
Secure Split Learning against Property Inference and

Data Reconstruction Attacks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Split learning of deep neural networks (SplitNN) has provided a promising solu-1

tion to learning jointly for the mutual interest of a guest and a host, which may2

come from different backgrounds, holding features partitioned vertically. How-3

ever, SplitNN creates a new attack surface for the adversarial participant, holding4

back its practical use in the real world. By investigating the adversarial effects5

of two highly threatening attacks, i.e., property inference and data reconstruction,6

adapted from security studies of federated learning, we identify the underlying7

vulnerability of SplitNN. To prevent potential threats and ensure learning guaran-8

tees of SplitNN, we design a privacy-preserving tunnel for information exchange9

between the guest and the host. The intuition behind our design is to perturb the10

propagation of knowledge in each direction with a controllable unified solution.11

To this end, we propose a new activation function named R3eLU, transferring pri-12

vate smashed data and partial loss into randomized responses in forward and back-13

ward propagations, respectively. Moreover, we give the first attempt to achieve14

a fine-grained privacy budget allocation scheme for SplitNN. The analysis of pri-15

vacy loss proves that our privacy-preserving SplitNN solution provides a tight16

privacy budget, while the experimental result shows that our solution outperforms17

existing solutions in attack defense and model usability.18

1 Introduction19

Collaborative learning enables participants from different backgrounds to learn jointly for mutual20

interests. A well-known collaborative learning paradigm is federated learning (FL) [25], focusing21

on the coordination of distributed participants. Meanwhile, another paradigm, split neural network22

learning (SplitNN for short) [19, 11, 4], is designed for vertically partitioned features. The emer-23

gence of SplitNN provides a promising solution to building cooperative models such as two-towers24

recommendation systems [37, 39]. By combining different features, SplitNN is supposed to be more25

expressive for tasks like user profiling and recommendation.26

However, collaborative learning paradigms are faced with severe security issues. Roughly speak-27

ing, there are three kinds of known threats, inference attack [9, 30], reconstruction attack [17, 31],28

and poisoning attack [33, 18]. The inference attack discloses properties or membership information29

of data samples, while the reconstruction attack seeks to recover participants’ private data samples.30

Unlike these two kinds of threats, the poisoning attack [33, 18] aims to put harmful data into collab-31

orative learning for malicious purposes rather than stealing private information. As a result, some32

defensive solutions have been proposed for federated learning. According to their techniques, these33

solutions can be classified into three categories: differential privacy solutions [36, 32], homomorphic34

encryption solutions [38, 21], and secure multiparty computation solutions [12, 27].35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Unfortunately, defense solutions for SplitNN are barely discussed, but threatening attacks are con-36

tinuously emerging. We note that the workflow of SplitNN has a unique asymmetric design, which37

is quite different from FL. Therefore, most solutions for secure FL are not suitable for SplitNN.38

Secure multiparty computation solutions and homomorphic encryption solutions can achieve ideal39

data confidentiality in SplitNN. But the overhead introduced is still far away from practical uses.40

Thus, for the first attempt at a secure SplitNN solution, we will concentrate on privacy leakage is-41

sues caused by property inference and data reconstruction attacks in this paper because they share42

similar adversarial goals. Instead, poisoning attacks need to be studied separately [7, 24].43

We note an inherent contradiction [6] between privacy preservation and model utility in SplitNN.44

To investigate the privacy leakage risk of SplitNN, we evaluate the adversarial effect of property45

inference and data reconstruction attacks against recommendation and image classification models46

built using SplitNN. The results in semi-honest and malicious settings show that both attacks have47

sufficiently high success rates when disclosing the privacy of the guest or the host. To secure SplitNN48

against these attacks [17, 30, 29], we give the first privacy-preserving SplitNN solution, stemming49

privacy leakage from either direction with dynamic privacy budget allocation.50

Contribution. Through a thorough investigation of the privacy leakage issue in SplitNN, we con-51

firm that the best option of defensive solution for SplitNN is to construct a privacy-preserving tunnel52

between the split surfaces of the host and guest sides. To this end, we propose a novel activation53

function named R3eLU, responding to forward and backward propagations in a randomized manner.54

Furthermore, we propose a fine-grained privacy budget allocation scheme for SplitNN to achieve55

more efficient perturbations, dynamically allocating the privacy budget in spatial dimension (feature56

level) and temporal dimension (epoch level). The analysis of privacy loss shows that our solution57

provides a differential privacy guarantee regarding activations. The evaluation results regarding rec-58

ommendation and classification models show that our solution can outperform the existing solutions59

in privacy preservation and model usability.60

2 Problem Statement61

2.1 Split Learning62

Given a training dataset X and model parameters θ, a learning task is to find approximately optimal63

θ by minimizing a pre-defined loss function L. We assume that the optimizer used is a mini-batch64

stochastic gradient descent (SGD) algorithm, which updates θ with a batch input of X iteratively.65

Assuming the batch size is N , then the total loss of θ for a batch input x = {xi|xi ∈ X, i ∈66

[1, N]} should be
∑

x∈x
L(θ, x) in the t-th training iteration. The gradients of θ for model updating67

should be estimated by 1
N

∑

x∈x
∇θL(θ, x) approximately. Hence, parameters θ can be updated68

as θt+1 = θt − 1
N

∑

x∈x
∇θL(θ, x). This mini-batch SGD based optimizing procedure should be69

repeated until the model usability meets the requirement or the maximal count of iterations reaches.70

Generally, there are two roles in a two-party SplitNN. We denote by the guest who holds features71

only and the host who holds both features and labels. According to related studies [34, 14], there72

exist several split configurations of neural networks. We will focus on the SplitNN designed for73

vertically partitioned features with labels held by the host only [4, 11]. We denote by θg, θh the74

partial models of the guest and the host after split and θk the rest part of the original model. Then75

the forwarding result Forward(xg, θg) of the guest should be evaluated locally and passed to the76

host. The host should merge Forward(xh, θh) with Forward(xg, θg) using a predefined strategy77

such as concatenating and averaging. Then the host finishes the rest of the forward propagation78

L(Merge(Forward(xg, θg), Forward(xh, θh)), θk) and initiates backward propagation, sending79

the partial loss regarding xg and θg back to the guest.80

We take a SplitNN based recommendation system as an example and give a benchmark in Table 1.81

Different merging strategies and two public datasets, MovieLens [15] and BookCrossing [40], have82

been evaluated. In case of misaligned features, zero padding will be used to retain the shape of fea-83

2

ture vectors. We notice that concatenating and element-wise averaging with padding have relatively84

stable and desirable performance, which will be used as the default setting in the rest of this work.

Table 1: Top-10 hit ratio of SplitNN based recommendation using different merging strategies.

concatenate
element-wise

no split
max sum average min

MovieLens
padding 56.62% 56.26% 56.35% 56.89% 57.19%

57.21%
non-padding 55.38% 54.75% 54.95% 55.72% 55.08%

Book Crossing
padding 61.70% 60.84% 60.21% 61.16% 60.98%

61.92%
non-padding 58.80% 59.34% 59.44% 59.10% 59.02%

85

2.2 Threat Model86

In SplitNN, interactions between the guest and the host pose threats to each other. Thus, we will87

investigate private data leakage threats from either direction. We first assume that the host and88

the guest are honest but curious about the private data of each other. Moreover, we will consider89

a more powerful threat model [29], where the guest or the host could be malicious, hijacking the90

feature space during split learning. In both cases, we take into account property inference and data91

reconstruction attacks, which are highly threatening attacks identified in collaborative learning.92

Property inference attack. Since either role of SplitNN has access to the output of the other’s local93

model, the adversary can mount a property inference attack [9, 22], inferring properties of private94

data through observing query input and the corresponding output. By constructing shadow models95

elaborately, the adversary can steal substantial information from the target. In this way, the adversary96

acquires the capability of inferring some properties (such as gender and age) of the data samples used97

for training. Denoted by F , T and LF the inference model, target model, and the loss function used98

for F , the adversarial goal of property inference attack is99

APIA = argmin
F

∑

xi∈x

LF (F (T (xi)), li), li ∈ {0, 1}. (1)

Data reconstruction attack. By taking advantage of generative adversarial networks (GANs) [13], a100

data reconstruction attack [17, 29] becomes possible in collaborative learning. To mount the attack,101

the adversary augments the training data per iteration by inserting fake samples z generated by a102

generator G. The target model will serve as a discriminator D. The adversary affects the target103

model by deceiving the target with fake training samples. For correcting the adversary, the target104

participant is supposed to put more private information into the learning. In this game-style training,105

the adversary can obtain a generator to reconstruct data samples similar to target private data. The106

adversarial goal of the data reconstruction attack can be given as107

ADRA = min
G

max
D

1

|x|

∑

x∈x

logD(x) +
1

|x|

∑

z∈z

log(1−D(G(z))). (2)

Feature space hijacking. The property inference and data reconstruction attacks adapted from FL108

can be mounted by a semi-honest participant, who follows the split learning protocol normally. How-109

ever, a recent attack study dedicated to SplitNN has revealed that a malicious host can achieve more110

impressive adversarial effects on property inference or data reconstruction by explicitly distorting111

the objective of split learning. Thus, we also consider the defensive effect of our solution against112

property inference and data reconstruction attacks using this feature space hijacking approach.113

3 Privacy-Preserving Split Learning114

Our goal is to design an unified defense solution to preserving privacy from both the host and guest’s115

perspectives. Ideally, the guest wants to collaborate with the host under the condition that the host116

could disclose no private information and vice versa. According to recent studies [3, 23, 16], artifi-117

cial perturbations of data samples or parameters could prevent privacy leakage effectively. However,118

3

different from conventional model publishing scenarios, the host and guest in SplitNN will keep119

exchanging intermediate results during training. These continuous queries significantly increase the120

risk of privacy leakage for both sides. Moreover, the attack surface of splitNN is in the middle of121

neural network propagations, which makes things tricky. Thus, our primary idea to tackle this prob-122

lem is to construct a bidirectional privacy-preserving tunnel for interactions. Recent studies such as123

[10] have proved that activation functions are more adaptive for perturbed operands than other neu-124

ral network components. Moreover, activation functions have various forms [2], which are flexible125

for configuration. As a result, we propose a new variant of ReLU as a privacy-preserving interface.126

3.1 R3eLU: Randomized-Response ReLU127

Inspired by a randomized response approach [35], we propose a new activation function named128

R3eLU. The original randomized response method is good at statistical analysis of item sets. But129

the result of an activation function is commonly a continuous variable. Hence, they cannot be easily130

combined together. It should also be noted that it is risky to perturb activation functions directly131

because non-activated results may be flipped unexpectedly. Recall that the original formula of ReLU132

is f(x) = max(0, x), x ∈ R. Our randomized-response variant will yield a proper substitute for133

replacing the real activation with a probability of p. If we yield 0 as the substitute, then we can134

randomly inactivate a part of ReLU results. But nothing has been changed for x ≤ 0. Because135

f(x) = 0 when x ≤ 0. Hence, the variant is not completely privacy preserved since f(x) = 0 also136

reveals useful information to the adversary. For the completeness of the variant, we generate noisy137

activations x′ ← Laplace(0, σ) for x ≤ 0. Now, we can give the definition of R3eLU as138

R3eLU(x) =

{

max (0, x+ x′), with probability p,

0, with probability (1− p).
(3)

We remark that the way R3eLU handles non-activated results is dangerous, although learning ac-139

curacy is often traded off for privacy. But we will mitigate the side effect through privacy budget140

allocation. Then the risk of applying R3eLU will not be a problem.141

3.2 Forward Propagation with R3eLU142

Now we show how to apply R3eLU in the forward pass of SplitNN regarding the guest’s privacy.143

Generally, when the t-th training iteration begins, the guest randomly samples a mini-batch x from144

private training dataset X (g). Assuming that an embedding procedure Embedding() : RM ←145

X is publicly available, raw data samples in the mini-batch can be encoded into feature vectors146

V = {v1,v2, . . . ,vN}, vi = {v1, v2, . . . , vM}, i ∈ [1, N], and M is the dimension of feature147

representing space. From the functional perspective, we assume that L(vh,vg, θ) is equivalent to148

L(Forward(vh, θh), Forward(vg, θg), θk), where Forward() : RNs ←RM is a function to yield149

the feedforward result of hidden units for a given neural network, and Ns indicates the output shape.150

We now make the minimal modification of the forward propagation of SplitNN while leaving the151

rest part unchanged. Denoted by Forward-R3eLU() the feedforward result of neural network by152

replacing the activation functions of the guest’s output layer with R3eLU. Then the feedforward153

result transmitted to the host should be ag = Forward-R3eLU(vg, θg). Next, the host executes a pre-154

defined aggregation procedure taking as input ag and ah. Finally, the loss function will be evaluated155

by L(Forward-R3eLU(vg, θg), Forward(vh, θh), θk). Algorithm 1 in the appendix integrates the156

above forward propagation using R3eLU into SplitNN.157

3.3 Privacy-Preserving Backward Propagation158

According to recent studies of privacy leakage in backward propagation [26, 31, 8], model updating159

information may cause severe leakage of private training data. Since the partial loss will be propa-160

gated to the guest in SplitNN, it is crucial to protect the host’s privacy from being disclosed. Fortu-161

nately, our R3eLU is adaptable to noisy partial losses and we design R3eLU-Diff in a randomized-162

4

response manner for the derivative of R3eLU as163

R3eLU-Diff(δg ,ag,vg) =

{

δg × ReLU-Diff(ag,vg) + x′, with probability (1 − p),

0, with probability p.

Noting that the derivative value of ReLU for any input is either one or zero, randomly flipping the164

derivative value may still disclose δ
g
t when value ones are not flipped. Therefore, we integrate a165

Laplace mechanism into the R3eLU-Diff. Please also note that the constructions of R3eLU-Diff and166

R3eLU are in a similar way. This is helpful to obtain uniform analysis results of two parties, which167

will be shown in the privacy analysis part.168

We sketch the backward propagation using R3eLU-Diff in Algorithm 2 in the appendix. Briefly,169

when the t-th backward propagation begins, the host calculates the partial loss δk = ∇akL(l, ā, θk
t)170

for θk regarding the total loss l obtained in forward propagation, where ā is the averaged activation171

result. Then a Backward() : RNr ← RNs procedure calculates the gradients of model parameters,172

where Nr is the shape of parameters. To update the guest model, the host sends partial loss δg for173

θg to the guest. To preserve the host’s privacy within δg , we disturb the partial loss δg propagating174

to the guest and keep the partial loss on the host side unchanged.175

3.4 Dynamic Privacy Budget Allocation176

It has been proved that the importance of a parameter can be quantified by the error introduced when177

it is removed from the model [28]. Thus, we define the importance Ij of a given SplitNN parameter178

θj ∈ θ as the squared difference of prediction errors caused by removing θj ,179

Ij = (L(x, θ)− L(x, θ \ {θj}))
2. (4)

Due to the consideration of efficiency, it is suggested in [28] to estimating the importance by a180

first-order Taylor expansion approximately. Then the importance of θj is estimated as181

Îj = (gj · θj)
2, (5)

where gj is the gradient of the parameter θj regarding a specific sample when θ is well-trained.182

Given parameter importance, the importance of features can be derived further. Specifically, the183

importance of a neuron (or a feature) Uj , j ∈ [1, Nu], where Nu is the total number of neurons184

in the model, can be calculated as a joint importance of relevant parameters by summing up the185

importance of all relevant parameters. Hence, Uj =
∑

θk∈θ̃j
Îk, where θ̃j denotes the set of all186

parameters directly connected to the j-th neuron.187

However, the above importance estimation method is designed for a well-trained model and cannot188

be directly applied to intermediate models during training. To tackle this problem, we give a dynamic189

estimation method by deriving the original method into a cumulative form. The importance of a190

feature will be accumulated as the training epoch increases. Specifically, the importance of the j-th191

feature in the q-th training epoch is192

U q
j =

∑

θk∈θ̃j
Îk + U q−1

j × (q × ⌊T/nt⌋+ (t mod nt)− 1)

q × ⌊T/nt⌋+ (t mod nt)
, (6)

where nt indicates the iteration number within a training epoch, T is the maximum training iteration193

number, and t is the current training iteration globally. Generally, we assume that T/nt = nq ,194

nq ∈ N , which also means that q ∈ [1, nq]. We give the importance estimation results of different195

neurons in Figure 3 in the appendix, showing the correctness of our dynamic importance estimation196

method and the existence of unbalanced feature importance.197

Given the parameter importance estimated dynamically, we are capable of allocating privacy budgets198

regarding different features. The intuition is to give larger budgets to more important features while199

smaller budgets to less important ones. Before the q-th training epoch begins, we estimate the200

feature importance vector U = {U q
1 , U

q
2 , . . . , U

q
Nu
}. Based on U , the corresponding privacy budget201

to be allocated should be ǫj × U q
j , j ∈ [1, Nu]. And the total privacy budget for all features is202

5

ǫF =
∑

j=∈[1,Nu]
ǫj . On the other hand, we can also dynamically allocate privacy budgets for203

different iterations to optimize the total privacy budget further. Given the total privacy budget ǫT204

for all iterations, we assign the privacy budget ǫi =
ǫT
2i to the i-th iteration. Since

∑∞
i=1

ǫT
2i = ǫT ,205

according to the sequential composition theory of differential privacy, we can still ensure that the206

whole training process achieves ǫT -differential privacy.207

3.5 Privacy Analysis208

We will give the privacy analysis for the host and the guest respectively. In forward propagation,209

we recall that vg , θg, and ag are input features, model parameters, and activation results of the210

guest. According to the definition of R3eLU, ag should be randomly flipped with probability p. For211

brevity, we denote by f() the evaluation of neural network before activation. Then the probability212

of observing any activation ao for a given input v should be213

P (ao = 0|v) = p+ (1 − p)

∫ −f(v)o

−∞

1

2b
exp(−

|v|

b
)dv = p+

1− p

2
exp(

−f(v)o
b

),

P (ao > 0|v) =
1− p

2b
exp(−

|a0 − f(v)o|

b
).

Then we can give the following conclusion regarding the guest model. The proof is in the appendix.214

Corollary 1. When forward propagation of the guest model is activated by R3eLU in split learning,215

the activation result is ǫ-DP, given Laplace noise scale σg .216

For a fine-grained privacy budget allocation, we introduce dynamic budget allocation in our solution.217

We now give the analysis of feature-specific privacy budget. Given the estimated feature importance218

vector U = {U q
1 , U

q
2 , . . . , U

q
Nu
}, we allocate privacy budget ǫi = ǫU q

i to each feature. Thus, if the219

divergence of features can be bounded by their privacy budgets, then the total privacy budget will220

be bounded. Denoted by bi and ci the noise parameter and bound of the i-th feature. Then we can221

account the divergence of features as222

P (ai > 0|v)

P (ai > 0|v′)
=

1−p
2b exp(− |ai−f(v)i|

bi
)

1−p
2b exp(− |ai−f(v′)i|

bi
)
≤ exp(

|ai − f(v′)i| − |ai − f(v)i|

bi
) ≤ exp(

2ci
bi

)

P (ai = 0|v)

P (ai = 0|v′)
=

p+ 1−p
2 exp(−f(v)i

bi
)

p+ 1−p
2 exp(−f(v′)i

bi
)
≤

p+ 1−p
2 exp(ci

bi
)

p+ 1−p
2 exp(−ci

bi
)
≤ exp(

2ci
bi

)

Basing on this result, we can conclude the following corollary.223

Corollary 2. In forward propagation with R3eLU, the privacy budget of the i-th feature can be224

bounded by ǫi if we choose bi to satisfy exp(2ci
bi
) ≤ exp(ǫi), ∀p ∈ [0, 1].225

The last analysis result of the guest is privacy budget allocation during the whole training stage.226

Since we have allocated ǫ =
∑

i∈[1,Nu]
ǫi for all features, we can directly conclude that each training227

step is γǫ-DP by following the privacy amplification theory, where γ = B
N

is the sampling ratio of a228

batch regarding the whole training dataset. Now we can give the total privacy budget of the whole229

training stage using the strong composition theorem.230

Corollary 3. The total privacy budget of the whole training process using R3eLU is (ǫ′g, δ
′
g)-DP,231

where ǫ′g = γǫ
√

2T ln(1
δ′g
) + γǫT (eγǫ − 1).232

So far, we have given the privacy analysis from the guest perspective. Since we construct R3eLU and233

R3eLU-Diff using the same way and same technique, these two procedures have the same analysis234

result if we choose the noise scale of host σh = σg . In this way, we can conclude the following235

result for the host.236

Corollary 4. In backward propagation with R3eLU-Diff, the privacy budget of the host can be237

bounded by ǫh if we choose σh = σg . The total privacy budget of the host in the whole training238

process is (ǫ′h, δ
′
h)-DP, where ǫ′h = γǫh

√

2T ln(1
δ′
h

) + γǫhT (e
γǫh − 1).239

6

4 Evaluation240

We evaluate our privacy-preserving SplitNN solution from two aspects model usability and privacy241

loss. To be comprehensive, we will compare our solution with the baseline (without any protection)242

and the most relevant defense solutions, i.e., a primitive Laplace mechanism [5] and DPSGD [1],243

the most well-known privacy-preserving deep learning solution, in the same setting. We will use244

the same fixed total privacy budget and the same split way (shown in the appendix) for all solutions.245

We adapt solutions into recommendation models using two real-world datasets, MovieLens [15],246

BookCrossing [40], and an image classification model using MNIST [20] dataset. The MovieLens247

1-M dataset contains 1 million ratings of 4,000 movies collected from 6,000 users and users’ de-248

mographic information such as gender and age. The BookCrossing dataset includes 278,858 users’249

demographic information and 1,149,780 ratings of 271,379 books. The MNIST database has 70,000250

handwriting image examples. We will use a 32 batch size, a 0.01 learning rate and an Adam opti-251

mizer as default. Since different datasets and defense solutions may require various epochs for split252

learning, we calculate the metrics when the learning converges, or the privacy budget is drained. All253

experimental results are averaged across multiple runs.

Table 2: Model usability results while preserving the privacy of the guest.

ǫ
MovieLens BookCrossing MNIST

Laplace DPSGD Ours Laplace DPSGD Ours Laplace DPSGD Ours

0.1 30.84% 32.29% 34.03% 57.02% 55.89% 58.18% 17.43% 30.21% 32.41%
0.5 41.25% 43.69% 43.87% 57.67% 56.14% 58.54% 27.33% 58.43% 60.38%
1.0 48.16% 49.09% 50.56% 58.02% 56.56% 58.42% 31.05% 75.58% 76.60%
2.0 49.32% 50.38% 50.49% 58.74% 56.91% 59.24% 38.92% 92.90% 93.53%
4.0 49.26% 50.86% 50.73% 59.01% 57.16% 59.26% 95.37% 95.87% 94.12%

Table 3: Model usability results while preserving the privacy of the host.

ǫ
MovieLens BookCrossing MNIST

Laplace DPSGD Ours Laplace DPSGD Ours Laplace DPSGD Ours

0.1 31.47% 30.68% 33.98% 57.37% 57.46% 58.26% 27.64% 33.45% 32.36%
0.5 41.75% 42.31% 42.67% 58.62% 58.24% 58.59% 55.38% 65.28% 67.83%
1.0 47.43% 48.29% 50.39% 59.49% 58.44% 59.77% 71.95% 89.74% 88.14%
2.0 49.86% 50.43% 51.47% 59.34% 59.97% 60.27% 89.15% 92.66% 92.52%
4.0 49.57% 50.09% 51.62% 59.55% 60.75% 60.66% 94.61% 95.37% 95.01%

254

4.1 Model Usability255

Since artificial perturbation may affect the learning procedure, we will evaluate how SplitNN is256

affected by privacy-preserving solutions. Moreover, two asymmetric parties of SplitNN may have257

different privacy concerns and affect learning differently. Thus, we will evaluate model usability258

concerning privacy from the perspective of the guest or the host. We use an averaged test accuracy259

across all test samples for the evaluation. Precisely, the test accuracy of a recommendation model260

is calculated using a top-10 hit ratio, while the test accuracy of an image classifier is the prediction261

accuracy. In Table 2 and Table 3, we show the model usability results regarding various privacy262

budget values of two parties. We note that model accuracy baselines of Movielens, BookCrossing,263

and MNIST are 56.62%, 61.70%, and 98.00%, respectively.264

For the MovieLens model, our solution achieves the best model usability in most cases, especially265

with less privacy budget. DPSGD has a better result when ǫ = 4 for the guest. But DPSGD will266

cause a significant privacy leakage in this case. For the BookCrossing model, the model usability of267

our solution is relatively high in cases of protecting the guest and the host. Similarly, DPSGD has a268

better result when ǫ = 4 for the host, sacrificing the privacy guarantee. Things are a bit different for269

the MNIST model. DPSGD gets some better results when protecting the host. The reason is that split270

learning for an image classification model segments image samples roughly, making our dynamic271

budget allocation approach malfunction. Meanwhile, DPSGD is not designed for protecting partial272

loss in SplitNN, leading to an optimistic estimation of the threat against the host. Apart from these273

exceptional cases, our solution outperforms other solutions on model usability.274

7

4.2 Defense Against Inference and Reconstruction Attacks275

We will evaluate the performance of privacy preservation by comparing attack results against276

SplitNN with and without the defense. We will mount property inference and data reconstruction277

attacks against the guest and the host, respectively. Prediction accuracy of the adversary’s inference278

model will be used to measure the performance of the property inference attack. As for the data re-279

construction attack, the adversary tries to generate data samples as similar as possible to the target’s280

private data. In this case, we can use a mean squared error (MSE) between a generated sample and281

a target data sample to measure the adversarial effect.

Table 4: Results of defending the guest against property inference attack.

ǫ
MovieLens BookCrossing MNIST

Laplace DPSGD Ours Laplace DPSGD Ours Laplace DPSGD Ours

0.1 66.99% 77.71% 60.99% 54.76% 73.29% 55.78% 43.27% 53.95% 44.33%
0.5 66.16% 74.23% 64.16% 54.97% 74.52% 56.33% 46.92% 54.23% 45.59%
1.0 67.19% 78.65% 68.18% 55.03% 74.96% 58.65% 47.58% 54.26% 47.51%
2.0 68.65% 73.06% 68.56% 54.85% 74.26% 58.14% 48.06% 54.65% 52.87%
4.0 69.14% 76.18% 71.91% 54.92% 74.33% 60.76% 48.47% 54.57% 55.73%

Table 5: Results of defending the host against property inference attack.

ǫ
MovieLens BookCrossing MNIST

Laplace DPSGD Ours Laplace DPSGD Ours Laplace DPSGD Ours

0.1 53.46% 78.59% 51.86% 54.55% 74.35% 59.42% 60.34% 80.29% 48.74%
0.5 53.46% 75.64% 51.89% 54.62% 74.36% 59.42% 59.82% 81.92% 49.71%
1.0 53.46% 73.54% 52.75% 54.95% 74.39% 59.52% 59.74% 82.80% 50.48%
2.0 53.47% 75.05% 59.77% 54.40% 74.39% 58.13% 60.38% 88.88% 50.57%
4.0 53.48% 79.28% 56.52% 54.95% 74.39& 62.04% 60.62% 89.73% 50.47%

282

Defense against property inference attack. We give evaluation results of the defensive effect of the283

guest and the host in Table 4 and Table 5, respectively, inferring the property of users in MovieLens284

and BookCrossing and an image patch in MNIST. The attack accuracy against baselines of Movie-285

Lens, BookCrossing, and MNIST models can achieve above 80%, 79%, and 94% by an adversarial286

host, 80%, 78%, and 57% by an adversarial guest, respectively. However, our SplitNN solution287

can effectively mitigate the adversarial effect during training and decrease the attack accuracy sig-288

nificantly. It should be noted that the primitive Laplace mechanism frustrates the inference attack289

badly because the artificial noise added by the mechanism is indiscriminate, leading to conspicuous290

damages to the model usability. Even so, our solution has significant advantages on MovieLens and291

MNIST datasets. In contrast, the primitive Laplace mechanism cannot cover image classification292

cases, while DPSGD cannot defeat the attack.

Table 6: Results of defending the guest against data reconstruction attack.

ǫ
MovieLens BookCrossing MNIST

Laplace DPSGD Ours Laplace DPSGD Ours Laplace DPSGD Ours

0.1 0.2459 0.2455 0.3223 0.3216 0.2907 0.3329 1.8849 1.8885 2.0181
0.5 0.2453 0.2451 0.3222 0.3202 0.2902 0.3329 1.8024 1.8137 1.9875
1.0 0.2453 0.2451 0.3222 0.3202 0.2902 0.3221 1.7857 1.7509 1.9533
2.0 0.2452 0.2451 0.3222 0.3202 0.2902 0.3221 1.7336 1.7469 1.9391
4.0 0.2452 0.2451 0.3222 0.3202 0.2902 0.3221 1.7014 1.7440 1.9206

293

Defense against data reconstruction attack. We show the defense results against an adversarial host294

and an adversarial guest in Table 6 and Table 7, respectively. We note that the MSE is measured295

after the attack model has been trained sufficiently in all cases. The MSEs measured for the attack296

against baselines of MovieLens, BookCrossing, and MNIST models are 0.2412, 0.2629, and 0.9612297

by an adversarial host, 0.2369, 0.2402, and 1.6998 by an adversarial guest, respectively. Please note298

that these attack results against the baselines are frustrating because the reconstruction attack is hard299

to succeed in the semi-honest setting. Meanwhile, data samples in two recommendation datasets are300

similar and embedded with the same feature vectors. This leads to similar reconstruction results and301

similar MSEs. But we can still conclude from the results that our solution has dominant performance302

in the defense against reconstruction attacks mounted by either side.303

8

Table 7: Results of defending the host against data reconstruction attack.

ǫ
MovieLens BookCrossing MNIST

Laplace DPSGD Ours Laplace DPSGD Ours Laplace DPSGD Ours

0.1 0.4032 0.2417 0.5486 0.4237 0.2758 0.5066 1.2887 1.0875 1.8257
0.5 0.4024 0.2419 0.5357 0.4222 0.2756 0.5149 1.2778 1.0685 1.7758
1.0 0.4008 0.2422 0.5285 0.4217 0.2743 0.5235 1.2602 1.0422 1.7528
2.0 0.3982 0.2421 0.5083 0.4214 0.2697 0.5150 1.2613 1.0333 1.7334
4.0 0.3960 0.2422 0.4819 0.4194 0.2683 0.5046 1.2549 0.9996 1.7262

Defense against feature space hijacking attacks (FSHA). Please note that property inference and304

data reconstruction attacks implemented in [29] hijack the learning objective, offering the adversary305

an advantage over the previous attacks we straightforwardly adapted from FL. In this setting, the306

malicious attacker trains a generator using the split neural network as a discriminator during the307

split learning process and uses a gradient-scaling trick to train the generator. Since the generating308

part is critical to FSHA, we will focus on the defense against the reconstruction. If the generating309

part fails, the inference attack will be impossible. Here we give the defense results of the MNIST310

model because FSHA [29] is mainly evaluated using this dataset. We also evaluate our solution for311

other datasets against FSHA, and the results are given in the appendix. In Figure 1 and Figure 2,312

we give the reconstruction results of FHSA mounted by an adversarial host and guest against target313

samples used in [29]. The second row of two figures shows the results of FSHA against baselines.314

The following rows show that our solution can effectively preserve private data for both the guest and315

the host, even the privacy budget is relaxed to 4. More practical privacy budget values for defending316

against FSHA are presented in the appendix.317

Figure 1: Reconstruction results of FSHA against the guest’s data in the first row. The following
rows are attack results against the original SplitNN and our solution (ǫ = 0.1, 1.0, 4.0), respectively.

Figure 2: Reconstruction results of FSHA against the host’s data in the first row. The following rows
are attack results against the original SplitNN and our solution (ǫ = 0.1, 1.0, 4.0), respectively.

5 Conclusion and Limitation318

Our privacy-preserving SplitNN solution, built upon a new activation function R3eLU and its deriva-319

tive R3eLU-Diff in a randomized-response manner, significantly reduces privacy leakage risk for320

both the guest and the host. We show that our solution can provide a tight privacy budget for split321

learning through the privacy analysis. The model usability and privacy loss can be further balanced322

by our dynamic privacy budget allocation. The experimental evaluation using different datasets323

shows that our solution outperforms the existing privacy-preserving SplitNN solutions in model us-324

ability and privacy protection. We note that our solution deals with property inference and data325

reconstruction attacks in a feature level, but a clustering-based label inference attack [8] is out of326

our reach, which is an interesting topic to be studied in future work.327

9

References328

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Tal-329

war, and Li Zhang. Deep learning with differential privacy. In ACM SIGSAC conference on330

computer and communications security, pages 308–318, 2016.331

[2] Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Prevete. A survey on332

modern trainable activation functions. Neural Networks, 2021.333

[3] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential privacy has dis-334

parate impact on model accuracy. Advances in Neural Information Processing Systems, 32:335

15479–15488, 2019.336

[4] Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek Singh, Alberto Roman, Praneeth337

Vepakomma, and Ramesh Raskar. Splitnn-driven vertical partitioning. arXiv preprint338

arXiv:2008.04137, 2020.339

[5] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foun-340

dations and Trends® in Theoretical Computer Science, pages 211–407, 2014.341

[6] Ege Erdogan, Alptekin Kupcu, and A Ercument Cicek. Unsplit: Data-oblivious model in-342

version, model stealing, and label inference attacks against split learning. arXiv preprint343

arXiv:2108.09033, 2021.344

[7] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. Influence function based data poisoning345

attacks to top-n recommender systems. In Proceedings of The Web Conference, pages 3019–346

3025, 2020.347

[8] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou,348

Alex X Liu, and Ting Wang. Label inference attacks against vertical federated learning. In349

USENIX Security Symposium, 2022.350

[9] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. Property inference351

attacks on fully connected neural networks using permutation invariant representations. In352

ACM SIGSAC conference on computer and communications security, pages 619–633, 2018.353

[10] Hongyang Gao, Lei Cai, and Shuiwang Ji. Adaptive convolutional relus. In AAAI Conference354

on Artificial Intelligence, volume 34, pages 3914–3921, 2020.355

[11] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra Thapa, Kyuyeon Kim,356

Seyit A Camtep, Hyoungshick Kim, and Surya Nepal. End-to-end evaluation of federated357

learning and split learning for internet of things. In International Symposium on Reliable358

Distributed Systems, pages 91–100, 2020.359

[12] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John360

Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and361

accuracy. In International conference on machine learning, pages 201–210, 2016.362

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil363

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in364

neural information processing systems, pages 2672–2680, 2014.365

[14] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple366

agents. Journal of Network and Computer Applications, 116:1–8, 2018.367

[15] Attribution F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and368

context. ACM Transactions on Interactive Intelligent Systems, 5(4), 2015.369

[16] Xinlei He and Yang Zhang. Quantifying and mitigating privacy risks of contrastive learning.370

In ACM Conference on Computer and Communications Security, 2021.371

10

[17] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: in-372

formation leakage from collaborative deep learning. In ACM SIGSAC Conference on Computer373

and Communications Security, pages 603–618, 2017.374

[18] Hai Huang, Jiaming Mu, Neil Zhenqiang Gong, Qi Li, Bin Liu, and Mingwei Xu. Data poison-375

ing attacks to deep learning based recommender systems. In Annual Network and Distributed376

System Security Symposium, 2021.377

[19] Juyong Kim, Yookoon Park, Gunhee Kim, and Sung Ju Hwang. Splitnet: Learning to seman-378

tically split deep networks for parameter reduction and model parallelization. In International379

Conference on Machine Learning, pages 1866–1874, 2017.380

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning381

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.382

[21] Yang Liu, Zhuo Ma, Yilong Yang, Ximeng Liu, Jianfeng Ma, and Kui Ren. Revfrf: Enabling383

cross-domain random forest training with revocable federated learning. IEEE Transactions on384

Dependable and Secure Computing, 2021.385

[22] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Feature inference attack on386

model predictions in vertical federated learning. In IEEE International Conference on Data387

Engineering, pages 181–192, 2021.388

[23] Yunlong Mao, Wenbo Hong, Boyu Zhu, Zhifei Zhu, Yuan Zhang, and Sheng Zhong. Secure389

deep neural network models publishing against membership inference attacks via training task390

parallelism. IEEE Transactions on Parallel and Distributed Systems, 2021.391

[24] Yunlong Mao, Xinyu Yuan, Xinyang Zhao, and Sheng Zhong. Romoa: Robust model ag-392

gregation for the resistance of federated learning to model poisoning attacks. In European393

Symposium on Research in Computer Security, pages 476–496, 2021.394

[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-395

cas. Communication-efficient learning of deep networks from decentralized data. In Artificial396

intelligence and statistics, pages 1273–1282, 2017.397

[26] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting398

unintended feature leakage in collaborative learning. In IEEE Symposium on Security and399

Privacy, pages 691–706. IEEE, 2019.400

[27] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving401

machine learning. In IEEE symposium on security and privacy, pages 19–38, 2017.402

[28] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance esti-403

mation for neural network pruning. In IEEE/CVF Conference on Computer Vision and Pattern404

Recognition, pages 11264–11272, 2019.405

[29] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the tiger: Inference406

attacks on split learning. ACM SIGSAC Conference on Computer and Communications Secu-407

rity, 2021.408

[30] Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz, and Michael Backes. Ml-leaks:409

Model and data independent membership inference attacks and defenses on machine learning410

models. In Annual Network and Distributed Systems Security Symposium, 2019.411

[31] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and Yang Zhang. Updates-412

leak: Data set inference and reconstruction attacks in online learning. In USENIX Security413

Symposium, pages 1291–1308, 2020.414

11

[32] Lichao Sun, Jianwei Qian, and Xun Chen. LDP-FL: practical private aggregation in feder-415

ated learning with local differential privacy. In International Joint Conference on Artificial416

Intelligence, pages 1571–1578, 2021.417

[33] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning attacks418

against federated learning systems. In European Symposium on Research in Computer Security,419

pages 480–501, 2020.420

[34] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learn-421

ing for health: Distributed deep learning without sharing raw patient data. arXiv preprint422

arXiv:1812.00564, 2018.423

[35] Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer424

bias. Journal of the American Statistical Association, 60(309):63–69, 1965.425

[36] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS426

Quek, and H Vincent Poor. Federated learning with differential privacy: Algorithms and per-427

formance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469,428

2020.429

[37] Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaoming Wang,430

Taibai Xu, and Ed H Chi. Mixed negative sampling for learning two-tower neural networks in431

recommendations. In Proceedings of the Web Conference, pages 441–447, 2020.432

[38] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. Batchcrypt: Effi-433

cient homomorphic encryption for cross-silo federated learning. In USENIX Annual Technical434

Conference, 2020.435

[39] Yin Zhang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong, and Ed H Chi.436

A model of two tales: Dual transfer learning framework for improved long-tail item recom-437

mendation. In Proceedings of the Web Conference, pages 2220–2231, 2021.438

[40] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. Improving recom-439

mendation lists through topic diversification. In International Conference on World Wide Web,440

pages 22–32, 2005.441

Checklist442

The checklist follows the references. Please read the checklist guidelines carefully for information443

on how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or444

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing445

the appropriate section of your paper or providing a brief inline description. For example:446

• Did you include the license to the code and datasets? [Yes] See Section ??.447

• Did you include the license to the code and datasets? [No] The code and the data are448

proprietary.449

• Did you include the license to the code and datasets? [N/A]450

Please do not modify the questions and only use the provided macros for your answers. Note that the451

Checklist section does not count towards the page limit. In your paper, please delete this instructions452

block and only keep the Checklist section heading above along with the questions/answers below.453

1. For all authors...454

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s455

contributions and scope? [Yes]456

(b) Did you describe the limitations of your work? [Yes]457

12

(c) Did you discuss any potential negative societal impacts of your work? [N/A]458

(d) Have you read the ethics review guidelines and ensured that your paper conforms to459

them? [Yes]460

2. If you are including theoretical results...461

(a) Did you state the full set of assumptions of all theoretical results? [Yes]462

(b) Did you include complete proofs of all theoretical results? [Yes]463

3. If you ran experiments...464

(a) Did you include the code, data, and instructions needed to reproduce the main experi-465

mental results (either in the supplemental material or as a URL)? [Yes]466

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they467

were chosen)? [Yes]468

(c) Did you report error bars (e.g., with respect to the random seed after running experi-469

ments multiple times)? [Yes]470

(d) Did you include the total amount of compute and the type of resources used (e.g., type471

of GPUs, internal cluster, or cloud provider)? [Yes]472

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...473

(a) If your work uses existing assets, did you cite the creators? [Yes]474

(b) Did you mention the license of the assets? [Yes]475

(c) Did you include any new assets either in the supplemental material or as a URL? [No]476

477

(d) Did you discuss whether and how consent was obtained from people whose data478

you’re using/curating? [N/A]479

(e) Did you discuss whether the data you are using/curating contains personally identifi-480

able information or offensive content? [N/A]481

5. If you used crowdsourcing or conducted research with human subjects...482

(a) Did you include the full text of instructions given to participants and screenshots, if483

applicable? [N/A]484

(b) Did you describe any potential participant risks, with links to Institutional Review485

Board (IRB) approvals, if applicable? [N/A]486

(c) Did you include the estimated hourly wage paid to participants and the total amount487

spent on participant compensation? [N/A]488

13

A Appendix489

A.1 Split Leaning with R3eLU490

We give the forward propagation procedure of SplitNN using our R3eLU in Algorithm 1, and the491

backward propagation procedure of SplitNN using our R3eLU-Diff in Algorithm 2. The two algo-492

rithms are supplementary materials for Section 3.2 and 3.3.

Algorithm 1: forward propagation with R3eLU

Input: batch size N , data batch xg,xh, encoded label y, training indicator I , noise scale σ.
Output: loss or prediction.

1 θh r
←− N (0, 1), θk r

←− N (0, 1), θg r
←− N (0, 1) // initial

Guest:
2 for i← 1 to N do
3 vgi ← Embedding(xg

i);
4 end

5 vg ← {vg1 , v
g
2 , . . . , v

g
N}

6 ag ← Forward-R3eLU(vg, θg) // send ag to the host

Host:
7 for i← 1 to N do

8 vhi ← Embedding(xh
i);

9 end

10 vh ← {vh1 , v
h
2 , . . . , v

h
N}

11 ah ← Forward(vh, θh) // wait for ag from the guest

12 ā← Average(ag,ah)

13 ok ← Forward(ā, θk)
14 if I == train then

15 loss← L(ok,y) // training
16 else

17 pred← Softmax(ok) // predicting
18 end

493

Algorithm 2: backward propagation with R3eLU-Diff

Input: batch size N , feature vectors vg,vh, forward results ag, ah, ā, total loss l, encoded
label y, learning rate ηg, ηh, ηk, clipping bound C, noise scale σ.

Output: updated parameters θ
g
t+1, θh

t+1, θk
t+1.

Host:
1 δk ← ∇akL(l, ā, θk

t)

2 gk
t ← Backward(δk, ā, θk

t)

3 δh ← ∇ahL(δk,ah, θh
t), δ

g ← ∇agL(δk,ag, θk
t)

4 gh
t ← Backward(δh,vh, θh

t)

5 ḡk
t ←

1
N

∑

i∈[1,N] g
k
i,t, ḡ

h
t ←

1
N

∑

i∈[1,N] g
h
i,t

6 θk
t+1 ← θk

t − ηkḡk
t , θh

t+1 ← θh
t − ηhḡh

t // host updates

7 δ̂g ← δg/max(1, ||δg ||1
C

)

8 δ̃g ← R3eLU-Diff(δ̂g,ag,vg) // send δ̃g to the guest

Guest:
9 g

g
t ← Backward(δ̃g,ag, θg

t)

10 ḡ
g
t ←

1
N

∑

i∈[1,N] g
g
i,t

11 θ
g
t+1 ← θ

g
t − ηgḡg

t // guest updates

14

A.2 Privacy Analysis494

Here we give the proof of our Corollary 1 in detail for the privacy analysis in Section 3.5.495

Proof. Without loss of generality, we assume an activation result a = {a1 = 0, a2 = 0, ..., ao =496

0, ao+1 > 0, ..., aNs
> 0}. Then the difference of activations for two neighboring feature vectors497

v, v′ can be bounded by498

P (a|v)

P (a|v′)

=
o∏

i=1

p+ 1−p

2
exp(− |f(x)i|

b
)

p+ 1−p

2
exp(− |f(v′)i|

b
)
×

Ns∏

i=o+1

1−p

2b
exp(− |ai−f(v)i|

b
)

1−p

2b
exp(− |ai−f(v′)i|

b
)

=
o∏

i=1

p exp(|f(v
′)i|
b

) + 1−p

2
exp(|f(v

′)i|−|f(v)i|
b

)

p exp(|f(v
′)i|
b

) + 1−p

2

×

Ns∏

i=o+1

exp(
|ai − f(v′)i| − |ai − f(v)i|

b
)

≤

o∏

i=1

p exp(|f(v
′)i|
b

) + 1−p

2
exp(|f(v

′)i−f(v)i|
b

)

p exp(|f(v
′)i|
b

) + 1−p

2

×

Ns∏

i=o+1

exp(
|f(v′)i − f(v)i|

b
)

≤

o∏

i=1

p exp(|f(v
′)i|
b

) exp(−|f(v)i|
b

) + 1−p

2
exp(|f(v

′)i−f(v)i|
b

)

p exp(|f(v
′)i|
b

) exp(−|f(v)i|
b

) + 1−p

2

×

Ns∏

i=o+1

exp(
|f(v′)i − f(v)i|

b
)

≤

o∏

i=1

1+p

2

p exp(|f(v
′)i|−|f(v)i|

b
) + 1−p

2

×

Ns∏

i=o+1

exp(
|f(v′)i − f(v)i|

b
)

We assume |f(v)i| ≤ cg and b ≤ cg
ln2 , then the RHS499

≤
o∏

i=1

1+p

2

p exp(
−cg

b
) + 1−p

2

×

Ns∏

i=o+1

exp(
|f(v′)i − f(v)i|

b
)

≤

o∏

i=1

1+p

2

exp(
−cg

b
)
×

Ns∏

i=o+1

exp(
|f(v′)i − f(v)i|

b
)

≤(
1+p

2

exp(
−cg

b
)
)o × exp(

∆f

b
)

= exp(ǫ)

Thus, we have NS(
cg
σg

+ ln(1+p
2)) + ∆f

σg
= ǫ.500

A.3 Evaluation of Dynamic Parameter Importance Estimation501

Additionally, we evaluate the effectiveness of our feature importance estimation method and give502

the result here. We compare the estimating results between parameter importance estimated in the503

model’s finally stable state and parameter importance estimated in our dynamic manner. The result504

is shown in Figure 3. We can conclude from the result that our dynamic parameter importance505

estimation approach can achieve desirable effectiveness.506

We aim to estimate the importance of parameters precisely during privacy-preserving split learning.507

But it is difficult to get the same result with the estimation in a non-perturbed case. By carefully508

constructing the dynamic estimation method, we can obtain dynamic estimation results of noisy pa-509

rameters quite close to a baseline estimation result in the stable state without any privacy protection.510

In Figure 4, we show the result of our dynamic importance estimation approach. We can find that511

15

Figure 3: Comparison of parameter importance estimation results.

artificial noise introduced by our privacy-preserving SplitNN solution will affect the estimation of512

parameter importance. But the growth tendency keep the same as the baseline. This is good enough513

for us since we use the proportionality factor of each parameter to calculate the budget allocation,514

which will not be influenced by the magnitude.

Figure 4: Importance of noisy parameters estimated dynamically in logarithm.
515

A.4 Supplementary Results for Evaluation516

The neural networks we used for the MovieLens, BookCrossing, and MNIST datasets after split are517

shown in Tab 8, Table 9, and Table 10. These networks are commonly used in related studies. We518

split them according to the interpretation of SplitNN in [4, 11, 29].519

Guest Layer Output Shape Param #

Linear(160,128)+ReLU (None,128) 20608

Host Layer Output Shape Param #

Linear(160,128)+ReLU (None,128) 20608
Merge Guest

Linear(128,128)+ReLU (None,128) 16512
Linear(128,64)+ReLU (None,64) 8256

Linear(64,3952)+Softmax (None,3952) 256880

Table 8: The MovieLens model.

To further investigate how our solution affects the learning process of SplitNN, we report learning520

results of a MovieLens recommendation model protecting the privacy of the guest and the host521

in Figure 5 and 6, respectively. In each plot, we show trends of training loss, training accuracy,522

and testing accuracy as the training epoch increases. We can conclude from these figures that our523

solution achieve satisfying model usability with small privacy budget for either side of SplitNN.524

16

Guest Layer Output Shape Param #
Linear(160,128)+ReLU (None,128) 20608

Host Layer Output Shape Param #
Linear(160,128)+ReLU (None,128) 20608

Merge Guest
Linear(128,256)+ReLU (None,256) 33024
Linear(256,128)+ReLU (None,128) 32896

Linear(128,17384)+Softmax (None,10) 2242536

Table 9: The BookCrossing model.

Guest Layer Output Shape Param #
Linear(28*14,128) (None,128) 50304
BatchNorm+ReLU (None,128)

Linear(128,64) (None,64) 8256

Host Layer Output Shape Param #
Linear(28*14,128) (None,128) 50304
BatchNorm+ReLU (None,128)

Linear(128.64) (None,64) 8256
BatchNorm+ReLU (None,64)

Merge Guest
Linear(64,64) (None,64) 4160

BatchNorm+ReLU (None,64)
Linear(64,10)+Softmax (None,10) 650

Table 10: The MNIST model.

We notice that FSHA is sensitive to our privacy-preserving SplitNN solution. In Figure 1 and Fig-525

ure 2, we find that neither an adversarial host nor an adversarial guest can reconstruct meaningful526

samples, even if the target’s privacy budget is ǫ = 4. Therefore, we are curious about a practical527

choice of the privacy budget when dealing with FSHA. To this end, we give more defense results528

of our solution against FSHA using various privacy budget values in Table 11. We can conclude529

from the MSE results that two recommendation models prefer relatively low privacy budget, such530

as ǫ = 1.0. However, it is interesting to see that FSHA attack against an image classification model531

using SplitNN can be frustrated by our solution using relatively high privacy budget, which also532

means a high model usability.

Table 11: Defense results against FSHA mounted by an adversarial host.

ǫ
MovieLens BookCrossing MNIST

baseline Ours baseline Ours baseline Ours
1200 Epochs 5000 Epochs 1200 Epochs 5000 Epochs 9000 Epochs 9000 Epochs

0.1

0.2652 ×10−3

455.5676

0.2365 ×10−3

500.1487

0.0206

1.98257
0.25 73.7824 83.7606 1.9788
0.5 21.1706 30.2905 1.9703
0.75 9.5312 8.5984 1.9534
1.0 4.4903 6.1267 1.9442
2.0 1.1559 1.7047 1.9283
4.0 0.2719 0.2478 1.9209
6.0 0.1091 0.1638 1.9135
8.0 0.0975 0.0846 1.9116

533

17

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60

Ac
cu

ra
cy

Re3lu client eps=0.1
Re3lu training acc
Re3lu testing acc

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60

Ac
cu

ra
cy

Re3lu client eps=1.0
Re3lu training acc
Re3lu testing acc

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60

Ac
cu

ra
cy

Re3lu client eps=10.0
Re3lu training acc
Re3lu testing acc

Figure 5: SplitNN learning curve with the guest’s privacy protected by our solution.

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60

Ac
cu

ra
cy

Re3lu server eps=0.1
Re3lu training acc
Re3lu testing acc

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60

Ac
cu

ra
cy

Re3lu server eps=1.0
Re3lu training acc
Re3lu testing acc

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60

Ac
cu

ra
cy

Re3lu server eps=10.0
Re3lu training acc
Re3lu testing acc

Figure 6: SplitNN learning curve with the host’s privacy protected by our solution.

18

	Introduction
	Problem Statement
	Split Learning
	Threat Model

	Privacy-Preserving Split Learning
	R3eLU: Randomized-Response ReLU
	Forward Propagation with R3eLU
	Privacy-Preserving Backward Propagation
	Dynamic Privacy Budget Allocation
	Privacy Analysis

	Evaluation
	Model Usability
	Defense Against Inference and Reconstruction Attacks

	Conclusion and Limitation
	Appendix
	Split Leaning with R3eLU
	Privacy Analysis
	Evaluation of Dynamic Parameter Importance Estimation
	Supplementary Results for Evaluation

