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ABSTRACT

The attention mechanism is central to the transformer’s ability to capture complex
dependencies between tokens of an input sequence. Key to the successful applica-
tion of the attention mechanism in transformers is its choice of positional encoding
(PE). The PE provides essential information that distinguishes the position and
order amongst tokens in a sequence. Most prior investigations of PE effects on gen-
eralization were tailored to 1D input sequences, such as those presented in natural
language, where adjacent tokens (e.g., words) are highly related. In contrast, many
real world tasks involve datasets with highly non-trivial positional arrangements,
such as datasets organized in multiple spatial dimensions, or datasets for which
ground truth positions are not known, such as in biological data. Here we study
the importance of learning accurate PE for problems which rely on a non-trivial
arrangement of input tokens. Critically, we find that the choice of initialization of
a learnable PE greatly influences its ability to learn accurate PEs that lead to en-
hanced generalization. We empirically demonstrate our findings in a 2D relational
reasoning task and a real world 3D neuroscience dataset, applying interpretability
analyses to verify the learning of accurate PEs. Overall, we find that a learned PE
initialized from a small-norm distribution can 1) uncover interpretable PEs that
mirror ground truth positions, 2) learn non-trivial and modular PEs in a real-world
neuroscience dataset, and 3) lead to improved downstream generalization in both
datasets. Importantly, choosing an ill-suited PE can be detrimental to both model
interpretability and generalization. Together, our results illustrate the feasibility of
learning identifiable and interpretable PEs for enhanced generalization.

1 INTRODUCTION

Transformers commonly use ordered sequences of data, like words in a sentence. The position and
order of these words are crucial to their correct interpretation. In transformers, sequences of tokens
(e.g., words) are processed in parallel – not sequentially. Thus, to process tokens correctly in their
intended sequence, the transformer must encode a notion of position and/or ordering of tokens. This
information is encoded in its positional encoding (PE) layer – a model parameter that tags each input
token with a unique location. For many common forms of data, such as natural language, text, and
audio, the labeling of ground truth positional information is straightforward, since tokens are ordered
sequences in 1D. This led to the original design of 1D sinusoidal PEs, which were successfully
applied to natural language data, and provided general spatial information about language tokens
(rather than data-specific information) (Vaswani et al., 2017). More recent investigations into the role
of PE in transformers has led to a proliferation of PE schemes, each specially designed for 1D text
with different properties (Su et al., 2022; Shaw et al., 2018; Vaswani et al., 2017; Raffel et al., 2020;
Li et al., 2024; Kazemnejad et al., 2023; Shen et al., 2024; Golovneva et al., 2024; Press et al., 2022).
However, many interesting problems require input sequences that are not in 1D (e.g., image datasets;
Li et al. (2021)), or where position information is non-trivial or not known (e.g., biological data). The
choice of PE significantly affects the performance of transformer models, even in simple string-based
tasks (Kazemnejad et al., 2023; Ruoss et al., 2023; McLeish et al., 2024). Thus, understanding how to
disambiguate and learn ideal position information from data directly would likely provide improved
performance while affording increased model flexibility.

If learning the optimal PE for a task can enhance downstream generalization performance, what
strategies can we use to achieve this? Recent work in deep learning theory suggests various parame-
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terizations of simple neural network models, such as weight initializations, can greatly influence their
learned internal representations (Woodworth et al., 2020; Chizat et al., 2020). In particular, those
studies found that weight initializations in neural networks from large-norm distributions (e.g., a
normal distribution with a large standard deviation) learned random, high-dimensional representations
that would “memorize” input-output relations. This learning regime is commonly-referred to as the
lazy learning or neural tangent kernel (NTK) regime, as it fails to learn a structured representation of
the task or input. In contrast, neural networks that were initialized from a small-norm distribution
(e.g., N (0, σ) for small σ) tended to learn structured representations that accurately reflected the
organization of input features and were robust to noise. This is referred to as the rich or feature
learning regime (Woodworth et al., 2020; Chizat et al., 2020). (We note that choosing the initializa-
tion rank can also induce rich versus learning learning; Liu et al. (2024)). Although this theoretical
framework was initially developed for simple neural networks (e.g., feed-forward networks with few
hidden layers), the insights drawn from it should apply to various model architectures, including
transformers (Zhang et al., 2024; Kunin et al., 2024). Given the recent interest in studying the impact
of PEs on generalization, we aimed to evaluate whether the norm of PE initialization would influence
the ability to properly learn a structured and accurate PE that would enhance generalization.

Here we studied how the initialization of learnable PEs in transformers influence representation
learning and downstream generalization. We focused on problems containing sequences with
nontrivial positioning and ordering, comparing the generalization performance of models with
learned PEs to other common PE schemes (such as absolute and relative PEs). We also examined the
interpretability of the learned PEs. Our primary aim was to evaluate the hypothesis that learnable PEs
in the feature rich learning regime would produce interpretable position information that mirrored
ground truth knowledge and improve generalization performance. We tested this hypothesis in two
synthetic tasks and a real world biological dataset: 1) The Latin Squares Task (LST), a relational
reasoning task in 2D that is analogous to simplified Sudoku, and 2) a real-world neuroscience
dataset, where the task is to predict masked 3D brain activity from spatially and heterogeneously
distributed brain regions. Overall, we found that when the PE is appropriately initialized with a
small norm, learnable PEs can uncover ground truth PEs in the LST task, 2) learn non-trivial and
modular positional representations of brain regions in a neuroscience dataset, and 3) lead to improved
downstream generalization in both datasets. Note that the notion of ground truth positions is task-
dependent and data-dependent. In some cases, such as in biological datasets, ground truth spatial
information may be difficult to know or ambiguous. In this study, we focus on tasks in which either a
ground truth is unambiguous (e.g., synthetic tasks) or in which there exists a putative ground truth
(e.g., biological data with known properties). These results indicate the importance of PE choice for
generalization performance, and provide insights into how to optimally discover PEs for a variety of
tasks in which the ground truth PE is nontrivial or not known.

1.1 CONTRIBUTIONS

We highlight three principal conclusions of this study.

1. Using a 2D relational reasoning task with known ground truth positions, we demonstrate
that the ability to approximate the ground truth PE depends on initializing a PE parameter
with a small norm.

2. We demonstrate the generality of this approach to learning nontrivial PEs in a real world 3D
neuroscience dataset, where only small-norm initialized PEs learn a representation of the
functional position of brain regions that reflect brain network modularity.

3. We demonstrate that in both sets of experiments, learning an accurate PE enhances down-
stream generalization relative to alternative and commonly-used PEs.

2 DATASETS AND MODEL EVALUATION

2.1 THE LATIN SQUARE TASK (LST)

We first evaluate the effect of initialization on learning accurate PEs on the LST, a 2D relational
reasoning task that is analogous to the game Sudoku (Fig. 1A-D). The LST is a nonverbal relational
reasoning task developed in line with the psychological theory of Relational Complexity (Birney et al.,
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2006; Halford et al., 1998). Prior work in humans has demonstrated the reliability of the LST and
its relationship to fluid intelligence ((Hearne et al., 2020; Birney et al., 2012; Hartung et al., 2022)).
Each puzzle in the LST involves the presentation of a four-by-four grid populated with stimuli (e.g.,
shapes, numbers, etc.,), blank spaces, and a single target probe location, noted with a question mark.
The fundamental rule of the LST is that in a complete puzzle (i.e., there remain no empty squares),
each shape can only appear once in each row and column. In our setup, the agent’s aim is to infer the
unknown target stimuli based on the organization of the elements within the LST grid.
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Figure 1: A-D) The Latin Square Task (LST). The LST involves the presentation of a 2-dimensional 4-by-4 grid
populated with A) four possible symbols, blank spaces and a single target probe ("?"). The agent’s aim is to
solve for the target square with the rule that each shape can only appear once in every row and column. The
reasoning complexity required for an LST puzzle can be manipulated by varying the number of distinct vectors
that must be integrated to solve the problem. Examples of B) 1-, C) 2-, and D) 3-vector LST puzzles (left) and
their solutions (right). E) Performing the LST is intuitive in 2D. However, when tokenizing the task for neural
networks, the input must be flattened into 1D. The LST is significantly more challenging when row and column
information is lost. F) The pairwise distances between token positions according to rows and columns provides
the “ground truth” of how tokens relate to each other in 2D space. A successful PE would approximate the
pairwise distance relationships of the ground truth encoding. G) Naively using the 1D sinusoidal PE (Vaswani
et al., 2017) would provide incorrect token-wise position information, since it only considers the closeness of
tokens in 1D. H) In contrast, recomputing absolute positions in 2D (with sines and cosines in the embedding
dimensions) would preserve the position information of a 2D grid, even after flattening the sequence into 1D.

The number of relations needed to solve a given LST puzzle can be manipulated by changing the
organization of the elements within the grid (Fig 1A-D). For instance, one-vector puzzles require
integration of information across a single row or column, while two-vector problems involve integra-
tion across a single row and column. Three-vector puzzles require information integration across
three rows and/or columns. Importantly, performing the LST task requires positional informational
information of the rows and columns. Flattening the grid to 1D without preserving the position
information would significantly increase the difficulty of the LST task (Fig. 1E).

For our LST experiments, we generated eight thousand training puzzles, and assigned to one-, two-,
or three-vector conditions. We ensured that the similarity between any generated training set puzzle
was distinct from the generalization (validation) set of puzzles (i.e., the Jaccard dissimilarity > 0.8
for a test puzzle to any individual training puzzle).

2.2 HUMAN FUNCTIONAL MRI DATASET

In the second experiment, we evaluated the effect of learning accurate PEs in a real world 3D
neuroscience dataset. In this context, we conceptualized ’tokens’ as distinct brain regions across the
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cortical mantle with the goal of predicting masked brain activity with a self-supervised objective.
Naively, the PE of brain regions might manifest as their physical location in 3D space. However,
decades of neuroscience research has revealed a modular brain organization, whereby different brain
regions belong to distinct functional networks (or communities) (Power et al., 2011; Yeo et al.,
2011; Ji et al., 2019; Schaefer et al., 2018). Thus, the goal of using this real-world dataset was to
assess the degree to which models could recover this “modular” network organization in terms of
PE. We used publicly available human functional magnetic resonance imaging (fMRI) data from
the Human Connectome Project (HCP) dataset (www.humanconnectomeproject.org). We
used the resting-state fMRI data from a subset (n = 100; ntrain = 70; ntest = 30) of the HCP 1200
participant pool (Van Essen et al., 2013). The subset of 100 participants was selected based on quality
control assessments that were previously described in Ito et al. (2020). Each subject contained 4800
timepoints of brain activity (sampled at 720ms). We used the Glasser et al. (2016) parcellation that
identified 360 distinct cortical regions (tokens), and the CAB-NP network partition, which partitioned
360 cortical regions into 12 distinct functional networks based on resting-state functional connectivity
profiles (Ji et al., 2019). Details on the preprocessing of fMRI data can be found in Appendix A.2.

2.3 MODEL ARCHITECTURE AND TRAINING

For all experiments, we used a standard encoder-only transformer architecture with four layers and
embedding dimension of 160 for the LST, and 64 for the fMRI data (Vaswani et al., 2017). The
primary transformer manipulation was the choice of PE, and includes a mix of absolute, relative,
and learnable PEs (described in later sections). The formulations and definitions of common PEs
are detailed in Appendix A.1. For each model variation, we trained on 15 seeds. For simplicity
of analyzing attention maps, we trained models with only a single attention head (fully-connected,
bidirectional attention unless specified otherwise). However, we have included results for models
with multiheaded attention (2 and 4 heads) on the LST task in Fig. A14, which overall reduce
generalization performance. The context window for the model was either 16 tokens long for the LST
(given the 4 × 4 structure of the LST paradigm), or 360 tokens long (for the number of brain regions
in the Glasser et al. (2016) brain atlas). We used the Adam optimizer with a learning rate of 0.0001.
For comparable analysis, all models were trained for a fixed number of training steps (4000 epochs
for the LST; 8000 puzzles per epoch; 50k training steps for human brain data). Results reported in
the main text were trained without regularization, given that we were interested in understanding the
role of PE initialization in isolation (no dropout, no weight decay). However, for completeness, we
include results using weight decay (AdamW, with weight decay=0.1) in the Appendix for the LST
task, which yielded qualitatively similar results (Fig. A7, Table A5, Table A6). A single model/seed
could be trained (4000 epochs of LST) on one NVIDIA V100 GPU in under 45 minutes. All model
training was performed on an internal cluster.

The objective function for the LST task paradigm was to choose the correct symbol in the location
with the red question mark (Fig. 1A-D) using a cross entropy loss. Generalization in the LST
experiment was performed on new puzzles that had low dissimilarity to the training set (Jaccard
dissimilarity > 0.8). For the human brain data, the objective function was to predict the activity of
the masked brain regions in the input by minimizing the mean squared error (MSE) of masked brain
activity. Generalization in the human dataset was to evaluate MSE prediction of masked brain activity
data from a separate human participant.

3 EXPERIMENTS AND RESULTS

3.1 PE INITIALIZATION INFLUENCES DOWNSTREAM GENERALIZATION IN THE LST

Prior work in deep learning theory suggests that choice of weight initialization can influence learned
representations and downstream generalization (Jacot et al., 2020; Woodworth et al., 2020; Chizat
et al., 2020). In particular, the smaller the norm of the distribution from which the neural network is
initialized, the more structured the learned representations will be. Thus, we first assessed whether
these intuitions would generalize to learnable PEs initialized from different Normal distributions,
controlling for the standard deviation (i.e., norm). For each token embedding, we initialized a
learnable PE parameter from a multivariate Normal distribution, denoted N (0,Σ), where Σ = σI,
and I denotes the identity matrix scaled by σ (Fig. 2A).
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Figure 2: A) Transformer parameterization. We parameterize a learnable PE initialized from different distribu-
tions (i.e., N (0, σI), varying σ), and study the effect initialization on downstream generalization. B) The training
and validation performance across 4000 epochs for examplar initializations. C) Despite the learnability of all
initialized models, the choice of σ strongly influenced downstream generalization. Boxplots reflect variability
across 15 random seeds. (See also Appendix Table A2.)

We initialized PEs from distributions with σ ∈ {0.1, 0.2, 0.3, ..., 2.0}. (For each PE initialization, we
trained on 15 seeds.) We trained all models for 4000 epochs, and found that all models converged
(Fig. 2B). Remarkably, though the choice of σ was the only source of variation across model
parameterizations, models exhibited a wide range of generalization performance (Fig. 2C). Compared
to the default initialization choice of σ = 1, which had a generalization performance of 0.89 (Table
A2), we found that the optimal generalization performance was produced with PEs initialized with
small norms (e.g., σ = 0.2; Acc=0.96; Table A2). Moreover, consistent with the NTK regime,
PE’s initialized from a distribution with large σ converged, but generalized poorly (e.g., σ = 2.0,
Acc=0.38; see also Table A2).

While our results are consistent with the hypothesis that small norm initialized models tend to
learn the most generalizable representations, we did observe a slight reduction in generalization
performance for PEs initialized at σ = 0.1 relative to σ = 0.2. In practice, we found that the poor
generalization for very small values of σ is due to the behavior of the Adam optimizer. Specifically,
vanilla SGD outperformed the generalization ability of models trained with Adam for small values
of σ ∈ {0.01, 0.05, 0.1} (see Fig. A6). Thus, it is important for practitioners to consider optimizers
when encouraging the rich/feature training regime for very small initializations.

3.2 LEARNABLE PES OUTPERFORM COMMONLY-USED PE SCHEMES IN THE LST

We next sought to benchmark the optimal learnable PE (σ = 0.2, learn-0.2) relative to other
standard PE schemes. These schemes included absolute 1D PE (1d-fixed, using sines and cosines;
Vaswani et al. (2017)), relative PE (relative; Shaw et al. (2018)), and rotary PE (rope; Su
et al. (2022)). In addition, we also evaluated performance on PE schemes that have been shown
to be beneficial for algorithmic and compositional generalization tasks, including no PE with a
causal attention mask (c-nope) (Kazemnejad et al., 2023) and random PE without a learnable
parameter (random) (Ruoss et al., 2023). (Note that the c-nope model can implicitly learn position
information due to the nature of the causal attention mask.) We also included a baseline control
model without any specified PE (nope), which should not be able to learn the task in a systematic
way, due to the permutation invariance of bidirectional attention in the absence of PE. Finally, we
included a “ground truth” PE – an absolute 2D PE based on sines and cosines (2d-fixed) – to
compare how similarly the various PEs produced attention mechanisms to this ground truth model
(see Appendix A.1). (Note, that the term “ground truth” applies to any rotation of the absolute 2D PE,
or any PE that preserves the original 2D row and column LST information, as depicted in Fig. 1E,F).)

All models, except for the nope and c-nope models converged (accuracy after 4000 epochs,
c-nope=0.56, nope=0.51). Poor performance was expected for the nope model due to the lack
of any explicit or implicit PE information. However, it was surprising that c-nope models neither
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Table 1: Training and validation performance of common PEs and the learn-0.2 PE on the LST.

PE Validation acc Validation SD Training acc Training SD

2d-fixed (ground truth) 0.977 0.073 1.000 0.000
learn-0.2 0.956 0.039 1.000 0.000
relative 0.920 0.042 1.000 0.000
random 0.888 0.046 1.000 0.000
rope 0.805 0.115 1.000 0.000
1d-fixed 0.781 0.185 0.999 0.000
nope 0.334 0.020 0.509 0.002
c-nope 0.314 0.042 0.559 0.102

learned nor generalized, given prior research suggesting that this PE scheme had above average per-
formance on compositional and length generalization tasks (Kazemnejad et al., 2023). Nevertheless,
as anticipated, we found the ground truth 2d-fixed model to exhibit the highest generalization
performance (Table 1; Appendix Fig. A9A,D). Remarkably, the next highest performing model was
the learn-0.2 model (σ = 0.2), followed by the relative, random, rope, and 1d-fixed
PE models, respectively. While we did not find a robust statistical difference between the ground truth
2d-fixed model (97.7%) and the learn-0.2 model (95.6%) (2d-fixed vs. learn-0.2,
t-test, t(13) = 0.96, p = 0.35), there was a significant difference between the learn-0.2 model
with the next highest-performing model (relative) (t(13) = 2.51, p = 0.03). Further, when
applying L2 regularization (via weight decay), the generalization performance of learnable PEs
was virtually indistinguishable from the ground truth 2d-fixed PE (both models generalized with
99% accuracy; Table A6; Fig. A7). Finally when performing a perturbation analysis, where we
systematically injected noise to the token embeddings and evaluated downstream performance, we
found that models that were most robust to noise were those initialized from a low-norm distribution
(Fig. A10). Overall, these findings corroborate prior theoretical intuitions in deep learning theory,
and suggests their applicability to learning rich transformer PEs in structured reasoning tasks.

3.3 LEARNABLE PE MODELS DISCOVER GROUND TRUTH ATTENTION MAPS AND POSITIONS

Next, we sought to understand how different PE initializations influenced the learned representations
(e.g., attention maps and learned PEs) within the transformer. Since the underlying structure of
the LST paradigm is a 2D grid, we used the 2d-fixed model as the ground truth model. This
allowed us to assess how learned attention maps would deviate from optimal attention maps. First,
we extracted the attention weights for each model, and computed the cosine similarity of attention
weights between the ground truth and learnable PE models (Fig. 3A; Table A3). We then correlated
the similarity between learned attention maps and the ground truth with generalization performance.
We found that the degree of agreement of learned attention maps with the ground truth (2d-fixed)
predicted improved generalization (ρ = 0.96, p < 0.0001; Fig. 3B). Importantly, learned PEs with
small σ tended to learn attention representations that were most aligned with the ground truth. (We
also computed the Jensen-Shannon Divergence as a complementary distance measure, finding similar
patterns; Appendix Fig. A8.) In the Appendix, we also include comparative analyses of the attention
maps of models with common PEs (1d-fixed, relative, etc.) and compare those to the ground
truth model (Fig. A9B-D).

Next, to directly interpret what embeddings the learnable PEs converged to during training, we
evaluated whether learnable PEs approximated the actual ground truth 2d-fixed PE (Fig. 3D).
This involved estimating the distance (i.e., L2 norm) between the 2d-fixed PE and the learned
PE embedding after an orthogonal Procrustes transform was applied. An orthogonal Procrustes
transform was applied to rotate and match embedding dimensions according to maximal similarity
since embedding dimensions were arbitrary in the learnable PE models. We found that small-
norm initialized PEs could better approximate the PEs from the 2d-fixed PE scheme (Fig. 3E).
Critically, more similar ground truth PE approximation (measured by L2 norm) near perfectly
predicted downstream generalization (ρ = −0.98, p < 0.0001; Fig. 3F). These results indicate that
1) low-norm initializations can discover ground truth PEs and their subsequent attention maps, and 2)
these discovered PEs predicted downstream generalization.
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Figure 3: A,B) We compared the attention maps of each learnable PE model to those derived from the
“ground truth” 2d-fixed model, and computed the cosine similarity of the attention maps. C) A strong
rank correlation between generalization performance and the agreement of attention maps to the 2d-fixed
model. D) We directly compared the learned PE embeddings to the ground truth 2d-fixed PE. Since the
embedding dimensions of the learned PE models are random and not indexed in the same way to the 2d-fixed
embedding, we matched their embedding dimensions using an orthogonal Procrustes transform. After matching
the dimensions of the PE embeddings, we computed the Frobenius norm to calculate the distance between the
learned PE and the ground truth 2d-fixed PE. E) The distance (Frobenius norm) between the learned PEs
and 2d-fixed PE, for every σ. (Note that bar plot colors correspond to differences in x-axis values.) F) We
found a strong relationship between the PE agreement with the ground truth PEs and generalization performance
(ρ = −0.977). (See also Appendix Table A3.)

3.4 LEARNING INTERPRETABLE PES IN HUMAN BRAIN DATA FOR IMPROVED
GENERALIZATION

We next investigated the feasibility of learning interpretable PEs in a real-world dataset in which
it is difficult to specify a ground truth PE. In neuroscience, a central goal is to be able to predict
distributed brain activity using the activity of other brain regions (Bassett and Sporns, 2017). To
achieve this, we sought to build a generalizable transformer model that would predict the brain
activity of target regions using the brain activity of other regions. This task can be formalized as
masked pretraining, where the input tokens to the model are contemporaneous brain activity across
different brain regions with masked (or missing) activity values (Fig 4B). This requires the model
to predict missing brain activity from its surrounding context, i.e., the brain activity values of other
brain regions. This approach is analogous to masked pretraining in the BERT model (Devlin et al.,
2019). We trained transformer models with a mix of fixed and learnable PEs (fixed: 1d-fixed,
relative, rope, random; learnable PEs initialized with σ ∈ {0.1, 0.2, 1.0, 2.0}), minimizing
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the MSE of masked brain activity. Figure 4 shows results where we performed masked pretraining
with 50% masking (Fig. 4C), and tested with 90% masking (Fig. 4D). (We show results with 15%,
75%, and 90% mask pretraining in Appendix Figs. A11,A12,A13) Successful generalization of the
trained model would involve predicting the masked brain activity of a separate subject’s data (i.e.,
test subjects). As expected based on the first set of results, we found that small-norm initialized PEs
(learn-0.1 and learn-0.2) achieved the best performance in both their training and validation
sets after a fixed number of training steps (50k). Interestingly, relative PEs fared the worst, followed
by absolute 1d-fixed and random PEs.
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Figure 4: A) The brain is organized into functional networks that are heterogeneously distributed throughout the
brain in 3D space. B) A central goal within neuroscience is to be able to predict the activity of brain region(s)
using the activity of other brain regions (i.e., tokens). We sought to understand the influence of PE on a model’s
ability to predict contemporaneous brain activity. This can be formalized as a self-supervised masked prediction
task, where a transformer is trained to predict contemporaneous, spatially masked brain activity. To test for
generalization, we evaluated the MSE on a validation dataset, which involved predicting the masked activity of
data collected from different participants with an increased masking threshold (90%). (Models were trained with
a 50% masking. See Figures A11,A12,A13 for results with 15%, 75%, and 90% masked pretraining objectives.)
C) We found that transformers endowed with different PE schemes converged to different MSE loss values. D)
Notably, learnable PEs initialized with small norms (learn-0.1 and learn-0.2) converged to the lowest
MSE for both training and validation datasets. (X-axis is sorted from highest to lowest MSE.)

Having established the superior predictive performance of richly learned PEs (small σ), we next
evaluated whether these models learned meaningful yet nontrivial position information from masked
pretraining of brain activity. In the masked pretraining setup, we conceptualized ’tokens’ as distinct
brain regions across the cerebral cortex. Unlike the first set of analyses investigating the LST, the
ground-truth PE of brain regions is not known. Naively, the PE of brain regions could be encoded as
their physical location in 3D space, which would be trivial to map. However, decades of neuroscience
research has revealed a modular brain network organization, whereby different brain regions that
are heterogeneously distributed throughout the cortex belong to distinct functional networks (or
communities) (Fig. 4A) (Power et al., 2011; Yeo et al., 2011; Ji et al., 2019; Schaefer et al., 2018).
In other words, two brain regions that are distant in 3D space may actually be “functionally” close
(e.g., yellow regions in Fig. 4A). (Prior work has indicated this functional closeness is determined by
anatomical connectivity; Vázquez-Rodríguez et al. (2019).) We therefore sought to address whether
richly learned PEs could recover this modular functional organization by measuring the distance of
learned PE parameters.
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The modular network organization of the human brain is spatially distributed across the cortex.
When flattening brain regions across the cortex into a 1D tensor, each brain region’s (i.e., token’s)
assignments are heterogeneously distributed across that tensor (Fig. 5A). (In this context, a PE
scheme that places adjacent tokens closer to each other, such as in the original 1d-fixed PE with
sines and cosines from Vaswani et al. (2017), would be clearly ill-suited.) To evaluate whether
learned PEs learned a modular organization that reflected the known functional network organization
of the brain, we measured the distance between every pair of tokens’ PE. This involved computing
an orthogonal Procrustes transform to rotate and match the embedding dimensions of each token’s
PE prior to computing their distance (Frobenius norm) (Figure 5B). The reason this is necessary is
because since learned PEs are first randomly initialized, the embedding dimension of each token’s PE
are not necessarily aligned (e.g., position 1’s embedding dimension i does not necessarily correspond
to embedding dimension i of position 2). After aligning the embedding dimensions across tokens, we
computed the distance between every pair of tokens. (We then scaled distance in this 2D matrix to
range from 0 and 1, and computed the complement (i.e., 1−dscaled), such that closer PEs would have
higher values. We computed both the network modularity and network clustering (i.e., segregation)
with respect to the known network partitions (see A.3 for mathematical definitions; Rubinov and
Sporns (2010)). In brief, modularity is a statistic that quantifies the degree to which the distance matrix
can be cleanly subdivided into the brain’s network partitions. Network clustering is a statistic that
quantifies the ratio between within-module distances and across-module distances, where modules are
defined using a network partitioning from Ji et al. (2019). We found that the modularity of small-norm
initialized PEs (learn-0.1 and learn-0.2) had the highest overall network modularity and
segregation relative to other learnable PEs. This implies that the small-norm initialized PEs learned
interpretable PEs with respect to the brain’s known biological networks. These findings support
the hypothesis that learnable PEs (as opposed to off-the-shelf PEs) in the rich training regime can
improve generalization, while successfully learning interpretable position information (Figure 5C,D).

A

Do learned positional encodings organize 
along the brain’s community structure?

Flatten 3D Brain Regions to 1D

Token A PE

Token B PE

Align embedding 
dimensions via 

Procrustes alignment

Compute distance
of aligned PEs

Token A Token B Token C

compare

B

C D

?

with constraint

Figure 5: A) We evaluated whether learnable PEs could discover the brain’s modular functional network
organization. When flattening the brain from a 3D to 1D tensor, the network affiliation of each brain region is
heterogenously distributed across a 1D tensor in a disorganized manner. B) We computed the distance between
positional embeddings between every pair of token positions after aligning their embedding dimensions (d)
through an orthogonal Procrustes transform. This allowed us to construct a token-by-token embedding distance
matrix, which we then compared to brain network organization. C) The modularity of PEs with respect to the
brain’s network organization. Models that had learnable PEs initialized from small-norm distributions learned a
modular PE organization that was consistent with prior neuroscience studies (Ji et al., 2019) D) The network
clustering of PEs, which assessed whether PEs of tokens that belong to the same network are closer in space
than PEs that do not belong to the same network.
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4 DISCUSSION

Related work. Recent studies have revealed that the choice of PE can strongly influence transformer
generalization (Li et al., 2024; Kazemnejad et al., 2023; Golovneva et al., 2024; Ruoss et al., 2023;
McLeish et al., 2024; Shen et al., 2024; Csordás et al., 2021; Ontanon et al., 2022; Zhou et al.,
2024; Zhang et al., 2024). However, most of these investigations have been limited to evaluating the
generalizability of various PE schemes on 1D string-based tasks (e.g., sequence learning tasks for
arithmetic, context-free grammars, or compositional tasks). In contrast, many important problems
require the encoding of sequences that are not in 1D (e.g., Li et al. (2021)), and where position
information is non-trivial or not known, which we investigate here. (Note that the present work is
complementary to Li et al. (2021); Li et al. provide learnable PEs to interpolate positions within
specified dimensions (e.g., in a 2D image), while we focus on learning PEs in unspecified dimensions.
Additionally, work in deep learning theory has provided insight into the impact on model initialization
and representation learning, yet focus primarily on simple neural networks rather than transformers
(Chizat et al., 2020; Woodworth et al., 2020; Jacot et al., 2020; Kunin et al., 2024; Lippl and
Stachenfeld, 2024). In this study, we apply insights from deep learning theory to transformer models
to effectively learn (and improve generalization) to nontrivial sequence tasks, such as tasks requiring
reasoning in 2D, or tasks in which ground truth position information is organized non-trivially (e.g.,
3D neuroscience data).

Limitations and future directions. We have demonstrated that learnable PEs initialized from small-
norm distributions can 1) approximate the ground truth PE, and 2) outperform many commonly-used
PEs. However, there remain several limitations of the present study which future studies can explore.
First, though we consider the use of the LST (with a 2D organization) a strength of this study due
to the visual interpretability of the paradigm’s positional information, it is unclear how well this
approach will generalize to tasks with an arbitrary number of elements, tasks in which there are
dynamic changes in the number of elements (e.g., length generalization problems), or tasks in which
there are specific distribution shifts. In addition, due to the task-dependent nature of utilizing (or
learning) optimal PEs, for some tasks and training objectives, such as generic next-token prediction
or arithmetic (which is order invariant under addition), standard PE choices may be most appropriate
(e.g., 1d-fixed or rndpe). However, for tasks in which establishing an underlying ordering
and relation of tokens is crucial — such as reasoning tasks in 2D or tasks with complex network
structures, as is common in biology — our results show that using small-norm initialized learnable
PEs can be highly beneficial. Second, the current learned PE is limited insofar that the embedding is
linearly superimposed on a given token (i.e., token+ pe). While this makes it difficult to potentially
generalize to more complex tasks, a natural future research direction would be to learn nonlinear
PE embeddings that allow for PEs to be flexibly generated as a function of the token embedding,
thereby learning token abstractions (i.e., pe(token)). This nonlinear formulation of PE as a function
of the token embedding would, in theory, have significantly greater expressive ability, and potentially
endow transformers with the ability to recognize more complex formal languages (Merrill et al.,
2024). Finally, while we have empirically demonstrated the applicability of prior learning theory on
neural network initialization to the choice of PE initialization, in practice, it remains unclear how
the precise choice of small σ will impact generalization performance in practice (e.g., dependency
on task and architecural choices, such as number of layers, embedding dimension, etc.). It will be
important for future theoretical work to more carefully characterize how the choice of σ may be
influenced by transformer architecture and optimizer.

Conclusion. There are many tasks and problems in which it is difficult to know the ground truth
ordering of input sequences. Examples of such problems include reasoning on parse trees and directed
graphs (where node distances and relations are not preserved when flattening into a 1D sequence for
parallel transformer processing), or inference on real-world biological datasets in which the ground
truth structure is important for prediction yet difficult to know (e.g., 3D neuroscience data explored
here, or co-expression of genes in a DNA sequence based on 3D chromatin conformation) (Szabo
et al., 2019; Ji et al., 2021). In this study, we sought to understand how to learn position information
directly from data using insights from deep learning theory. In particular, we found that an optimally-
learned PE 1) outperformed commonly-used PEs, 2) learned attention maps and PE embeddings that
were closely aligned to a ground truth PE, and 3) enhanced generalization performance. Critically,
learning an optimal and interpretable PE depended on its initialization in both a reasoning task and
a biological dataset. We anticipate these results will spur future investigations into the importance
and utility of learnable PEs for structured learning and generalization.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 POSITIONAL ENCODING DEFINITIONS

Below, we provide the formal definitions for the common PEs that we evaluated learnable PEs against:
1d-fixed, 2d-fixed, relative, and rope.

1d-fixed (Vaswani et al., 2017). 1D absolute PEs were defined from Vaswani et al. (2017) (Vaswani
et al., 2017). For a given position pos (here 1 ≤ pos ≤ 16, for elements in the LST grid), we define

PE(pos,2i) = sin(
pos

100002i/dmodel
)

PE(pos,2i+1) = cos(
pos

100002i/dmodel
)

where i is the embedding dimension, and dmodel is the dimensionality of the embedding vector.
Note that PE(pos,2i) (sines) is reserved for even embedding dimensions, and PE(pos,2i) (cosines) is
reserved for odd embedding dimensions.

2d-fixed. 2D absolute PEs were a 2D generalization of 1d-fixed (Vaswani et al., 2017). The
primary distinction is that rather than 1 < pos < 16, there are two position variables, 1 ≤ posw ≤ 4
and 1 ≤ posh ≤ 4 (for width and height of grid). Positional encoding for a row w is defined by

PE(posw,2i) = sin(
posw

100002i/dmodel
)

PE(posw,2i+1) = cos(
posw

100002i/dmodel
)

Positional encoding for a column h is defined by

PE(posh,2i) = sin(
posh

100002i/dmodel
)

PE(posh,2i+1) = cos(
posh

100002i/dmodel
)

For a 2D PE encoding, half the embedding dimensionality is reserved for encoding rows; the other
half of the embedding dimensionality is reserved for encoding columns. Thus, for dmodel = 160,
embedding dimensions 0-79 are reserved for encoding rows. Embedding dimensions 80-159 are
reserved for encoding columns.

relative (Shaw et al., 2018). relative PE modifies standard self-attention to incorporate the
relative positions of tokens. This implies that calculation of PE is wrapped within the self-attention
module. The relative position embedding parameter between a token at position i and j is aj−1. In
brief, self attention is then modified to include relative position information by modifying attention
between tokens i and j as

eij =
xiW

Q(xjW
K)T + xiW

Q(aKij )
T

√
dz

where xi and xj are the embeddings for tokens i and j, and WQ andd WK are the query and key
matrices, respectively. Additional details can be found in (Shaw et al., 2018).

rope (Su et al., 2022). rope applies a rotation to the token embeddings based on their positions in a
higher dimensional space. For a token at position p with an embedding x, let x = [x1, x2, ..., xd],
where d is even. Then, for each pair of dimensions, apply the rotation(

x̂2k

x̂2k+1

)
=

(
cos(θp) −sin(θp)
sin(θp) cos(θp)

)(
x2k

x2k+1

)
with θp = p

100002k/d . The resulting embedding is the concatenation of rotated pairs. Additional
details can be found in the original paper (Su et al., 2022).
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A.2 FMRI DATA AND PREPROCESSING

Data were previously collected as part of the Human Connectome Project and made publicly available
(Van Essen et al., 2013). All participants gave signed, informed consent in accordance with the
protocol approved by the Washington University institutional review board. Whole-brain multiband
echo-planar imaging acquisitions were collected on a 32-channel head coil on a modified 3T Siemens
Skyra with TR = 720 ms, TE = 33.1 ms, flip angle = 52◦, Bandwidth = 2,290 Hz/Px, in-plane FOV =
208x180 mm, 72 slices, 2.0 mm isotropic voxels, with a multiband acceleration factor of 8. Data
were collected across two days, with the first two resting-state fMRI sessions collected on the first
day, and another two sessions collected on the second day. Each resting-state fMRI session lasted
14.4 minutes. Additional details on imaging sessions can be found in Smith et al. (2013).

Data were provided in a minimally preprocessed format. We performed additional preprocessing
steps in accordance with Ito et al. (2020), which we paraphrase below. We first parcellated minimally
preprocessed data into 360 brain regions using the Glasser et al. (2016). In addition, we removed the
first five frames of each run, de-meaning and de-trending the timeseries, and performing nuisance
regression on the minimally preprocessed data. Nuisance regression included removing motion
signals and physiological noise. Six primary motion parameters were included, along with their
derivatives and quadratic timeseries. Physiological noise was modeled using aCompCor on the
timeseries extracted from the white matter and ventricles (Behzadi et al., 2007). For aCompCor,
the first 5 principal components from the white matter and ventricles were extracted separately and
included in the nuisance regression. We also included the derivatives of each of those components,
and the quadratics of all noise regressors. In total, the nuisance regression modeled contained 64
nuisance regressors.

A.3 MODULARITY AND CLUSTERING IN FMRI BRAIN DATA

Modularity and network clustering (segregation) are common measures in the neuroscience literature,
particularly when applied to fMRI data (Rubinov and Sporns, 2010). We adopted these measures to
calculate the modularity and network clustering of learned PE parameters. The distance d between
PEs was scaled between 0 and 1, and we calculated the complement (1− d) such that higher values
indicated two PEs were closer. Both modularity and network clustering were calculated with respect
to the predefined network partition (Fig. 4; Ji et al. (2019)). Modularity QW of the learned, PE
distance matrix W was calculated as

QW =
1

lW

∑
i,j∈N

[
Wij −

kWi kWj
lW

]
δmi,mj

where lW is the sum of all weights in W , N are tokens (brain regions), Wij is the distance between
token i and token j, kWi is the weighted degree of token i, mi is the module containing node i,
and δmi,mj

= 1 if mi = mj and 0 otherwise (as determined by the network partition from Ji et al.
(2019)).

Network clustering C is measured as the difference in mean within module and across module
distances, as a proportion of the within-module distance

C =
1

|M |
∑
m∈M

[
W̄min

− W̄mout

W̄min

]
where M is the full set of modules (networks), W̄min

is the mean within-module distance, and W̄mout

is the across-module distance.

A.4 RECOVERING NETWORK MODULES VIA PE LEARNING IN A NONLINEAR MULTIVARATE
AUTOREGRESSIVE MODEL

We implemented a nonlinear multivariate autoregressive (NMAR) model to simulate a system of
15 time series (nodes) divided into 3 clusters, each containing 5 nodes (Fig A15A). The purpose
of this experiment and model was to assess whether learnable PEs could capture the underlying
network modules in a nonlinear system. Each node evolves over time based on a combination of: 1)
Autoregressive effects from its own past values (p = 3 lags); 2) Strong intra-cluster interactions with
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other nodes in the same cluster; 3) Weak inter-cluster interactions with nodes in different clusters; 4)
Noise to introduce variability.

The timeseries for node xi at time t was computed as

xi(t) =

p∑
k=1

wi,k · xi(t− k) +
∑

j∈Ci,j ̸=i

λij · f(xj(t− 1)) +
∑
j /∈Ci

ηij · f(xj(t− 1)) + ϵi(t),

where wi,k ∼ U(0.2, 0.5), C refers to the module, λij ∼ U(0.02, 0.2), ηij ∼ U(0.005, 0.01),
ϵi(t) ∼ N (0, 0.2), and f(x) = sin(x).

We used the exact model architectures we used in the fMRI experiment (including identical parameter
choices). Models were trained on 20k time points. Computing the modularity of the PEs of each
model was performed in the same exact way as we did in the fMRI data (e.g., see Fig 5). The
training objective was to predict contemporaneous activity of the 15 nodes using masked inputs
(mask-level=50%). While we found that learnable PE models with a small-norm were the models
that were most capable of learning the ground truth network organization, all models converged
to the same MSE (average MSE on IID samples = 0.049). This is due to the fact that there is a
substantial amount of private random noise associated with each node, which provides a noise ceiling
on their predictions. To ensure there were no differences in performance across each of the models,
we performed an n-way F-test (n = 6 for each of the model variants; F = 0.24, p = 0.97.)
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Table A2: Training and generalization performance for all learnable PE models initialized with different N (0, σ)
(no regularization). This is the corresponding data table for Fig. 2.

PE Training acc Training SD Validation acc Validation SD

0.100 1.000 0.000 0.925 0.083
0.200 1.000 0.000 0.956 0.039
0.300 1.000 0.000 0.946 0.022
0.400 1.000 0.000 0.929 0.048
0.500 1.000 0.000 0.946 0.025
0.600 1.000 0.000 0.929 0.027
0.700 1.000 0.000 0.926 0.027
0.800 1.000 0.000 0.916 0.048
0.900 1.000 0.000 0.896 0.060
1.000 1.000 0.000 0.894 0.043
1.100 1.000 0.000 0.835 0.101
1.200 1.000 0.000 0.756 0.141
1.300 1.000 0.000 0.702 0.126
1.400 1.000 0.000 0.654 0.161
1.500 1.000 0.000 0.616 0.208
1.600 1.000 0.000 0.582 0.168
1.700 1.000 0.000 0.480 0.167
1.800 1.000 0.000 0.378 0.153
1.900 1.000 0.000 0.406 0.161
2.000 1.000 0.000 0.377 0.171

Table A3: Attention map similarity between learnable PEs and the ground truth 2d-fixed. Corresponding
data table for Fig. 3.

σ Cosine SD

0.100 0.836 0.018
0.200 0.838 0.016
0.300 0.808 0.013
0.400 0.779 0.013
0.500 0.748 0.014
0.600 0.722 0.016
0.700 0.715 0.016
0.800 0.710 0.016
0.900 0.694 0.015
1.000 0.685 0.015
1.100 0.697 0.015
1.200 0.692 0.017
1.300 0.685 0.016
1.400 0.672 0.016
1.500 0.657 0.017
1.600 0.647 0.022
1.700 0.642 0.016
1.800 0.624 0.021
1.900 0.606 0.023
2.000 0.577 0.019
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Figure A6: Different optimizers (Adam, SGD) can lead to different generalization performances in very small-
norm PE initializations. We noticed that for models that were initialized with very small-norm PEs, generalization
performance was reduced, counter to the theoretical claims in the NTK theory. However, we realized that this
could be attributed to variability in the adaptive learning rates inherent to the Adam optimizer. Thus, we evaluated
whether using vanilla SGD (learning rate=0.001) would ameliorate these reduced accuracies. Indeed, we found
that for very small-norm initializations, SGD tended to ameliorate the reduced generalization effects observed
with Adam. A) Training trajectories for σ ∈ 0.01, 0.05, 0.1, 0.2 using vanilla SGD (learning rate=0.001). Note
that the slow training is significantly more obvious for small-norm initializations with SGD, consistent with
theory. B) Corresponding training trajectories using Adam. C) A clear generalization discrepancy emerges when
using Adam vs. SGD.

Table A4: Performance differences across different optimizers (Adam, SGD) in very small-norm PE initializa-
tions (without regularization). Corresponding data table for Fig. A6C.

σ Adam acc Adam sd SGD acc SGD sd

0.010 0.588 0.186 0.885 0.101
0.050 0.836 0.140 0.941 0.042
0.100 0.925 0.083 0.947 0.027
0.200 0.956 0.039 0.930 0.044
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Figure A7: Generalization performance of learnable and common PEs with weight decay (0.1). To assess the
impact of learnable PEs in a more realistic setting, we measured the effect of L2 regularization with a weight
decay parameter of 0.1. In general, weight decay improves the generalization of learnable PE models across
initializations, except for particularly high σ. Importantly, learnable PEs with weight decay become nearly
indistinguishable to the ground-truth PE. Nevertheless, the general pattern remains for learnable PE models:
the smaller the σ, the greater the generalization. A) Training and validation trajectories across training. B)
Generalization performance for learnable PE models with weight decay = 0.1. C) Generalization performance
for common PE models with weight decay = 0.1.

Table A5: Training and validation performance of learnable PEs with weight decay (0.1). Corresponding data
table for Fig. A7B.

σ Validation acc Validation SD Training acc Training SD

0.100 0.996 0.006 1.000 0.000
0.200 0.995 0.007 1.000 0.000
0.300 0.994 0.008 1.000 0.000
0.400 0.994 0.007 1.000 0.001
0.500 0.993 0.007 0.999 0.002
0.600 0.993 0.007 1.000 0.001
0.700 0.993 0.009 0.999 0.003
0.800 0.993 0.009 0.999 0.003
0.900 0.993 0.008 1.000 0.001
1.000 0.993 0.008 1.000 0.001
1.100 0.990 0.008 0.999 0.002
1.200 0.989 0.010 1.000 0.001
1.300 0.989 0.012 1.000 0.000
1.400 0.987 0.010 0.999 0.002
1.500 0.985 0.013 0.999 0.002
1.600 0.983 0.018 0.999 0.002
1.700 0.929 0.138 1.000 0.001
1.800 0.900 0.180 1.000 0.001
1.900 0.707 0.238 0.992 0.024
2.000 0.586 0.238 0.996 0.012
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Table A6: Training and validation performance of common PEs with weight decay (0.1). Corresponding data
table for Fig. A7C.

PE Validation acc Validation SD Training acc Training SD

2d-fixed 0.997 0.008 0.999 0.001
learn-0.2 0.994 0.008 1.000 0.000
random 0.987 0.016 0.999 0.003
relative 0.965 0.012 0.999 0.004
rope 0.959 0.060 1.000 0.001
1d-fixed 0.872 0.166 0.998 0.001
c-nope 0.352 0.036 0.999 0.003
nope 0.322 0.017 0.508 0.002

A B

Figure A8: We computed the Jensen-Shannon Divergence of the attention weights for every learnable PE
model and the ground truth 2d-fixed model. This Figure is a comparable analysis to Fig. 3, but using the
Jensen-Shannon Divergence distance metric applied to attention maps (instead of cosine similarity).

2d-fixed : 2D absolute (”ground truth”)
learn-0.2: Learnable, initialized from N(0,0.2I)
relative : Relative (Shaw et al. 2018)
random: Random encoding
rope : Rotary (Su et al. 2022)
1d-fixed : 1D absolute (Vaswani et al. 2017)
nope : No encoding
c-nope: No encoding + causal mask

A B “Ground truth” 2d-fixed model Other model

cosine

attention weights

C D
human acc

Figure A9: Comparing top-performing learnable PE models (learn-0.2) with commonly-used PE schemes.
A) We compare the generalization performance of learn-0.2model with models using common PEs. Notably,
we included a 2d-fixed PE as the “ground truth”, since it obeyed the 2D organization of the LST task. The
learn-0.2 model outperformed all other PE models. B) We compared the attention maps of each model
to those derived from the “ground truth” 2d-fixed model. C,D) We found that aside from the 1d-fixed
model (which does not generalize well), learn-0.2 learned the closest attention map to the 2d-fixed
model. This was expected, since the 2d-fixed and 1d-fixed PEs are highly similar by design (the baseline
cosine similarity between the two schemes is 0.72). In contrast, the learn-0.2 learned an attention map
that was highly similar to the 2d-fixed model, despite having no similarity to the 2d-fixed PE scheme at
initialization (cosine at initialization = 0.00). (We also note that the rope model had high baseline similarity to
the 2d-fixed, since by construction, a component of the rope encoding is highly similar to the 1d-fixed
PE scheme.) Thus, we found that despite having no prior bias towards the 2d-fixed PE scheme, a small-norm
initialized learnable PE is capable of learning an attention map that approximates an attention map derived from
the ground truth PE.
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Figure A10: A) We injected noise with different amplitudes into each token embedding, and assessed downstream
generalization performance. B) Generalization performance with noisy inputs across all initializations for
learnable PEs, and C) common PEs. D) Average performance across noisy inputs (collapsing across rows in
B). E) Besides the ground truth model (2d-fixed), the learn-0.2 model was most robust to perturbation
compared to common PEs.

BA

C D

15% masked training

Figure A11: Training and evaluating models on fMRI data with 15% masked pretraining. A) Training trajectory
for each model with 15% masked pretraining. B) MSE of each model on training and testing datasets at the
end of training (after 50k training steps) predicting on 90% masked input. (X-axis is sorted by highest to
lowest MSE.) Consistent with results in the main text, models with a learnable PE parameter (initialized from a
small-norm distribution) achieved the lowest generalization MSE. C) The modularity of PEs with respect to
the brain’s network organization (analogous analysis to Fig. 5C). D) The network clustering of PEs within a
model, which assessed whether PEs of tokens that belong to the same network are closer in space than PEs
that do not belong to the same network (analogous analysis to Fig. 5D). Consistent with results in the main
text, models with a learnable PE parameter initialized from a small-norm distribution learned a similar network
modularity/clustering consistent with the brain’s known network organization.
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Figure A12: Training and evaluating models on fMRI data with 75% masked pretraining. A) Training trajectory
for each model with 75% masked pretraining. B) MSE of each model on training and testing datasets at the
end of training (after 50k training steps) predicting on 90% masked input. (X-axis is sorted by highest to
lowest MSE.) Consistent with results in the main text, models with a learnable PE parameter (initialized from a
small-norm distribution) achieved the lowest generalization MSE. C) The modularity of PEs with respect to
the brain’s network organization (analogous analysis to Fig. 5C). D) The network clustering of PEs within a
model, which assessed whether PEs of tokens that belong to the same network are closer in space than PEs
that do not belong to the same network (analogous analysis to Fig. 5D). Consistent with results in the main
text, models with a learnable PE parameter initialized from a small-norm distribution learned a similar network
modularity/clustering consistent with the brain’s known network organization.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A B

C D

90% masked training

Figure A13: Training and evaluating models on fMRI data with 90% masked pretraining. A) Training trajectory
for each model with 90% masked pretraining. B) MSE of each model on training and testing datasets at the
end of training (after 50k training steps) predicting on 90% masked input. (X-axis is sorted by highest to
lowest MSE.) Consistent with results in the main text, models with a learnable PE parameter (initialized from a
small-norm distribution) achieved the lowest generalization MSE. C) The modularity of PEs with respect to
the brain’s network organization (analogous analysis to Fig. 5C). D) The network clustering of PEs within a
model, which assessed whether PEs of tokens that belong to the same network are closer in space than PEs
that do not belong to the same network (analogous analysis to Fig. 5D). Consistent with results in the main
text, models with a learnable PE parameter initialized from a small-norm distribution learned a similar network
modularity/clustering consistent with the brain’s known network organization.
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Figure A14: Model performances when incorporating multihead (2 and 4) attention mechanisms. Overall,
we find that adding attention heads tends to reduce generalization performance across the board. The only
architecturein which we see improvements are models with rope PE. Nevertheless, despite their improvements,
rope models still do not outperform models with relative PEs, nor do they outperform learn-0.2
models with a single attention head (single head learn-0.2 performance = 95.6%; Table 1). We also notably
see that learn-0.2 models tend to degrade in their performance, likely due to the increase in free parameters.
A,B) Performance of models with 2 attention heads. C) Performance and of models with learnable PEs (2
attention heads). D) Training trajectories for example model architectures (2 attention heads). E,F) Performance
of models with 4 attention heads. G) Performance of models with learnable PEs (4 attention heads). H) Training
trajectories for example model architectures (4 attention heads).
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Figure A15: Recovering community structure in PEs using a nonlinear multivariate autoregressive model
(NMAR). We sought to verify that recovery of PEs could be achieved in nonlinear stochastic systems. We
thus experimented with a toy, NMAR system with 15 nodes divided into 3 modules (which determine module /
ground truth PE). Importantly, intra-module nodes interacted more strongly with each other than inter-module
nodes. Overall, we found that even in models with explicit nonlinear relationships between tokens/nodes, we
can recover PE structure using learnable PEs initialized with small-norms. A) Network structure with 15 nodes
divided into 3 modules. B) Example time series from 3 randomly selected nodes generated from the NMAR.
Note that when generating the training dataset, we generated data with 20000 time points. C) The training set up
was analogous to our empirical fMRI experiments, where contemporaneous timepoints were masked, and the
model was trained to predict masked data. D) The network modularity of PEs, which was measured in relation
to the “ground truth” modules, was highest in learnable PE models initialized with small norm (learn-0.1).
This implied that PE embeddings of small-norm learnable PEs learned an accurate representation of the model’s
network structure. Boxplots are sorted by mean modularity in descending order. E) The equation governing the
timeseries generation for node xi(t). The number of time lags p was chosen to be 3, and wi,k ∼ U(0.2, 0.5).
C refers to the module, and the other remaining parameters were chosen as follows: λij ∼ U(0.02, 0.2),
ηij ∼ U(0.005, 0.01), ϵi(t) ∼ N (0, 0.2), and f(x) = sin(x). F) The cosine similarity of the PEs for each pair
of tokens, across all models. We can visually intuit that learnable PE models with small-norm initializations
(particularly learn-0.1) can recover the ground truth network structure.
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