
Under review as a conference paper at ICLR 2023

CONTINUAL MODEL EVOLVEMENT WITH
INNER-PRODUCT RESTRICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

With pre-trained model’s rapid deployment in natural language processing (NLP)
applications, it is intuitive to expect these models can continuously evolve when
the task requires more complicated inference abilities of the model. Existing
continual learning (CL) problem setups and methods focus on fixing out-of-
distribution (OOD) data streams which cannot solve such a new challenge. We
propose a continual model evolvement problem formulation (CME) that intro-
duces a new challenge for fine-tuned pre-trained models that requires them to
evolve during deployment. We formulate the problem and introduce multiple
metrics to assess current CL methods from different aspects. Further, we pro-
pose a strong method dubbed inner-product restriction as a headstart in solving
the CME problem. Experimental results indicate that the CME is still challenging
to current deployed pre-trained models while our proposed method can provide a
strong boost based on previous CL methods, supporting that it is of great need to
explore the CME challenge for better deployment of pre-trained models in NLP
applications.

1 INTRODUCTION

Recent development of pre-trained language models stimulates the NLP field with the deployment
of fine-tuned pre-trained models Devlin et al. (2019). Once these models are deployed, they cannot
be changed and therefore become substantially incomparable to humans. That is, these models can-
not evolve even in the range of the given assignment (a specific downstream task such as machine
translation, text classification, reading comprehension, etc.). It is highly preferred to explore the
possibility of continual model evolvement when the deployed models encounter more challenging
samples which cannot be properly predicted. In previous practice, researchers hope to teach these
deep neural networks to adapt to new datastreams or refine the reported errors during deployment.
These new datastreams can be out-of-distribution samples or corrected knowledge (e.g. transfer-
ring a wikipedia-based SQuAD dataset trained model to solve HotPotQA task). Therefore, such a
learning process falls into a continual learning paradigm where deployed models are further refined
through small batches of samples and able to solve these new samples from another domain.

However, the abilities of error fixings or adaptions to new datastreams cannot cover real-world NLP
applications especially when users are having extremely high expectations of these newly invented
pre-trained language models. For example, model refinement to new datastreams tackles problems
such as converting a SQuAD Rajpurkar et al. (2016) dataset based reading comprehension model
to a model that can answer HotPotQA Yang et al. (2018) questions. Real-world users may expect
the models to fully understand the provided context and the questions so they may challenge the
model with unanswerable questions. In such a scenario, the model initially trained without the abil-
ity to recognize unanswerable questions will give unreasonable predictions which seriously depress
users. Therefore, deployed models are supposed to learn to continually evolve and recognize these
challenging examples such as unanswerable questions while they are in service instead of training
a new model as a brand new task. Such a challenge is not covered by the current continual learn-
ing paradigm since the required ability such as recognizing the unanswerable questions are more
challenging than previous domain-shift setups.

Therefore, in this paper, we propose a continual model evolvement (CME) problem formulation,
which tests whether fine-tuned pre-trained models can evolve and deal with more challenging in-
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Figure 1: Illustration of the Continual Model Evolvement Challenge Setup.

coming datastream without re-training the entire model with another round of massive data collec-
tion and annotation. Specifically, we use the generative framework in the question answering task
as a testbed to construct the CME challenge. We use the reading comprehension task as an exam-
ple to test whether a question answering (QA) model can evolve to learn to solve more challenging
tasks such as recognizing unanswerable questions. It is worth mentioning that we take the evolving
ability to recognize unanswerable questions as an example. The real-world scenario might require
more complicated questions that the model has to evolve to solve.

Considering that the Continual Model Evolvement is a new challenge to pre-trained models, we
provide several strong methods as well as strong baselines as a headstart for the challenge. One
major concern in CME is to maintain the original task performance which is to solve the catastrophic
forgetting problem in the traditional CL paradigm. Therefore, we introduce an Inner Product
Restriction strategy for the model learning process to narrow the gap between the original task and
the evolved task.

Specifically, we dive into the experience replay method Rolnick et al. (2019) which is widely used
in continual learning problems, and consider that in the CME challenge, the replay task and the
continual learning goal might contradict each other. Therefore, we calculate the gradient between
two tasks and restrict the inner product between task gradients. We propose two strategies: (1) we
can add such an inner product restriction as a regularization term in the replay process; (2) we use
the inner product restriction to optimize the model directly. Through our proposed inner-product
restriction algorithm, we can mitigate the catastrophic forgetting problem which is a key challenge
in the Continual Model Evolvement setup.

We conduct extensive experiments and obtain many non-trivial observations. We first construct ex-
periments on general Continual Learning methods to study the Continual Model Evolvement setup.
Then we test our headstart method and compare the performances with CL baselines. Experimental
results reveal that (1) current CL methods cannot tackle the CME challenge which may hurt user
experience in real-world NLP applications; (2) our proposed headstart method successfully miti-
gates the catastrophic forgetting problem and obtains significant improvement over the traditional
CL method in the CME challenge without introducing additional parameters or meta-networks.

2 CONTINUAL MODEL EVOLVEMENT

2.1 PROBLEM FORMULATION

Upstream Model In continual model evolvement, a deployed model f is trained offline with an-
notated data which could be time-consuming. Following the continual model refinement setup, we
name the offline-trained model as upstream model f0 and the original data used to train the upstream
model as upstream data D0.

Challenging Input Streams After deployment, the deployed model will encounter massive input
samples and among them some challenging input samples that cannot give correct predictions. Sup-
posing that the incoming samples are in T episodes {S1, ..., ST } and among these samples, there
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are errors {E1, ..., ET } the upstream model cannot solve which we consider as challenging samples.
The goal of Continual Model Evolvement is to tune the upstream model f0 with the error questions
Et to evolve to model ft that can answer these challenging incoming samples. Meanwhile, catas-
trophic forgetting is one major problem in continual learning tasks. That is, the model needs to learn
to solve the challenging incoming samples, while it should not forget the ability to deal with the
upstream samples. In the model evolving challenge, such a problem is more severe since the evolv-
ing task can be a brand new task from the perspective of a neural model while it may be considered
similar to the upstream task from the perspective of human users.

2.2 IN-PRACTICE TESTBED FORMULATION

Generally, sequence-to-sequence problems can be used in solving a great number of NLP tasks in-
cluding but not limited to translation, summarization, dialogue and text classification tasks. There-
fore, we formulate the question answering task as a sequence-to-sequence generation task and use
question answering task as a testbed to test the CME challenge. Then we suppose that deployed
upstream model f0 is a question answering (QA) model trained with the most widely used datasets
such as the SQuAD dataset Rajpurkar et al. (2016) as upstream data D0 using sequence-to-sequence
pre-trained models exemplified by BART Lewis et al. (2020) as a generative task.

We assume that during the deployment of the upstream model f0, the upstream model will encounter
different user questions which may contain many challenging samples that current upstream model
cannot tackle. As a testbed, we simplify the challenging input streams to two types of questions that
the model should evolve and manage to solve.

Evolving Question In question answering systems, unanswerable questions are very challenging
for comprehension systems trained without knowing the existence of such patterns. Therefore, such
patterns can be considered as a form of questions that the model needs to evolve to solve. That is, the
input domain is similar to the upstream data yet the incoming questions cannot be properly answered
within the given context. In real-world applications, users might count the neural models and require
answers which is challenging including but not limited to asking unanswerable questions. These
unanswerable questions are considered as knowledge that the model needs to evolve to learn.

OOD Question Besides unanswerable questions as challenging questions for the upstream model,
out-of-distribution questions can also be asked by users since the upstream data obviously cannot
cover all user needs. Therefore we also include some OOD questions in the CME challenge. These
out-of-distribution questions can be considered as examples from a similar dataset to the upstream
data (e.g. a HotPotQA question is an OOD sample for the upstream model trained with the SQuAD
dataset.) These questions are considered as knowledge that the model can learn through domain
adaptation or generalization.

2.3 EVALUATION OF CME

In the formulation of the Continual Model Evolvement challenge, it is of great importance to main-
tain the original upstream model performance when evolving the model for new-coming samples.
Considering that new-coming challenging samples are errors to the upstream model, we introduce
Error Fixing Rate (EFR) and Upstream Knowledge Retention (UKR) scores to test the new-coming
sample fixing ability and the original task performance. During the entire evolving period, we need
to test how much knowledge is learned during the evolving process and we use knowledge retention
of the challenge and the OOD samples, which are Evolved Knowledge Retention (EKR) and OOD
Knowledge Retention (OKR) to evaluate. Further, the evolved model is supposed to generalize the
evolved ability. That is, besides testing how well the model solves the new-coming challenging sam-
ples, we preserve a testset of both evolved knowledge samples and OOD knowledge samples and
use Evolved Knowledge Generalization score (EKG) and OOD Knowledge Generalization score
(OKG) to evaluate how well the evolved model generalizes to these samples.

• Error Fixing Rate (EFR) EFR(t) is to test the model response to fixing the input streams St of
the tth episode. Here, label y is the exact match label of a input sample in the question answering
task: EFR(t) =: Acc(ft, Et) =: |{(x,y)∈Et | ft(x)=y}|

|Et| .
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• Upstream Knowledge Retention (UKR) The upstream knowledge retention is the most im-
portant metric in the CME challenge since not losing accuracy of the original job is a must-to-do
in real-world applications. We select a certain testset D

′

0 to test the upstream knowledge retention
during continual model evolving: UKR(t) =: Acc(ft, D

′

0)

• Evolved/OOD Knowledge Retention and Generalization (E/OKR and E/OKG) Knowl-
edge retention is to test how well the evolved model learns the samples encountered and the
knowledge generalization is to test on a stream of unseen samples assuming that the evolved
model can generalize to the new challenges. Therefore, we calculate Evolved/OOD Knowl-
edge Retention (EKR and OKR) on all encountered challenging samples Sc

<t and OOD sam-
ples So

<t and Evolved/OOD Knowledge Generalization (EKG and OKG) on additional sub-
sets Sc

t+1 and So
t+1: EKR(t) =: Acc(ft, S

c
t ),OKR(t) =: Acc(ft, S

o
t ),EKG(t) =: Acc(ft, S

c
t+1).

OKG(t) =: Acc(ft, S
o
t+1).

2.4 EXCLUSIVE CHALLENGE OF CME

Compared with previous continual learning and model refinement challenges, the unique challeng
of Continual Model Evolvement is that during the continual learning process, the learning object
is more realistic and challenging. Compared with previous continual learning paradigm Biesialska
et al. (2020), where the continual learning objects are different downstream tasks, the CME chal-
lenge is a realistic scenario that constantly happens in real-world applications. The concept of model
evolving task is a scenario that users might ask unexpected questions that might not be seen in the
training set patterns. On the contrary, users might not ask two entirely different tasks when they
are told the AI service is designed to solve a certain task such as question answering. Compared
with continual model refinement Lin et al. (2022) where the continual data stream only focuses on
different domains of question answering scenarios, where the task is less challenging and the catas-
trophic forgetting problem is less harmful considering that the general task setup does not change.
The model evolving concept can be expanded with future deployment of pre-trained NLP models in
more challenging scenarios where the refinement is relatively limited. Compared with knowledge
editing in pre-trained models Zhu et al. (2020); De Cao et al. (2021); Mitchell et al. (2021), continual
model evolvement focuses on the fine-tuned model evolving instead of editing a specific knowledge
learned during the pre-training process.

3 INNER-PRODUCT RESTRICTION

As a headstart in solving the Continual Model Evolvement challenge, we introduce an inner-product
restriction algorithm to explore the potential in using current neural network construction and train-
ing methods.

3.1 BASE MODEL AND BASIC CL METHODS

As described in Continual Model Evolvement, we use question answering task as a testbed. There-
fore, we incorporate a widely used pre-trained sequence-to-sequence language model BART-Base
Lewis et al. (2020) as the base model.

Continual learning (CL) is the most straightforward solution that further fine-tune the upstream
model to evolve to the new-coming streams. The core of CL methods is to avoid catastrophic
forgetting problem McCloskey & Cohen (1989) during the continuous tuning of the upstream model.
Generally, experience replay Rolnick et al. (2019) and regularization methods Kirkpatrick et al.
(2017) are widely used in mitigating the problem. We give a brief summarization of these methods
and then build the inner-product algorithm based on these CL methods.

Experience Replay Experience Replay McCloskey & Cohen (1989) is an effective replay method
that maintain a memory module and save previously encountered samples as well as samples from
the upstream data. Then we randomly select a subset from the memory to train the model at a certain
period which is called replay. Such a method can mitigate the catastrophic forgetting problem in
the traditional continual learning task setup by using previous encountered samples and upstream
samples to tune the model. In the CME challenge testbed, with upstream training examples involved,
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during the model evolving process, the model can learn the new ability (recognizing unanswerable
questions) without forgetting the original purpose (answering questions).

Maximally Interfered Replay (MIR) A simple modification of the experience replay method is
the Maximally Interfered Replay (MIR) method Aljundi et al. (2019). The MIR method replays the
most forgettable examples from the memory. In the CME challenge testbed, we follow Lin et al.
(2022) to design the most forgettable example retrieval rule. We first fine-tune model ft−1 with
incoming data St to obtain a virtual model f

′

t and calculate interference scores:

score(xi, yi) =: loss(f
′

t (xi), yi)− loss(ft−1(xi), yi).

We consider replaying the samples with largest interference scores.

Regularization Methods In the traditional CL task, regularization method is another common
solution. The core idea is to introduce a regularization term during the continual learning process.

The most straightforward regularization method is the L2-regularization between the parameter θt
of model ft: LL2Reg (t) =

∑
i

(
θit − θit−1

)2
. Such a loss term can be added to the continual learning

loss with a weight η as a constraint to avoid overfitting on the new-coming samples. One weakness
of regularization methods is that regularization methods only restrict the continual optimized model
during time so when the time step grows, the model behavior might be far from the upstream model.
Therefore, regularization methods can be combined with replay methods in the continual learning
tasks to obtain a better model.

3.2 INNER PRODUCT RESTRICTION

In continual model evolvement challenge, the model evolving process might cause severe parameter
change compared with domain adaption in traditional continual learning paradigm since the evolving
task in CME can be significantly different from the upstream task, which could lead to a more
challenging catastrophic forgetting problem.

To mitigate the catastrophic forgetting problem in the CME challenge, one possible solution is to
assume that the upstream task loss and the evolving task loss could be at odds, though the evolving
task is constructed from the upstream task. Therefore, we aim to narrow down the optimization
contradiction between the upstream model and the evolved model.

Suppose the experience replay loss that optimizes the upstream task is Lft(θ) and the continual
learning loss that optimizes the evolving task is Lcl(θ) on the model ft−1 with parameter θ, for a
timestep with both replay loss and continual learning loss, the total training loss is L = Lft(θ) +
Lcl(θ). These two losses can be contradictory to each other given the huge variance between the
evolving task goal and the upstream task goal. Therefore, we are hoping that we can mitigate the
conflict between these two losses.

In a continuous time step with learning rate η, we can re-write the experience replay loss Lft to:

Lft(θ) = Lft(θ − η∇θLcl(θ)) = Lft(θ)− η∇θLft(θ)
T∇θLcl(θ) +O(η2). (1)

The expanded term is −η∇θLcl(θ)
T∇θLft(θ) will increase the experience replay loss Lft when

the term ∇θLft(θ)
T and the term ∇θLcl(θ) are in opposite directions and could cause a serious

catastrophic forgetting problem. We denote the inner product as I(θ) = ∇θLcl(θ)
T∇θLft(θ).

Therefore, we design two different strategies to mitigate the catastrophic forgetting problem caused
by the conflict between these opposite direction gradients.

Inner Product Regularization From the perspective of using regularization methods when train-
ing the network to mitigate the catastrophic problem, we directly optimize the product term as a
penalty with a hyperparameter λ to the continual learning process. We re-write the total loss to:

L = Lft(θ) + Lcl(θ) + λmax(0,−η∇θLft(θ)
T∇θLcl(θ)). (2)

In this way, we can add a penalty to the gradients that might hurt the upstream model behavior in
the evolving loss to mitigate the catastrophic forgetting problem in the CME challenge.
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Inner Product Restricted Optimization From perspective of editing the model directly with-
out shifting the model through two conflict loss backwards, we introduce a new model optimizing
strategy and only edit the model parameters with the same direction gradients.

Supposing that the calculated loss is L = Lft(θ)+Lcl(θ), the gradients on parameter θi is ∇θiL(θ)
and the inner product term on parameter θi is ∇θiLft(θ)

T∇θLcl(θ). Instead of following traditional
optimization process θi = θi − η∇θiL(θ), we optimize the gradients with positive inner-product
restriction and fix the parameter where inner-product is negative:

θi =

{
θi − η · I(θi) · ∇θiL(θ), I(θi) < 0
θi I(θi) ≥ 0

(3)

In this way, only the parameters with no gradient conflicts are edited therefore the model is less
shifted and can maintain the upstream performances.

Compared with similar parameter editing strategies such as Editable Neural Networks Sinitsin et al.
(2020), MEND Mitchell et al. (2021), the inner-product optimization process does not rely on a
meta network or another pack of parameters to edit the model therefore can be used in the contin-
ual learning process. These learnable edit methods cannot be applied in solving the unknown and
unlimited continual model evolving process. The inner-product term can guide the model-editing
process unlike a whole-model updating with conflict loss backwards, which is a simple method as a
headstart to solve the Continual Model Evolvement challenge.

4 EXPERIMENTS

4.1 BASELINES AND REFERENCE

We construct several strong baselines to explore the CME challenge. The lower bound of the CME
challenge is a FrozenUpstream model. That is, the upstream model f0 is not changed overtime
(i.e., ft ≡ f0). A straightforward upper bound of the CME challenge is to consider that we collect
all new-coming samples S as well as the upstream data D to train a model fT offline and test the
last episode. In practice, we use a subset of D.

We construct baselines using Continual Fine-Tuning, L2-Regularization, Experience Replay (ER)
and Maximally Interfered Replay (MIR) methods. For the experience replay method (ER and MIR),
we set replay frequency k to 1, that is, for each continual learning episode, we apply a round of
replay.

4.2 DATASET CONSTRUCTION

In the Continual Model Evolvement challenge, we consider using the question answering task as the
testbed. Specifically, we use the SQuAD v1.1 dataset Rajpurkar et al. (2016) as the upstream data
D0 and use the SQuAD v2.0 dataset Rajpurkar et al. (2018) and the HotPot QA dataset Yang et al.
(2018) to construct the challenging input stream as the evolving challenge for the model continual
learning process. We make a special modification to the HotPot QA dataset to construct unanswer-
able questions as the evolving task. In the SQuAD 2.0 task, the unanswerable questions are improper
for the given context. Instead of constructing unanswerable questions as the evolving task, we con-
struct unanswerable contexts in the HotPotQA dataset to construct a type of challenging sample. In
the HotPotQA dataset, there are multiple paragraphs since it requires a reasoning process to answer
the question. We randomly drop one or two key paragraphs in the given passage therefore the orig-
inal question becomes unanswerable. Specifically, we use the development set with distractions of
the official HotPotQA dataset. For the OOD input stream, following Lin et al. (2022), we introduce
several question answering datasets including Natrual Questions (NQ) Kwiatkowski et al. (2019),
SearchQA Dunn et al. (2017) and TriviaQA Trischler et al. (2017). We use these datasets based on
the MRQA benchmark Fisch et al. (2019). Therefore, the new-coming data stream Si is the combi-
nation of the challenging samples and OOD samples. For each time step, the datastream Si includes
samples with partition conditioned to timestep t and we set the total timestep T = 100.
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Table 1: Results (%) in multiple metrics based on exact match in the generative question answering
task: EFR=Error-Fixing Rate; UKR=Upstream Knowledge Retention; E/OKR= Evolving/OOD
Knowledge Retention; E/OKG= Evolving/OOD Knowledge Generalization. Column names with
bars are the average of all periods. The ones with ‘(T)’ are the scores at the final step. Comb. is the
combination of L2 and IP regularization terms. k is the replay interval, c is the candidate pool size.

Methods ↓ Metrics → EFR UKR EKR EKG OKR OKG UKR(T) EKR(T) EKG(T) OKR(T) OKG(T)

Frozen (ft ≡ f0) 0.0 86.52 0.07 0.0 58.0 41.67 86.52 0.0 0.0 47.21 41.67

● Continual Fine-Tuning 98.85 63.0 82.12 52.89 81.93 45.51 60.16 90.26 69.44 80.17 49.04

■ Online L2-Reg. 98.0 59.64 88.99 58.6 79.78 46.14 43.16 96.1 77.78 69.27 45.67

▲ Exp. Replay (k=1) 95.03 76.22 93.42 48.77 88.78 51.06 75.98 96.1 61.46 85.2 53.45
✚ L2-Reg. 96.33 78.1 90.24 44.95 89.14 52.23 76.37 96.75 59.38 82.12 56.17

▲ MIR (k=1,c=256) 97.81 59.85 87.5 53.47 80.67 45.65 39.06 98.05 77.43 73.18 44.55
✚ L2-Reg. 97.45 63.74 85.55 52.24 80.09 47.0 44.92 97.4 76.39 70.11 45.43

Our methods ↓
▲ ER ✚ IP-Reg. (η = 1) 91.99 80.12 85.4 35.15 89.69 52.46 80.47 92.21 48.26 88.83 56.57
▲ ER ✚ Comb. (η = 1) 88.19 81.05 89.22 40.82 87.89 51.96 81.25 90.91 51.39 86.03 54.57

▲ ER ✚ Comb. (η = 0.1) 89.16 82.23 86.36 35.88 88.44 52.31 81.25 94.16 48.61 84.92 55.05

▲ ER ✚ IP-Optim. (η = 1) 6.19 85.53 25.02 15.51 63.12 48.9 86.13 47.4 29.51 53.07 50.24
▲ (η = 10) 6.93 86.15 21.28 13.35 62.66 48.97 85.55 38.31 26.39 52.51 49.44

▲ (η = 100) 4.05 85.74 26.99 17.36 63.11 48.6 85.55 44.16 30.21 53.07 50.72

▲ MIR ✚ IP-Reg.(η = 1) 94.94 79.51 78.72 33.95 86.3 50.19 81.25 88.31 51.74 77.37 53.37
▲ MIR ✚ Comb.(η = 1) 96.53 80.3 82.5 37.42 85.19 51.33 81.84 92.86 53.47 75.42 52.24

▲ MIR ✚ IP-Optim.(η = 1) 2.66 85.33 8.43 5.05 61.75 46.55 85.94 20.78 14.58 52.51 48.72

Offline Fine-Tuning 97.22 - - - - - 81.25 99.33 53.47 90.91 56.49

Similar to the continual model refinement data stream setup, in the continual data streams, the data
stream St has K samples in total. These samples includes Ku = K ∗ αt−1 samples from the
upstream data, and Kn = K − Ku new-coming samples including Kc = Kn ∗ γ samples that
require model evolving and Kn − Kc samples that are from OOD datasets. Here, α and γ are
hyper-parameters for the dataset construction. We use α = 0.9 and γ = 0.5 in all our experiments.

A practical detail is that we mix normal samples of the evolving datasets (answerable samples) in the
incoming samples S which is more realistic. But during evaluation, we evaluate EKR and EKG over
challenging samples only. That is, the challenging set Sc

t during evaluation are all unanswerable
questions. In this way, the EKR and EKG results reflect how well the model evolved during the
continual learning process.

4.3 MAIN RESULTS

CL methods in CME We first explore how traditional continual methods behave in the CME
challenge.

As seen in Table 1, when we do not tune the upstream model, the frozen upstream model f0 cannot
fix any incoming errors and cannot tackle either the evolving or the OOD task. The offline finetuning
can achieve very high retention scores yet still struggle in generalizing the new-coming samples.

The most fundamental baseline continual fine-tuning, on the other hand, can successfully fix most
incoming errors. While the continual fine-tuning method can successfully fix the incoming samples,
it loses accuracy on the upstream samples, indicating that continual fine-tuning faces serious catas-
trophic forgetting problem, which makes it unsuitable for training real-world deployed models for
evolving. Plus, though it can obtain some improvements in the evolving knowledge learning, the
drop in the upstream task and the poor improvements in learning the OOD knowledge indicates that
the continual fine-tuning overfits the evolving task.

As for the regularization-based method L2-regularized continual fine-tuning, we can observe that
L2-regularization suffers in the continual evolving task, though it achieves high EKR and EKG
scores. L2-regularization cannot maintain the upstream performances in the evolving process which
is a different result compared with using L2-regularization in the model refinement task only. There-
fore, we may conclude that L2-regularization cannot cope with two different task goals even though
the evolving task is derived from the upstream task.
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Figure 2: The curves of key metrics over time of CME methods. The x-axis is the time step.

Experience replay methods, which uses both upstream data and new-incoming samples during the
continual process, can obtain a relatively better performances compared with the baselines above. As
seen, experience replay method can obtain a significant improvement compared with the continual
fine-tuning method in the upstream task performances. As for the MIR method, which is also a form
of experience replay, the performance is not promising, that is, the upstream task performance is hurt
seriously. In the MIR method, the replay samples are those with the largest losses, therefore, the
replay samples will focus on the evolving task since the evolving samples are new to the upstream
model. We can conclude that methods such as MIR might not be suitable for the CME challenge
given the unique challenge of the evolving task.

Restricted Regularization While current continual learning methods cannot obtain promising
results, the inner-product restricted regularization method can obtain a significant improvement:
that is, though the evolving task performance is lower than unrestricted replay methods, the inner-
product regularization method can maintain the upstream knowledge (the average UKR is 80.12
compared with 63.00 in the simple experience replay method) while it still can learn a considerable
amount of evolving and OOD knowledge. Compared with previous regularization methods such
as L2-regularization, we can conclude that inner-product regularization is effective in mitigating
the catastrophic forgetting problem, which takes precedence in the CME challenge since we must
maintain the upstream performance in a deployed model during the continual learning process. Also,
we can observe that when we add the L2-regularization with the inner-product regularization, the
performance is further improved, which indicates that L2-regularization method can be used as an
auxiliary penalty term to constrain models during continual learning when the continual learning
task gap are already narrowed by the inner-product constraint.

Restricted Optimization As mentioned, instead of regularization method, we can directly edit the
optimizing process using the inner-product restriction. As seen, the restricted optimization method
can maintain almost all the knowledge in the upstream task. As for the new-coming samples, a
relatively smaller proportion of the evolving task samples can also be correctly recognized and a
considerable amount of OOD samples can be correctly understood, indicating that the inner-product
optimization can improve the model performances on the new-coming samples with no deterioration
on the upstream task. However, the restricted optimization, unlike direct tuning methods, cannot
properly fix the errors in the incoming samples, the learning process is different from fitting the
incoming samples. When using different weight parameters η, the performance difference is not
large, indicating that the inner-product restriction is stable when added to the continual learning
process. To summarize, though error fixing and the evolving task learning ability is not ideal, inner-
product optimization is a way to learn new tasks without catastrophic forgetting which is important
in tuning deployed models.

Time Stream Variance In figure 2, we plot the metric changes during the continual learning
process. We can observe that generally, CL methods can learn the new-coming knowledge overtime.
In our IP-optimization method, though the knowledge retention seems to drop during learning, the
generalization ability is improving, indicating that the optimization is effective especially when the
UKR maintains a high-level.
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Figure 3: The parameter variance between f0 and continual learned model fT .

Parameter Shift Comparison To explore the parameter shift in the continual learning process,
we calculate the parameter weight change of different methods between the upstream model f0 and
the last-episode model fT . We calculate the average absolute deviation between each parameter
between f0 and fT of each different layers of the model.

As seen in Figure. 3, the inner-product based methods can maintain the model less perturbed, which
directs to better upstream performances. As seen, the decoder parameters are less changed in the
IP-Optimization method, which is because the contradicted gradients tend to exist in the decoder
layers, causing a serious catastrophic forgetting problem.

5 RELATED WORK

Continual Learning in NLP With wide deployments of pre-trained model applications, continual
learning of NLP applications are drawing more and more attention Biesialska et al. (2020); Sun
et al. (2020); Wang et al. (2019); Huang et al. (2021); Jin et al. (2021). Most of these works still
use limited experiment setup without considering the real-world application scenario needs. That
is, their setups are focusing on no-revisiting upstream data, incremental tasks or limited range of
new-coming data. Recent work Lin et al. (2022) introduces a boundary-agnostic continual learning
framework that aims to find a more realistic scenario in NLP applications, while it is also limited to
solving out-of-distribution data. Compared to all these continual learning frameworks and methods,
our proposed CME challenge introduces a high-level evolving task and provides a realistic testbed
using the unanswerable questions as an example, which is a challenging yet very realistic setup in
real-world NLP applications.

Model Refinement and Editing Recent trends of refining or editing pre-trained models in NLP
have brought many works to the community. A major trend is to explore how to edit a model to
adjust factual knowledge in pre-trained language models Jang et al. (2021). Generally, model editing
Sinitsin et al. (2020); Mitchell et al. (2021) usually focuses on designing a meta-network to assist the
model parameter editing which cannot be used in the continual learning paradigm. Time-sensitive
knowledge edit Zhu et al. (2020); De Cao et al. (2021) usually focuses on factual knowledge in
pre-trained models which is different from our CME setup that focuses on deployed models for a
certain downstream task.

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we propose a new challenge in the NLP application deployment, Continual Model
Evolvement. We aim to explore a real challenge that fine-tuned models would face during their
usage in deployments. We modify the unanswerable questions as an evolving task for the continual
learning setup and find that previous continual learning methods suffer from catastrophic forgetting
problem which cannot be tolerated in real-world applications. We further propose a simple yet ef-
fective inner-product restriction algorithm to significantly mitigate the catastrophic problem while
there is still space for a better continual learning method to cope with both catastrophic forgetting
problem and the learning of new challenging tasks. We are hoping that in the future, the proposed
CME challenge and the proposed headstart method can be used in assisting real-world NLP appli-
cations and future work will be expansions of the CME challenge in different types of applications
and more effective methods to solve such a challenge.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and
Tinne Tuytelaars. Online continual learning with maximally interfered retrieval. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems, Red Hook, NY,
USA, 2019. Curran Associates Inc. URL https://dl.acm.org/doi/abs/10.5555/
3454287.3455350.

Magdalena Biesialska, Katarzyna Biesialska, and Marta R. Costa-jussà. Continual lifelong learn-
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APPENDIX

IMPLEMENTATIONS

Dataset Details The datasets we use are open-source question answering datasets including
SQuAD v1.1, SQuAD v2.0, HotPotQA, SearchQA, Natrual Questions and TriviaQA.

We set the incoming sample K to 64, and set aα = 0.9 and γ = 0.5 and the total timestep T = 100
to construct the CME challenge. We run 5 different runs to generate different streams and test
the performances accordingly and use the average results. We select these parameters based on a
practical prediction and we also conduct some ablation experiments with different K,α, γ which
show similar performances.

Upstream Model Details We implement all our methods based on the huggingface transformers
Wolf et al. (2020). Specifically, we follow Lin et al. (2022) and implement the question answering
task as a text generation task.

We train the upstream model based on the BART-Base model. Such a sequence-to-sequence model
is a flexible structure that can be used in various NLP applications. In detail, we concat the question,
the contexts (with multiple paragraphs in datasets such as HotPotQA dataset.) and the output is the
answer to the question.

We run the upstream model finetuning with batchsize 64 and learning rate 5e-5 and the running
epoch is 30. The fine-tuning process is meant to obtain a close score compared with extractive
question answering systems. The upstream model achieves an average exact match score of 86.52
on subsets of the SQuAD v1.1 dataset which is similar to the BERT-base performances.

Continual Learning Methods Details In the continual fine-tuning process, we tune different
learning rates and running epochs. We search over learning rates in {1e − 5, 2e − 5, 5e − 5} and
epochs in {5, 10, 20} and set learning rate to 2e − 5 and epoch to 20 while these hyper-parameters
do not affect the performances by a large margin.

In the L2-regularization method, we set the penalty weight to 1 for all experiments. In the replay
methods, we set the replay frequency to 1 for all experiments considering that the inner-product
method is based on a continuous replay process, therefore when the frequency k = 1, the results are
fairly compared.

Runtime Analysis we use 4 Nvidia 3090 GPUs for all experiments. The continual fine-tuning
process is a standard pre-train model fine-tuning process. Compared with continual fine-tuning,
replay methods require additional computational cost and methods such as MIR requires additional
computation (with virtual model update and ranking over the memorized samples).
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For the inner-product restriction method, the process needs to maintain the gradients on the previous
timestep therefore the GPU memory cost is larger than continual fine-tuning.

Unsatisfied Attempts During the CME challenge method design, we also consider utilizing the
unique ability such as prompt learning to assist the evolving task learning. That is, we add a decoder-
end prefix to the answer: we set a pattern that generates outputs such as something is the answer;
when the task evolves, the model should generate patterns such as something is not the answer.
We assume that in this way, the previous learned answer generation pattern can easily adapt to the
new task which is recognizing whether the question is answerable. However, such an attempt only
achieves similar performance compared with not using any pre-defined patterns, indicating that the
evolving task is quite challenging that such simple guidance is not useful.
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