at runtime.

o Third-party libraries to interpolate points (NumPy), analyze and
generate shapes (Shapely) for spatial-geometric reasoning, etc.

LMPs can be hierarchical: prompted to recursively define new
functions, accumulate their own libraries over time, and self-
architect a dynamic codebase. We demonstrate across several robot
systems that LLMs can autonomously interpret language com-
mands to generate LMPs that represent reactive low-level policies
(e.g., PD or impedance controllers), and waypoint-based policies
(e.g., for vision-based pick and place, or trajectory-based control).
Our main contributions are: (i) code as policies: a formalization
of using LLMs to write robot code, (ii) a method for hierarchical
code-gen that improves state-of-the-art on both robotics and
standard code-gen problems with 39.8% P@1 on HumanEval
[1], (iii) a new benchmark to evaluate future language models on
robotics code-gen problems, and (iv) ablations that analyze how
CaP improves metrics of generalization [23] and that it abides
by scaling laws — larger models perform better. Code as policies
presents a new approach to linking words, percepts, and actions;
enabling applications in human-robot interaction, but is not without
limitations. We discuss these in Sec.[V] Full prompts and generated
outputs are in the Appendix, which can be found along with
additional results, videos, and code at|code-as-policies.github.io

II. RELATED WORK

Controlling robots via language has a long history, including
early demonstrations of human-robot interaction through lexical
parsing of natural language [5]. Language serves not only as an
interface for non-experts to interact with robots [24], [25], but also
as a means to compositionally scale generalization to new tasks [9],
[17]. The literature is vast (we refer to Tellex et al. [4] and Luketina
et al. [26] for comprehensive surveys), but recent works fall broadly
into the categories of high-level interpretation (e.g., semantic
parsing [25], [27]-[32]), planning [14], [17], [18], and low-level

policies (e.g., model-based [33]-[35], imitation learning [8], [9],
[36], [37], or reinforcement learning [38]—[42]). In contrast, our
work focuses on the code generation aspect of LLMs and use the
generated procedures as an expressive way to control the robot.
Large language models exhibit impressive zero-shot reasoning
capabilities: from planning [14] to writing math programs [43];
from solving science problems [44] to using trained verifiers [45]
for math word problems. These can be improved with prompting
methods such as Least-to-Most [46], Think-Step-by-Step [15]
or Chain-of-Thought [47]. Most closely related to this paper are
works that use LLM capabilities for robot agents without additional
model training. For example, Huang et al. decompose natural lan-
guage commands into sequences of executable actions by text com-
pletion and semantic translation [14], while SayCan [17] generates
feasible plans for robots by jointly decoding an LLM weighted by
skill affordances [20] from value functions. Inner Monologue [18]
expands LLM planning by incorporating outputs from success de-
tectors or other visual language models and uses their feedback to
re-plan. Socratic Models [16] uses visual language models to sub-
stitute perceptual information (in teal) into the language prompts
that generate plans, and it uses language-conditioned policies e.g.,
for grasping [36]. The following example illustrates the qualitative
differences between our approach versus the aforementioned prior
works. When tasked to "move the coke can a bit to the right":

objects = [coke can]
robot.grasp(coke can)
robot.place_a_bit_right()

Pick up coke can
Move a bit right
Place coke can

plans generated by prior works assume there exists a skill that
allows the robot to move an object a bit right. Our approach differs
in that it uses an LLM to directly generate policy code (plans
nested within) to run on the robot and avoids the requirement of
having predefined policies to map every step in the plan:
while not obj_in_gripper("coke can"):

robot.move_gripper_to("coke can")
robot.close_gripper()
pos = robot.gripper.position

robot.move_gripper(pos.x, pos.y+0.1,
robot.open_gripper()

pos.z)

Our approach (CaP) not only leverages logic structures to specify
feedback loops, but it also parameterizes (and write parts of)
low-level control primitives. CaP alleviates the need to collect data
and train a fixed set of predefined skills or language-conditioned
policies — which are expensive and often remain domain-specific.
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Code generation has been explored with LLMs [1], [48] and
without [49]. Program synthesis has been demonstrated to be
capable of drawing simple figures [50] and generating policies
that solve 2D tasks [51]. We expand on these works, showing that
(i) code-writing LLMs enable novel reasoning capabilities (e.g., en-
coding spatial relationships by leaning on familiarity of third party
libraries) without additional training needed in prior works [35],
[36], [52]-[56], and (ii) hierarchical code-writing (inspired by re-
cursive summarization [57]) improves state-of-the-art code genera-
tion. We also present a new robotics-themed code-gen benchmark
to evaluate future language models in the robotics domain.

III. METHOD

In this section, we characterize the extent to which pretrained
LLMs can be prompted to generate code as policies — represented
as a set of language model programs (LMPs). Broadly, we use the
term LMP to refer to any program generated by a language model
and executed on a system. This work investigates Code as Policies,
a class of LMPs that maps from language instructions to code snip-
pets that (i) react to perceptual inputs (i.e., from sensors or modules
on top of sensors), (ii) parameterize control primitive APIs, and
(iii) are directly compiled and executed on a robot, for example:

# stack the blocks in the empty bowl.
empty_bowl_name = parse_obj(’empty bowl’)
block_names = parse_obj(’blocks”’)

obj_names = [empty_bowl_name] + block_names
stack_objs_in_order(obj_names=obj_names)

Input instructions are formatted as comments (green), which can be
provided by humans or written by another LMP. Predicted outputs
from the LLM (highlighted) are expected to be valid Python
code, generated autoregressively [11], [12]. LMPs are few-shot
prompted with examples to generate different subprograms that
may process object detection results, build trajectories, or sequence
control primitives. LMPs can be generated hierarchically by com-
posing known functions (e.g., get_obj_names() using perception
modules) or invoking other LMPs to define undefined functions:

# define function stack_objs_in_order(obj_names).
def stack_objs_in_order(obj_names):
for i in range(len(obj_names) - 1):
put_first_on_second(obj_names[i + 1], obj_names[i])

where put_first_on_second is an existing open vocabulary pick
and place primitive (e.g., CLIPort [36]). For new embodiments,
these active function calls can be replaced with available control
APIs that represent the action space (e.g., set_velocity) of
the agent. Hierarchical code-gen with verbose variable names
can be viewed as a variant of chain of thought prompting [47]
via functional programming. Functions defined by LMPs can
progressively accumulate over time, where new LMPs can
reference previously constructed functions to expand policy logic.

To execute an LMP, we first check that it is safe to run by
ensuring there are no import statements, special variables that
begin with __, or calls to exec and eval. Then, we call Python’s
exec function with the code as the input string and two dictionaries
that form the scope of that code execution: (i) globals, containing
all APIs that the generated code might call, and (ii) locals, an
empty dictionary which will be populated with variables and new
functions defined during exec. If the LMP is expected to return
a value, we obtain it from locals after exec finishes.

A. Prompting Language Model Programs

Prompts to generate LMPs contain two elements:

1. Hints e.g., import statements that inform the LLM which APIs
are available and type hints on how to use those APIs.

2. Examples are instruction-to-code pairs that present few-shot
"demonstrations" of how natural language instructions should be
converted into code. These may include performing arithmetic,
calling other APIs, and other features of the programming
language. Instructions are written as comments directly preceding
a block of corresponding solution code. We can maintain an
LMP "session" by incrementally appending new instructions and
responses to the prompt, allowing later instructions to refer back
to previous instructions, like "undo the last action".

B. Example Language Model Programs (Low-Level)

LMPs are perhaps best understood through examples, to
which the following section builds up from simple pure-Python
instructions to more complex ones that can complete robot tasks.
These examples use OpenAl Codex code-davinci-002 with
temperature 0 (i.e., deterministic greedy token decoding). Here,
the prompt (in ) starts with a Hint to indicate we are writing
Python. It then gives one Example to specify the format of the
return values, to be assigned to a variable called ret_val. Input
instructions are green, and generated outputs are highlighted:

# find the sum of variables a and b.

ret_val =a+b

# see if any number is divisible by 3 in a list called xs.
ret_val = any(x % 3 == @ for x in xs)

Third-party libraries. Python code-writing LLMs store
knowledge of many popular libraries. LMPs can be prompted to
use these libraries to perform complex instructions without writing
all of the code e.g., using NumPy to elicit spatial reasoning with
coordinates. Hints here include import statements, and Examples
define cardinal directions. Variable names are also important to
indicate that pts_np and pt_np are NumPy arrays. Operations
with 2D vectors imply that the points are also 2D. Example:

# get the left most point in pts_np.

ret_val = pts_np[np.argmin(pts_np[:, 01), :]

# get the center of pts_np

ret_val = np.mean(pts_np, axis=0)

# the closest point in pts_np to pt_np.

ret_val = pts_np[np.argmin(np.sum((pts_np - pt_np)**2, axis=1))]

First-party libraries. LMPs can also use first-party libraries
(perception or control primitive APIs) not found in the training
data if those functions have meaningful names and are provided
in Hints/Examples. For example (full prompt in[B.2):



objs = [’blue bowl’, ’red block’, ’red bowl’, ’blue block’]
# move the red block a bit to the right

target_pos = get_pos(’red block’) + [0.1, @]
put_first_on_second(’red block’, target_pos)

# put the blue block on the bowl with the same color.
put_first_on_second(’blue block’, ’blue bowl’)

The Hints import two functions for a robot domain: one to obtain
the 2D position of an object by name (using an open vocabulary
object detector [2]) and another to put the first object on the
second target, which can be an object name or a 2D position.
Note the LMP’s ability to adapt to new instructions — the first
modifies the movement magnitude by using "a bit," while the
second associates the object with "the same color."

Language reasoning can be few-shot prompted using code-
writing LLMs (full prompt in [B.I) to e.g., associate object
names with natural language descriptions ("sea-colored block"),
categories ("bowls"), or past context ("other block"):

objs = [’blue bowl’, ’red block’, ’red bowl’, ’blue block’]
# the bowls.

ret_val = [’blue bowl’, ’red bowl’]

# sea-colored block.

ret_val = ’blue block’

# the other block.

ret_val = ’red block’

C. Example Language Model Programs (High-Level)

Control flows. Programming languages allow using control
structures such as if-else and loop statements. Previously
we showed LMPs can express for-loops in the form of list
comprehensions. Here we show how they can write a while-loop
can form a simple feedback policy. Note that the prompt (same
as the one in[B.2)) does not contain such Examples:

# while the red block is to the left of the blue bowl, move it to the
right 5cm at a time.
while get_pos(’red block’)[@] < get_pos(’blue bowl’)[0]:
target_pos = get_pos(’red block’) + [0.05, @]
put_first_on_second(’red block’, target_pos)

LMPs can be composed via nested function calls. This allows
including more few-shot examples into individual prompts to
improve functional accuracy and scope, while remaining within
the LLM’s maximum input token length. The following (full
prompt in generates a response that uses parse_obj, another
LMP that associates object names with language descriptions:

objs = [’red block’, ’blue bowl’, ’blue block’, ’red bowl’]
# while the left most block is the red block, move it toward the right.
block_name = parse_obj(’the left most block’)
while block_name == ’red block’:
target_pos = get_pos(block_name) + [0.3, 0]
put_first_on_second(block_name, target_pos)
block_name = parse_obj(’the left most block’)

The parse_obj LMP (full prompt in Appendix [B.5):

objs = [’red block’, ’blue bowl’, ’blue block’,
# the left most block.

block_names = [’red block’, ’blue block’]
block_positions = np.array([get_pos(name) for name in block_names])
left_block_name = block_names[np.argmin(block_positions[:, ©])]
ret_val = left_block_name

"red bowl’]

LMPs can hierarchically generate functions for future reuse:

# define function: get_objs_bigger_than_area_th(obj_names, bbox_area_th)
def get_objs_bigger_than_area_th(obj_names, bbox_area_th):
return [name for name in obj_names
if get_obj_bbox_area(name) > bbox_area_th]

Function generation can be implemented by parsing the code gen-
erated by an LMP, locating yet-to-be-defined functions, and calling
another LMP specialized in function-generation to create those
functions. This allows both the prompt and the code generated
by LMPs to call yet-to-be-defined functions. The prompt engineer
would no longer need to provide all implementation details in
Examples — a "rough sketch" of the code logic may suffice.
High-level LMPs can also follow good abstraction practices and
avoid "flattening" all the code logic onto one level. In addition
to making the resultant code easier to read, this improves code
generation performance as shown in Section Locating yet-
to-be-defined functions is also done within the body of generated
functions. Note in the example above, get_obj_bbox_area is not
a provided API call. Instead, it can be generated as needed:

# define function: get_obj_bbox_area(obj_name).

def get_obj_bbox_area(obj_name):

x1, y1, x2, y2 = get_obj_bbox_xyxy(obj_name)
return (x2 - x1) * (y2 - y1)

Note the prompt did not specify exactly what get_obj_bbox_xyxy
returns, but the name suggests that it contains the minimum and
maximum Xy coordinates of an axis-aligned bounding box, and
the LLM is able to infer this and generate the correct code.

In Python, we implement hierarchical function generation
by parsing a code block’s abstract syntax tree and checking for
functions that do not exist in the given scope. We use the function-
generating LMP to write these undefined functions and add them
to the scope. This procedure is repeated on the generated function
body, hierarchically creating new functions in a depth-first manner.

Combining control flows, LMP composition, and hierarchical
function generation. The following example shows how LMPs
can combine these capabilities to follow more complex instructions
and perform a task in the tabletop manipulation domain. Prompts
are omitted for brevity, but they are similar to previous ones. The
high-level LMP generates high-level policy behavior and relies
on parse_obj to get object names by language descriptions:
objs = [’red block’, ’blue bowl’, ’blue block’, ’red bowl’]
# while there are blocks with area bigger than 0.2 that are left of the
red bowl, move them toward the right.
block_names = parse_obj(’blocks with area bigger than 0.2 that are
left of the red bowl’)
while len(block_names) > @:
for block_name in block_names:
target_pos = get_pos(block_name) + np.array([0.1, @1)
put_first_on_second(block_name, target_pos)

block_names = parse_obj(’blocks with area bigger than 0.2 that are
left of the red bowl’)

Then, parse_obj uses get_objs_bigger_than_area_th (yet-to-
be-defined function), to complete the query. This function is given
through an import statement in the Hints of the parse_obj prompt,
but it is not implemented. Hierarchical function generation would
subsequently create this function as demonstrated above.



objs = [’red block’, ’blue bowl’, ’blue block’, ’red bowl’]
# blocks with area bigger than 0.2 that are left of the red bowl.
block_names = [’red block’, ’blue block’]
red_bowl_pos = get_pos(’red bowl’)
use_block_names = [name for name in block_names

if get_pos(name)[@] < red_bowl_pos[@]1]
use_block_names = get_objs_bigger_than_area_th(use_block_names, 0.2)
ret_val = use_block_names

We describe more on prompt engineering in the Appendix [A]

D. Language Model Programs as Policies

In the context of robot policies, LMPs can compose perception-
to-control feedback logic given natural language instructions,
where the high-level outputs of perception model(s) (states)
can be programmatically manipulated and used to inform the
parameters of low-level control APIs (actions). Prior information
about available perception and control APIs can be guided
through Examples and Hints. These APIs "ground" the LMPs
to a real-world robot system, and improvements in perception
and control algorithms can directly lead to improved capabilities
of LMP-based policies. For example, in real-world experiments
below, we use recently developed open-vocabulary object
detection models like ViLD [3] and MDETR [2] off-the-shelf to
obtain object positions and bounding boxes.

The benefits of LMP-based policies are threefold: they (i) can
adapt policy code and parameters to new tasks and behaviors
specified by unseen natural language instructions, (ii) can
generalize to new objects and environments by bootstrapping off
of open-vocabulary perception systems and/or saliency models,
and (iii) do not require any additional data collection or model
training. The generated plans and policies are also interpretable
as they are represented in code, allowing for easy modification
and reuse. Using LMPs for high-level user interactions inherits
the benefits of LLMs, including parsing expressive natural
language with commonsense knowledge, taking prior context
into account, multilingual capabilities, and engaging in dialog.
In the experiment section that follows, we demonstrate multiple
instantiations of LMPs across different robots and different tasks,
showcasing the approach’s flexible capabilities and ease of use.

IV. EXPERIMENTS

The goals of our experiments are threefold: (i) evaluate the
impact of using hierarchical code generation (across different
language models) and analyze modes of generalization, (ii)
compare Code as Policies (CaP) against baselines in simulated
language-instructed manipulation tasks, and (iii) demonstrate CaP
on different robot systems to show its flexibility and ease-of-use.
Additional experiments can be found in the Appendix, such as
generating reactive controllers to balance a cartpole and perform
end-effector impedance control (Appendix [F). The Appendix also
contains the prompt and responses for all expriments. Full videos
and Colab Notebooks that reproduce these experiments can be
found on the website.

A. Hierarchical LMPs on Code-Generation Benchmarks

We evaluate our code-generation approach on two code-
generation benchmarks: (i) a robotics-themed RoboCodeGen and
(ii) HumanEval [1], which consists of standard code-gen problems.

TABLE I: Hierarchical code-generation solves more problems in RoboCodeGen
(in % pass rates) and improves with scaling laws (as # model parameters increases).

GPT-3 [12] Codex [1]
Method 6.7B 175B  cushman davinci
Flat 3 68 54 81
Hierarchical 5 84 57 95

TABLE II: Hierarchical code-gen performs better (% pass rate) on generic coding
problems from HumanEval [1]. Greedy is decoding LLM with temperature=0.
P@N evaluates correctness across N samples with temperature=0.8.

Greedy P@l P@l10 P@I100
Flat 457 349 751 90.9
Hierarchical ~ 53.0 398 80.6 95.7

RoboCodeGen: we introduce a new benchmark with 37
function generation problems with several key differences from
previous code-gen benchmarks: (i) it is robotics-themed with
questions on spatial reasoning (e.g., find the closest point to a
set of points), geometric reasoning (e.g., check if one bounding
box is contained in another), and controls (e.g., PD control), (ii)
using third-party libraries (e.g. NumPy) are both allowed and
encouraged, (iii) provided function headers have no docstrings
nor explicit type hints, so LLMs need to infer and use common
conventions, and (iv) using not-yet-defined functions are also
allowed, which can be created with hierarchical code-gen.
Example benchmark questions can be found in Appendix [E] We
evaluate on four LLMs accessible from the OpenAI API'| As with
standard benchmarks [1], our evaluation metric is the percentage
of the generated code that passes human-written unit tests.

See Table [l Domain-specific language models (Codex
models), generally perform better, and within each model family,
performance improves with larger models. Hierarchical performs
better across the board, showing the benefit of allowing the LLM
to break down complex functions into hierarchical parts and
generate code for each part separately.

We also analyze how code generation performance varies across
the five types of generalization proposed in [23]. Hierarchical
helps Productivity the most, which is when the new instruction
requires longer code, or code with more logic layers than those
in Examples. These improvements however, only occur with the
two davinci models, and not cushman, suggesting that a certain
level of code-generation capability needs to be reached first before
hierarchical code-gen can bring further improvements. More
results are in Appendix [E.2]

Evaluations in HumanEval [1] demonstrate that hierarchical
code-gen improves not only policy code, but also general-purpose
code. See Table[ll} Numbers achieved are higher than in recent
works [1], [11], [58]. Note that we use code-davinci-002,
while previous works use code-davinci-001, but the relative
improvements with hierarchical are consistent across the board.
More details in Appendix

B. CaP: Drawing Shapes via Generated Waypoints

In this domain, we task a real URS5e robot arm to draw various
shapes by generating and following a series of 2D waypoints. For

ITwo text models: the 6.7B GPT-3 model [12] and 175B InstructGPT [22]. Two
Codex models [1]: cushman and davinci, trained to generate code. davinci is
larger and better. Sizes of Codex models are not public.



TABLE III: Success rates over task families with 50 episodes per task.

Train/Test Task Family CLIPort [36] NL Planner CaP (ours)
SASI  Long-Horizon 78.80 86.40 97.20
SASI  Spatial-Geometric 97.33 N/A 89.30
UASI  Long-Horizon 36.80 88.00 97.60
UASI  Spatial-Geometric 0.00 N/A 73.33
UAUI Long-Horizon 0.00 64.00 80.00
UAUI  Spatial-Geometric 0.01 N/A 62.00

perception, the LMPs are given APIs that detect object positions,
implemented with off-the-shelf open vocabulary object detector
MDETR [2]. For actions, an end-effector trajectory following
APl is provided. There are four LMPs: (i) parse user commands,
maintain a session, and call action APIs, (ii) parse object names
from language descriptions, (iii) parse waypoints from language
descriptions, and (iv) generate new functions. Examples of
successful on-robot executions of unseen language commands are
in Fig. k. The system can elicit spatial reasoning to draw entirely
new shapes from language commands. Additional examples
which demonstrate the ability to parse precise dimensions,
manipulate previous shapes, and multi-step commands, as well
as full prompts, are in Appendix

C. CaP: Pick & Place Policies for Table-Top Manipulation

The table-top manipulation domain tasks a URSe robot arm
to pick and place various plastic toy objects on a table. The
arm is equipped with a suction gripper and an in-hand Intel
Realsense D435 camera. We provide perception APIs that detect
the presences of objects, their positions, and bounding boxes, via
MDETR [2]. We also provide a scripted primitive that picks an
object and places it on a target position. Prompts are similar to
those from the last domain, except trajectory parsing is replaced
with position parsing. Examples of on-robot executions of unseen
language commands are in Fig. [2] panels a and b, showing
the capacity to reason about object descriptions and spatial
relationships. Other commands that use historical context (e.g.,
"undo that"), reason about objects via geometric (e.g., "smallest")
and spatial (e.g., "right-most") descriptions are in Appendix|[}

D. CaP: Table-Top Manipulation Simulation Evaluations

We evaluate CaP on a simulated table-top manipulation envi-
ronment from [16], [18]. The setup tasks a URSe arm and Robotiq
2F85 gripper to manipulate 10 colored blocks and 10 colored
bowls. We inherit all 8 tasks, which are referred as "long-horizon"
tasks because of their multi-step nature (e.g., "put the blocks in
matching bowls"). We additionally define 6 tasks to evaluate the
spatial-geometric reasoning capabilities of CaP (e.g., "place the
blocks in a diagonal line"). Each task is parameterized by some
attributes (e.g., "pick up <obj> and place it in <corner>"). We split
the task instructions (I) and the attributes (A) into "seen" (SI, SA)
and "unseen" categories (UL, UA), where "seen" means it’s allowed
to appear in the prompts or be trained on (in the case of supervised
baseline). More details in Appendix [K] We consider two baselines:
(i) language-conditioned multi-task CLIPort [36] policies trained
via imitation learning on 30k demonstrations, and (ii) few-shot
prompted LLM planner using natural language instead of code.

Results are in Table CaP compares competitively to the
supervised CLIPort baseline on tasks with seen attributes and
instructions, despite only few-shot prompted with one example
rollout for each task. With unseen task attributes, CLIPort’s
performance degrades significantly, while LLM-based methods
retain similar performance. On unseen tasks and attributes, end-
to-end systems like CLIPort struggle to generalize, and CaP
outperforms LLM reasoning directly with language (also observed
in [20]). Moreover, the natural-language planners [14], [16]-[18]
are not applicable for tasks that require precise numerical spatial-
geometric reasoning. We additionally show the benefits reasoning
with code over natural language (both direct question and an-
swering and Chain of Thought [47]), specifically the ability of the
former to perform precise numerical computations, in Appendix

E. CaP: Mobile Robot Navigation and Manipulation

In this domain, a robot with a mobile base and a 7 DoF arm is
tasked to perform navigation and manipulation tasks in real-world
kitchen. For perception, the LMPs are given object detection APIs
implemented via VILD [3]. For actions, the robot is given APIs to
navigate to locations and grasp objects via both names and coordi-
nates. Examples of on-robot executions of unseen language com-
mands are in Fig. 2] This domain shows that CaP can be deployed
across realistic tasks on different robot systems with different APIs.
It also illustrates the ability to follow long-horizon reactive com-
mands with control structures as well as precise spatial reasoning,
which cannot be easily accomplished by prior works [16], [17],
[36]. See prompts and additional examples in Appendix [l

V. DISCUSSION AND LIMITATIONS

CaP generalizes at a specific layer in the robot stack:
interpreting natural language instructions, processing perception
outputs, then parameterizing low-dimensional inputs to control
primitives. This fits into systems with factorized perception
and control, and it imparts a degree of generalization (acquired
from pretrained LLLMs) without the magnitude of data collection
needed for end-to-end learning. Our method also inherits LLM
capabilities unrelated to code writing e.g., supporting instructions
with non-English languages or emojis (Appendix [[J CaP can
also express cross-embodied plans that perform the same task
differently depending on the available APIs (Appendix [M).
However, this ability is brittle with existing LLMs, and it may
require larger ones trained on domain-specific code.

CaP today are restricted by the scope of (i) what the perception
APIs can describe (e.g., no visual-language models to date can
describe whether a trajectory is "bumpy" or "more C-shaped"),
and (ii) which control primitives are available. Only a handful
of named primitive parameters can be adjusted without over-
saturating the prompts. CaP also struggle to interpret commands
that are significantly longer or more complex, or operate at a
different abstraction level than the given Examples. In the tabletop
domain, it would be difficult for LMPs to "build a house with the
blocks," since there are no Examples on building complex 3D
structures. Our approach also assumes all given instructions are
feasible, and we cannot tell if a response will be correct a priori.
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APPENDIX
A. Prompt Engineering

Using LMPs to reliably complete tasks via code generation
requires careful prompt engineering. While these prompts do
not have to be long, they do need to be relevant and specific.
Here, we discuss a few general guidelines that we followed while
developing prompts for this paper.

It is very important for prompts to contain code that has no bugs.
Bugs in the prompt lead to unreliable and incorrect responses. Con-
versely, if the LMP is writing incorrect code for a given Instruction,
the prompt engineer should first verify that the prompt, especially
the Examples most closely related to the Instruction, is bug-free.
To reduce bugs related to syntax errors, one simple method is
writing prompts in a code editor with syntax highlighting.

There are many cases where the prompt contains variables
or functions whose names are ambiguous. To produce reliable
responses under these conditions, Examples in the prompt should
treat these ambiguities consistently. If a variable named point
is treated as an numpy.ndarray object in one Example and as
a shapely.geometry.Point object in another, the LMP will not
be able to “decide"” on which convention to use, resulting in
unreliable responses. Another way to handle ambiguity is by
providing informal type hints, such as appending _np to variable
names to indicate its type, or appending it to function names to
indicate the type of the returned variable. In general, more specific
variable and function names give more consistent results.

For using third party libraries, including import statements
in the prompt may not be necessary, as we found that LMPs
can generate code that calls NumPy and SciPy without them.
However, explicit import statements do improve reliability and
increase the chance of LMPs using those libraries when the need
arises. For using first party libraries, meaningful function names
that follow popular conventions (e.g., begin with set_ and get_)
and specify return object formats (e.g., get_bbox_xyxy) induce
more accurate usages. Import statements in the Hints should
be formatted as if we were importing functions. For example,
in Python this means using from utils import function_name
instead of import function_name. If the latter is used, the LMP
may treat the imported name as a package, and the generated code
might write function_name.function_name().

One type of LMP failures are related to code generation
correctness. For example, minor coding mistakes when calling
internal or external APIs, such as missing arguments, can be
fixed with an Hint or Example demonstrating the correct usage.
Incorrect assumptions on variable types can also be fixed in
similar fashions. Other coding failures may be addressed by
descriptive function names to encourage appropriate library
usage (perform_function_with_np()) or succinct code logic (#
implement in one line.) While it is possible to use LLMs to
edit code and fix bugs (e.g., by using OpenAl’s code edit API), in
our experience this yielded inconsistent results (not always able to
correct mistakes, and sometimes changed what the function was
doing), so we did not employ this method in our experiments.

B. Method Section Prompts
1) Language-based reasoning: Full prompt:

2) First-party: Full prompt:

3) Combining language reasoning, third-party, and first-party
libraries.: Full prompt:

4) LMPs can be composed.: Full prompt:

5) parse_obj prompt.: Full prompt:

C. Reasoning with Code vs. Natural Language

To investigate how robot-relevant reasoning through LLMs can
be performed with LMPs rather than with natural language, we
created a benchmark that consists of two sets of tasks: (i) selecting
objects in a scene from spatial-geometric descriptions, and (ii)
selecting position coordinates from spatial-geometric descriptions.
Object selection has 28 questions with commands such as "find the
name of the block closest to the blue bowl," where a list of block
and bowl positions are provided as input context in the prompt.
Position selection has 23 questions with commands such as



"interpolate 3 points on a line from the cyan bowl to the blue bowl."
An LLM-generated answer for position selection is considered
correct if all coordinates are within 1cm of the ground truth.

We evaluate LMPs against two variants of reasoning with
natural language: (i) Vanilla, given a description of the setting
(e.g., list of object positions) and the question, directly outputs
the answer (e.g., "Q: What is the top-most block?" — "A: red
block"), and (ii) Chain of Thought (CoT) [47], which performs
step-by-step reasoning given examples of intermediate steps in
the prompt (e.g., encouraging the LLM to list out y-coordinates
of all blocks in the scene before identifying the top-most block).

TABLE IV: Using code for spatial-geometric reasoning yields higher success rate
(mean %) than using vanilla natural language or chain-of-thought prompting.

Natural Language Code
Tasks Vanilla CoT [47] LMP (ours)
Object Selection 39 68 96
Position Selection 30 48 100
Total 35 58 98

Results in Table [V]show that LMPs achieve accuracies in the
high 90s, outperforming CoT, which outperforms Vanilla. CoT
enables LLMs to reason about relations and orders (e.g. which
coordinate is to the right of another coordinate), but failures occur
for precise and multi-step numerical computations. By contrast,
code from LMPs can use Python to perform such computations,
and they often leverage external libraries to perform more complex
operations (e.g., NumPy for vector addition). CoT and LMPs are
not mutually exclusive — it is possible to prompt "step-by-step"
code-generation to solve more complex tasks via CoT, but this
is a direction not explored in this work.

D. CodeGen HumanEval Additional Results

Here we provide additional results to our HumanEval experi-
ments. In total, three variants of the bigger Codex model (code-
davinci-002) are tested. Our approach is Hier. CodeGen + Hier
Prompts, where the prompt encourages the LLM to call yet-to-be-
defined functions by including such examples. For comparisons,
we evaluate against Flat CodeGen + No Prompt, essentially just
using the LLM directly, and Flat CodeGen + Flat Prompt, for fair
comparison with flat code-generation, since our hierarchical ap-
proach has a prompt. The prompts only contain only 2 Examples:

Prompt for Flat CodeGen:

Prompt for Hierarchical CodeGen:

Note the only difference in the hierarchical prompt is using a
yet-to-be-defined function get_mean instead of calculating the
mean directly. This "allows" the LLM to generate code that also
call yet-to-be-defined functions.

We report pass rates for when using the most likely outputs
("greedy", which is done by setting temperature to 0), as well as
pass rates for at least one solution from sampling various numbers
of solutions (1, 10, and 100) with temperature set to 0.8, similar
to those used in prior works [1], [11], [58].

TABLE V: Hierarchical code generation also performs better (in % pass rates)
on generic coding problems from the standard HumanEval benchmark [1]. For
columns, Greedy means decoding LLM with temperature=0, while P@N means
evaluating correctness across N samples decoded from LLM with temperature=0.8.

Greedy P@l P@10 P@I100
code-davinci-001 [11] - 36.0 - 81.7
PalLM Coder [11] - 360 - 88.4

Flat CodeGen + No Prompt 45.7 349 751 90.9
Flat CodeGen + Flat Prompts 50.6 36.6 776 93.3
Hier. CodeGen + Hier Prompts ~ 53.0 39.8  80.6 95.7

See results in Table [l In all instances hierarchical code
generation outperforms flat code generation, and the numbers
achieved are higher than those reported in recent works [1], [11],
[58] (although previous works evaluated against code-davinci-001,
which is likely not as performant as code-davinci-002). Out of
the 164 questions in HumanEval, 6.5% led to hierarchical code
generation, but of which both Flat CodeGen variants got 44%
success, while Hier CodeGen code got 56%. While success rate
when sampling 100 responses is above 90% across the board,
we note that sampling multiple solutions is not practical for
LMPs, which need to perform tasks in a zero-shot manner without
engineering prior unit tests. As such, for LMPs we always set
temperature to 0 and use the most likely output.

E. Robot Code-Generation Benchmark

1) Example Questions: Here are four types of benchmark
questions and their examples:
« Vector operations with Numpy:
pts = interpolate_pts_np(start, end, n)
« Simple controls:
u = pd_control(x_curr, x_goal, x_dot, Kp, Kv)
o Manipulating shapes with shapely:
circle = make_circle(radius, center)
« Using first-party libraries:
ret_val = obj_shape_does_not_contain_others(obj_name,
other_obj_names)
For the last type, we provide imports of first-party functions, like
ones that get object geometric information by name, as Hints in
the prompt.
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Fig. 4: Robot Code-Generation Benchmark Performance across
Generalization Types for Flat (top) and Hierarchical (middle) Code-
Generation, as well as the performance improvements made by
Hierarchical Code-Generation (bottom).

2) Generalization Analysis: We analyze how well code-
generation performs across the fives types of generalizations
described in [23], where generalization is evaluated by comparing
the examples given in the prompt with the new instructions given
in the benchmark. We give a description of the five types of
generalization applied to our benchmark. Specifically, we say
that solving a problem in the benchmark demonstrates a particular
type of generalization if the problem’s instruction or solution
satisfy the following conditions:

« Systematicity: recompose parts of Examples’ instructions
or code snippets.

« Productivity: have longer code or contains more levels (e.g.,
hierarchical function calls) than Examples.

« Substitutivity: use synonyms or replace words of similar
categories from Examples.

« Localism: reuse seen parts or concepts for different purposes.

o Overgeneralization: use new API calls or programming
language features not seen in Examples.

In Figure f] we report results across three models. The top
plot shows using flat prompts and flat code generation, while the
bottom uses hierarchical prompts and hierarchical code generation.
The relative rankings of the three models are consistent across
all generalization types, with code-davinci-002 performing the
best. The smallest model, code-cushman-001, performs especially
poorly in Productivity and Localism, but it performs much better
on Substitutivity. Indeed, the high Substitutivity performance
across all models may indicate that language models are
particularly robust to replacing words that have similar meanings or
are from similar categories, while generalization to more complex
commands (longer answers via Productivity or maintaining local
structures via Localism) are more challenging. Hierarchical code
generation also brings significant performance improvements for
both davinci models, especially on Productivity, allowing these
models to write longer and more multi-layered functions. However,
these improvements are not apparent for cushman, which actually
has lower Substitutivity and Localism success rates, suggesting
reaching a certain code-generation capability level is needed before
Hierarchical Code-Generation can bring further improvements.

E CaP: Reactive Controllers for Toy Tasks

LMPs can express reactive controllers, and we demonstrate this
on: (i) OpenAl Gym’s CartPole balancing and (ii) end-effector
position impedance control. Using the same prompt structure, both
controllers can be generated zero-shot, reflecting the knowledge
already stored in the language model, which can be invoked when
the objective is sufficiently specified in the function signature:

# define function: direction = keep_pole_upright_with_pd_control(x,
x_dot, theta, theta_dot).
# info: direction is 1 if going right, @ if going left.
def keep_pole_upright_with_pd_control(x, x_dot, theta, theta_dot):
# define constants.
kp =1
kd =1
# define direction.
direction = 1
# define error.
error = theta
# define error_dot.
error_dot = theta_dot
# define control.
control = kp * error + kd * error_dot
# define direction.
if control < 0:
direction = @
return direction

The generated LMP expresses a controller that takes as input the
position of the cart, angle of the pole, and their velocities, then
it balances the pole by actuating the cart below with discrete left
or right actions. This controller is only a simple one that requires

initialization to be near upright, but it can stabilize an unstable
fixed point.



Fig. 5: LMPs can balance a cartpole

LMPs can likewise be prompted to express impedance control:

# define function: tau = ee_impedance_control(x_curr, x_goal
x_dot, K_x_mat, D_x_mat, J)
def ee_impedance_control(x_curr, x_goal, x_dot, K_x_mat,
D_x_mat, J):
x_err = x_goal - x_curr
x_dot_err = -x_dot
tau = np.matmul(J.T,
np.matmul (K_x_mat, x_err) + np.matmul(D_x_mat, x_dot_err))
return tau

to move a robot arm end-effector towards a goal position with joint
torques. The controller is functional in that it can control a URSe
robot in PyBullet, but simplified in that it does not compensate
for Coriolis or gravity forces. Note the need to include extra
information about the expected direction output as well as the hint
to use PD control in the function signature. Without these hints,
the resultant function may still look reasonable (e.g. it may output
continuous values for control instead of discrete), but it will not
work for this specific environment APL. For the names of the input
gains, _mat was needed for the LMP to treat them as matrices
instead of scalars, and _x was needed to indicate these gains were
for the end-effector, not the joints. We demonstrate the use of
this controller by commanding the end-effector 3D positions of
a URSe robot in PyBullet. The default PD gains of 1 also work in
this domain without additional tuning as the CartPole environment
is relatively simple. More complex continuous control tasks may
require actually tuning the gains based on execution feedback,
something our method does not support at the moment.

Both examples show it is possible to generate simple reactive
controllers, but more work is needed to express more complex
ones.

G. Visual Language Models

For real-world experiments, we use off-the-shelf open-
vocabulary object detection models, ViLD [3] and MDETR [2]
to perform object detection, localization, and segmentation. These
are called visual language models because they take as input a
natural language description (caption) of the image and try to
find objects in that description. ViLD is used for the mobile robot
domain, while MDETR is used for the tabletop manipulation and
whiteboard drawing domains. Both models give an axis-aligned
bounding box in the image along with per-pixel segmentation
masks of the detected objects. To convert these detections to
3D coordinates for both perception and action (e.g., scripted
picking primitives), we deproject the corresponding pixels from
a depth camera, whose transform to the robot frame is registered

a priori. The robustness of today’s vision language models
could still be improved, and many real-world failures could be
attributed to inaccurate detections. In addition, a degree of prompt
engineering is also required for VLMs. For example, MDETR
detects blocks more reliably with the word “square” than "block,"
and applying our approach to a new domain will require some
prompt engineering for the vision language model.

H. Whiteboard Drawing

In this domain, a URSe robot is tasked to draw and erase
various shapes described by natural language on a whiteboard.
A dry-erase marker is rigidly attached to the robot end-effector.
The whiteboard dimensions, location, and the location of the
eraser are known. Additional objects may be added to the scene
for the commands to refer to (e.g., draw a circle around the blue
block). In our demos, we use Google Cloud’s speech-to-text and
text-to-speech APIs to allow users interact with the system through
voice commands and also hear the robot’s responses to commands.

Prompts.

e draw_ui: the high-level
UI for parsing user commands and calling other functions
https://code-as-policies.github.io/prompts/draw_ui.txt

e parse_obj_name:
return names of objects from natural language descriptions
https://code-
as-policies.github.io/prompts/parse_obj_name.txt

¢ parse_shape_pts: return sequence of
2D waypoints of shapes from natural language descriptions
https://code-
as-policies.github.io/prompts/parse_shape_pts.txt

o transform_shape_pts: performs 2D transforms on
a sequence of 2D points from natural language descriptions
https://code-
as-policies.github.io/prompts/transform_shape_pts.txt

o function_generation: define functions from comments
https://code-as-policies.github.io/prompts/fgen_simple.txt

APIs.

o get_obj_names() - gets list of available objects in the scene.

these are prespecified.

e get_obj_pos(name) - get the 2D position of the center of an

object by name.

e draw(pts_2d) - draws a shape by commanding the robot

end-effector to follow a squence of points on the whiteboard.
The robot first moves to a point above the first point in the
trajectory, moves down to until contact with the whiteboard
is detected, and proceeds to follow the rest of the trajectory.
e erase(pts_2d) - erases a shape by commanding the robot
end-effector to first establish contact with a eraser (eraser
position is hardcoded) before following the the rest of the
trajectory.

Instructions. These instructions were given to the robot
in series from an initial blank whiteboard. See full video and
generated code on the website.

1) draw a Scm hexagon around the middle

2) draw a line that bisects the hexagon
3) make them both bigger
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4) erase the hexagon and the line
5) draw the sun as a circle at the top right
6) draw the ground as a line at the bottom
7) draw a pyramid as a triangle on the ground
8) draw a smaller pyramid a little bit to the left
9) draw circles around the blocks

10) draw a square around the sweeter fruit

1. Real-World Tabletop Manipulation

In this domain, a URSe robot is tasked to manipulate objects
on a tabletop according to natural language instructions. The
robot is equipped with a suction gripper, and it can only perform
pick and place actions parameterized by 2D top-down pick and
place positions. The robot is also expected to answer questions
about the scene (e.g., how many blocks are there?) by using the
provided perception APIs. In our demos, we use Google Cloud’s
speech-to-text and text-to-speech APIs to allow users interact with
the system through voice commands and also hear the robot’s
responses to commands and questions.

Prompts.

o tabletop_ui: the high-level

UI for parsing user commands and calling other functions
https://code-as-policies.github.io/prompts/tabletop_ui.txt

e parse_obj_name:
return names of objects from natural language descriptions
https://code-
as-policies.github.io/prompts/parse_obj_name.txt

e parse_position:
return a 2D position from natural language descriptions
https://code-as-policies.github.io/prompts/parse_position.txt

e parse_question: return a response (could be a number,

a boolean, or a string) to a natural language question
https://code-
as-policies.github.10/prompts/parse_question.txt

e function_generation: define functions from comments
https://code-as-policies.github.io/prompts/fgen. txt

APIs.

o get_obj_names() - gets list of available objects in the scene.
these are prespecified.

e get_obj_pos(name) - gets the 2D position of the center of
an object by name.

e is_obj_visible(name) - checks if an object is visible by
name.

e get_bbox(name) - gets the 2D axis-aligned bounding box
of an object by name. This is in robot base coordinates, not
in pixels.

o get_segmask(name) - gets the segmentation mask of an
object detection by name. This is in pixels.

e get_color_rgb(name) - gets the average RGB color of an
object detection crop by name.

e get_corner_name(pos_2d) - gets the name of the corner
(e.g., top right corner) closest to the 2d point.

e get_side_name(pos_2d) - gets the name of the side (e.g.,
left side) closest to the 2d point.

e denormalize_xy(normalized_pos_2d) - converts a
normalized 2D coordinate (each value between 0

and 1) to an actual 2D coordinate in robot frame.

e put_first_on_second(obj_name, target) - picks the first
object by name and places it on top of the target by name. The
target could be another object name or a 2D position. Picking
and placing are done by moving the suction gripper directly
on top of the desired positions, moving down until contact is
detected, then either engages or disengages the suction cup.

e say(message) - uses the robot speaker to voice out a message.

We demonstrate CaP on three domains in the tabletop

manipulation setting. Instructions of each domain are listed below
and were performed in a sequence. See full videos and generated
code on the website.

Instructions for 4 blocks domain.

1) Put the blocks in a horizontal line near the top
2) Move the sky-colored block in between the red block and
the second block from the left
3) Why did you move the green block?
4) Which block did you move?
5) Arrange the blocks in a square around the middle
6) Make the square bigger
7) Undo that
8) rotate the square by 45 degrees
9) Can you throw blocks?
10) Move the red block 5cm to the bottom
11) Do the same with the other blocks
12) Put the blocks on different corners clockwise starting at the
top right corner
Instructions for 3 blocks and 3 bowls domain.
1) Put the red block to the left of the rightmost bowl
2) Now move it to the side farthest away from it
3) How many bowls are to the left of the red block?
4) place the blocks in bowls with non matching colors
5) put the blocks in a vertical line 20 cm long and 10 cm below
the blue bowl
6) imagine that the bowls represent a volcano, a forest, and an
ocean
7) also imagine that the blocks are parts of a building
8) now build a tower in the forest
9) show me what happens when a volcano erupts over the ocean
Instructions for fruits, bottles, and plates domain.
1) How many fruits are there?
2) Tell me their names
3) Are there any fruits on the green plate?
4) Move all fruits to the green plate and bottles to the blue plate
5) Move the smallest fruit back to the yellow plate
6) Wait until you see an egg and put it on the green plate
7) Put the darkest object in the plate that has the apple

J. Mobile Robot

The mobile manipulation experiment is set up with a Everyday
Robots robot navigating and interacting with objects in a real
world office kitchen. The robot has a mobile base and a 7DoF
arm. For implementing the perception APIs, we mainly use the
RGBD camera sensor on the robot. The robot is shown in Fig. [}


https://code-as-policies.github.io/prompts/tabletop_ui.txt
https://code-as-policies.github.io/prompts/parse_obj_name.txt
https://code-as-policies.github.io/prompts/parse_obj_name.txt
https://code-as-policies.github.io/prompts/parse_position.txt
https://code-as-policies.github.io/prompts/parse_question.txt
https://code-as-policies.github.io/prompts/parse_question.txt
https://code-as-policies.github.io/prompts/fgen.txt
https://everydayrobots.com/
https://everydayrobots.com/

RGBD image, 640 x 512

=
Frontal view,

Pre-manipulation pose

Fig. 6. Experiment Setup for mobile manipulation with a Everyday Robots robot.

Prompts.

e mobile_ui: the high-level
UI for parsing user commands and calling other functions
https://code-as-policies.github.io/prompts/mobile_ui.txt

e parse_obj_name:
return names of objects from natural language descriptions
https://code-
as-policies.github.io/prompts/mobile_parse_obj_name.txt

e parse_position:
return a 2D position from natural language descriptions
https://code-
as-policies.github.i0/prompts/mobile_parse_pos.txt

e transform_traj: performs 2D transforms on
a sequence of 2D points from natural language descriptions
https://code-
as-policies.github.io/prompts/mobile_transform_traj.txt

e function_generation: define functions from comments
https://code-as-policies.github.io/prompts/fgen_simple.txt

APIs.

e get_obj_names() - gets list of available objects in the scene.

these are prespecified.

e get_obj_pos(name) - get the 2D position of the center of an
object by name.

e is_obj_visible(name) - returns whether or not the robot
sees an object by name.

e get_visible_obj_names() - returns a list of currently visible
object names.

e get_loc_names() - returns a list of all predefined location
names the robot can navigate to.

e get_obj_pos(name) - gets the 3D location of an object by
name. This object must be currently visible.

e get_loc_pos(name) - gets the 2D location and 1D angle of
a predefined location.

e get_robot_pos_and_angle - gets the current 3D robot
position and 1D angle (heading).

e goto_pos(pos_3d) - navigates to a 3D position by running
the robot’s internal motion planner.

e goto_loc(name) - navigates to a location by name by
running the robot’s internal motion planner.

e pick_obj(name) - picks up an object by its name. The object

must be currently visible. This is implemented as a scripted
picking primitive using ViLD object detections.

e place_at_pos(pos_3d) - places the currently held object at
a position.

e place_at_obj(name) - places the currently held object on
top of another object by name.

o say(message) - uses the robot’s speaker to voice out a
message.

Below we list commands that were performed on the mobile
robot platform. The first are navgiation-related tasks, while the
second are manipulation related. For the latter manipulation
commands, note the ability of CaP to form "short-term memory"
by explicitly record variables (in this case, the robot’s past
positions) in the Python execution scope and referring back them
later. See videos and generated code on the website.

Mobile Navigation Instructions.

1) Moving in a 3m by 2m rectangle around the office chair

2) Do that again but rotated 45 degrees clockwise

3) Go in a 1.5m square around the barstool as many times
as needed, check each step if there is a banana, only stop
moving when you see the banana

4) Follow the convex hull containing the chairs

5) Move back and forth between the table and the countertop
3 times

Mobile Manipulation Instructions.

1) How many snacks are on the table?

2) Take the water bottle from the desk and put it in the middle
of the fruits on the table

3) This is the compost bin

4) This is the recycle bin

5) This is the landfill bin

6) The coke can and the apple are on the table

7) Put way the coke can and the apple on their corresponding
bins

K. Simulation Tabletop Manipulation Evaluations

Similar to the real-world tabletop domain, we construct a
simulated tabletop environment, in which a URSe robot equipped
with a Robotiq 2F85 jaw gripper is given natural language
instructions to complete rearrangement tasks. The objects include
10 different colored blocks and 10 different colored bowls. The
proposed CaP is given APIs for accessing a list of present objects
and their locations, via a scripted object detector, as well as a
pick-and-place motion primitive that are parameterized by either
coordinates or object names.

Prompts.

o tabletop_ui: the high-level

UI for parsing user commands and calling other functions
https://code-
as-policies.github.10/prompts/sim_tabletop_ui.txt

e parse_obj_name:

return names of objects from natural language descriptions
https://code-
as-policies.github.i0/prompts/sim_parse_obj_name.txt

e parse_position:

return a 2D position from natural language descriptions
https://code-
as-policies.github.io/prompts/sim_parse_position.txt
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objects = ['red block',

# IBEGENARRELL EAIBE
put_first_on_second('blue block', 'red bowl')
objects = ['green block', 'cyan block']

# move the [l 16cm to the <.

target_pos = get_pos('green block) + [-0.1, 0]
put_first_on_second('green block, target_pos)

red bowl', 'blue block', 'blue bowl']

Fig. 7: LMPs inherit benefits of LLMs, such as parsing commands from non-

English languages and emojis.

e function_generation: define functions from comments
https://code-as-policies.github.io/prompts/tgen. txt
APIs.

e get_obj_names() - gets list of available objects in the scene.

these are prespecified.

e get_obj_pos(name) - gets the 2D position of the center of
an object by name.

e denormalize_xy(normalized_pos_2d) - converts a
normalized 2D coordinate (each value between O
and 1) to an actual 2D coordinate in robot frame.

e put_first_on_second(obj_name, target) - picks the first
object by name and places it on top of the target by name. The
target could be another object name or a 2D position. Picking
and placing are done by moving the suction gripper directly
on top of the desired positions, moving down until contact is
detected, then either engages or disengages the suction cup.

We evaluate CaP and the baselines on the following tasks,

where each task refers to a unique instruction template (e.g.,
“Pick up the <block> and place it in the corner <distance> to
the <bowl>") that are parameterized by certain attributes (e.g.,
<block>). We split the tasks into the instructions and the attributes
to “seen” and “unseen” categories, where the “seen” instructions
or attributes are permitted to appear in the prompt or used for
training (in the case of supervised baselines). Full list can be
found below. Note that we further group the instructions into
“Long-Horizon” and “Spatial-Geometric” task families. The
“Long-Horizon” instructions are 1-5 in Seen Instructions and 1-3
in Unseen Instructions. The “Spatial-Geometric” instructions are
5-8 in Seen Instructions and 4-6 in Unseen Instructions.

Seen Instructions.

1) Pick up the <block1> and place it on the (<block2> or
<bowl>)

2) Stack all the blocks

3) Put all the blocks on the <corner/side>

4) Put the blocks in the <bowl>

5) Put all the blocks in the bowls with matching colors

6) Pick up the block to the <direction> of the <bowl> and place
it on the <corner/side>

7) Pick up the block <distance> to the <bowl> and place it on
the <corner/side>
8) Pick up the <nth> block from the <direction> and place it
on the <corner/side>
Unseen Instructions.

1) Put all the blocks in different corners

2) Put the blocks in the bowls with mismatched colors

3) Stack all the blocks on the <corner/side>

4) Pick up the <blockl> and place it <magnitude> to the
<direction> of the <bowl>

5) Pick up the <block1> and place it in the corner <distance>
to the <bowl>

6) Put all the blocks in a <line> line

Seen Attributes.

1) <block>: blue block, red block, green block, orange block,
yellow block

2) <bowl>: blue bowl, red bowl, green bowl, orange bowl,

yellow bowl
3) <corner/side>: left side, top left corner, top side, top right

corner
4) <direction>: top, left

5) <distance>: closest

6) <magnititude>: a little

7) <nth>: first, second

8) <line>: horizontal, vertical
Unseen Attributes.

1) <block>: pink block, cyan block, brown block, gray block,
purple block
2) <bowl>: pink bowl, cyan bowl, brown bowl, gray bowl,
purple bowl
3) <corner/side>: bottom right corner, bottom side, bottom left
corner
4) <direction>: bottom, right
5) <distance>: farthest
6) <magnititude>: a lot
7) <nth>: third, fourth
8) <line>: diagonal
In Table [VI|we provide detailed simulation results that report
task success rats for fine-grained task categories. Attributes refer
to <> fields, the values of which can be seen by the method (e.g.,
training set for CLIPort, prompt for language-based methods).
Instructions refer to the templated instruction type given in each
row, which can also be seen or unseen. A total of 50 trials are
performed per task, each with sampled attributes and initial scene
configurations (block and bowl types, numbers, and positions).
Note that CLIPort by itself (no oracle) is just a feedback policy
and it does not know when to stop — in this case we run 10
actions from the CLIPort policy and evaluate success at the end.
To improve CLIPort performance, we use a variant that uses
oracle information from the simulation to stop the policy when
success is detected (oracle termination).

L. Additional LLM Capabilities

Because we use code-davinci-002, a code-writing model
fine-tuned from the more general purpose davinci GPT-3, our


https://code-as-policies.github.io/prompts/fgen.txt

TABLE VI: Detailed simulation tabletop manipulation success rate (%) across different task scenarios.

CLIPort (oracle termination) CLIPort (no oracle) NL Planner CaP (ours)
Seen Attributes, Seen Instructions
Pick up the <object1> and place it on the (<object2> or <recepticle-bowl>) 88 44 98 100
Stack all the blocks 98 4 94 94
Put all the blocks on the <corner/side> 96 8 46 92
Put the blocks in the <recepticle-bowl> 100 22 94 100
Put all the blocks in the bowls with matching colors 12 14 100 100
Pick up the block to the <direction> of the <recepticle-bowl> and place it on 100 80 N/A 72
the <corner/side>
Pick up the block <distance> to the <recepticle-bowl> and place it on the 92 54 N/A 98
<corner/side>
Pick up the <nth> block from the <direction> and place it on the <cor- 100 38 N/A 98
ner/side>
Total 85.8 33.0 86.4 94.3
Long-Horizon Total 78.8 184 86.4 97.2
Spatial-Geometric Total 97.3 57.3 N/A 89.3
Unseen Attributes, Seen Instructions
Pick up the <object1> and place it on the (<object2> or <recepticle-bowl>) 12 10 98 100
Stack all the blocks 96 8 96 100
Put all the blocks on the <corner/side> 0 0 58 100
Put the blocks in the <recepticle-bowl> 46 0 88 96
Put all the blocks in the bowls with matching colors 30 26 100 92
Pick up the block to the <direction> of the <recepticle-bowl> and place it on 0 0 N/A 60
the <corner/side>
Pick up the block <distance> to the <recepticle-bowl> and place it on the 0 0 N/A 100
<corner/side>
Pick up the <nth> block from the <direction> and place it on the <cor- 0 0 N/A 60
ner/side>
Total 23.0 55 88.0 88.5
Long-Horizon Total 36.8 8.8 88.0 97.6
Spatial-Geometric total 0.0 0.0 N/A 733
Unseen Attributes, Unseen Instructions
Put all the blocks in different corners 0 0 60 98
Put the blocks in the bowls with mismatched colors 0 0 92 60
Stack all the blocks on the <corner/side> 0 0 40 82
Pick up the <object1> and place it <magnitude> to the <direction> of the 0 0 N/A 38
<recepticle-bowl>
Pick up the <object]1> and place it in the corner <distance> to the <recepticle- 4 0 N/A 58
bowl>
Put all the blocks in a <line> 0 0 N/A 920
Total 0.7 0.0 64.0 71.0
Long-Horizon Total 0.0 0.0 64.0 80.0
Spatial-Geometric Total 13 0.0 N/A 62.0

method inherits capabilities of LLMs that a pure code-writing
model may not have. For example, we can leverage the LLM’s
generality to parse commands from non-English languages as
well as emojis. See Figure[7]

M. Cross Embodiment Example

CaP exhibit a degree of cross-embodiment support [59], [60]
by performing the same task differently depending on the action
APIs. In the example below, we give Hints of the action APIs, and
the resultant plan changes depending on the whether or not the
robot is omnidirectional or unidirectional. We note that this ability
is brittle with existing LLMs and cannot reliably adapt to APIs

that are very different. More robustness may require larger ones
trained on domain-specific code.

# make a U shape 5 meters wide and 10 meters long.
robot.move_back(dist=10)

robot.move_right(dist=5)

robot.move_up(dist=10)

# make a U shape 3 meters wide and 8 meters long.
robot.move_forward(dist=8)

robot. turn_left(deg=90)
robot.move_forward(dist=3)

robot. turn_left(deg=90)
robot.move_forward(dist=8)
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