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ABSTRACT

The development of large language models (LLMs) has expanded to multi-modal
systems capable of processing text, images, and speech within a unified frame-
work. Training these models demands significantly larger datasets and compu-
tational resources compared to text-only LLMs. To address the scaling chal-
lenges, we introduce Mixture-of-Transformers (MoT), a sparse multi-modal trans-
former architecture that significantly reduces pretraining computational costs.
MoT decouples non-embedding parameters of the model by modality—including
feed-forward networks, attention matrices, and layer normalization—enabling
modality-specific processing with global self-attention over the full input se-
quence. We evaluate MoT across multiple settings and model scales. In the
Chameleon 7B setting (autoregressive text-and-image generation), MoT matches
the dense baseline’s performance using only 55.8% of the FLOPs. When ex-
tended to include speech, MoT reaches speech performance comparable to the
dense baseline with only 37.2% of the FLOPs. In the Transfusion setting, where
text and image are trained with different objectives, a 7B MoT model matches the
image modality performance of the dense baseline with one third of the FLOPs,
and a 760M MoT model outperforms a 1.4B dense baseline across key image
generation metrics. System profiling further highlights MoT’s practical benefits,
achieving dense baseline image quality in 47.2% of the wall-clock time and text
quality in 75.6% of the wall-clock time (measured on AWS p4de.24xlarge in-
stances with NVIDIA A100 GPUs).

Figure 1: Mixture-of-transformer (MoT) architecture. MoT is a generative model architecture
designed to process sequences consisting of arbitrarily interleaved modalities (e.g. text, image and
speech). Each modality employs a separate set of non-embedding transformer parameters – includ-
ing the feedforward network, attention matrices and layer normalization, while global self-attention
is applied to the full sequence. During training, each modality can be supervised using modality-
specific losses.
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1 INTRODUCTION

The development of foundation models has expanded to multi-modal large language models (LLMs)
capable of processing diverse data types—such as text, images, and speech—within a unified frame-
work. Recent advancements, such as Chameleon (Chameleon Team, 2024), demonstrate the poten-
tial of early-fusion, mixed-modal models to generate diverse media types within a single architec-
ture. These models hold promise for advancing applications such as content creation and cross-
modal translation but pose significant computational challenges due to the complexity of simultane-
ously learning representations across multiple modalities.

Training early-fusion multi-modal LLMs demands significantly larger datasets and computational
resources compared to single-modality models. For example, Chameleon (Chameleon Team, 2024)
is trained on 9.2 trillion training tokens (including image tokens) to match LLaMA2 (Touvron et al.,
2023b), which is trained on 2 trillion training tokens for text performance. Each modality introduces
unique optimization challenges, which must be addressed concurrently within a unified model. Em-
pirically, these modalities often exhibit conflicting training dynamics in a dense transformer model
(Figure 15), complicating optimization and increasing computational load. Despite processing in-
puts as uniform tokens without modality-specific priors, different modalities occupy distinct regions
in the feature space (Figure 3, Appendix Figure 23), indicating the inherent differences in how
modalities are processed.

To address this scaling challenge, a promising approach is model sparsity, such as Mixture of Ex-
perts (MoE), which enables scaling by activating only a subset of model components for each in-
put, reducing the overall computational load. In MoE, a learned router in each transformer layer
sparsely activates one of multiple MLPs, allowing different experts to focus on different aspects of
the data (Jacobs et al., 1991; Eigen et al., 2013; Shazeer et al., 2017; Lepikhin et al., 2020; Fedus
et al., 2022; Jiang et al., 2024; Sukhbaatar et al., 2024). However, MoE introduces a number of
challenges: the learned router often results in imbalanced expert utilization, requiring additional
load-balancing techniques during training. Furthermore, the bi-level optimization nature of MoE
complicates training dynamics, which can become unstable as model sizes scale up. Addressing
these challenges in MoE remains an open area of research.

In multi-modal contexts, previous work (Bao et al., 2022b; Wang et al., 2022; Shen et al., 2023; Lin
et al., 2024) has introduced modality-aware sparsity in the MoE layers of transformers, or further
fine-tuned modality-specific modules on LLM backbones during post-training (Wang et al., 2023;
He et al., 2024). These approaches have shown promising results, suggesting that a simple rule-
based routing by modality outperforms the learned routing commonly used in MoE. This success
might be attributed to more stable training dynamics, avoiding the instability that arises when both
experts and routers are under-trained in the early stages.

Inspired by these insights, we propose Mixture-of-Transformers (MoT), a sparse multi-modal
transformer architecture that introduces modality-aware sparsity for all non-embedding transformer
parameters (Figure 3a). Different from previous approaches, MoT applies modality-aware sparsity
across the entire transformer, rather than specific layers or modules. MoT takes an interleaved
multi-modal sequence (e.g., text, image, speech) as input and dynamically applies distinct, modality-
specific parameters to each token, including feed-forward networks, attention projection matrices,
and layer normalization. Therefore, the MoT design yields a sparse model with the exact same
computational structure and FLOP count as its dense transformer counterpart.

We evaluated MoT by pretraining thirteen instances, including three 7B models, from scratch across
various multi-modal settings. This comprehensive setup allowed us to assess MoT’s performance in
multiple experimental configurations, each progressively introducing more complex training objec-
tives and modalities. Specifically, we conducted experiments on the following multi-modal scenarios
to evaluate MoT’s adaptability and efficiency gains:

1. Autoregressive objectives for both text and images (Chameleon). In the Chameleon
setting (Chameleon Team, 2024), our 7B MoT matched the performance of a 7B dense
baseline while using only 55.8% of the FLOPs as evaluated on multiple data distribution
(Figure 2). Results are consistent across multiple other model scales (37M, 94M, 443M,
1.5B) (Figure 6, Appendix Figure 24).
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2. Introducing speech as a third modality (Chameleon: Text+Image+Speech). When ex-
tended to include discrete speech tokens as the third modality in the Chameleon setting,
MoT achieves similar performance across all modalities, with even fewer (37.2%) train-
ing FLOPs required for the speech modality (Figure 8). Results are also consistent across
multiple other model scales (Figure 8, Appendix Figure 25).

3. Autoregressive objectives for text and diffusion-based objectives for images (Trans-
fusion). In the Transfusion setting, where text and image are trained with different
objectives—autoregressive for text but diffusion-based for images—our 760M MoT model,
which utilizes half the training/inference FLOPs of the 1.4B dense baseline (Transfusion),
outperforms the dense model across multiple metrics, including CLIP score and FID score
for image generation, CIDEr score for image captioning, and image modality training loss
(Figure 11). A 7B MoT model matches the image performance of the dense baseline with
less than one third of the FLOPs on diffusion validation loss for image generation and
CIDEr score for image captioning (Figure 10). Additionally, across three different model
scales (163M, 760M, 1.4B) in the Transfusion setting, MoT consistently achieves sub-
stantial speedup in the image modality, outperforming the dense model by a wide margin
(Figure 12).

To provide a deeper and more comprehensive evaluation of MoT, we extended our analysis with ad-
ditional experiments to validate MoT’s advantages across multiple dimensions. These experiments
assessed MoT’s computational efficiency, reductions in wall-clock time, and effectiveness relative
to other sparse architectures:

4. Wall-Clock Time Comparison Furthermore, system profiling (on AWS p4de.24xlarge in-
stances with NVIDIA A100 Tensor Core GPUs) demonstrated that MoT’s efficiency trans-
lates into significant reductions in wall-clock training time. Our 7B MoT matches the image
performance of the 7B dense model in just 47.2% of the time, and the text performance in
75.6% of the time (Figure 19).

5. Comparing MoT against Mixture-of-Experts To validate that MoT’s observed gains are
not merely due to additional sparse parameters (although these additional sparse param-
eters do not increase the training/inference FLOPs), we incorporated a 4-expert mixture-
of-expert model (MoE-4x) as additional baseline throughout the experiments. MoE-4x,
which includes more sparse parameters than MoT across all experiment settings, consis-
tently underperformed compared to MoT especially in non-text modality (image, speech).
The advantage of MoT over MoE-4x is even larger when measured in wall-clock time
(Figure 19).

6. Combining the Best of Both Worlds—Mixing Heterogeneous Transformers As an early
proof of concept, we explored a hybrid approach that integrates sparse transformers in the
MoT framework. Specifically, we adopt the MoE-4x architecture for the text transformer
of MoT, while preserving the original MoT architecture for image tasks. Preliminary re-
sults validate that this combination can further enhance text modality performance in both
the Chameleon and Transfusion settings without compromising image generation quality
(Figure 16, Figure 17).

2 METHOD: MIXTURE-OF-TRANSFORMERS ARCHITECTURE

2.1 MIXTURE-OF-TRANSFORMERS ARCHITECTURE: MODALITY-SPECIFIC PARAMETER
DECOUPLING

We present Mixture-of-Transformers (MoT), a novel architecture designed to accelerate multi-modal
pretraining while reducing computational costs. MoT extends the standard transformer architec-
ture by incorporating modality-specific weights for all non-embedding model parameters, including
feed-forward networks, attention matrices, and layer normalization. This approach allows the model
to process different modalities more efficiently while preserving the ability to learn cross-modal in-
teractions. Let x = (x1, . . . , xn) be the input sequence of tokens, where each xi belongs to a
modality mi ∈ {text, image, speech}. A typical transformer layer can be expressed as:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Mixture-of-Transformers (MoT) Computation

1: Let x = (x1, . . . , xn) be the input sequence, where xi ∈ Rd and mi ∈ {text, image, speech}
is the modality of xi

2: LetM = {text, image, speech} be the set of modalities
3: for each modality m ∈M do
4: Im ← {i : mi = m} ▷ Indices of tokens for modality m
5: Xm ← {xi : i ∈ Im} ▷ Group tokens by modality
6: Qm ←Wm

Q Xm, Km ←Wm
K Xm, Vm ←Wm

V Xm ▷ Modality-specific projections
7: end for
8: Q←

⋃
m∈M Qm, K ←

⋃
m∈M Km, V ←

⋃
m∈M Vm ▷ Restore original sequence order

9: A← softmax
(

QKT

√
dk

)
V ▷ Global self-attention

10: for each modality m ∈M do
11: Om ←Wm

O AIm ▷ Modality-specific output projection
12: Hm ← Xm + LayerNormm

attn(Om) ▷ Residual connection and layer norm
13: Fm ← FFNm(Hm) ▷ Modality-specific feed-forward network
14: Ym ← Hm + LayerNormm

ffn(Fm) ▷ Residual connection and layer norm
15: end for
16: return {Ym : m ∈M} ▷ Return transformer layer outputs

a = Attn(x, θattn)

h = x+ LayerNormattn(a)

output = h+ LayerNormffn(FFN(h, θffn))

(1)

In our proposed MoT, we decouple the parameters by modality while maintaining global self-
attention1:

a = GlobalAttn(x, {θmattn}m∈{text,image,speech})

hi = xi + LayerNormmi
attn(ai)

outputi = hi + LayerNormmi

ffn (FFN(hi, θ
mi

ffn ))

(2)

The global self-attention mechanism operates across all modalities, capturing cross-modal relation-
ships despite the modality-specific parameter decoupling:

GlobalAttn(x, {θmattn}) =
(

softmax
(
QKT

√
dk

)
V

)
Wmi

O

Qi = xiW
mi

Q , Ki = xiW
mi

K , Vi = xiW
mi

V

(3)

Here, Wmi

Q , Wmi

K , Wmi

V , and Wmi

O are modality-specific projection matrices, and LayerNormmi
attn

and LayerNormmi

ffn are modality-specific layer normalization.

3 EXPERIMENTS

3.1 RESULTS OVERVIEW

We evaluated the Mixture-of-Transformers (MoT) architecture across three multi-modal experiment
settings, each progressively incorporating more complex training objectives and modalities. For
each setting, we compared MoT against two baselines: a dense transformer model and a Mixture-
of-Experts model with 4 experts (MoE-4x). All model implementations, built upon the dense model,
maintain identical FLOPs for both training and testing, enabling direct efficiency and performance
comparisons.

1Comparing to works that utilize cross-attention to fuse information from different modalities (Alayrac
et al., 2022; Aiello et al., 2023), our formulation using global self-attention normalizes attention weights across
tokens of different modalities while reducing the number of layers in the architecture.
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Figure 2: Pre-training acceleration of MoT for 7B Chameleon multi-modal model. a, Global
training loss curves. MoT reduces loss faster than dense and MoE-4x models, matching dense
model’s final loss at 120,000 steps in 60,000 steps. b, Step matching plot for training loss in a. MoT
requires 45.5% of dense model’s training steps for comparable performance. c,d, Image modality
training loss and corresponding step matching plot. e,f, Text modality training loss and correspond-
ing step matching plot. MoT particularly effective for image modality, requiring 34.8% of dense
model’s training steps to match final loss. Both MoT and MoE-4x outperform dense model for text
modality. g-j, Image modality validation losses. k-n, Text modality validation losses. Comparison
of final validation losses for all models and MoT at 55.8% training checkpoint. MoT at 55.8% train-
ing steps achieves comparable or lower validation losses than dense model’s final loss, indicating
44.2% reduction in required training FLOPs. Model sizes for sparse models indicate activated pa-
rameters. All runs are FLOPs-controlled and pre-trained from scratch.

1. Multi-modal experiment setting with autoregressive objectives (Chameleon, Figure 5).
Both modalities trained using autoregressive objectives. Images represented as 1,024 dis-
crete tokens via a pre-trained VQ-VAE model (Gafni et al., 2022). We compared MoT’s
performance to baselines across training and evaluation metrics for both modalities.

2. Extended multi-modal experiment with speech modality (Chameleon:
Text+Image+Speech, Figure 7). Extended the previous setting by incorporating speech
as a third modality, represented by discrete tokens via a pre-trained speech tokenizer. All
modalities are trained with autoregressive objectives. This setting evaluated MoT’s ability
to handle an additional modality while maintaining efficiency and performance.
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3. Multi-modal experiment with modality-specific objectives (Transfusion, Figure 10)
Explored multi-objective training with text using autoregressive objectives and images us-
ing diffusion-based objectives. This experiment highlighted MoT’s capacity to manage
distinct training objectives for different modalities, potentially improving image genera-
tion quality while maintaining text generation capabilities.

The following sections present detailed results for each setting: Chameleon (Section 3.2),
Chameleon+Speech (Section A.3), and Transfusion (Section A.4). Each section provides compre-
hensive comparisons of MoT against the baselines across various multi-modal generative evaluation
metrics. In Section A.5, we report an ablation study demonstrating the impact of model performance
when introducing modality-specific decoupling to different components of a transformer.

3.2 ACCELERATED PRE-TRAINING AT 7B SCALE

The Mixture-of-Transformers (MoT) architecture demonstrated significant pre-training acceleration
at the 7B parameter scale (Figure 2a). MoT achieved the dense model’s final loss (at 120k steps)
in half the time, reaching equivalent performance at just 60k steps. We quantified this acceleration
using step matching analysis (Figure 2b). This method plots the training steps required by MoT and
MoE-4x to reach equivalent loss values as the dense model. The analysis revealed that MoT consis-
tently required only 45.5% of the dense model’s training steps to achieve comparable pre-training
loss, indicating a substantial and sustained acceleration throughout training. Modality-specific anal-
ysis showed MoT’s particular effectiveness in the image modality, requiring only 34.8% of the dense
model’s training steps to match final loss (Figure 2c-f). MoE-4x showed limited improvement in this
domain. For text, both MoT and MoE-4x outperformed the dense model, with MoT showing com-
parable or slightly better gains.

Validation loss results (Figure 2g-n) further supported these findings. MoT at 55.8% of training
steps achieved validation losses comparable to or lower than the dense model’s final validation loss
across both modalities. This indicates that MoT requires only 55.8% of the training FLOPs to match
the dense model’s validation metrics, offering substantial computational savings.

4 CONCLUSION

In this work, we present Mixture-of-Transformers (MoT), a sparse and scalable architecture de-
signed to address the computational challenges of multi-modal model pretraining. By decoupling
non-embedding parameters by modality and retaining global self-attention across multi-modal se-
quences, MoT optimizes modality-specific processing while preserving cross-modal interactions.
Our experiments demonstrate that MoT achieves significant reductions in training costs across vari-
ous settings and model scales. In the Chameleon and Chameleon+Speech settings, MoT matched or
exceeded the performance of dense baselines while using substantially fewer FLOPs. Furthermore,
MoT maintained these improvements in a more complex setting (Transfusion), where distinct train-
ing objectives were applied to different modalities, demonstrating consistent efficiency gains and
enhanced performance in tasks such as image generation. In addition to FLOP reductions, system
profiling highlights the practical benefits of MoT, including reductions in wall-clock time for both
text and image tasks. When scaled across GPUs, MoT demonstrated further improvements, indicat-
ing its suitability for large-scale distributed training environments. Preliminary results combining
MoT with Mixture-of-Experts (MoE-4x) suggest the potential for hybrid models that further im-
prove performance without increasing computational costs. These findings suggest that MoT could
serve as an effective framework for future multi-modal LLMs, enabling more efficient large-scale
training while maintaining competitive performance across diverse modalities.
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Figure 3: Multi-modal foundation model architecture and feature space analysis. a, Typical
multi-modal foundation model processing interleaved text (T) and image (I) tokens (e.g., Chameleon
(Chameleon Team, 2024)). Image tokens are derived from a pre-trained VQGAN model, convert-
ing an image into 1,024 discrete tokens. b, Principal Component Analysis of latent feature space
for Chameleon+Speech 7B Dense model across layers 1, 5, 17, and 32.† Despite the model’s ar-
chitecture processing all inputs as uniform discrete tokens without modality-specific priors, distinct
clustering by modality (text, speech, image) is observed in the feature space. This natural clustering
highlights the inherent differences between modalities, suggesting that the model might have pro-
cessed them differently.
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Figure 4: Mixture-of-Transformers architecture for multi-modal generative AI. a: Schematic
of the sparsely activated Mixture-of-Transformers (MoT) architecture. For each input token, MoT
activates modality-specific weights (including feed-forward networks, attention projection matrices,
and layer normalization), then applies self-attention across the entire sequence. T , S, and I indi-
cate text, speech, and image tokens, respectively. b-c: Flexibility in modality representation and
training objectives. Images can be represented as (b) a sequence of discrete tokens trained with an
autoregressive objective (Chameleon setting) or (c) a sequence of continuous tokens trained with a
diffusion objective (Transfusion setting). This allows integration of diverse learning tasks, such as
autoregressive objectives for text and diffusion-based objectives for images.
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Figure 5: Multi-modal experiment setting with autoregressive objectives (Chameleon). Both
text and images are trained using autoregressive objectives. Images are tokenized into 1,024 discrete
tokens using a pre-trained VQ-VAE model. This setting demonstrates unified processing across
modalities with a single objective function.

Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps Tokens (T)
37M 256 4 8 4096 12 32 1.57M 160k 0.252
94M 512 8 8 4096 8 32 1.05M 160k 0.168
443M 1024 24 16 4096 6 64 1.57M 160k 0.252
1.5B 2048 24 16 4096 4 128 2.10M 120k 0.252
7B 4096 32 32 4096 2 384 3.15M 120k 0.377

Table 1: Architectural specifications and training configurations of models across different pa-
rameter scales (Chameleon setting). The table lists the hidden dimension, number of transformer
layers, attention heads, and sequence length for each model size. Additionally, we provide the batch
size used per GPU, the total number of GPUs, training steps, and the corresponding total number of
training tokens (in trillions).

A EXTENDED RESULTS

A.1 BACKGROUND: FOUNDATION MODELS FOR MULTI-MODAL GENERATION

Recent advances in large language models have expanded to modalities beyond text. A key ap-
proach tokenizes non-text data such as images and speech into discrete token sequences, and applies
auto-regressive sequence modeling to the data similar to text-based models (Figure 3a). For ex-
ample, Chameleon (Chameleon Team, 2024) tokenizes images into 1,024 discrete tokens using a
pre-trained image tokenizer (Gafni et al., 2022) allowing unified training across text and images.
Similar methods have been applied to speech (Nguyen et al., 2024). Alternative approaches like
Transfusion (Zhou et al., 2024) use continuous image tokens and diffusion-based training objective
to improve generation of continuous modalities such as image (Section A.4).

To probe the internal representations of multi-modal foundation models, we analyzed their fea-
ture space. Results reveal clustering by modality (text, speech, image) across layers (Figure 3b,
Appendix Figure 23). Principal component analysis (PCA) shows distinct regions for different
modalities in the feature space, despite uniform processing of inputs as discrete tokens without
modality-specific priors. This natural clustering suggests inherent differences in modality process-
ing, informing our subsequent approach.

A.2 PERFORMANCE IN THE Chameleon SETTING: AUTOREGRESSIVE OBJECTIVES FOR TEXT
AND IMAGE GENERATION

In this subsection, we evaluated the Mixture-of-Transformers (MoT) architecture in the Chameleon
setting, where text and image modalities are trained using autoregressive objectives.

A.2.1 EXPERIMENT SETUP

Data and Pre-processing. We use the same mixed-modal training data and the same text and
pre-trained image tokenizers as Chameleon Team (2024). The training data comprises roughly
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Figure 6: Modality-specific pre-training loss and step matching plots across model scales
(Chameleon setting). MoT shows consistent, significant speedup in image modality across all
scales (37M, 94M, 443M, 1.5B, 7B), outperforming dense and MoE-4x models. MoE-4x exhibits
diminishing gains in image modality as scale increases, with advantages disappearing at 7B. In
text modality, both MoT and MoE-4x outperform dense model, with MoT showing comparable or
slightly better gains. Validation loss results in Appendix Figure 24). Model sizes for sparse models
indicate activated parameters. All runs are FLOPs-controlled and pre-trained from scratch.

equal amount of text and image tokens. We evaluated the 7B model performance using valida-
tion losses on held-out sets of the Obelisc (Laurençon et al., 2023), MS-COCO (Lin et al., 2014),
Flickr30k (Plummer et al., 2015), and Shutterstock2 datasets. More specifically, for MS-COCO and
Flickr30k, we take the Karpathy test split of MS-COCO (Lin et al., 2014) and the Karpathy test
split of Flickr30k (Plummer et al., 2015), and report text-to-image and image-to-text conditional
perplexity using these two datasets.

Model Hyperparameters. We evaluated MoT across multiple model scales ranging from 37M
to 7B parameters, comparing it to dense transformer and MoE-4x baselines. All models were pre-

2https://www.shutterstock.com/
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trained from scratch with controlled FLOPs for fair comparison. Table 1 details the architectural
specifications and training configurations for each model scale. Model architectures were scaled
progressively, with hidden dimensions increasing from 256 to 4096, and layer counts from 4 to 32.
Attention heads scaled from 8 to 32, while sequence length remained constant at 4096 tokens across
all scales. As model size increases, we reduce batch sizes per GPU from 12 to 2, while increasing
the number of GPUs from 32 to 384. Training steps were set at 160,000 for smaller models (37M
to 443M) and 120,000 for larger models (880M to 7B). Total training tokens ranged from 0.168
to 0.377 trillion, with most configurations processing approximately 0.252 trillion tokens. This
allowed us to examine MoT’s performance across a wide range of model scales and training FLOPs,
providing insights into its effectiveness at different computational scales.3

Mixture-of-Experts Implementation. For our MoE-4x baselines, we employed Expert Choice
(EC) (Zhou et al., 2022) routing, a state-of-the-art routing method that ensures balanced load during
training by having each expert select top-k inputs based on routing weights. However, EC cannot be
directly applied to auto-regressive generation, as it violates the causal dependency between tokens
in a sequence, where each token is generated based solely on the previous ones. Previous work have
proposed various inference-time adjustment to ensure generation causality for MoE models trained
with EC routing. For example, some recent works have explored using expert choice routers out-
of-the-box as token choice routers during inference (Zhong et al., 2024), or training small auxiliary
MLP predictors post-training for routing (Raposo et al., 2024; Lin et al., 2024).

We evaluated all models using the same EC routing as during training, focusing exclusively on val-
idation perplexity. This approach guarantees an isoFLOP inference setting as the dense baseline.
However, it also introduces two confounding factors. First, it may overestimate MoE-4x’s valida-
tion performance, as the router can access future tokens, potentially leading to information leakage.
Second, it may also underestimate MoE-4x’s validation performance when the evaluation data dis-
tribution differs significantly from the training data, resulting in uneven token distribution among
experts. We acknowledge these limitations and provide additional discussion on the results com-
pared to MoE-4x in each individual experiment to provide a more comprehensive understanding.

A.3 EXTENDING TO A THIRD MODALITY: CHAMELEON TEXT+IMAGE+SPEECH RESULTS

We evaluated MoT’s performance in a multi-modal setting by introducing speech as a third modal-
ity alongside text and images. Experiments focused on the 7B model and smaller scales, comparing
MoT against dense and MoE-4x models pre-trained from scratch under FLOPs-controlled condi-
tions.

A.3.1 EXPERIMENT SETUP

We utilized the training dataset from SpiRit-LM (Nguyen et al., 2024) (Table 2) as our speech
dataset. The training data included both speech-only samples and interleaved speech/text data in
the SpiRit-LM format. Speech input was converted to discrete tokens using an in-house tokenizer,
a variant of DinoSR (Liu et al., 2024a), which extracts semantic tokens with a vocabulary size of
500. Each token represents 40ms of audio content (25Hz). Model architectural specifications and
training configurations of models are shown in Table 3.

To create the three-modality training dataset, we combine the speech training dataset with the
Chameleon text-and-image training dataset with a sampling ratio of 1:6. Within each dataset, we
adopt the same data mix ratio as utilized by Nguyen et al. (2024) and Chameleon Team (2024).

This experimental setup allows us to evaluate MoT’s capacity to handle complex multi-modal inputs,
including the temporal and semantic challenges inherent in speech processing, while maintaining
efficiency and performance across text, image, and speech modalities. We followed the evaluation
setup in the aforementioned Chameleon setting (Section A.2.1) and additionally reported the speech
modality validation losses on held-out sets of LibriLight (LL60K) and People’s Speech Dataset
(PPL30K).

3With this setup, we focus on evaluating the relative performance of the proposed architecture and the
baseline at various FLOPs budgets, rather than conducting a scaling law study.
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A.3.2 PERFORMANCE WITH SPEECH INTEGRATION AT 7B SCALE

The 7B MoT model with added speech modality (Figure 8) demonstrates substantial pre-training
acceleration. In the speech modality, MoT speeds up pre-training substantially compared to the
dense and MoE-4x models (Figure 8a). Step matching analysis (Figure 8b) shows MoT achieving
equivalent speech pre-training loss to the dense model in just 22.9% of the training steps, indicating
considerable computational efficiency.

MoT also consistently outperforms baselines according to the validation loss results on speech
datasets LL60K and PPL30K (Figure 8c-f). Notably, MoT maintained its efficiency across image
and text modalities (Figure 8g-n), achieving comparable or lower validation losses than the dense
model’s final loss at only 55.8% of training steps. This demonstrates MoT’s robust performance in
multi-modal settings.

A.3.3 SCALABILITY ACROSS MODEL SIZES

We extended our evaluation to smaller model scales (443M, 880M, 1.5B) in the Chameleon:
Text+Image+Speech setting (Figure 9). MoT consistently delivered significant acceleration across
all three modalities, with pronounced improvement in speech processing. MoT required only 15.1%
to 33.6% of the dense model’s training steps to match speech training loss across all scales.

MoE-4x exhibited inferior performance in speech tasks, showing improvements in training loss but
unstable generalization in validation, particularly for speech4 (Figure 9). In contrast, MoT consis-
tently outperformed both dense and MoE-4x models across all scales in speech modality, for both
training and validation metrics. This consistency demonstrates MoT’s effective adaptation to multi-
modal tasks, highlighting its reliability and scalability in generative AI applications across speech,
image, and text modalities.

4We observed mixed performance of MoE-4x across all scales studied (443M, 880M, 1.5B), where it un-
derperforms the dense baseline in speech validation loss, despite outperforming it in speech pre-training loss.
This discrepancy may be attributed to the limitations of using EC routing during inference (Section A.2.1),
which can result in suboptimal performance on the speech validation datasets, LL60K and PPK30K, which
exhibit significantly different data distributions compared to the combined text and speech training data. Al-
ternatively, MoE-4x’s large number of raw parameters could make it prone to overfitting, hence contributing to
its underperformance in speech validation loss, especially given the smaller amount of unique speech tokens in
the combined dataset (Section A.3.1).

Dataset Modality Hours # Speech Tokens† # Text Tokens
People’s Speech Dataset (Galvez et al., 2021) Speech-only 16,404 1.2B –
Voxpopuli (English) (Wang et al., 2021) Speech-only 23,166 1.6B –
LibriLight (Kahn et al., 2020) Speech-only 55,308 4B –
Multilingual LibriSpeech (English) (Pratap et al., 2020) Speech+Text 44,585 3.2B 0.5B
Spotify (Clifton et al., 2020) Speech+Text 57,290 4.2B 0.7B

Table 2: Dataset information for speech pre-training. †The speech token counts are computed after
deduplication.
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Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps Tokens (T)
443M 1024 24 16 4096 6 64 1.57M 160k 0.252
880M 1536 24 24 4096 4 128 2.10M 120k 0.252
1.5B 2048 24 16 4096 4 128 2.10M 120k 0.252
7B 4096 32 32 4096 2 384 3.15M 120k 0.377

Table 3: Architectural specifications and training configurations of models across different
parameter scales (Chameleon+Speech setting). The table lists the hidden dimension, number
of transformer layers, attention heads, and sequence length for each model size. Additionally, we
provide the batch size used per GPU, the total number of GPUs, training steps, and the corresponding
total number of training tokens (in trillions).

Figure 7: Extended multi-modal experiment with speech modality (Chameleon+Speech). Build-
ing on the previous setting, a third modality (speech) is incorporated. All three modalities—text,
images, and speech—are trained using autoregressive objectives. Speech is represented as discrete
tokens via a pre-trained speech tokenizer, showcasing the model’s ability to handle diverse input
types uniformly.
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Figure 8: Performance of MoT with speech as a third modality. a, MoT accelerates pre-training
for speech modality, reducing loss faster than dense and MoE-4x models. b, Step matching plot
shows MoT achieves equivalent loss in 22.9% of dense model’s training steps, indicating substantial
computational efficiency. c-f, Validation losses on LL60K and PPL30K speech datasets confirm
MoT’s consistent performance. MoT reaches baseline speech performance in 37.2% of the FLOPs
(f). g-n, MoT maintains efficiency across image and text modalities when speech is added. At
55.8% of training steps (determined from Figure 2 - Chameleon 7B), MoT achieves comparable or
lower validation losses than dense model’s final loss for image and text tasks. Model sizes for sparse
models indicate activated parameters. All runs are FLOPs-controlled and pre-trained from scratch.
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Figure 9: Speech, image, and text modality performance across model scales. MoT demon-
strates consistent speedup across image and text modalities for models ranging from 443M to 1.5B
parameters (see Appendix Figure 25 for validation losses). Speech modality shows even greater ac-
celeration, with MoT matching dense model training loss in 15.1%-33.6% of steps across all scales.
MoT also consistently outperforms MoE-4x in speech modality. Sparse model sizes indicate acti-
vated parameters. All runs are FLOPs-controlled and pre-trained from scratch.
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A.4 MULTI-OBJECTIVE TRAINING IN THE TRANSFUSION SETTING: AUTOREGRESSIVE
TEXT AND DIFFUSION-BASED IMAGE GENERATION

(a) Multi-Modal Experiment Setting 3: Enhancing Image
Modality with Diffusion Objective.

(b) Transfusion 7B Image Modality Training Loss (c) Image Modality Training Loss vs dense steps
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Figure 10: Multi-objective training performance in MoT. a, Schematic of multi-objective setup:
text trained with autoregressive objectives, images with diffusion-based objectives, as described in
Transfusion (Zhou et al., 2024). b-e, MoT accelerates pre-training beyond Transfusion, particularly
for image modality. The 760M MoT model, using half the training/inference FLOPs of the 1.4B
dense baseline (Transfusion), consistently outperforms the dense model across metrics: CLIP score
(0.214 vs 0.206, higher is better), FID score (21.145 vs 24.688, lower is better), CIDEr score for
image captioning (0.320 vs 0.286, higher is better), and image modality training loss. All runs
are FLOPs-controlled and pre-trained from scratch, demonstrating MoT’s superior efficiency and
performance across various model scales.

Transfusion (Zhou et al., 2024) introduces a unified framework that enables a single transformer
model to process both discrete text and continuous image modalities (Appendix F). The key innova-
tion is the utilization of separate loss functions for each modality—language modeling loss for text
and diffusion loss for images —while sharing data and parameters within a single architecture. In
this subsection, we evaluate the performance of MoT under the multi-objective training setup in the
Transfusion setting. Here, text is trained using autoregressive objectives, while images are trained
using diffusion-based objectives. All models are pre-trained from scratch under FLOPs-controlled
conditions.

A.4.1 EXPERIMENT SETUP

Data and Pre-processing. We adopt the same data setup as Zhou et al. (2024). For text, we
utilize the Llama 2 tokenizer and corpus (Touvron et al., 2023b), which contains 2 trillion tokens
across diverse domains. Images are encoded into latent patches using a Variational Autoencoder
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Figure 11: In the Transfusion setting, a 760M MoT model outperforms a 1.4B dense baseline
across key image generation metrics, while using only half the FLOPs for both training and
inference. a-b, MoT accelerates pre-training beyond Transfusion, particularly for image modality.
The 760M MoT model, using half the training/inference FLOPs of the 1.4B dense baseline (Transfu-
sion), consistently outperforms the dense model across metrics: CLIP score (0.214 vs 0.206, higher
is better, (c)), FID score (21.145 vs 24.688, lower is better, (d)), CIDEr score for image caption-
ing (0.320 vs 0.286, higher is better, (e)), and image modality training loss. All runs are FLOPs-
controlled and pre-trained from scratch, demonstrating MoT’s superior efficiency and performance
across various model scales.

(VAE) (Kingma & Welling, 2022), where each patch corresponds to a continuous vector. We use a
collection of 380 million licensed Shutterstock images and captions. Each image is center-cropped
and resized to 256×256 pixels. Our VAE model does 8×8 spatial downsampling of the image. For
multimodal examples, we enclose each image sequence with special tokens—beginning of image
(BOI) and end of image (EOI)—before integrating it into the text sequence. This approach results
in a single sequence that may contain both discrete elements (text tokens) and continuous elements
(image patches). We randomly order the images and captions, placing the caption first 80% of the
time. In most of our experiments, we sample 0.5 trillion tokens (or patches) from two modalities at
a 1:1 ratio.

Model Hyperparameters. To investigate scaling trends, we train models at five different sizes –
0.16B, 0.76B, 1.4B, and 7B parameters. Model architectural specifications and training configura-
tions of models are shown in Table 4. We keep U-Net patch encoding parameters fixed as 0.27B
additional parameters across all configurations. We randomly initialize all model parameters, and
optimize them using AdamW (β1 =0.9, β2 =0.95, ϵ =1e-8) with a learning rate of 3e-4, warmed
up for 4000 steps and decaying to 1.5e-5 using a cosine scheduler. We train on sequences of 4096
tokens in batches of 2M tokens for 250k steps, reaching 0.5T tokens in total. We regularize with
weight decay of 0.1 and clip gradients by norm (1.0). We conduct 250 diffusion steps during infer-
ence.

Evaluation Benchmarks. We evaluate the model’s performance on a collection of standard uni-
modal and cross-modal benchmarks. For text-to-text tasks, we measure perplexity on 20 million
held-out tokens from Wikipedia and the C4 corpus (Raffel et al., 2020). For text-to-image tasks, we
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Figure 12: Modality-specific training loss and step matching plots in Transfusion setting across
model scales. MoT consistently achieves substantial speedup in image modality (trained with
diffusion-based objectives) across 163M, 760M, and 1.4B models, outperforming dense model and
MoE-4x. In image modality, MoT reaches comparable training loss to dense model in 17.5%-26.4%
of steps across all scales. For text modality, MoT matches dense model in training and validation
loss on C4 and Wikipedia datasets, with improved generalization in captioning tasks (CIDEr score).
MoE-4x shows unstable performance: lower training losses (Appendix Figure 26) but poorer gen-
eralization than dense model on text evaluation metrics. Model sizes for sparse models indicate
activated parameters. All experiments FLOPs-controlled and pre-trained from scratch.

report the diffusion validation loss5 following SD 3 (Esser et al., 2024) on held-out Conceptual 12M
(CC12M; Changpinyo et al. (2021)) data. We also use the MS-COCO benchmark (Lin et al., 2014),

5SD 3 (Esser et al., 2024) and Movie Gen (Polyak et al., 2024) show that diffusion validation loss is a
strong predictor of overall model performance. Validation loss is well correlated with human evaluations of
text alignment and overall quality, as well as with holistic image evaluation metrics, including GenEval (Ghosh
et al., 2023) and T2I-CompBench (Huang et al., 2023).
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where we generate images based on 30,000 randomly selected prompts from the validation set. We
measure the photorealism of these images using zero-shot Fréchet Inception Distance (FID) (Heusel
et al., 2017) and their alignment with the prompts using CLIP score (Radford et al., 2021).6 We also
assess the model’s ability to generate image captions by reporting CIDEr (Vedantam et al., 2015)
scores on the Karpathy test split of MS-COCO (Lin et al., 2014).

Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps Tokens (T)
163M 768 16 12 4096 4 128 2.10M 250k 0.524
760M 1536 24 24 4096 4 128 2.10M 250k 0.524
1.4B 2048 24 16 4096 2 256 2.10M 250k 0.524
7B 4096 32 32 4096 2 256 2.10N 250k 0.524

Table 4: Architectural specifications and training configurations of models across different pa-
rameter scales (Transfusion setting). The table lists the hidden dimension, number of transformer
layers, attention heads, and sequence length for each model size. Additionally, we provide the batch
size used per GPU, the total number of GPUs, training steps, and the corresponding total number of
training tokens (in trillions).

A.4.2 MIXTURE OF TRANSFORMERS ENHANCES MULTI-OBJECTIVE TRAINING EFFICIENCY

In the Transfusion setting (Figure 10), the Mixture-of-Transformers (MoT) architecture demon-
strates significant acceleration in pre-training for the image modality at the 7B parameter scale
(Figure 10b). Compared to dense and MoE-4x models (Figure 10c), MoT substantially speeds up
pre-training. Step matching analysis indicates that MoT achieves equivalent image pre-training loss
to the dense model in only 30% of the training steps. MoT’s efficiency in image generation is fur-
ther evidenced by superior diffusion validation loss (Figure 10d,e), higher COCO-30k CLIP scores
(Figure 10f), and lower FID scores (Figure 10g). To compare our 7B model with external models,
we compute the COCO-30k FID at a guidance level of 1.6 and obtain a score of 8.14. In contrast,
a dense model trained on 1T tokens with richer data achieves a COCO-30k FID of 9.22 under the
same guidance level. This comparison further validates the efficiency of MoT over dense models.
In image understanding tasks, MoT exhibits more than a threefold speedup compared to the dense
model, achieving a final score of 40.6 versus 31.5. We exclude the MoE-4x caption performance
due to potential information leakage from expert choice training. These results extend our findings
from the Chameleon 7B setting, where MoT matched the dense baseline’s image pre-training loss
using only 34.8% of the FLOPs (Figure 2).

The text performance improvement of MoT in the Transfusion setting was less pronounced com-
pared to the Chameleon setting. In Chameleon, MoT required only 54.6% to 66.2% of training
steps to match the dense model’s text modality training loss. In Transfusion, the text performance
improvement was marginal to none (see Appendix 26). This discrepancy may be attributed to the
separate training objectives for image and text modalities in the Transfusion setting, which leads to
close to optimal text performance. The decoupling of training objectives in the dense model might
confer benefits similar to MoT’s decoupling of modality weights. This hypothesis is supported by
observations in Zhou et al. (2024), where only changing the image training representation and objec-
tive led to dramatic improvements in text performance compared to Chameleon (Chameleon Team,
2024), despite no direct changes to text training.

At smaller scales, MoT demonstrated significant performance gains, particularly in the image modal-
ity (Figure 11). A 760M parameter MoT model, operating at half the FLOPs of a 1.4B parameter
dense baseline, consistently outperformed its larger counterpart across multiple metrics. Image
quality improved, as evidenced by CLIP (0.214 vs 0.206) and FID (21.145 vs 24.688) scores (Fig-
ure 11c,d). Image captioning capability, measured by CIDEr score, also improved (0.320 vs 0.286;
Figure 11e).

When comparing models with 8-fold difference in size (163M MoT vs. 1.4B dense/MoE-4x), the
163M MoT achieves comparable image modality training loss. While the 163M MoT still slightly

6For clarity, unless otherwise noted, we do not use classifier-free guidance for image generation (Ho & Sal-
imans, 2022) for the ease of comparisioon. Although classifier-free guidance offers immediate improvements
in image quality—as indicated by better FID and CLIP scores—it requires complex hyperparameter tuning to
find the optimal guidance value for each individual model, complicating the evalutation process. For 7B MOT
and dense model, we use classifier-free guidance of 5 to generate example images.
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lags behind the 1.4B dense model in evaluation metrics, the more than 8-fold reduction in both
training and inference compute highlights MoT’s strength in the image modality.

A.4.3 SCALABILITY ACROSS MODEL SIZES

MoT consistently outperformed baselines in image modality tasks across all scales (163M, 760M,
1.4B, Figure 12). FID scores showed substantial improvements for MoT over dense models: 21.58
vs 27.42 (163M), 15.75 vs 25.58 (760M), and 15.85 vs 19.32 (1.4B). CLIP scores also consistently
improved with MoT: 0.195 vs 0.185 (163M), 0.214 vs 0.202 (760M), and 0.217 vs 0.206 (1.4B).

In text modality, MoT matched dense models in training and validation loss on text-only datasets.
However, MoT demonstrated significantly better generalization in captioning tasks, with consis-
tently higher CIDEr scores: 0.232 vs 0.147 (163M), 0.320 vs 0.251 (760M), and 0.335 vs 0.286
(1.4B). As discussed in 7B results, MoT shows little improvement on text accross the scales.

A.4.4 PERFORMANCE WITH FINE-TUNING

Following the original Transfusion (Zhou et al., 2024) setup, we fine-tune the 7B MoT and dense
models on an internal visually appealing dataset and on image editing tasks, as shown in Figure 13.
The fine-tuned models are capable of generating text, detailed hand features, fictional images, and
photorealistic images. After fine-tuning, MoT demonstrates better quality and higher faithfulness
compared to the fine-tuned dense models (see Appendix G), indicating that the performance gain
of MoT over the dense baseline is well maintained after fine-tuning. Notably, we train on only
0.5 trillion tokens, which is significantly less than other state-of-the-art (SOTA) image generation
models. Zhou et al. (2024) shows that the model is not yet saturated even at 2 trillion tokens; we
leave the scaling up of our model and training with more data as future work. We also finetune 7B
MoT on 8k image eiditing data (Zhang et al., 2023), as show in Figures 13 (i,j) . The Transfusion
MoT fine-tuned on image editing tasks extends its capabilities to generate images based on other
images by following text instructions.
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(a) ”GO BIG OR GO
MOT” is written on the
blackboard.

(b) A close up photo
of a human hand, hand
model. High quality

(c) An angry duck doing
heavy weightlifting at the
gym.

(d) A car made out of
vegetables.

(e) photo of a bear wear-
ing a suit and tophat in a
river in the middle of a
forest holding a sign that
says ”I cant bear it”.

(f) A photo of a corgi
dog wearing a wizard hat
playing guitar on the top
of a mountain.

(g) Three spheres made
of glass falling into
ocean. Water is splash-
ing. Sun is setting.

(h) A tranquil, anime-
style koi pond in a serene
Japanese garden, featur-
ing blossoming cherry
trees.

(i) Put a cat on the seat. (j) Change the stop sign
to say ”GO”.

Figure 13: Image generation and image editing (last row) examples from a 7B Transfusion MOT
model trained with 0.5T tokens.
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Figure 14: Ablation results of modality untying in different transformer components in the
Chameleon setting, evaluated using the held-out sets of Obelisc and Shutterstock. Modality un-
tying in the feedforward module alone significantly improves model performance, with substantial
gains on the image modality. Further untying Q, K, V matrices in the attention module yields signifi-
cant performance improvements, whereas untying layer norms has a negligible impact on evaluation
performance.

A.5 IMPACT OF MODALITY UNTYING IN DIFFERENT TRANSFORMER COMPONENTS

We conduct ablation experiments to understand the impact of modality untying in different trans-
former components. We conduct the experiments using architectures with FLOPs controlled to
match the dense architecture in Table 5. We compare four model variations: (1) the dense baseline;
(2) a model with modality untying only in the feedforward module as in Lin et al. (2024); (3) a model
with modality untying in both the feedforward module and the Q, K, V weight matrices (excluding
LayerNorms); (4) the full modality-untied MoT model.

Model Size Hidden Dim. Layers Heads Seq. Length Batch Size/GPU GPUs Tokens/Batch Steps Tokens (T)
880M 1536 24 24 4096 4 128 2.10M 120k 0.252

Table 5: Architectural specifications and training configurations of model used in ablation
experiments.

As shown in Figure 14, modality untying in the feedforward module alone (Lin et al., 2024) signifi-
cantly improves model performance, with substantial gains on the image modality. Further untying
the Q, K, V weight matrices in the attention module yields significance performance improves. On
the Obelisc (Laurençon et al., 2023) held-out set, this leads to approximately 33.3% FLOPs saving
for the image modailty and 10% FLOPs saving for the text modality compared to only performing
untying in the feedforward module. Notably, the FLOPs savings from adding attention untying to
feedforward untying are smaller than those from adding feedforward untying to the dense model. We
attribute this to two factors: (1) the feedforward module accounts for a larger proportion of FLOPs in
the transformer architecture given our context length (4096), and (2) the feedforward module serves
as a memory component in transformers, where employing separate memory parameters for each
modality is effective. Finally, we observe that further untying the LayerNorm parameters on top of
feedforward and attention untying has a negligible impact on evaluation performance.7

7This finding does not suggest that untying LayerNorm parameters is entirely ineffective. Our experiments
only examine its impact when combined with attention and feedforward untying. We leave the understanding
of its individual effectiveness to future work.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) MoT (ours) (b) LOO: image (c) LOO: Text (d) LOO: Speech (e) Dense

0 160000
Training Steps

2.3

2.4

2.5

2.6

Tr
ai

ni
ng

 L
os

s

Dense
MoT (ours)
LOO: image
LOO: text
LOO: speech

(f) Text Training Loss.

LOO: image LOO: text LOO: speech

2.28

2.30

2.32

2.34

Te
xt

 L
os

s

Dense
MoT (ours)

(g) Text Loss Comparison

0 150000
Training Step for Dense

0

25000

50000

75000

100000

125000

150000

St
ep

s t
o 

M
at

ch
 D

en
se LOO: speech (s = 0.875)

LOO: image (s = 0.684)
MoT (ours) (s = 0.557)
LOO: text (s = 0.548)

(h) Text Loss Matching

0 160000
Training Steps

4.95

5.00

5.05

5.10

5.15

5.20

5.25

Tr
ai

ni
ng

 L
os

s Dense
MoT (ours)
LOO: image
LOO: text
LOO: speech

(i) Image Training Loss.

LOO: image LOO: text LOO: speech

4.90

4.95

5.00

5.05

5.10

Im
ag

e 
Lo

ss
Dense
MoT (ours)

(j) Image Loss Comparison

0 150000
Training Step for Dense

0

25000

50000

75000

100000

125000

150000

St
ep

s t
o 

M
at

ch
 D

en
se LOO: speech (s = 0.892)

LOO: text (s = 0.321)
LOO: image (s = 0.272)
MoT (ours) (s = 0.262)

(k) Image Loss Matching

0 160000
Training Steps

1.40

1.45

1.50

1.55

Tr
ai

ni
ng

 L
os

s

Dense
MoT (ours)
LOO: image
LOO: text
LOO: speech

(l) Speech Training Loss.

LOO: image LOO: text LOO: speech

1.375

1.400

1.425

1.450

1.475

1.500

Sp
ee

ch
 L

os
s

Dense
MoT (ours)

(m) Speech Loss Comparison

0 150000
Training Step for Dense

0

25000

50000

75000

100000

125000

150000

St
ep

s t
o 

M
at

ch
 D

en
se LOO: image (s = 0.653)

LOO: text (s = 0.304)
MoT (ours) (s = 0.151)
LOO: speech (s = 0.147)

(n) Speech Loss Matching

Figure 15: Modality Leave-One-Out (LOO) analysis of MoT variants in Chameleon+Speech
setup. a, Proposed MoT architecture with separate transformer towers for image, text, and speech.
b-d, Two-tower MoT variants for three modalities: b, Text and speech combined (LOO: image). c,
Image and speech combined (LOO: text). d, Text and image combined (LOO: speech). e, Dense
transformer with single tower for all modalities. All models (a-e) have equivalent FLOPs. f-n,
Performance results across modalities. Combining modalities in a single tower consistently degrades
performance, while separation improves results. LOO: text, LOO: image, and LOO: speech achieve
lowest losses in their respective isolated modalities (g,j,m). Analysis highlights the importance of
modality-specific parameter allocation for optimal performance. All models are 443M in size. For
sparse models, size indicates activated parameters. All runs are FLOPs-controlled and pre-trained
from scratch.

B MODALITY SEPARATION IN MOT: LEAVE-ONE-OUT ANALYSIS

B.1 EXPERIMENT SETUP

To evaluate the efficacy of MoT’s modality-specific architecture, we conducted a Leave-One-
Modality-Out (LOO) analysis with the Chameleon: Text+Image+Speech framework. This analysis
aimed to quantify the benefits of separating modalities into distinct transformer towers, as imple-
mented in MoT, compared to combining multiple modalities within a single tower.

Figure 15 illustrates the MoT variants and their performance across different configurations. The
baseline MoT architecture (Figure 15a) comprises three separate transformers for image, text, and
speech modalities. We tested three LOO variants, where two out of the three modalities share the
same transformer:
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• LOO-image (Figure 15b) — text and speech combined, image isolated
• LOO-text (Figure 15c) — image and speech combined, text isolated
• LOO-speech (Figure 15d) — text and image combined, speech isolated

A dense transformer architecture with all modalities in a single tower (Figure 15e) served as a
baseline. All models maintained equivalent FLOPs to ensure fair comparison.

B.2 RESULTS

The Leave-One-Modality-Out (LOO) analysis revealed advantages of modality separation in the
MoT architecture (Figure 15f-n). Combining modalities consistently degraded performance, as ev-
idenced by higher training and validation losses across configurations. The LOO-text configuration
achieved the lowest text loss (Figure 15g), while LOO-image and LOO-speech yielded the lowest
losses in their respective isolated modalities (Figure 15j,m). These results support the importance
of modality-specific parameter allocation in MoT.

The impact of modality combination varied across configurations. In LOO-speech, separating the
speech modality preserved MoT’s benefits for speech but eliminated improvements in image and
text modalities. Similarly, LOO-image retained most of MoT’s improvements in image perfor-
mance, while merging text and speech led to performance declines in both. In LOO-text, speech
performance deteriorated when combined with image, yet the image modality largely maintained
the gains realized by MoT. This differential impact suggests non-reciprocal modality competition
effects. By dedicating separate transformer towers to each modality, MoT is able to optimize for the
unique characteristics of each modality, resulting in better overall performance across all modalities.
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C COMBINING THE BEST OF BOTH WORLDS – MIXING HETEROGENEOUS
TRANSFORMERS

C.1 COMBINING MOT AND MOE-4X IN THE CHAMELEON SETTING

In this subsection, we present preliminary results exploring the potential of combining key fea-
tures of Mixture-of-Transformers (MoT) and Mixture-of-Experts (MoE-4x) within the Chameleon
setting. Specifically, we modify the MoT architecture by incorporating MoE-4x into the text trans-
former tower. The text feed-forward network (FFN) of MoT is replaced with the MoE-4x mecha-
nism, which introduces multiple expert layers to the model. The image transformer tower remains
unchanged and follows the original MoT architecture. This experiment seeks to assess whether in-
tegrating MoE-4x’s expertise mechanism can further enhance MoT’s performance in multi-modal
generative tasks.

As shown in Figure 16, the combination of MoT and MoE-4x significantly accelerates the reduction
of text training loss compared to the dense model, MoE-4x, and MoT alone (Figure 16a-b). The
results demonstrate that introducing MoE-4x into the text transformer provides additional speedup
without sacrificing the efficiency gains of MoT in the image modality (Figure 16c-d). The averaged
training losses across both text and image modalities confirm that the combined model maintains or
exceeds the performance of MoT in both tasks (Figure 16e-f).

When evaluating the combined model’s performance on validation datasets, we observe consistent
gains in the text modality. As shown in Figure 16g-j, the combination of MoT and MoE-4x achieves
the best text validation performance across multiple datasets, outperforming both MoT and MoE-
4x. Importantly, the image modality performance remains comparable to or slightly better than that
of MoT, indicating that the incorporation of MoE-4x into the text tower does not hinder MoT’s
efficiency in image generation tasks. These early results suggest that combining the strengths of
MoT and MoE-4x offers a promising avenue for improving multi-modal models, particularly in
tasks requiring simultaneous text and image generation.

C.2 COMBINING MOT AND MOE-4X IN THE TRANSFUSION SETTING

We extend the experiment to the Transfusion setting, where distinct objectives are applied to differ-
ent modalities—autoregressive objectives for text and diffusion-based objectives for images. Similar
to the Chameleon setting, we replace the FFN layer of the text transformer in MoT with a 4-expert
MoE layer, while the image transformer remains unchanged.

As shown in Figure 17, this approach continues to accelerate text training loss reduction compared
to the dense model and MoT alone (Figure 17a-b). Notably, the combined model retains MoT’s ad-
vantage in the image modality, with comparable training loss and speedup relative to MoT (Figure
17c-d). The averaged training loss across both modalities (Figure 17e-f) highlights the potential
of this approach in handling multi-objective training with a balance between efficiency and perfor-
mance.

Validation results on representative text-only datasets and image generation tasks confirm the con-
sistency of this approach (Figure 17g-j). ”MoT + Text MoE-4x” achieves the best text performance,
maintaining the efficiency of MoT in the image modality while improving text generation. On the
other hand, despite MoE-4x demonstrating lower text training loss than the dense model, it shows
little to no improvement8 in text valtidation losses (Figure 17g-i, l-n), further emphasizing the ef-
fectiveness of the MoT approach.

Overall, these preliminary results in both the Chameleon and Transfusion settings provide a proof-
of-concept for combining the key strengths of MoT and MoE-4x. The integration of MoE-4x into
the text modality enhances text performance, while MoT continues to deliver strong results in image

8This observation diverges from our observation in the Chameleon setting (Figure 16), where MoE-4x
improved text and image losses during both training and validation. Contrary to conventional understanding of
MoE, MoE-4x’s training loss gains in Transfusion didn’t translate to inference time. The discrepancy may stem
from the fact that Transfusion processes discrete text tokens and continuous image tokens, which complicates
router generalization during inference. We leave further exploration of integrating MoE and Transfusion to
future work.
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Figure 16: Combining MoT and MoE-4x in the Chameleon setting. A hybrid model ”MoT +
Text MoE-4x” was created by replacing the text feed-forward network in MoT’s text transformer
tower with MoE-4x. a-b, Text training loss reduction is significantly accelerated compared to dense
model, MoE-4x, and MoT. c-d, Image modality performance benefits of MoT are retained. e-f,
Averaged training loss across both modalities. g-j, Validation losses on Obelisc dataset: ”MoT +
Text MoE-4x” achieves best text performance while maintaining comparable or slightly improved
image performance relative to MoT. Both significantly outperform dense model and MoE-4x.

generation. Further investigations will explore the scalability and generalizability of this approach
across additional tasks and modalities.
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Figure 17: Combining MoT and MoE-4x in the Transfusion setting. a,b, Text training loss reduc-
tion significantly accelerated compared to dense model and MoT. c,d, Image modality performance
benefits of MoT retained. e,f, Averaged training loss across both modalities. g-n, Validation losses
on multiple representative text-only datasets and image generation evaluation results: ”MoT + Text
MoE-4x” achieves best text performance while maintaining comparable or slightly improved image
performance relative to MoT. Both significantly outperform dense model and MoE-4x. MoE-4x
shows better text training loss than dense model (a,b) but minimal improvement in text validation
losses (g-h, k-l).
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D ML SYSTEMS ASPECTS OF MIXTURE-OF-TRANSFORMERS

This section highlights a few system properties of MoT, and demonstrates how they translate to
real-world benefits in a typical training environment.

D.1 THROUGHPUT SCALING PROPERTIES

Communication Volume The modality-based scaling method by MoT maintains a lower Param-
eter to FLOPs (PpF) ratio. PpF is a crucial metric that governs training throughput in large-scale
cloud-based training environments, where distributed learning is highly sensitive to communication
overhead (Llama team, 2024; Luo et al., 2020). This is particularly relevant in recent years, as com-
pute capacity has increased significantly faster than network bandwidth (Luo et al., 2018; 2024).
Consequently, models with smaller parameter sizes have advantage in terms of training throughput
at a large scale.

To quantify this effect, we compare the added parameters to each transformer layer by adding E ex-
perts in MoE versus untying K modalities in MoT, in a typical transformer setup with Swiglu FFN
layers, with token hidden and embedding dimension both D, a feed forward layer has |FFN | =
3D2 parameters, and the KQVO projections in attention layers introduces |ATTN | = 4D2 param-
eters. We can ignore the normalization layer weights as they are usually in the shape of D.

Thus, each MoE layer comprises E feed forward layers and a router paramater of size
|ROUTER| = K × D, and a MoE layer has an additional (E − 1) × |FFN | + |ROUTER| =
3(E − 1)D2 + ED > 3(E − 1)D2 parameters. In contrast, MoT incurs an added parameter count
of (K − 1)× (|ATTN |+ |FFN |) = 7(K − 1)D2.

Since E can range from a few to even hundreds (Dai et al., 2024; Muennighoff et al., 2024), a
typically much smaller K compared to E implies that MoT can have a lower PpF ratio compared to
MoE in general, which can prove beneficial in real world scenarios, as we show later.

Compute Efficiency Both MoE and MoT incur additional overheads when routing tokens to the
appropriate parameters.

1. MoEs suffer from overheads due to the additional operations of performing Top-K se-
lection, indexing tokens, and scattering and adding expert outputs. These operations are
sequentially dependent on each other, making it challenging to hide the resulting latency.

2. In contrast, MoT’s overheads primarily come from two sources. First, the CPU-GPU syn-
chronization required for grouping tokens by modality for element-wise projections and
reassembling them for attention results in significant overhead. Second, the sequential
processing of modalities can also lead to underutilization of GPU resources and imbal-
ance, particularly when tokens of different modalities are unevenly distributed across local
batches and GPUs.

It’s worthwhile to note that the overheads in MoT can be minimized via diligent engineering: for
example, caching sequence indices for each modality can substantially reducing indexing costs, and
specialized Group GEMMs (Nvidia) or Megablock-style block sparse matrix multiplication can be
employed (Gale et al., 2022) to perform imbalanced projections in one shot across all modalities.
Since we did not observe these overheads on the critical path in our training setup, we leave these as
future directions to further improve MoT.

D.2 EMPIRICAL ANALYSIS

We conducted our experiments and system profiling on AWS, using p4de.24xlarge instances
equipped with NVIDIA A100 Tensor Core GPUs. Distributed training of all models are powered by
Fully Sharded Data Parallel (Zhao et al., 2023) in full shard mode.

D.2.1 HORIZONTAL SCALING—MOT BENEFITS INCREASE WITH GPU COUNT

We investigated the horizontal scaling capabilities of Mixture-of-Transformers (MoT) in large-scale
distributed training. As large language models (LLMs) typically employ larger global batches across
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increasing numbers of GPUs, we examined MoT scaling trends by varying GPU count during train-
ing. Global batch size and total training tokens were increased proportionally to GPU count, while
maintaining constant training steps. We conducted the experiments in the Chameleon setting under
the 443M model scale.

Figure 18 shows Obelisc dataset evaluation losses as GPU count scales from 16 to 256. MoT per-
formance gains increase substantially with GPU count. For image validation loss, the percentage
of training steps required for MoT to match the dense model decreases from 42.1% (16 GPUs) to
21.6% (256 GPUs). For text, this percentage decreases from 75.7% to 50.9%. These results suggest
MoT’s efficiency and performance benefits grow with increasing pre-training compute resources.

This analysis was conducted under specific AWS infrastructure conditions. Further investigation is
needed to generalize these findings across different hardware configurations and training environ-
ments.

D.2.2 SPEED ADVANTAGE OF MOT IN WALL-CLOCK TIME

We investigated the wall-clock time performance of MoT in a specific environment. This analysis is
crucial for understanding MoT’s practical benefits in real-world training scenarios, where achieving
the best model quality within a fixed GPU training time budget is the primary objective. To ensure
the accuracy of our claims, we note that our results were obtained using a specific AWS setup, spec-
ified above. Therefore, we expect the relative performance of MoE, MoT, and dense models to vary
across different clusters. Nevertheless, we believe that our setup represents a typical deployment
that leverages cloud computing (e.g., AWS), and thus our experiences and findings will be relevant
and beneficial to readers.

Figure 19 illustrates MoT’s wall-clock time acceleration over dense Transformer and MoE-4x base-
lines in terms of GPU training time on 256 GPUs. MoT demonstrates significant improvements in
both image and text modalities for a fixed amount of GPU training time. Specifically, MoT matches
the dense model’s image training loss in 47.2% of the total GPU training time and continues to im-
prove thereafter (Figure 19b). For text, MoT requires 75.6% of the dense model’s time to achieve
comparable performance (Figure 19d). In contrast, MoE-4x exhibits no speed advantage in the text
modality (Figure 19d) and even results in a 1.7x slowdown in the image modality compared to the
dense model (Figure 19b). Results are consistent on the evaluation losses on the Obelisc dataset
(Figure 19e-h).
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Figure 18: Horizontal scaling — The benefits of MoT increase with the number of GPUs
(Chameleon setting, 443M model scale). As modern LLMs are typically trained on larger global
batches using more GPUs, we conduct a pilot study on the scaling trends of MoT by varying the
number of training GPUs. This effectively scales the global batch size and the total number of
training tokens, while keeping the number of steps constant. Shown are the evaluation losses on
the Obelisc dataset. The performance gains of MoT increase substantially as the number of GPUs
grows. For instance, when scaling from 16 to 256 GPUs, the percentage of steps required for MoT
to match the image validation loss of the dense model (trained with the same number of GPUs)
decreases from 42.1% to 21.6%, and for text validation loss, from 75.7% to 50.9%. This suggests
that scaling pre-training compute resources further enhances the efficiency and performance gains
of MoT.
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Figure 19: Speed advantage of MoT in wall-clock time (Chameleon Setting). For a fixed amount
of GPU training time, MoT significantly outperforms both the dense Transformer baseline and MoE-
4x. MoT matches the image training loss of the dense model in just 47.2% of the GPU training time,
with continued improvement. For the text modality, MoT requires 75.6% of the time to achieve the
same quality. In contrast, MoE-4x shows no speed advantage in the text modality and results in
a 1.7x slowdown in the image modality. Evaluation losses on the Obelisc dataset show consistent
results.
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E RELATED WORK

E.1 FOUNDATION MODELS FOR MULTI-MODAL GENERATION

Recent advances in large language models (LLMs) have extended to multi-modal applications. Early
multi-modal LLMs focused on understanding rather than generation, using late fusion techniques to
merge separately encoded images and text (Alayrac et al., 2022; Liu et al., 2023; Laurençon et al.,
2023; Chen et al., 2022). While benefiting from lightweight training, these models lacked multi-
modal generation capabilities.

To enable multi-modal generation, a key strategy involves tokenizing non-text modalities into dis-
crete sequences (Aghajanyan et al., 2022; Yu et al., 2023; Bao et al., 2021; Ramesh et al., 2021;
Liu et al., 2024c) (Figure 3a). For instance, Chameleon (Chameleon Team, 2024) and related ap-
proaches (Aghajanyan et al., 2022) tokenize images into 1,024 discrete tokens using pretrained mod-
els like VQGAN (Esser et al., 2021), training over combined text-image token sequences. Similar
tokenization has been applied to speech (Nguyen et al., 2024). Recent models like Transfusion
(Zhou et al., 2024) have explored continuous image tokens and diffusion-based loss functions to
enhance visual generation quality. Our proposed mixture of transformers method is compatible
with these approaches and can be integrated as a drop-in replacement for dense transformer archi-
tectures. We demonstrate substantial improvements across diverse multi-modal settings, including
both Chameleon (Chameleon Team, 2024) and Transfusion (Zhou et al., 2024).

E.2 SPARSE ARCHITECTURES FOR MULTI-MODAL GENERATION

Sparse architectures, particularly Mixture of Experts (MoE), have shown promise in text-based
models, allowing dynamic parameter selection for each input (Jacobs et al., 1991; Eigen et al.,
2013; Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022; Jiang et al., 2024; Sukhbaatar
et al., 2024). Recent efforts have adapted MoE for multi-modal tasks, addressing the challenges
posed by inherent feature space gaps between modalities (Wang et al., 2022; Shen et al., 2023;
Bao et al., 2022a; Long et al., 2023; Lin et al., 2024). These approaches suggest that modality-
specific parameter allocation can improve performance by addressing distinct data type (i.e., modal-
ity) characteristics (Liang et al., 2022). Different from previous works, in this paper, we propose
the Mixture-of-Transformers (MoT) framework, which generalizes the MoE concept by decoupling
all non-embedding parameters within the transformer architecture. MoT consistently outperformed
MoE in multi-modal pretraining when the amount of total parameters is controlled (Figure 16) and
demonstrated complementarity with MoE-4x (Figure 17).

While recent works have extended MoE beyond feedforward layers to attention mechanisms (Wang
et al., 2023; Shen et al., 2024; Liu et al., 2024b), our approach differs in several key aspects. Unlike
CogVLM (Wang et al., 2023), which is limited to generating text outputs, MoT is capable of both
image and text generation. Concurrent to our work, Playground v3 (PGv3) (Liu et al., 2024b)
integrates a DiT-style image transformer with Llama3-8B as the text backbone using global self-
attention, and achieves state-of-the-art performance in text and image generation. During training,
the text LLM is frozen and only the image transformer component is updated. While both CogVLM
and PGv3 conduct multi-modal training on top of a pre-trained LLM, we establish MoT as a general
sparse architecture that can be trained from scratch. MoT also decouples every non-embedding
parameter across transformer layers, including layer normalization, whereas previous approaches
maintain shared layernorm parameters. Our findings position MoT as a flexible and scalable solution
for multi-modal pretraining, demonstrating its potential to complement MoE-based architectures and
offering a pathway for more computationally efficient large-scale multi-modal models.

F TRANFUSION: PRELIMINARIES

F.1 DIFFUSION FOR IMAGE GENERATION

Diffusion models have emerged as a powerful class of generative models capable of producing high-
fidelity data across various modalities. These models utilize a Markov chain that progressively adds
Gaussian noise to data in a forward process and then learns to reverse this process to generate new
data samples.
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In the forward diffusion process, the data x0 is perturbed over T timesteps by sequentially adding
Gaussian noise. The transition from xt−1 to xt is defined by the conditional probability distribution:
q(xt | xt−1) = N (xt;

√
αt xt−1, (1−αt)I), where αt ∈ (0, 1) controls the rate of noise addition at

each timestep t. The cumulative product of αt up to timestep t is denoted by ᾱt =
∏t

s=1 αs. Using
this notation, we can express xt directly in terms of the original data x0: xt =

√
ᾱt x0+

√
1− ᾱt ϵ,

where ϵ ∼ N (0, I) is standard Gaussian noise. As t approaches T , the data distribution transitions
towards an isotropic Gaussian distribution.

In the reverse diffusion process, the goal is to recover the original data x0 from the noisy ob-
servation xT by iteratively denoising. The reverse process is parameterized by a neural network
ϵθ(xt, t, c) trained to predict the added noise at each timestep, where c is extra context, such as text
prompt. The denoising step can be expressed as: xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t, c)) + σt z,

where,σt is the standard deviation of the noise added during the reverse step, and z ∼ N (0, I) is
auxiliary noise introduced for stochasticity in the sampling. The neural network ϵθ is trained by
minimizing the objective function LDDPM = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t, c)∥2

]
. Once optimized, a new

data point x0 can be sampled by initializing xT ∼ N (0), following the above denoising steps.

In this work, we use cosine scheduler (Nichol & Dhariwal, 2021) to set the value of αt. We show
qualitative image generation results from the 7B model. In this case, we use Classifier-free guidance
(CFG) (Ho & Salimans, 2022) to improve generation by contrasting the prediction of the model
conditioned on the context c with the unconditioned prediction.

To reduce computational requirements, we adopt latent diffusion models (LDMs) (Rombach et al.,
2022) , which perform the diffusion process in a lower-dimensional latent space (e.g. represent every
8×8 pixel patch as an 8-dimensional vector.) rather than directly in the high-dimensional data space.
Specifically, we first encode the original data x0 into a latent representation z0 using a Variational
autoencoders (VAEs) (Kingma & Welling, 2013)). The diffusion (forward and reverse) process is
then applied to z0, significantly reducing computational cost due to the lower dimensionality of the
latent space. This approach allows efficient training and sampling while preserving the quality and
fidelity of the generated multimodal outputs.

F.2 TRANSFUSION MODEL ARCHITECTURE

The model primarily consists of a single transformer to processes the combined sequence regardless
of modality. We follow Llama’s architecture (Touvron et al., 2023a) to build transformer layers, and
add lightweight modality-specific module to map the inputs into a shared high-dimensional vector
space Rd. For text, embedding matrices convert input integers to vectors and output vectors back into
token probabilities. For images, we employ a U-Net to compress local windows of 2×2 patch vectors
in VAE latent space into single vectors suitable for the transformer (and vice versa). In this setting, an
image is represented as 256 continous tokens. The transformer uses a hybrid attention mechanism:
causal attention is applied across the entire sequence to preserve the autoregressive property, while
bidirectional attention is used within each image to capture intra-image dependencies. This means
that image patches can attend to all other patches within the same image but only to preceding tokens
or image patches outside their own image.

The model is trained by minimizing a combined loss function:

LTransfusion = LLM + λ · LDDPM, (4)

where λ is a balancing coefficient. The language modeling loss LLM is computed per token, encour-
aging the model to predict the next token in the sequence. The diffusion loss LDDPM is computed per
image. We set the λ coefficient in the Transfusion objective to 5 following preliminary experiments;
we leave further tuning of λ to future work.

During inference, the model alternates between language modeling and diffusion sampling modes.
In language modeling mode, it generates text by sequentially sampling tokens from the predicted
probability distribution. When a beginning of image (BOI) token is generated, the model switches to
diffusion mode. In this mode, pure noise xT is appended to the input sequence as a series of image
patches corresponding to the desired image size. The model then iteratively denoises this input.
Once the diffusion process concludes, an end of image (EOI) token is appended to the sequence,
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and the model returns to language modeling mode. At the mean time, an image is generated us-
ing a VAE decoder. This seamless switching mechanism allows Transfusion to generate sequences
containing any mixture of text and images, leveraging shared parameters and modality-specific pro-
cessing within a unified architecture.

G MOT TRANSFUSION FINE-TUNING RESULTS

Dense

MOT
(a) A photo of a

person with the head
of a cow, wearing a
tuxedo and black

bowtie. Beach
wallpaper in the

background.

(b) the word ’START’
on a blue t-shirt.

(c) translucent pig,
inside is a smaller pig.

(d) A single beam of
light enter the room

from the ceiling. The
beam of light is

illuminating an easel.
On the easel there is a
Rembrandt painting of

a raccoon.

Figure 20: Example easy prompts

We compare the image generation capabilities of fine-tuned TransFusion MoT and dense models by
prompting them with a variety of text inputs, as illustrated in Figures 21, 20, and 22. In Figure 21,
both MoT and dense fine-tuned models successfully follow the prompts. However, in Figure 20, the
MoT fine-tuned model demonstrates superior performance, producing images that are either more
visually appealing or more faithful to the prompts. In Figure 22, both models struggle to perfectly
follow the text prompts and fail to capture all the details accurately. Our study suggests that text
faithfulness can greatly improve with extended training and we leave it future work to scale up
training with bigger model and more data.
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Dense

MOT
(a) Photo of a

lychee-inspired
spherical chair, with a
bumpy white exterior
and plush interior, set

against a tropical
wallpaper.

(b) tilt shift aerial
photo of a cute city
made of sushi on a
wooden table in the

evening.

(c) Film still of a
long-legged cute

big-eye
anthropomorphic

cheeseburger wearing
sneakers relaxing on

the couch in a sparsely
decorated living room.

(d) A chrome-plated
duck with a golden

beak arguing with an
angry turtle in a forest.

Figure 21: Example prompts where MOT yields better image generation than Dense

Dense

MOT
(a) An illustration of

an avocado sitting in a
therapist’s chair,

saying ’I just feel so
empty inside’ with a
pit-sized hole in its

center. The therapist,
a spoon, scribbles

notes.

(b) A photo of a
crocodile made of

water.

(c) A dslr picture of
colorful graffiti

showing a hamster
with a moustache.

(d) an espresso
machine that makes
coffee from human
souls, high-contrast

painting.

Figure 22: Example hard prompts
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H SUPPLEMENTARY FIGURES

(a) 4% checkpoint, Layer
1

(b) 4% checkpoint, Layer
5

(c) 4% checkpoint, Layer
17

(d) 4% checkpoint, Layer
32

(e) 24% checkpoint, Layer
1

(f) 24% checkpoint, Layer
5

(g) 24% checkpoint, Layer
17

(h) 24% checkpoint, Layer
32

(i) 50% checkpoint, Layer
1

(j) 50% checkpoint, Layer
5

(k) 50% checkpoint, Layer
17

(l) 50% checkpoint, Layer
32

(m) 100% checkpoint,
Layer 1

(n) 100% checkpoint,
Layer 5

(o) 100% checkpoint,
Layer 17

(p) 100% checkpoint,
Layer 32

Figure 23: Visualization of latent feature space for Chameleon+Speech 7B Dense model across
training checkpoints and layers. Principal Component Analysis (PCA) of model activations shows
clustering by modality (text, speech, image) at different stages of training (4%, 24%, 50%, 100%
checkpoints) and across layers (Layer 1, Layer 5, Layer 17, Layer 32). The PCA plots show that
different modalities consistently occupy distinct regions of the feature space. This natural clus-
tering highlights the inherent differences between modalities, suggesting that they are processed
differently by the model. These findings motivate the need for decoupled weights in our Mixture-
of-Transformers architecture, where modality-specific parameters can better capture and leverage
the distinct statistical properties of each modality, leading to improved performance and efficiency
compared to a dense baseline.
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Figure 24: Training and validation losses for image and text modalities across model scales
(37M, 94M, 443M, 1.5B, 7B) in the Chameleon setting evaluated on the Obelisc dataset. For
the image modality, MoT consistently delivers a substantial speedup relative to the dense model and
MoE-4x, with the advantage growing across scales. In contrast, MoE-4x exhibits diminishing gains
as the model scales increase, particularly at 7B, where the benefits disappear in the image modality.
In the text modality, both MoT and MoE-4x outperform the dense model, with MoT demonstrating
comparable or slightly better performance. FLOPs-controlled across all runs in the same model
scale and pre-trained from scratch.
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Figure 25: Training and validation losses for image and text modalities across model scales
(37M, 94M, 443M, 1.5B, 7B) in the Chameleon+Speech setting evaluated on the Obelisc
dataset. MoT exhibits consistent and significant improvements in validation loss for the image
and text modalities, demonstrating its efficiency and robustness across scales. FLOPs-controlled
across all runs in the same model scale and pre-trained from scratch.
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Figure 26: Text Modality-specific training loss and step matching plots in Transfusion setting
across model scales. For text modality, MoT matches dense model in training and validation loss
on C4 and Wikipedia datasets, with improved generalization in captioning tasks (CIDEr score).
MoE-4x shows unstable performance: lower training losses but poorer generalization than dense
model on text evaluation metrics. Model sizes for sparse models indicate activated parameters. All
experiments FLOPs-controlled and pre-trained from scratch.
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