
Published as a conference paper at ICLR 2025

EFFICIENT IMITATION UNDER MISSPECIFICATION

Nicolas Espinosa-Dice∗, Sanjiban Choudhury, Wen Sun
Department of Computer Science
Cornell University
{ne229,sc2582,ws455}@cornell.edu

Gokul Swamy
Robotics Institute
Carnegie Mellon University
gswamy@cmu.edu

ABSTRACT

We consider the problem of imitation learning under misspecification: settings
where the learner is fundamentally unable to replicate expert behavior every-
where. This is often true in practice due to differences in observation space and
action space expressiveness (e.g. perceptual or morphological differences between
robots and humans). Given the learner must make some mistakes in the misspec-
ified setting, interaction with the environment is fundamentally required to fig-
ure out which mistakes are particularly costly and lead to compounding errors.
However, given the computational cost and safety concerns inherent in interac-
tion, we’d like to perform as little of it as possible while ensuring we’ve learned
a strong policy. Accordingly, prior work has proposed a flavor of efficient in-
verse reinforcement learning algorithms that merely perform a computationally
efficient local search procedure with strong guarantees in the realizable setting.
We first prove that under a novel structural condition we term reward-agnostic
policy completeness, these sorts of local-search based IRL algorithms are able to
avoid compounding errors. We then consider the question of where we should
perform local search in the first place, given the learner may not be able to “walk
on a tightrope” as well as the expert in the misspecified setting. We prove that in
the misspecified setting, it is beneficial to broaden the set of states on which local
search is performed to include those reachable by good policies the learner can
actually play. We then experimentally explore a variety of sources of misspecifi-
cation and how offline data can be used to effectively broaden where we perform
local search from.

1 INTRODUCTION

Interactive imitation learning (IL) is a powerful paradigm for learning to make sequences of de-
cisions from an expert demonstrating how to perform a task. While offline imitation learning ap-
proaches suffer from covariate shift between the training distribution (i.e. the expert’s state distribu-
tion) and the test distribution (i.e. the learner’s state distribution)—and the associated compounding
of errors—interactive approaches allow the learner to observe states from the test distribution during
training via performing rollouts, unlocking the ability to recover from mistakes (Ross et al., 2011).

Broadly speaking, the difference between the expert’s performance and the learned policy’s perfor-
mance can be attributed to three forms of error:

1. Optimization error: The error resulting from imperfect search within a policy class (e.g.
due to the difficulty of finding a global minima on non-convex problems).

2. Finite sample error: The statistical error arising from limited expert demonstrations.

3. Misspecification error: The irreducible error resulting from the learner’s policy class not
containing the expert’s policy.

Notably, misspecification error is a function of both the expert policy and the learner’s policy class;
it cannot be improved by a better algorithm or more computation. Much of the prior work in im-
itation learning has focused on the first two sources of error, while avoiding the misspecification

∗Correspondence to: Nicolas Espinosa-Dice <ne229@cornell.edu>.

1

Published as a conference paper at ICLR 2025

error by imposing expert realizability: the assumption that the expert policy is within the learner’s
policy class (Kidambi et al., 2021; Swamy et al., 2021a; 2022b; Xu et al., 2023; Swamy et al., 2023;
Ren et al., 2024). In other words, expert realizability is the assumption that the learner can per-
fectly imitate the expert’s actions in all states: that more data and computation are all we need for
optimality.

However, in practice, it is often impossible to imitate the expert perfectly. For example, realizability
can also be an inaccurate assumption due to a mismatch between learner and expert action spaces.
In humanoid robotics, the morphological differences between robots and humans prevent perfect
human-to-robot motion re-targeting (Zhang et al., 2024; He et al., 2024; Al-Hafez et al., 2023). More
generally, physical robots face the problem of changing dynamics due to wear and tear, as well as
manufacturing imperfections, that cause variations in link lengths and other physical properties over
the course of their operation. Thus, even if demonstrations are collected via teleoperation of a robot
of the same make and model, expert realizability doesn’t necessarily hold.

In response, our paper considers the more general misspecified setting, where the learner is not nec-
essarily capable of perfectly imitating the expert’s behavior. We analyze how the misspecification
error interrelates with the optimization and finite sample errors. More specifically, we ask:

Under what condition can interactive imitation learning in the misspecified
setting avoid compounding errors while retaining computational efficiency?

The last two words of the preceding question are central to our study. By reducing the problem of
imitation learning to reinforcement learning against a learned reward, interactive imitation learning
approaches like inverse reinforcement learning (IRL; Ziebart et al. (2008); Ho & Ermon (2016)) face
a similar global exploration problem to that of reinforcement learning—in the worst case, needing
to explore all paths through the state space to find one reward (e.g. a tree-structured problem with
sparse rewards) (Kakade, 2003; Swamy et al., 2023). Thus, in order to focus the exploration on use-
ful states, efficient imitation algorithms leverage the expert’s state distribution. In particular, rather
than resetting the learner to the true starting state distribution, the learner is instead reset to states
from the expert’s demonstrations, resulting in an exponential decrease in interaction complexity
(Swamy et al., 2023). We refer to this family of reset-based techniques as efficient IRL.

At a high level, efficient IRL can be understood as replacing the hard problem of global exploration
with a local exploration problem over the reset distribution—in this case, the expert states. In other
words, the RL subroutine can be thought of as optimizing a policy with a similar state visitation
distribution to the expert. However, prior work in efficient IRL makes the crucial assumption expert
realizability (Swamy et al., 2023). In the realizable setting, the best policy in the learner’s policy
class is the expert policy, so the goal of local policy search is to recover the expert policy, in which
case it is natural to perform local policy optimization over the expert states.

However, in the misspecified setting, there may be no policies in the policy class that match the
expert’s state distribution, leading to two possible pitfalls of performing local policy search over
expert states. First, while the learner may be able to optimize the policy at expert states (i.e. after
being reset to them), the learner may not be able to reach the expert states. For example, even if a
learned humanoid control policy can complete a backflip from the halfway point, it might not be able
to get to the halfway point in the first place. Second, even if the learner can approximately match
the expert’s one-step local action, it may be unable to follow-through with the rest of the expert’s
trajectory. For example, even if a manipulator is able to move a peg close to a hole, it may be unable
to insert the peg as dexterously as a person can due to a lack of haptic feedback.

Given the practical importance and relatively limited theoretical study of the misspecified setting,
our first contribution is a condition that informs when IRL with expert resets works in the misspeci-
fied setting. At a high level, our condition measures how well, with respect to the globally optimal
solution, the learner must perform local optimization over the expert states. Critically, expert realiz-
ability is not required for our condition to be satisfied, allowing for meaningful misspecification.

Contribution 1. We define a new structural condition for the misspecified setting,
reward-agnostic approximate policy completeness, under which our efficient IRL
algorithm with expert resets can avoid quadratically compounding errors.

2

Published as a conference paper at ICLR 2025

We then extend our analysis of efficient IRL to performing resets to states beyond those seen in the
expert demonstration. As mentioned above, if no policy in the learner’s policy class can reach an
expert state or follow-through as the expert would, policy optimization at such a state doesn’t seem
particularly useful. This of course begs the question of where we should reset the learner to if we
want to speed up the policy search subroutine of inverse RL if we can’t uniformly imitate the expert.

Informally speaking, the choice of reset distribution in a local search procedure specifies the set
of policies we’re searching over: those with similar visitation distributions to the reset distribution.
In the misspecified setting, our goal is to compete with the optimal realizable policy—the optimal
policy the learner can actually choose. Thus, a natural choice for reset distribution is one that covers
the states this optimal realizable policy visits, guaranteeing we’re doing as well as one could hope.

Unfortunately, we don’t know a priori what this optimal realizable policy is – we’d have already
solved the misspecified imitation problem if we did. Intuitively though, one wants to broaden the
support of the reset distribution to cover policies that aren’t exactly the expert’s. Practically speak-
ing, we might get examples of such states by looking at offline data, such as robot play data (Lynch
et al., 2020; Wang et al., 2023), suboptimal robot demonstrations (Brown et al., 2019; Chang et al.,
2021; Yang et al., 2021; Hoang et al., 2024), or internet data (Chang et al., 2023; 2024), all of which
are more likely to be realizable. We consider the question of how incorporating the offline data
into the reset distribution affects IRL performance, and we show that the performance improvement
depends on how well the new reset distribution covers the optimal realizable policy.

Contribution 2. We theoretically show that broadening the reset distribution be-
yond the expert demonstrations so that it covers the state distribution of the opti-
mal realizable policy, improves efficient IRL performance under misspecification.

Finally, we corroborate our theory by empirically investigating several potential sources of misspec-
ification, showing that non-expert reset distributions are preferable under misspecification.

Contribution 3. We explore several distinct forms of misspecification on con-
tinuous control and locomotion tasks, demonstrating that offline data that better
covers the optimal realizable policy improves efficient IRL’s performance.

We begin by defining the problem and postpone a discussion of related work to Appendix A.

2 IMITATION LEARNING IN THE MISSPECIFIED SETTING

Notation. We consider a finite-horizon Markov Decision Process (MDP), M =
⟨S,A, Ph, r

⋆, H, µ⟩ (Puterman, 2014). S and A are the state space and action space, respec-
tively. P = {Ph}Hh=1 is the time-dependent transition function, where Ph : S × A → ∆(S)
and ∆ is the probability simplex. r⋆ : S × A → [0, 1] is the ground-truth reward function,
which is unknown, but we assume r⋆ ∈ R, where R is a class of reward functions such that
r : S × A → [0, 1] for all r ∈ R. H is the horizon, and µ ∈ ∆(S) is the starting state distribution.
Let Π = {π : S → ∆(A)} be the class of stationary policies. We assume Π and R are compact
and convex. Let the class of non-stationary policies be defined by ΠH = {πh : S → ∆(A)}Hh=1.
A trajectory is given by ξ = {(sh, ah, rh)}Hh=1, where sh ∈ S, ah ∈ A, and rh = f(sh, ah) for
some f ∈ R. The distribution over trajectories formed by a policy is given by: ah ∼ π(· | sh),
rh = Rh(sh, ah), and sh+1 ∼ Ph(· | sh, ah), for h = 1, . . . ,H . Let dπs0,h(s) = Pπ[sh = s | s0]
and dπs0(s) =

1
H

∑H
h=1 d

π
s0,h

(s).

Misspecified Imitation. As previous stated, much of the theoretical analysis in IL relies on the
impractical assumption of a realizable expert policy (i.e. one that lies within the learner’s policy class
Π) (Kidambi et al., 2021; Swamy et al., 2021a;b; 2022a; Xu et al., 2023; Ren et al., 2024). In contrast
to prior work, we focus on the more realistic misspecified setting, where the expert policy πE is not
necessarily in the policy class Π. We consider a known sample of the expert policy’s trajectories,
where the dataset of state-action pairs sampled from the expert is DE = D1∪D2∪ . . .∪DH , where
Dh = {sh, ah} ∼ dπE

µ,h and |DE | = N . Let ρh be a uniform distribution over the samples in Dh,
and ρE be a uniform distribution over the samples in DE .

3

Published as a conference paper at ICLR 2025

Algorithm 1 Reset-Based IRL (Dual, Swamy et al. (2023))

1: Input: Expert state-action distributions ρE , policy class Π, reward classR
2: Output: Trained policy π
3: for i = 1 to N do
4: // No-regret step over rewards (e.g. FTRL)
5: ri ← argmaxr∈R J(πE , r)− J(Unif(π1:i), r)
6: // Expert-competitive response by RL algorithm (e.g. PSDP, Alg. 3)
7: πi ← RL(r = ri, ρ = ρE)
8: end for
9: Return πN

Goal of IRL. We cast IRL as a Nash equilibrium computation (Syed & Schapire, 2007; Swamy
et al., 2021a), where Sion’s minimax theorem guarantees the existence of an equilibrium under the
standard assumptions of compactness and convexity of the policy and reward classes. The ultimate
objective of IRL is to learn a policy that matches expert performance. Because the ground-truth re-
ward is unknown but belongs to the reward class (i.e. r⋆ ∈ R), we aim to learn a policy that performs
well under any reward function in the reward class. For example, in problems like autonomous driv-
ing, R might include functions that capture staying close to the center of lanes and obeying speed
limits. This is equivalent to finding the best policy under the worst-case reward (i.e. the reward
function that maximizes the performance difference between the expert and learner). Formally, we
find an equilibrium strategy for the game

min
π∈Π

max
r∈R

J(πE , r)− J(π, r), (1)

where J(π, r) = Eξ∼π

[∑T
t=0 r(st, at)

]
. By the compact and convex assumptions on Π and R,

Sion’s minimax theorem guarantees that the Nash equilibrium exists.

IRL Taxonomy. IRL algorithms consist of two steps: a reward update and a policy update. In
the reward update, a discriminator is learned with the aim of differentiating the expert and learner
trajectories—this is effectively trained as a classifier between the expert and learner trajectories.
The policy is then optimized by an RL algorithm, with reward labels from the discriminator. IRL
algorithms can be classified into primal and dual variants (Swamy et al., 2021a), the latter of which
we use in our paper. An example dual algorithm is shown in Algorithm 1. In dual IRL algorithms,
the discriminator is updated slowly via a no-regret step (e.g. Line 5, Follow The Regularized Leader
McMahan (2011)), and the policy is updated via using an RL subroutine with reward labels r (Ratliff
et al., 2006; 2009; Ziebart et al., 2008; Swamy et al., 2021a).

Reset Distribution. RL algorithms require a reset distribution. Often, this is simply the MDP’s
starting state distribution, µ (Mnih, 2013; Schulman et al., 2015; 2017; Haarnoja et al., 2018). We
differentiate between traditional IRL and efficient IRL by their RL subroutine’s reset distribution,
ρ. In traditional IRL algorithms, the reset distribution remains the true starting state distribution
(i.e. ρ = µ). In efficient IRL algorithms, the reset distribution is the expert’s state distribution
(i.e. ρ = ρE), which changes the RL subroutine from a best response step to an expert-competitive
response (Swamy et al., 2023; Ren et al., 2024), while still maintaining performance guarantees.
Intuitively, efficient IRL can be understood as replacing the global search problem inherent in RL
with a local search over states from the demonstrations, thereby providing a computational speedup.

2.1 IMITATION UNDER MISSPECIFICATION IS HARD

Our paper considers efficient IRL in the misspecified setting, which begs the following question:

Is efficient IRL even possible in the misspecified setting without any assumptions on Π?

We first consider statistical efficiency, which refers to the number of expert samples required to
achieve strong performance guarantees, without any requirements on the computational efficiency
required to do so. Observe that if statistically efficient imitation under misspecification is not pos-
sible, this implies that computationally efficient imitation is also not possible. Thankfully, we now
prove that statistically efficient imitation is possible under misspecification with a novel algorithm.

4

Published as a conference paper at ICLR 2025

Statistically Efficient Imitation. We present Scheffé Tournament Imitation LEarning (STILE), a
statistically optimal algorithm in the misspecified setting. STILE assumes access to expert demon-
strations (i.e. DE) and known transition dynamics . STILE’s objective is to select the policy π in
the policy class whose induced state-action distribution (i.e. states and actions from dπ) is closest
to the expert’s empirical estimate (i.e. states and actions from DE) for any bounded test function
f . STILE’s procedure is defined in Appendix E, and we present the sample complexity for the
misspecified setting below.1

Theorem 2.1 (Sample Complexity of STILE under Misspecification). Assume Π is finite, but πE /∈
Π. With probability at least 1− δ, STILE learns a policy π̂ such that:

V πE − V π̂ ≤ 3

1− γ
min
π∈Π
∥dπ − dπE∥1 + Õ

(
1

1− γ

√
ln(|Π|) + ln(1/δ)

N

)
(2)

As shown in Theorem 2.1, STILE achieves a statistically efficient sample complexity that is linear
in the horizon.2 However, a tournament algorithm requires comparing every pair of policies, which
isn’t feasible with policy classes like deep networks, making STILE computationally inefficient.

Computationally Efficient Imitation. While STILE achieves a statistically optimal guarantee in
the misspecified setting, we ultimately desire an algorithm that is also computationally feasible and
can be implemented with standard policy classes used in deep reinforcement learning. To that end,
we now consider computational efficiency, specifically focusing on interaction sample efficiency—
the number of environment interactions needed to obtain strong performance. We consider an algo-
rithm computationally efficient if its interaction complexity is polynomial in the MDP horizon. We
present a lower bound showing that without any further assumptions, computationally efficient IRL
under misspecification is not possible – i.e. a clear “no” to the question we began this section with.

Theorem 2.2 (Lower Bound on Misspecified RL with Expert Feedback (Jia et al., 2024)). For any
H ∈ N and C ∈ [2H], there exists a policy class Π with |Π| = C, expert policy πE ̸∈ Π, and a
family of MDPsM with state space S of size O(2H), binary action space, and horizon H such that
any algorithm that returns a 1/4-optimal policy must either use Ω(C) queries to the expert oracle
Oexp : S ×A → R, which returns QπE (s, a) (i.e. the Q value of expert policy πE), or Ω(C) queries
to a generative model, which allows the learner to query the transition and reward associated with
a state-action pair on any state.3

From Theorem 2.2, we establish that polynomial sample complexity in the misspecified IRL setting,
where πE ̸∈ Π, cannot be guaranteed. In other words, computationally efficient IRL is not possible
in the setting where no structure is assumed on the MDP, even with access to a queryable expert
policy like DAgger (Ross et al., 2011). The results show that while statistically efficient IRL in
the misspecified setting is possible, computationally efficient IRL isn’t without assuming additional
structure, raising the question of what assumptions suffice to design practical algorithms.

3 APPROXIMATE POLICY COMPLETE INVERSE REINFORCEMENT LEARNING

We answer the question from the preceding section through an extension of policy completeness—
a condition used in the analysis of policy gradient RL algorithms—and a corresponding efficient
algorithm. We then show that, without an exponential amount of computation, our algorithm avoids
quadratically compounding errors under approximate policy completeness.

3.1 APPROXIMATE POLICY COMPLETENESS

At a high-level, we aim to measure the flexibility of the policy class in the misspecified setting—a
more nuanced metric than the simple binary of whether the expert policy lies in the class. While the
realizability condition is an action level measure—it requires the learner be able to exactly match

1We present the sample complexity for the πE ∈ Π case in Appendix E.
2For convenience in the analysis, we consider an infinite horizon MDP.
3The generative model strictly generalizes the online interaction model, which is limited to playing actions

in sequential states in a trajectory.

5

Published as a conference paper at ICLR 2025

the expert’s actions—policy completeness is a reward-sensitive measure. Intuitively, the policy com-
pleteness condition requires that the policy class contain a policy that can achieve comparable per-
formance to the expert policy—without necessarily matching the exact actions of the optimal (i.e.
expert) policy. Importantly, the policy completeness condition of RL algorithms depends on the
MDP’s reward function, which in the inverse reinforcement learning setting is unknown and is in-
stead learned throughout training. In response, we introduce reward-agnostic policy completeness,
the natural generalization of policy completeness extended to the imitation learning setting.

Definition 3.1 (Reward-Indexed Policy Completeness Error). Given the expert’s state distribution
ρE , MDPMwith policy class Π and reward classR, learned policy πi, and learned reward function
ri, define the reward-indexed policy completeness error ofM to be

ϵπi,ri
Π := Es∼ρE

[
max
a∈A

Aπi
ri (s, a)

]
−max

π′∈Π
Es∼ρE

Ea∼π′(·|s)
[
Aπi

ri (s, a)
]
. (3)

We first present reward-indexed policy completeness error, which measures the policy class’s ability
to approximate the maximum possible advantage over the current policy. Intuitively, we can think
of the second term as the learner’s ability to improve the policy based on its policy class, since
we consider the maximum over policies in the learner’s policy class. The first term measures the
maximum possible improvement over the current policy by taking the maximum over all possible
actions, including the actions not realizable by the policies in the learner’s policy class. We drop the
ρE notation when it is clear from context.

Because the learned policies and reward functions are not fixed throughout the algorithm (i.e. the
policy and reward are updated each iteration), we consider the worst-case policy completeness error
over all possible learned policies and reward functions in their respective classes. We define this
worst-case policy completeness error as reward-agnostic policy completeness error below.

Definition 3.2 (Reward-Agnostic Policy Completeness Error). Given some expert state distribu-
tion ρE and MDP M with policy class Π and reward class R, define the reward-agnostic policy
completeness error ofM to be

ϵρE

Π := max
π∈Π,r∈R

ϵπ,r,ρE

Π (4)

Note that 0 ≤ ϵπi,ri
Π ≤ ϵΠ ≤ H for any πi ∈ Π, ri ∈ R. Reward-agnostic policy completeness

is therefore a measure of the policy class’s ability to approximate the maximum possible advan-
tage, over the expert’s state distribution, under any reward function in the reward class. We define
the approximate policy completeness setting to be when ϵΠ = O(1). Next, we will show that
approximate policy completeness is sufficient for efficient IRL to avoid compounding errors.

3.2 EFFICIENT IRL WITH APPROXIMATE POLICY COMPLETENESS

We begin by presenting our efficient, reset-based IRL algorithm, GUiding ImiTaters with Arbitrary
Resets (GUITAR). The high-level structure of our algorithm follows the standard efficient IRL pro-
cedure (Algorithm 1). The policy update reduces the global search problem of standard RL to local
search by resetting the learner to some informative state distribution. The reward update is training
a classifier between expert and learner trajectories. GUITAR is outlined in Algorithm 2.

Policy Update. More specifically, GUITAR employs Policy Search by Dynamic Programming
(PSDP, Bagnell et al. (2003)), shown in Algorithm 3, for its strong theoretical guarantees. In prac-
tice, any RL algorithm, such as Soft Actor Critic (SAC, Haarnoja et al. (2018)), can be used. Cru-
cially, in the policy update step, GUITAR replaces with standard reset distribution of its RL solver—
both in theory and practice—with the expert’s state distribution or some offline data distribution.4

Reward Update. GUITAR employs a no-regret update to the reward function. In theory, Online
Mirror Descent (OMD, Nemirovskij & Yudin (1983)) is used due to its strong theoretical guarantees
(Beck & Teboulle, 2003; Srebro et al., 2011). In practice, any no-regret update can be used, such as
online gradient descent (Zinkevich, 2003) (i.e. taking a few gradient steps on the most recent data).

4Ren et al. (2024) established a reduction from inverse RL to expert-competitive RL. By replacing the
reset distribution of the RL subroutine with expert states, the RL step in efficient IRL algorithms becomes an
expert-competitive response, rather than a best-response step like in traditional IRL.

6

Published as a conference paper at ICLR 2025

Algorithm 2 GUiding ImiTaters with Arbitrary Resets (GUITAR)

1: Input: Expert state-action distributions ρE , mixture of expert and offline state-action distribu-
tions ρmix, policy class Π, reward classR

2: Output: Trained policy π
3: Set π0 ∈ Π
4: for i = 1 to N do
5: Let

L̂(π, r) = E(s,a)∼ρE
r(s, a)− E(s,a)∼dπ

µ
r(s, a) // Loss function (5)

6: Optimize

ri = OMD(π1, . . . , πi−1) // Reward’s no-regret update (6)

7: Optimize

πi = PSDP(r = ri, ρ = ρmix) // Policy’s expert-competitive response (7)

8: end for
9: Return πi with lowest validation error

3.3 IS LOCAL SEARCH SUFFICIENT IN THE MISSPECIFIED SETTING?

GUITAR can be intuitively understood as reducing the hard problem of global RL search (i.e. explo-
ration) to a local search problem over some state distribution. For simplicity, we assume this is the
expert’s state distribution in this section. At a high level, the local search problem can be understood
as follows: working backwards from the final timestep, the learner is reset to an expert state and
optimizes the policy (i.e. by selecting an action) to maximize the advantage over the current policy.
Because the learner is reset to expert states, the performance guarantee of this local search is exclu-
sively over the expert’s state distribution. At test time, the learned policy’s induced state distribution
may deviate from the expert’s policy because it may not be able to take the actions required to reach
the expert state it saw during training. This is because of the policy class misspecification.

To answer the question of whether local search over expert states is sufficient in the misspecified set-
ting, we leverage the approximate policy completeness condition. Approximate policy completeness
condition measures how well the learner optimizes the policy in comparison to the globally optimal
solution. We prove that under the approximate policy completeness condition, local search is
sufficient to avoid quadratically compounding errors in the misspecified setting.
Theorem 3.3 (Sample Complexity of GUITAR). Consider the case of infinite expert data samples,
such that ρE = dπE

µ . Denote πi = (πi,1, πi,2, . . . , πi,H) as the policy returned by ϵ-approximate
PSDP at iteration i ∈ [n] of GUITAR. Then,

V πE − V π ≤ HϵρE

Π︸ ︷︷ ︸
Misspecification Error

+ H2ϵ︸︷︷︸
Policy Optimization Error

+H

√
ln |R|
n︸ ︷︷ ︸

Reward Regret

, (8)

where H is the horizon, n is the number of outer-loop iterations of the algorithm, and π is the
trajectory-level average of the learned policies (i.e. πi at each iteration i ∈ [n] of Algorithm 2).5

Misspecification Error. The first term is the bound is due to misspecification. Unlike policy opti-
mization error, the policy completeness error cannot be reduced with more environment interactions.
Instead, it represents a fixed error that is a property of the MDP, the richness of the policy class, and
the reward class. Prior work in efficient IRL ignored this error term by assuming expert realizabil-
ity (Swamy et al., 2023). Notably, GUITAR’s misspecification is linear in the horizon H , thus
avoiding the compounding errors that all offline algorithms like behavioral cloning suffer from.

Policy Optimization Error. The second term stems from the policy optimization error of the RL
subroutine. This error can be interpreted as representing a tradeoff between environment interactions

5For clarity, we present GUITAR’s sample complexity in the infinite expert sample regime (i.e., when we
have infinite samples from the expert policy, so ρE = dπE

µ) – see Appendix H.2 for the finite sample analysis.

7

Published as a conference paper at ICLR 2025

(i.e. computation) and error. It can be mitigated be decreasing the accuracy parameter ϵ of the RL
solver—PSDP in this case. Set to ϵ = 1

H , the term is reduced to linear error in the horizon H .
Crucially, our algorithm does not require global policy search. Because our algorithm uses PSDP
over the expert’s state distribution for the RL subroutine, the policy optimization error can be
reduced without requiring computation that scales exponentially in the task horizon H .

Reward Regret. Finally, the last term, H
√

ln |R|
n , stems from the regret of the Online Mirror

Descent update to the reward function. By the no-regret property and reward realizability, we can
reduce this term (to zero) by running more outer-loop iterations of GUITAR.

To summarize, GUITAR avoids compounding errors under APC without an exponential amount of
computation, proving that local search is sufficient for efficient imitation under misspecification.

4 THE THEORY OF WHERE TO SEARCH UNDER MISSPECIFICATION

In the preceding section, GUITAR replaces the RL subroutine’s reset distribution with the expert
states, which can be intuitively understood as reducing the global search problem of RL to a local
search problem over the expert states. In other words, the reset distribution specifies where to
perform local search. More formally, the RL solver, PSDP, learns a policy that competes against
any policy covered by the reset distribution, so long as it is in the policy class (Bagnell et al., 2003).
While in the preceding section we considered resetting to expert states, we might be unable to
perfectly imitate the expert at all of these states due to misspecification. Roughly speaking, this can
happen because the learner can’t reach the expert states in the first place (e.g. they are through a
narrow corridor the learner doesn’t have the precision to pass through) or because the learner can’t
complete the rest of the episode the way the expert would (e.g. the learner can reach the same high
velocity as the expert but loses the ability to avoid obstacles effectively). This begs the question:

What reset distribution should we perform local search from in the misspecified setting?

Intuitively, if we view the reset distribution as specifiying the set of policies we compete against, we
want to make sure our reset distribution covers the optimal realizable policy (i.e. the best choice the
learner could actually make given restrictions on Π). More formally, we define

π⋆ := argmin
π∈Π

max
r∈R

J(πE , r)− J(π, r). (9)

In words, π⋆ is the optimal policy in the learner’s policy class against the worst-case reward function.
By construction, the learner can actually reach π⋆’s states and follow through the way π⋆ would.

4.1 AUGMENTING THE RESET DISTRIBUTION WITH OFFLINE DATA

While resetting to π⋆’s state distribution seems promising for local policy search—the learner would
then capable of replicating π⋆’s behavior—π⋆ is unknown a priori. Intuitively, what we’d like to do
is broaden the set of states we’ve seen in the demonstrations so that we cover the states π⋆ visits
during rollouts, rather than just covering the “tightrope” the expert walks on.

One potential source of this broader state distribution is offline data. In many practical applications,
there is commonly an additional source of offline data, such as internet data (Chang et al., 2023;
2024), robot play data (Lynch et al., 2020; Wang et al., 2023), or suboptimal robot demonstrations
(Brown et al., 2019; Chang et al., 2021; Yang et al., 2021; Hoang et al., 2024), often from a non-
expert, realizable policy. Intuitively, we can think of the offline data as complementing the reset
distribution of expert states with states that are reachable by the learner. In the next section, we will
prove the condition under which resetting to this offline data benefits policy optimization.

More formally, we consider the general setting of having access to some offline dataset Doff =
{si, ai}Mi=1, where (s, a) ∼ dπB

µ and πB is some realizable behavior policy that is not necessarily as
a high-quality as the expert πE . Our approach for incorporating offline data into IRL is to augment
the reset distribution of expert states with the offline data. This approach requires no change to the
structure of GUITAR, in theory or in practice. We simply set the RL solver’s reset distribution to
the mixture of offline and expert states, ρ = ρmix, where we define Dmix = DE ∪Doff and ρmix as
the uniform distribution over Dmix. We weight the two distributions ν := N

N+M dπE
µ + M

N+M dπB
µ ,

8

Published as a conference paper at ICLR 2025

while the reward update remains the same. The only modification to ϵΠ is a change in the state
distribution, replacing the distribution over expert samples, ρE , with the mixed distribution, ρmix.

(a) Block obstruction (b) Time constraint

Figure 1: Maze construction under misspecification. The expert’s trajectory is shown in green,
and the learner’s trajectory is shown in orange. The green circle represents the goal position that
returns the maximum possible reward, while the purple circle represents the goal position that returns
the maximum realizable reward.

4.2 WHEN IS OFFLINE DATA BENEFICIAL IN IRL?

We can now precisely characterize when using offline data for resets is beneficial for IRL.

Corollary 4.1 (Benefit of Offline Data). If 1 ≤
∥∥∥∥ dπ⋆

µ

d
πB
µ

∥∥∥∥
∞

< ∞, incorporating offline data into the

reset distribution improves the sample efficiency of GUITAR when

CB

(
ϵρmix
Π + ϵρmix

Π

√
CΠ,R

N +M

)
< ϵρmix

Π + ϵρmix
Π

√
CΠ,R

N
(10)

where N is the number of expert state-action pairs, M is the number of offline state-action pairs,

CΠ,R = ln |Π||R|
δ , and CB :=

∥∥∥∥ dπ⋆

µ

d
πB
µ

∥∥∥∥
∞

.

Corollary 4.16 presents a sufficient condition for offline data improving GUITAR’s sample efficiency
over the algorithm with resets strictly to expert data. We observe that the benefit of offline data
depends on how well the offline data covers the optimal realizable policy, π⋆, as well as the amount
of expert and offline data. Intuitively, we can think of the coverage coefficient CB as the “exchange
rate,” measuring how useful the offline data is in comparison to the optimal realizable policy. This
can be thought of intuitively as requiring that if π⋆ visits a state, πB does too, but not necessarily with
an equal visitation frequency. We pay in terms of performance based on the mismatch in frequency.
When the offline data covers π⋆’s state distribution well, CB is small, so the offline data helps.

Corollary 4.1 suggests that the optimal offline data is one that covers the optimal realizable
policy π⋆, which further implies that the optimal reset distribution for efficient IRL under misspeci-
fication is that which best covers the covers the state distribution of π⋆. Practically, this means that
when choosing what offline data and reset distribution to use, it may be more effective to use one
from a realizable policy (e.g. a large amount of sub-optimal demonstrations from a robot of the
same morphology) than data from an unrealizable expert policy. In the next section, we continue
investigating the question of the optimal reset distribution empirically.

5 THE PRACTICE OF WHERE TO SEARCH UNDER MISSPECIFICATION

The results from Section 4 suggest that, in theory, the optimal reset distribution is one that best
covers the state distribution of the optimal realizable policy, π⋆. In this section, we corroborate those
theoretical findings with empirical results testing the effect of different reset distributions on IRL’s
performance in misspecified settings. In particular, we consider the case of misspecification due to
unreachable expert states. Intuitively, if the learner cannot reach these states, policy optimization at
such states is at best waste of computation and can potentially induce suboptimal behavior at states
the learner actually can reach.7

6We present the complete finite sample analysis in Appendix H.
7Due to space limitations, we postpone our analysis of other misspecified settings to Appendix B.

9

Published as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25
Env. Steps ×106

0

25

50

75

100

IQ
M

of
J(

π
)

Antmaze-Umaze-v2 (Block Obstruction)

0 50000 100000 150000 200000 250000
Env. Steps

0

20

40

IQ
M

of
J(

π
)

Antmaze-Umaze-v2 (Time Constraint)

BC(πE) BC(πE + πB) MM FILTER, α = 1.0 GUITAR, α = 1.0 π? πE

(a) Block obstruction (b) Time constraint

Figure 2: Unreachable expert states. The reset distribution dictates where the learner performs
local policy optimization. By resetting the learner to expert states, FILTER optimizes on the expert’s
state distribution. However, the learner is unable to reach certain expert states, so intuitively, there
is no value for the learner in optimizing at those unreachable states. In contrast, all of the states in
GUITAR’s reset distribution are reachable by the learner and thus valuable for optimization. πE is
the unrealizable expert policy, and π⋆ is the optimal realizable policy. Standard errors are computed
across 10 seeds for Experiment (a) and 5 seeds for Experiment (b).

Practical Motivation. When learning to perform a particularly agile maneuver like dunking a
basketball (He et al., 2025), a humanoid robot might benefit from being reset close to the rim in
simulation to learn the skill of placing the ball into the hoop. However, the robot might lack the
actuation capabilities to vertically jump in the same manner a person would, making these states
unreachable. In such a setting, one would hope to learn an alternative strategy like a layup.

Algorithm and Baselines. For the experiments in this section, we compare our algorithm, GUITAR,
against two behavioral cloning baselines (Pomerleau, 1988) and two IRL baselines (Swamy et al.,
2023; 2021a). One behavioral cloning baseline is trained exclusively on the expert data, BC(πE), and
the second is trained with both expert and offline data, BC(πE + πB), when offline data is available.
We consider a traditional IRL algorithm, MM, and an efficient IRL algorithm, FILTER (Swamy
et al., 2021a; 2023). We train all IRL algorithms with the same expert data and hyperparameters.
The difference between MM, FILTER, and GUITAR can be summarized by the reset distribution
they use. MM resets the learner to the true starting state (i.e. ρ = µ), while FILTER resets the learner
to expert states (i.e. ρ = ρE). GUITAR resets the learner to offline data (i.e. ρ = ρB). For more
details on the setup and implementations used in this section’s experiments, refer to Appendix I.

Experimental Setup. To empirically investigate this setting, we consider a variant of the
Antmaze-Umaze task, where a quadruped ant learns to solve a maze to reach a goal position
(Fu et al., 2020). We impose two types of constraints to create misspecification. In the first variation
(Figure 1a), we simulate unrealizable expert actions by placing a barrier in the learner’s maze that
prevents it from following the path of the expert. Notably, the block forces the learner to find an
entirely different route through the maze. In the second variation (Figure 1b), we consider a “time
constraint” that prevents the learner from reaching the second half of the maze. In this setting, we
have access to expert data from an unrealizable expert policy, πE , and offline data from the optimal
realizable policy, π⋆.

Experimental Results. From Figure 2b, we see that focusing the reset distribution on the realizable
policy π⋆ speeds up learning, as shown by GUITAR’s improvement over FILTER. Interestingly,
when the extent of the misspecification increases, the improvement exhibited by GUITAR over the
baselines does too, as shown by Figure 2a. From Figure 2a, we observe that GUITAR is the only
interactive algorithm capable of solving the hard exploration problem in the strongly misspecified
setting, suggesting that the offline data—states from an optimal realizable policy—is a better reset
distribution than expert states in this task. This agrees with what our preceding theory would predict.

Fundamentally, the reset distribution dictates where the learner performs local policy optimization,
so by resetting the learner to expert states, FILTER optimizes on the expert’s state distribution.
However, the learner is unable to reach certain expert states, so intuitively, there is no value for the
learner in optimizing at those unreachable states. In contrast, all of the states in GUITAR’s reset
distribution are reachable by the learner and thus valuable for optimization, improving performance.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

NED is supported by DARPA LANCER: LeArning Network CybERagents. SC is supported in
part by Google Faculty Research Award, OpenAI SuperAlignment Grant, ONR Young Investigator
Award, NSF RI #2312956, and NSF FRR#2327973. WS acknowledges funding from NSF IIS-
#2154711, NSF CAREER #2339395, and DARPA LANCER: LeArning Network CybERagents.
GKS was supported in part by an STTR grant. GKS thanks Drew Bagnell for several helpful dis-
cussions, particularly around how recoverability interacts with our results.

REFERENCES

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Firas Al-Hafez, Guoping Zhao, Jan Peters, and Davide Tateo. Locomujoco: A comprehensive
imitation learning benchmark for locomotion. arXiv preprint arXiv:2311.02496, 2023.

Philip Amortila, Nan Jiang, Dhruv Madeka, and Dean P Foster. A few expert queries suffices for
sample-efficient rl with resets and linear value approximation. Advances in Neural Information
Processing Systems, 35:29637–29648, 2022.

James Bagnell, Sham M Kakade, Jeff Schneider, and Andrew Ng. Policy search by dynamic pro-
gramming. Advances in neural information processing systems, 16, 2003.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. Oper-
ations Research, 2024.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pp. 783–792. PMLR, 2019.

Daniel S Brown and Scott Niekum. Deep bayesian reward learning from preferences. arXiv preprint
arXiv:1912.04472, 2019.

Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating
covariate shift in imitation learning via offline data with partial coverage. Advances in Neural
Information Processing Systems, 34:965–979, 2021.

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy, Dipendra Misra, and Wen Sun. Learn-
ing to generate better than your llm. arXiv preprint arXiv:2306.11816, 2023.

Jonathan D Chang, Wenhao Zhan, Owen Oertell, Kianté Brantley, Dipendra Misra, Jason D Lee,
and Wen Sun. Dataset reset policy optimization for rlhf. arXiv preprint arXiv:2404.08495, 2024.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
optimism. arXiv preprint arXiv:1711.00141, 2017.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

11

Published as a conference paper at ICLR 2025

Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong Zhang, Weinan Zhang, Kris Kitani,
Changliu Liu, and Guanya Shi. Omnih2o: Universal and dexterous human-to-humanoid whole-
body teleoperation and learning. arXiv preprint arXiv:2406.08858, 2024.

Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang, Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi
He, Nikhil Sobanbab, Chaoyi Pan, et al. Asap: Aligning simulation and real-world physics for
learning agile humanoid whole-body skills. arXiv preprint arXiv:2502.01143, 2025.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Huy Hoang, Tien Mai, and Pradeep Varakantham. Sprinql: Sub-optimal demonstrations driven
offline imitation learning. arXiv preprint arXiv:2402.13147, 2024.

Zeyu Jia, Gene Li, Alexander Rakhlin, Ayush Sekhari, and Nati Srebro. When is agnostic reinforce-
ment learning statistically tractable? Advances in Neural Information Processing Systems, 36,
2024.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274,
2002.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of
London, University College London (United Kingdom), 2003.

Rahul Kidambi, Jonathan Chang, and Wen Sun. Mobile: Model-based imitation learning from
observation alone. Advances in Neural Information Processing Systems, 34:28598–28611, 2021.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pp. 1113–
1132. Pmlr, 2020.

Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems and
l1 regularization. In Proceedings of the Fourteenth International Conference on Artificial Intelli-
gence and Statistics, pp. 525–533. JMLR Workshop and Conference Proceedings, 2011.

V Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Riccardo Poiani, Gabriele Curti, Alberto Maria Metelli, and Marcello Restelli. Inverse reinforce-
ment learning with sub-optimal experts. arXiv preprint arXiv:2401.03857, 2024.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Nived Rajaraman, Yanjun Han, Lin Yang, Jingbo Liu, Jiantao Jiao, and Kannan Ramchandran. On
the value of interaction and function approximation in imitation learning. Advances in Neural
Information Processing Systems, 34:1325–1336, 2021.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning, pp. 729–736, 2006.

Nathan D Ratliff, David Silver, and J Andrew Bagnell. Learning to search: Functional gradient
techniques for imitation learning. Autonomous Robots, 27:25–53, 2009.

12

Published as a conference paper at ICLR 2025

Juntao Ren, Gokul Swamy, Zhiwei Steven Wu, J Andrew Bagnell, and Sanjiban Choudhury. Hybrid
inverse reinforcement learning. arXiv preprint arXiv:2402.08848, 2024.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661–668. JMLR
Workshop and Conference Proceedings, 2010.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Silvia Sapora, Gokul Swamy, Chris Lu, Yee Whye Teh, and Jakob Nicolaus Foerster. Evil: Evolution
strategies for generalisable imitation learning. arXiv preprint arXiv:2406.11905, 2024.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lior Shani, Tom Zahavy, and Shie Mannor. Online apprenticeship learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 36, pp. 8240–8248, 2022.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen
Sun. Hybrid rl: Using both offline and online data can make rl efficient. arXiv preprint
arXiv:2210.06718, 2022.

Nati Srebro, Karthik Sridharan, and Ambuj Tewari. On the universality of online mirror descent.
Advances in neural information processing systems, 24, 2011.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of moments and match-
ing: A game-theoretic framework for closing the imitation gap. In International Conference on
Machine Learning, pp. 10022–10032. PMLR, 2021a.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Zhiwei Steven Wu. A critique of strictly
batch imitation learning. arXiv preprint arXiv:2110.02063, 2021b.

Gokul Swamy, Sanjiban Choudhury, Drew Bagnell, and Steven Wu. Causal imitation learning under
temporally correlated noise. In International Conference on Machine Learning, pp. 20877–20890.
PMLR, 2022a.

Gokul Swamy, Nived Rajaraman, Matt Peng, Sanjiban Choudhury, J Bagnell, Steven Z Wu, Jiantao
Jiao, and Kannan Ramchandran. Minimax optimal online imitation learning via replay estimation.
Advances in Neural Information Processing Systems, 35:7077–7088, 2022b.

Gokul Swamy, David Wu, Sanjiban Choudhury, Drew Bagnell, and Steven Wu. Inverse reinforce-
ment learning without reinforcement learning. In International Conference on Machine Learning,
pp. 33299–33318. PMLR, 2023.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. Advances
in neural information processing systems, 20, 2007.

Luca Viano, Stratis Skoulakis, and Volkan Cevher. Imitation learning in discounted linear mdps
without exploration assumptions. arXiv preprint arXiv:2405.02181, 2024.

Chen Wang, Linxi Fan, Jiankai Sun, Ruohan Zhang, Li Fei-Fei, Danfei Xu, Yuke Zhu, and An-
ima Anandkumar. Mimicplay: Long-horizon imitation learning by watching human play. arXiv
preprint arXiv:2302.12422, 2023.

13

Published as a conference paper at ICLR 2025

Tian Xu, Ziniu Li, Yang Yu, and Zhi-Quan Luo. Provably efficient adversarial imitation learning
with unknown transitions. In Uncertainty in Artificial Intelligence, pp. 2367–2378. PMLR, 2023.

Mengjiao Yang, Sergey Levine, and Ofir Nachum. Trail: Near-optimal imitation learning with
suboptimal data. arXiv preprint arXiv:2110.14770, 2021.

Chong Zhang, Wenli Xiao, Tairan He, and Guanya Shi. Wococo: Learning whole-body humanoid
control with sequential contacts. arXiv preprint arXiv:2406.06005, 2024.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

14

Published as a conference paper at ICLR 2025

A RELATED WORK

Reinforcement Learning. Prior work in reinforcement learning (RL) has examined leveraging ex-
ploration distributions to improve learning (Kakade & Langford, 2002; Bagnell et al., 2003; Ross
et al., 2011; Song et al., 2022). Similar to Song et al. (2022), we consider access to offline data but
differ by considering the imitation learning setting, while Song et al. (2022) considers the known-
reward reinforcement learning setting. We adapt the Policy Search via Dynamic Programming
(PSDP) algorithm of Bagnell et al. (2003) as our RL solver and leverage its performance guar-
antees in our analysis. We use Jia et al. (2024)’s lower bound on agnostic RL with expert feedback
to show why agnostic IRL is hard.

Prior analyses of policy gradient RL algorithms—such as PSDP (Bagnell et al., 2003), Conservative
Policy Iteration (CPI, Kakade & Langford (2002)), and Trust Region Policy Optimization (TRPO,
Schulman et al. (2015))—use a policy completeness condition to establish a performance guarantee
with respect to the global-optimal policy (Agarwal et al., 2019; Bhandari & Russo, 2024). In other
words, policy completeness is used when comparing the learned policy to the optimal (i.e. best possi-
ble) policy and not simply the best policy in the policy class. We generalize the policy completeness
condition from the RL setting with known rewards to the imitation learning setting with unknown
rewards, resulting in novel structural condition we term reward-agnostic policy completeness. Our
paper also builds on work in statistically tractable agnostic RL (Jia et al., 2024).

Imitation Learning. Our work examines the issue of distribution shift and compounding errors
in IRL, which was introduced by Ross & Bagnell (2010). Ross et al. (2011)’s DAgger algorithm
is capable of avoiding compounding errors but requires an interactive (i.e. queryable) expert and
recoverability (Rajaraman et al., 2021; Swamy et al., 2021a), which we do not assume in our setting.

Our algorithm and results are not limited to the tabular and linear MDP settings, differentiating
it from prior work in efficient imitation learning (Xu et al., 2023; Viano et al., 2024). Our work
relates to Shani et al. (2022), who propose a Mirror Descent-based no-regret algorithm for online
apprenticeship learning. We similarly use a mirror descent based update to our reward function, but
differ from Shani et al. (2022)’s work by leveraging resets to expert and offline data to improve the
interaction efficiency of our algorithm. Incorporating structured offline data has been proposed to
learn reward functions in IRL (Brown et al., 2019; Brown & Niekum, 2019; Poiani et al., 2024), but
rely on stronger assumptions about the structure of the offline data. In contrast, we do not use offline
data in learning a reward function, instead using it to accelerate policy optimization via resets.

Inverse Reinforcement Learning. We build upon Swamy et al. (2023)’s technique of speeding up
IRL by leveraging the expert’s state distribution for learner resets. Our paper introduces the follow-
ing key improvements to Swamy et al. (2023)’s work. First, while Swamy et al. (2023) relies on
the impractical assumption of expert realizability, we tackle the more general, misspecified setting.
Second, instead of assuming access to infinite expert data like Swamy et al. (2023), we consider the
finite sample regime and further demonstrate how to incorporate offline data into IRL.

15

Published as a conference paper at ICLR 2025

B ADDITIONAL EMPIRICAL RESULTS UNDER MISSPECIFICATION

B.1 MISSPECIFIED SETTING II: DIFFERENT DYNAMICS

Next, we consider the setting of misspecification due to a difference in dynamics between the expert
demonstrations and the learner’s environment (Sapora et al., 2024). This can make it difficult for the
learner to “follow-through” like the expert would, complementing the setting we investigated above.

Practical Motivation. In humanoid robotics, the morphological differences between robots and
humans prevent perfect human-to-robot motion retargeting (Zhang et al., 2024; He et al., 2024;
Al-Hafez et al., 2023). As a result, the expert’s and learner’s dynamics may be different.

Experimental Setup. To empirically investigate this setting, we consider MuJoCo continuous con-
trol tasks where the expert and learner have different morphology, implemented by changing the
link lengths and joint ranges between the expert—which uses the default values—and the learner.
Changing the link lengths and joint ranges thereby changes the dynamics between the expert and
learner. In such a setting, it is impossible to reset the learner to expert states without deforming the
rigid body of the robot, and thus we cannot implement FILTER. For GUITAR, we reset the learner
to states from the optimal realizable policy, π⋆, which has the same morphology as the learner.

Experimental Results. Figure 3 shows a speedup in learning enabled by using resets to states from
a realizable policy, which GUITAR employs. In contrast, it is impossible to reset the learner to ex-
pert states, as FILTER does, due to the different morphology between the expert and learner. The
consistently poor performance of the BC policies across the varying misspecified settings highlights
the challenge of using offline data for direct policy learning, as the approach is sensitive to dynam-
ics shifts in the misspecified setting. In contrast, the approach of using offline data for resets in
interactive algorithms demonstrates stronger overall performance across tasks considered.

0.2 0.4 0.6 0.8 1.0
Env. Steps ×106

0

2000

4000

IQ
M

of
J(

π
)

Ant-v3, ptremble = 0.01

0.2 0.4 0.6 0.8 1.0
Env. Steps ×106

2000

4000

6000

IQ
M

of
J(

π
)

Humanoid-v3, ptremble = 0.0

BC(πE) BC(πE + πB) MM GUITAR, α = 1.0 πE

Figure 3: Changing dynamics. By resetting to states from a realizable policy, GUITAR shows a
speedup over traditional inverse RL methods on a problem where the misspecification is due to a
dynamics mismatch. Standard errors are computed across 5 seeds.

B.2 ARE π⋆ STATES THE UNIQUE OPTIMAL RESET DISTRIBUTION?

We have shown theoretical and empirical results suggesting that the optimal reset distribution for
efficient IRL are states from the best realizable policy, π⋆. In this section, we consider the question of
whether π⋆ is the unique optimal reset distribution. While theory suggests that the reset distribution
must cover the state distribution of π⋆, we explore resetting to subsets of π⋆’s state distribution.

Practical Motivation. Compared to the relatively unconstrained motion through free space before
picking up an object, the contact phase of the manipulation interaction might be significantly more
challenging for the learner to get correct. Even if π⋆ is able to successfully pick up and then manip-
ulate some object, we might not need to expend as much compute performing local search at certain
states where a wider range of actions is sufficient to make progress on the task. 8

Experimental Setup. To empirically investigate this setting, we consider the D4RL
Antmaze-Large tasks, where the expert data comes from the D4RL dataset. For GUITAR, we

8We leave formalizing this notion – which seems related to the density of “good enough” actions under the
learner’s advantage function – as an interesting question for future work.

16

Published as a conference paper at ICLR 2025

isolate all short trajectories (Dshort) and all long trajectories (Dlong) in the expert dataset. We com-
pare GUITAR(Dshort) and GUITAR(Dlong), which reset to short and long trajectories respectively.
For simplicity, we do not add any additional misspecification and consider the policy that generated
Dfull to be realizable and thus π⋆.

Experimental Results. In Figure 4, we observe that using the short-trajectory dataset as the reset
distribution performs comparably to the full expert dataset, suggesting that full coverage of the
expert’s state distribution is not necessary. However, as demonstrated by the long-trajectory dataset
failing to solve the problem, there are also subsets of the expert’s state distribution that adversely
affect learning. Crucially, we observe a difference in the coverage of the reset distributions when
visualized in Figure 5, with the short-trajectory dataset having more focused coverage (i.e. coverage
closer to goals). The results in Figure 4 suggest that the state distribution of π⋆ is not the only
optimal reset distribution and resetting to a subset of π⋆’s state distribution can be equally efficient.

We leave a more nuanced theoretical exploration of what makes particular subsets of π⋆ better to
reset to than others as a question for future work.

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps ×106

0

20

40

60

IQ
M

of
J(

π
)

Antmaze-Diverse-v2, ptremble = 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps ×106

0

20

40

60

IQ
M

of
J(

π
)

Antmaze-Play-v2, ptremble = 0.05

BC MM(Dstart) GUITAR(Dlong), α = 1.0 FILTER(Dfull), α = 1.0 GUITAR(Dshort), α = 1.0

Figure 4: Resets to subsets of π⋆’s state distribution. We consider whether it is necessary, as
the theory suggests, to reset to a distribution that covers π⋆’s state distribution. In this experiment,
we reset to subsets of π⋆’s state distribution and compare their performance. The performance of
GUITAR(Dshort) matches the performance of FILTER(Dfull), showing that full coverage of π⋆’s
state distribution is not necessary in practice. Standard errors are computed across 10 seeds. During
evaluation, agents sample a random action with probability ptremble.

17

Published as a conference paper at ICLR 2025

C DISCUSSION

In summary, we explore computationally efficient algorithms for imitation learning under misspeci-
fication, the setting where the learner cannot perfectly mimic the expert. In the misspecified setting,
we demonstrate both theoretically and empirically that the lack of expert realizability affects the
optimal choice of the reset distribution for the inner policy search step, thereby addressing one of
the core limitations of Swamy et al. (2023). Notably, our analysis inherits a limitation from Swamy
et al. (2023) and the work it builds on (Ross & Bagnell, 2014; Bagnell et al., 2003): it overlooks the
fundamental ability of any policy to recover from mistakes. For example, on cliff-like problems, no
policy can recover after a single mistake, but approximate policy completeness doesn’t capture this.

The notion of expert recoverability—how effectively the expert can correct an arbitrary learner
mistake—often appears in the analysis of queryable expert imitation learning algorithms like DAg-
ger (Ross et al., 2011; Swamy et al., 2021a). Prior work has highlighted that, even for IRL algo-
rithms, expert recoverability fundamentally dictates the ease of policy search (Swamy et al., 2021a,
Section 4.3). While our notion of reward-agnostic policy completeness bears similarity to the variant
of recoverability explored in Swamy et al. (2021a)—both impose bounds on advantages over pos-
sible reward functions—our definition is fundamentally off-policy in terms of the state distributions
of the outer expectations. This off-policy nature makes it challenging to connect approximate policy
completeness to the notion of a policy recovering from their own mistake. An interesting avenue for
future work is to pursue a more refined notion of recoverability that inherits the strengths of both.

Furthermore, in the misspecified setting, where the learner cannot perfectly imitate the expert, it
remains an open question whether the expert’s ability to recover from a mistake is the appropriate
measure of problem difficulty. Thus, a more refined fusion of the above two concepts that also
accounts for misspecification would be particularly illuminating for both theory and practice.

18

Published as a conference paper at ICLR 2025

D MISSPECIFIED RL WITH EXPERT FEEDBACK

Theorem 2.2 establishes that polynomial sample complexity in the misspecified IRL setting, where
πE ̸∈ Π, cannot be guaranteed. In other words, efficient IRL is not possible with no structure
assumed on the MDP, even with access to a queryable expert policy like DAgger (Ross et al., 2011).
Note that a generative model allows the learner to query the transition and reward associated with
a state-action pair on any state, in contrast to an online interaction model that can only play actions
on sequential states in a trajectory. For a more thorough discussion of their differences, see Kakade
(2003).

More specifically, Theorem 2.2 presents a lower bound on agnostic RL with expert feedback. It
assumes access to the true reward function and an expert oracle, Oexp : S × A → R, which returns
QπE (s, a) for a given state-action pair (s, a). The lower bound in Theorem 2.2 applies in the case
where the expert oracle is replaced with a weaker expert action oracle (i.e. πE(s) : S → A)
(Amortila et al., 2022; Jia et al., 2024). In agnostic IRL, we consider the even weaker setting of
having a dataset of state-action pairs from the expert policy πE .

Notably, this lower bound focuses on computational efficiency. Statistically efficient imitation is
possible, and we present a statistically optimal imitation learning algorithm for the misspecified
setting in Appendix E.

19

Published as a conference paper at ICLR 2025

E STATISTICALLY OPTIMAL IMITATION UNDER MISSPECIFICATION

We begin with the following question: ignoring computation efficiency, what is the statistically
optimal algorithm, with respect to the number of expert samples, for imitation learning in the mis-
specified setting?

We present Scheffé Tournament Imitation LEarning (STILE), a statistically optimal algorithm for
the misspecified setting. For any two policies π and π′, we denote by fπ,π′ the following witness
function:

fπ,π′ := arg max
f :∥f∥∞≤1

[
Es,a∼dπf(s, a)− Es,a∼dπ′ f(s, a)

]
, (11)

and the set of witness functions as

F = {fπ,π′ : π, π′ ∈ Π, π ̸= π′} . (12)

Note that |F| ≤ |Π|2. STILE selects π̂ using the following procedure:

π̂ ∈ argmin
π∈Π

[
max
f∈F

(
Es,a∼dπf(s, a)− 1

N

N∑
i=1

f(s∗i , a
∗
i)

)]
, (13)

where (s∗i , a
∗
i) ∈ DE . Notably, running a tournament algorithm requires comparing every pair

of policies, which is not feasible with policy classes like deep neural networks, making STILE
impractical to implement.

We present the analysis in the infinite-horizon setting for convenience.

Theorem E.1 (Sample Complexity of STILE). Assume Π is finite and π⋆ ∈ Π. With probability at
least 1− δ, STILE finds a policy π̂

V πE − V π̂ ≤ 4

1− γ

√
2 ln(|Π|) + ln

(
1
δ

)
N

. (14)

Proof. The proof relies on a uniform convergence argument over F of which the size is |Π|2. First,
note that for all policies π ∈ Π:

max
f∈F

(Es,a∼dπf(s, a)− Es,a∼dπE f(s, a)) = max
f :∥f∥∞≤1

(Es,a∼dπf(s, a)− Es,a∼dπE f(s, a)) (15)

= ∥dπ − dπE∥1 (16)

where the first equality comes from the fact that F includes
argmaxf :∥f∥∞≤1 [Es,a,s′∼dπf(s, a)− Es,a,s′∼dπE f(s, a)]

Via Hoeffding’s inequality and a union bound over F , we get that with probability at least 1− δ, for
all f ∈ F : ∣∣∣∣∣ 1N

N∑
i=1

f(s∗i , a
∗
i)− Es,a∼dπE f(s, a)

∣∣∣∣∣ ≤ 2

√
ln(|F|/δ)

N
(17)

:= ϵstat. (18)

Denote

f̂ := argmax
f∈F

[
Es,a∼dπ̂f(s, a)− Es,a∼dπE f(s, a)

]
(19)

and

f̃ := argmax
f∈F

Es,a∼dπ̂f(s, a)− 1

N

N∑
i=1

f(si, ai). (20)

20

Published as a conference paper at ICLR 2025

Hence, for π̂, we have:∥∥dπ̂ − dπE
∥∥
1
= Es,a∼dπ̂ f̂(s, a)− Es,a∼dπE f̂(s, a) (21)

≤ Es,a∼dπ̂ f̂(s, a)− 1

N

N∑
i=1

f̂(s∗i , a
∗
i) + ϵstat (22)

≤ Es,a∼dπE f̃(s, a)− 1

N

N∑
i=1

f̃(s∗i , a
∗
i) + ϵstat (23)

≤ Es,a∼dπE f̃(s, a)− Es,a∼dπE f̃(s, a) + 2ϵstat (24)
= 2ϵstat (25)

where we use the optimality of π̂ in the third inequality.

Recall that V π = Es,a∼dπr(s, a)/(1− γ), so we have:

V π̂ − V πE =
1

1− γ

(
Es,a∼dπ̂r(s, a)− Es,a∼dπE r(s, a)

)
(26)

≤ sups,a |r(s, a)|
1− γ

∥dπ̂ − dπE∥1 (27)

≤ 2

1− γ
ϵstat (28)

This concludes the proof.

21

Published as a conference paper at ICLR 2025

E.1 PROOF OF THEOREM 2.1

Proof. We first define some terms below. Denote π̃ := argminπ∈Π ∥dπ − dπE∥1. Let us denote:

f̃ = argmax
f∈F

[
Es,a∼dπ̂f(s, a)− Es,a∼dπ̃f(s, a)

]
, (29)

f̄ = argmax
f∈F

[
Es,a∼dπ̂f(s, a)− 1

N

N∑
i=1

f(s⋆i , a
⋆
i)

]
, (30)

f ′ = argmax
f∈F

[
Es,a∼dπ̃ [f(s, a)]− 1

N

N∑
i=1

f(s⋆i , a
⋆
i)

]
. (31)

Starting with triangle inequality, we have:∥∥∥dπ̂ − dπ
∗
∥∥∥
1
≤
∥∥dπ̂ − dπ̃

∥∥
1
+
∥∥∥dπ̃ − dπ

∗
∥∥∥
1

(32)

= Es,a∼dπ̂

[
f̃(s, a)

]
− Es,a∼dπ̃

[
f̃(s, a)

]
+
∥∥∥dπ̃ − dπ

∗
∥∥∥
1

(33)

= Es,a∼dπ̂

[
f̃(s, a)

]
− 1

N

N∑
i=1

f̃(si, a
∗
i) +

1

N

N∑
i=1

f̃(si, a
∗
i)

− Es,a∼dπ̃

[
f̃(s, a)

]
+
∥∥∥dπ̃ − dπ

∗
∥∥∥
1

(34)

≤ Es,a∼dπ̂

[
f̃(s, a)

]
− 1

N

N∑
i=1

f̄(si, a
∗
i) +

1

N

N∑
i=1

f̃(si, a
∗
i)− Es,a∼dπ̃

[
f̃(s, a)

]
+
[
Es,a∼dπE f̃(s, a)− Es,a∼dπ̃ f̃(s, a)

]
+
∥∥∥dπ̃ − dπ

∗
∥∥∥
1

(35)

≤ Es,a∼dπ̃ [f ′(s, a)]− 1

N

N∑
i=1

f ′(si, a
∗
i) + 2

√
ln(|F|/δ)

N
+ 2

∥∥dπ̃ − dπE
∥∥
1

(36)

≤ Es,a∼dπ̃ [f ′(s, a)]− Es,a∼dπE [f ′(s, a)] + 4

√
ln(|F|/δ)

N
+ 2

∥∥dπ̃ − dπE
∥∥
1

(37)

≤ 3
∥∥dπE − dπ̃

∥∥
1
+ 4

√
ln(|F|/δ)

N
. (38)

where the first inequality uses the definition of f̄ , the second inequality uses the fact that π̂ is the
minimizer of maxf∈F Es,a∼dπf(s, a) − 1

N

∑N
i=1 f(s

∗
i , a

∗
i). We also use Hoeffding’s inequality

where ∀f ∈ F , ∣∣∣∣∣Es,a∼dπE f(s, a)−
N∑
i=1

f(s∗i , a
∗
i)

∣∣∣∣∣ ≤ 2

√
ln (|F|/δ)

N
(39)

with probability at least 1− δ.

22

Published as a conference paper at ICLR 2025

F FURTHER EXPLANATION OF GUITAR AND PSDP

Algorithm 3 Policy Search Via Dynamic Programming (Bagnell et al., 2003)

1: Input: Reward function ri, reset distribution ρ, and policy class Π
2: Output: Trained policy π
3: for h = H,H − 1, . . . , 1 do
4: Optimize

πh ← argmax
π′∈Π

Esh∼ρh
Eah∼π′(·|sh)A

πh+1,...,πH
ri (sh, ah) (40)

5: end for
6: Return π = {πh}Hh=1

Algorithm 4 GUiding ImiTaters with Arbitrary Resets (GUITAR)

1: Input: Expert state-action distributions ρE , mixture of expert and offline state-action distribu-
tions ρmix, policy class Π, reward classR

2: Output: Trained policy π
3: Set π0 ∈ Π
4: for i = 1 to N do
5: Let

// Loss function

L̂(π, r) = E(s,a)∼ρE
r(s, a)− E(s,a)∼dπ

µ
r(s, a) (41)

6: Optimize

// No-regret reward update

ri ← argmax
r∈R

L̂(πi−1, r) + η−1∆R(r | ri−1) (42)

7: Optimize

// Expert-competitive response with RL

πi ← PSDP(r = ri, ρ = ρmix) (43)

8: end for
9: Return πi with lowest validation error

The full IRL procedure is outlined in Algorithm 4. It can be summarized as (1) a no-regret reward up-
date using Online Mirror Descent, and (2) an expert-competitive policy update using Policy Search
by Dynamic Programming (PSDP) as the RL solver, where the learner is reset to a distribution ρ in
the RL subroutine.

Existing efficient IRL algorithms, such as MMDP (Swamy et al., 2023), reset the learner exclusively
to expert states (i.e. the case where ρ = ρE). GUITAR can be seen as extending MMDP to a general
reset distribution in the misspecified setting. We will focus on expert resets in the misspecified
setting first, and we then consider other reset distributions in Section 4.

Policy Update. Following Ren et al. (2024)’s reduction of inverse RL to expert-competitive RL,
we can use any RL algorithm to generate an expert-competitive response. We employ PSDP (Bag-
nell et al., 2003), shown in Algorithm 3, for its strong theoretical guarantees. In practice, any RL
algorithm can be used, such as Soft Actor Critic (SAC, Haarnoja et al. (2018)).

Reward Update. We employ a no-regret update to the reward function. We employ Online Mirror
Descent (Nemirovskij & Yudin, 1983; Beck & Teboulle, 2003; Srebro et al., 2011) for its strong
theoretical guarantees, but in practice, any no-regret update can be used, such as gradient descent.

More specifically, the reward function is updated through Online Mirror Descent, such that

ri ← argmax
r∈R

L̂(πi−1, r) + η−1∆R(r | ri−1), (44)

23

Published as a conference paper at ICLR 2025

where ∆R is the Bregman divergence with respect to the negative entropy function R. L̂(π, r) is the
loss, defined by

L̂(π, r) = E(s,a)∼ρE
r(s, a)− E(s,a)∼dπ

µ
r(s, a), (45)

with respect to the distribution of expert samples, ρE .

24

Published as a conference paper at ICLR 2025

G PROOFS OF SECTION 3

G.1 PROOF OF THEOREM 3.3

Proof. We consider the imitation gap of the expert and the average of the learned policies π,

V πE − V π =
1

n

n∑
i=1

(
Eζ∼πE

H∑
h=1

r∗(s, a)− Eζ∼πi

H∑
h=1

r∗(s, a)

)
(46)

= H
1

n

n∑
i=1

(
E(s,a)∼d

πE
µ

r∗(s, a)− E(s,a)∼d
πi
µ
r∗(s, a)

)
(47)

= H
1

n

n∑
i=1

L(πi, r
∗) (48)

≤ H
1

n
max
r∈R

n∑
i=1

L(πi, r) (49)

≤ H
1

n
max
r∈R

n∑
i=1

(L(πi, r)− L(πi, ri) + L(πi, ri)) (50)

= H
1

n

n∑
i=1

L(πi, ri) +H
1

n
max
r∈R

n∑
i=1

(L(πi, r)− L(πi, ri)) (51)

Applying the regret bound of Online Mirror Descent (Theorem K.2), we have

V πE − V π ≤ H
1

n

n∑
i=1

L(πi, ri) +H

√
ln |R|
n

(52)

= H
1

n

n∑
i=1

(
1

H

H∑
h=1

E(sh,ah)∼d
πE
h

ri(sh, ah)−
1

H

H∑
h=1

E(sh,ah)∼d
πi
h
ri(sh, ah)

)

+H

√
ln |R|
n

(53)

=
1

n

n∑
i=1

(
Es∼µV

πE
ri − Es∼µV

πi
ri

)
+H

√
ln |R|
n

(54)

=
1

n

n∑
i=1

H−1∑
h=0

(
E(sh,ah)∼d

πE
h

Aπi

ri,h
(sh, ah)

)
+H

√
ln |R|
n

(55)

Focusing on the interior summation, we have

H−1∑
h=0

E(sh,ah)∼d
πE
h

Aπi

h (sh, ah) ≤
H−1∑
h=0

Esh∼d
πE
h

max
a∈A

Aπi

h (sh, a) (56)

=

H−1∑
h=0

Esh∼d
πE
h

max
a∈A

Aπi

h (sh, a)− ϵρE

Π,h + ϵρE

Π,h (57)

=

H−1∑
h=0

max
π′∈Π

Esh∼d
πE
h

Ea∼π′(·|s)A
πi

h (sh, a) + ϵρE

Π,h (58)

≤ H2ϵ+HϵρE

Π (59)

where the last line holds by PSDP’s performance guarantee (Bagnell et al., 2003).

25

Published as a conference paper at ICLR 2025

Applying Equation 59 to Equation 55, we have

V πE − V π ≤ 1

n

n∑
i=1

H−1∑
h=0

(
E(sh,ah)∼d

πE
h

Aπi

ri,h
(sh, ah)

)
+H

√
ln |R|
n

(60)

≤ 1

n

n∑
i=1

(
H2ϵ+HϵρE

Π

)
+H

√
ln |R|
n

(61)

≤ H2ϵ+HϵρE

Π +H

√
ln |R|
n

(62)

which completes the proof.

26

Published as a conference paper at ICLR 2025

H PROOFS OF SECTION 4

H.1 LEMMAS OF THEOREM H.5

Lemma H.1 (Reward Regret Bound). Recall that

L̂(π, r) = E(s,a)∼ρE
r(s, a)− E(s,a)∼dπ

µ
r(s, a). (63)

Suppose that we update the reward via the Online Mirror Descent algorithm. Since 0 ≤ r(s, a) ≤ 1

for all s, a, then supπ∈Π,r∈R L̂(π, r) ≤ 1. Applying Theorem K.2 with B = 1, the regret is given by

λn = sup
r∈R

1

n

n∑
i=1

L̂(πi, r)−
1

n

n∑
i=1

L̂(πi, ri) (64)

≤
√

2 ln |R|
n

(65)

=

√
C1

n
, (66)

where C1 = 2 ln |R| and n is the number of updates.
Lemma H.2 (Statistical Difference of Losses). With probability at least 1− δ,

L(π, r) ≤ L̂(π, r) +

√
C

N
, (67)

where C = ln 2|R|
δ and N is the number of state-action pairs from the expert.

Proof. By definition of L and L̂, for any π ∈ Π and r ∈ R, we have∣∣∣L(π, r)− L̂(π, r)
∣∣∣ = ∣∣∣E(s,a)∼d

πE
µ

r(s, a)− E(s,a)∼dπ
µ
r(s, a)

−
(
E(s,a)∼ρE

r(s, a)− E(s,a)∼dπ
µ
r(s, a)

)∣∣∣ (68)

=
∣∣∣E(s,a)∼d

πE
µ

r(s, a)− E(s,a)∼ρE
r(s, a)

∣∣∣ (69)

=

∣∣∣∣∣∣E(s,a)∼d
πE
µ

r(s, a)− 1

N

N∑
(si,ai)∈DE

r(si, ai)

∣∣∣∣∣∣ (70)

≤
√

1

2N
ln

2|R|
δ

(71)

≤
√

C

N
, (72)

where C = 4 ln 2|R|
δ . The fourth line holds by Hoeffding’s inequality and a union bound. Specifi-

cally, we apply Corollary K.1 with c = 1, since all rewards are bounded by 0 and 1. We take a union
bound over all reward functions in the reward class R. Note that the terms involving π cancel out,
so the union bound only applies to the reward function classR. Rearranging terms gives the desired
bound.

Lemma H.3 (Advantage Bound). Suppose that ϵ = 0 and reward function ri are the input parame-
ters to PSDP, and πi = (πi

1, π
i
2, . . . , π

i
H) is the output learned policy. Then, with probability at least

1− δ,

Es∼dπE max
a∈A

Aπi(s, a) ≤ min

{
ϵρmix
Π + ϵρmix

Π

√
C0

N
,CB

(
ϵρmix
Π + ϵρmix

Π

√
C0

N +M

)}
(73)

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, and C0 = 2 ln |Π||R|
δ .

27

Published as a conference paper at ICLR 2025

Proof. Suppose that ϵ = 0 is the input accuracy parameter to PSDP, and the advantages are
computed under reward function ri. PSDP is guaranteed to terminate and output a policy πi =
(πi

1, π
i
2, . . . , π

i
H), such that

Hϵ ≥ max
π′∈Π

Esh∼ρmix,hEa∼π′(·|s)A
πi

h (sh, a) (74)

for all h ∈ [H] (Bagnell et al., 2003). Consequently, we have

Hϵ ≥ max
π′∈Π

Es∼ρmixEa∼π′(·|s)A
πi(s, a) (75)

= max
π′∈Π

Es∼ρmixEa∼π′(·|s)A
πi(s, a) + ϵρmix

Π,ri
− ϵρmix

Π,ri
(76)

= Es∼ρmix max
a∈A

Aπi(s, a)− ϵρmix
Π,ri

(77)

By definition, 0 ≤ ϵρmix
Π,ri
≤ ϵΠ, so for any x ∈ R, x− ϵρmix

Π,ri
≥ x− ϵρmix

Π , so

Hϵ ≥ Es∼ρmix max
a∈A

Aπi(s, a)− ϵρmix
Π . (78)

Rearranging the terms gives us

Es∼ρmix max
a∈A

Aπi(s, a) ≤ Hϵ+ ϵρmix
Π (79)

= ϵρmix
Π , (80)

where the last line holds by our assumption that ϵ = 0.

Case 1: Jettison Offline Data. We will first consider the case where offline data is useless, in which
case we will focus on the expert data.

Note that maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and h ∈ [H]. Applying the definition of ρmix,

Es∼ρmix max
a∈A

Aπi(s, a) = Es∼ρE
max
a∈A

Aπi(s, a) + Es∼ρB
max
a∈A

Aπi(s, a). (81)

Consequently, we know that

ϵρmix
Π ≥ Es∼ρE

max
a∈A

Aπi(s, a) (82)

=
1

N

N∑
si∈DE

max
a∈A

Aπi(si, a) (83)

Because maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and a ∈ A, we know maxa∈A Aπi(si, a) ≤ ϵρmix
Π

for all si ∈ DE . We apply Hoeffding’s inequality (Corollary K.1) with c = (ϵρmix
Π)

2 to bound the
difference between Es∼dπE maxa∈A Aπi(s, a) and Es∼ρE

maxa∈A Aπi(s, a). We apply a union
bound on the policy and reward function. As stated previously, maxa∈A Aπi(s, a) ≥ 0 for all
s ∈ S. By Hoeffding’s inequality, with probability 1− δ, we have∣∣∣∣Es∼d

πE
µ

max
a∈A

Aπi(s, a)− Es∼ρE
max
a∈A

Aπi(s, a)

∣∣∣∣ = ∣∣∣∣Es∼d
πE
µ

max
a∈A

Aπi(s, a) (84)

− 1

N

N∑
si∈DE

max
a∈A

Aπi(si, a)

∣∣∣∣∣ (85)

≤
√
(ϵρmix

Π)
2 1

2N
ln
|Π||R|

δ
(86)

≤ϵρmix
Π

√
C0

N
, (87)

where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible

policies is upper bounded by the cardinalities of the policy and reward classes. Rearranging the
terms and applying Equation 82 yields

Es∼d
πE
µ

max
a∈A

Aπi(s, a) ≤ ϵρmix
Π + ϵρmix

Π

√
C0

N
(88)

28

Published as a conference paper at ICLR 2025

Case 2: Leverage Offline Data. Next, we consider the case where offline data is useful, specifically
where there is good coverage of the expert data.

Next, we apply Hoeffding’s inequality (Corollary K.1) to bound the difference between
Es∼ν maxa∈A Aπi(s, a) and Es∼ρmix maxa∈A Aπi(s, a). We apply a union bound on the policy
and reward function. We use c = ϵ2Π for a similar argument to the one used in Case 1. As stated
previously, maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S. By Hoeffding’s inequality, with probability 1− δ,
we have∣∣∣∣Es∼ν max

a∈A
Aπi(s, a) −Es∼ρmix max

a∈A
Aπi(s, a)

∣∣∣∣ = ∣∣∣∣Es∼ν max
a∈A

Aπi(s, a) (89)

− 1

N +M

∑
si∈DN+M

mix

max
a∈A

Aπi(si, a)

∣∣∣∣∣∣
≤
√
(ϵρmix

Π)
2 1

2(N +M)
ln
|Π||R|

δ
(90)

≤ϵρmix
Π

√
C0

N +M
(91)

where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible

policies is upper bounded by the cardinalities of the policy and reward classes. Rearranging the
terms and applying Equation 79 yields

Es∼ν max
a∈A

Aπi(s, a) ≤ ϵρmix
Π + ϵρmix

Π

√
C0

N +M
. (92)

By linearity of expectation, and using the fact that 1 ≤ CB <∞, we have

Es∼dπE max
a∈A

Aπi(s, a) =
N

N +M
Es∼dπE max

a∈A
Aπi(s, a)

+
M

N +M
Es∼dπE max

a∈A
Aπi(s, a) (93)

≤ N

N +M
Es∼dπE max

a∈A
Aπi(s, a)

+ CB
M

N +M
Es∼dπB max

a∈A
Aπi(s, a) (94)

≤ CB
N

N +M
Es∼dπE max

a∈A
Aπi(s, a)

+ CB
M

N +M
Es∼dπB max

a∈A
Aπi(s, a) (95)

≤ CBEs∼ν max
a∈A

Aπi(s, a) (96)

Applying Equation 96 to Equation 92, we have

Es∼dπE max
a∈A

Aπi(s, a) ≤ CBEs∼ν max
a∈A

Aπi(s, a) (97)

≤ CB

(
ϵρmix
Π + ϵρmix

Π

√
C0

N +M

)
(98)

Final Result. Using the bounds from Case 1 and Case 2, we have

Es∼dπE max
a∈A

Aπi(s, a) ≤ min

{
ϵρmix
Π + ϵρmix

Π

√
C0

N
, (99)

CB

(
ϵρmix
Π + ϵρmix

Π

√
C0

N +M

)}
(100)

29

Published as a conference paper at ICLR 2025

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, and C0 = 2 ln |Π||R|
δ .

Lemma H.4 (Loss Bound). Suppose that ϵ = 0 and reward function ri are the input parameters to
PSDP, and πi = (πi

1, π
i
2, . . . , π

i
H) is the output learned policy. Then, with probability at least 1− δ,

L̂(πi, ri) ≤ min

{
ϵρmix
Π + ϵρmix

Π

√
C0

N
,CB

(
ϵρmix
Π + ϵρmix

Π

√
C0

N +M

)}
+

√
C

N
. (101)

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .

Proof. By Lemma H.2, we have

L̂(πi, ri) ≤ L(πi, ri) +

√
C

N
(102)

= E(s,a)∼d
πE
µ

[ri(s, a)]− E(s,a)∼d
πi
µ
[ri(s, a)] +

√
C

N
(103)

=
1

H

(
V πE
ri − V πi

ri

)
+

√
C

N
(104)

=
1

H

(
H∑

h=1

E(sh,ah)∼d
πE
h

Aπi

ri,h
(sh, ah)

)
+

√
C

N
(105)

≤ 1

H

(
H∑

h=1

Esh∼d
πE
h

max
a∈A

Aπi

ri,h
(sh, a)

)
+

√
C

N
(106)

=
1

H

(
HEs∼dπE max

a∈A
Aπi

ri (s, a)

)
+

√
C

N
(107)

where C = ln 2|R|
δ . The second line holds by the definition of L(πi, ri), and the third line holds

by the definition of the reward-indexed value function. The fourth line holds by the Performance
Difference Lemma (PDL). Applying Lemma H.3, we have

L̂(πi, ri) ≤ min

{
ϵρmix
Π + ϵρmix

Π

√
C0

N
,CB

(
ϵρmix
Π + ϵρmix

Π

√
C0

N +M

)}
+

√
C

N
. (108)

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .

30

Published as a conference paper at ICLR 2025

H.2 FINITE SAMPLE ANALYSIS OF ALGORITHM 2

Theorem H.5 (Sample Complexity of Algorithm 2). Suppose that PSDP’s accuracy parameter is
set to ϵ = 0. Then, upon termination of Algorithm 2, with probability at least 1− δ, we have

V πE − V π ≤ H min

{
ϵρmix
Π + ϵρmix

Π

√
CΠ,R

N
,CB

(
ϵρmix
Π + ϵρmix

Π

√
CΠ,R

N +M

)}
︸ ︷︷ ︸

Misspecification Error

+ H

√
CR

N︸ ︷︷ ︸
Statistical Error

+H

√
ln |R|
n︸ ︷︷ ︸

Reward Regret

(109)
where H is the horizon, N is the number of expert state-action pairs, M is the number of of-
fline state-action pairs, n is the number of reward updates, CΠ,R = ln |Π||R|

δ , CR = ln |R|
δ , and

1 ≤ CB :=
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞
≤ ∞

Theorem H.5 upper bounds the sample complexity of Algorithm 2 in the offline data setting. The
bound differs from Theorem 3.3 in the following ways. First, the policy optimization error term
vanishes by the assumption that ϵ = 0. Importantly, the assumption of ϵ = 0 is not necessary but
rather convenient, as the ϵ > 0 case was presented in Theorem 3.3. Second, offline data is incor-
porated into the reset distribution, resulting in a modified misspecification error. Finally, the finite
expert sample regime is considered, resulting in statistical error of estimating the expert policy’s
state distribution dπE

µ with the distribution over samples ρE . We use this concentrability coefficient
CB with respect to the expert policy for Theorem H.5 in order to obtain a tight bound on the sample
complexity.

Proof. We consider the imitation gap of the expert and the averaged learned policies, π,

V πE − V π =
1

n

n∑
i=0

(
Eζ∼πE

[
H∑

h=1

r∗(sh, ah)

]
− Eζ∼πi

[
H∑

h=1

r∗(sh, ah)

])
(110)

=
1

n
H

n∑
i=0

(
E(s,a)∼d

πE
µ

[r∗(s, a)]− E(s,a)∼d
πi
µ
[r∗(s, a)]

)
(111)

=
1

n
H

n∑
i=0

L(πi, r
∗) (112)

≤ 1

n
Hmax

r∈R

n∑
i=0

L(πi, r) (113)

where n is the number of updates to the reward function. The second line holds by definition of dπµ.
The third line holds by definition of L. Applying the Statistical Difference of Losses (Lemma H.2),
we have

V πE − V π ≤ 1

n
Hmax

r∈R

n∑
i=0

(
L̂(πi, r) +

√
C

N

)
(114)

=
1

n
Hmax

r∈R

n∑
i=0

(
L̂(πi, r)− L̂(πi, ri) + L̂(πi, ri) +

√
C

N

)
(115)

where C = ln 2|R|
δ and M is the number of state-action pairs from the expert. Applying the Reward

Regret Bound (Lemma H.1), we have

V πE − V π ≤ 1

n
H

n∑
i=0

(
L̂(πi, ri) +

√
C

N

)
+H

√
C1

n
(116)

where C1 = 2 ln |R|. Applying the Loss Bound (Lemma H.4), we have

V πE − V π ≤ 1

n
H

n∑
i=0

(
min

{
ϵρmix
Π + ϵρmix

Π

√
C0

N
,CB

(
ϵρmix
Π + ϵρmix

Π

√
C0

N +M

)}

+

√
C

N

)
+H

√
C1

n
, (117)

31

Published as a conference paper at ICLR 2025

which simplifies to

V πE − V π ≤ Hmin

{
ϵρmix
Π + ϵρmix

Π

√
C0

N
,CB

(
ϵρmix
Π + ϵρmix

Π

√
C0

N +M

)}
+H

√
C

N
,+H

√
C1

n
,

(118)

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, n is the number of reward updates, C0 = 2 ln |Π||R|
δ , C =

ln 2|R|
δ , and C1 = 2 ln |R|.

Proof Sketch of Corollary 4.1. The proof follows from Theorem H.5, and more specifically,
Lemma H.3. The notable change is, instead of using the concentrability coefficient with the ex-
pert policy, πE , we use a concentrability coefficient with respect to the optimal realizable policy, π⋆,
such that

C ′
B :=

∥∥∥∥∥ dπ
⋆

µ

dπB
µ

∥∥∥∥∥
∞

(119)

Then, in Case 2 of Lemma H.3 (Equation 94), we perform the change of distribution from dπE
µ to

dπ
⋆

µ and then to dπB
µ , resulting in an additional TV distance to bound the first distribution change.

Notably, this factor is independent of our offline data, and because TV distance is positive, it can
be added to both Case 1 and Case 2, resulting in a tradeoff that depends solely on the offline data
distribution’s coverage of π⋆’s state distribution, as well as the other standard terms (ϵΠ, number of
expert samples, number of offline data samples, etc). We use the standard concentrability coefficient
CB with respect to the expert policy for Theorem H.5 in order to obtain a tighter bound on the
sample complexity.

32

Published as a conference paper at ICLR 2025

I IMPLEMENTATION DETAILS

We describe the implementation details in this section. We compare GUITAR against two behavioral
cloning baselines (Pomerleau, 1988) and two IRL baselines (Swamy et al., 2023). The first behav-
ioral cloning baseline is trained exclusively on the expert data, BC(πE), and the second is trained
on the combination of expert and offline data, BC(πE + πb), when offline data is available. We
compare against two IRL algorithms: (1) Swamy et al. (2021a)’s moment-matching algorithm, MM,
a traditional IRL algorithm with the Jensen-Shannon divergence replaced by an integral probability
metric, and (2) Swamy et al. (2023)’s efficient IRL algorithm, FILTER, that exclusively leverages
expert data for resets.

We train all IRL algorithms with the same expert data and hyperparameters. The difference between
MM, FILTER, and GUITAR can be summarized by the reset distribution they use. MM resets the
learner to the true starting state (i.e. ρ = µ), while FILTER resets the learner to expert states (i.e.
ρ = ρE). GUITAR resets the learner to offline data (i.e. ρ = ρB), when offline data is available,
and otherwise resets to a subset of the expert data. In other words, we isolate the effects of the reset
distribution by using the same underlying IRL algorithm but simply change the reset distribution
used in the RL optimizer step. This makes GUITAR easy to implement and easily adaptable to other
IRL algorithms.

We adapt Ren et al. (2024)’s codebase for our implementation and follow their implementation de-
tails. We restate Ren et al. (2024)’s details here, with modifications where necessary. We apply
Optimistic Adam (Daskalakis et al., 2017) for all policy and discriminator optimization. We also
apply gradient penalties (Gulrajani et al., 2017) on all algorithms to stabilize the discriminator train-
ing. The policies, value functions, and discriminators are all 2-layer ReLu networks with a hidden
size of 256. We sample 4 trajectories to use in the discriminator update at the end of each outer-loop
iteration, and a batch size of 4096. In all IRL variants (MM, FILTER, and GUITAR), we re-label
the data with the current reward function during policy improvement, rather than keeping the labels
that were set when the data was added to the replay buffer. Ren et al. (2024) empirically observed
such re-labeling to improve performance. We release a forked version of Ren et al. (2024)’s code:
https://nico-espinosadice.github.io/efficient-IRL/.

We calculate the inter-quartile mean (IQM) and standard errors across seeds for all experiments.

I.1 MUJOCO TASKS

I.1.1 SETTING WITHOUT GENERATIVE MODEL ACCESS

We detail below the specific implementations used in all MuJoCo experiments (Ant, Hopper, and
Humanoid).

PARAMETER VALUE

BUFFER SIZE 1E6
BATCH SIZE 256
γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE LIN. SCHED. 7.3E-4
POLICY ARCHITECTURE 256 X 2
STATE-DEPENDENT EXPLORATION TRUE
TRAINING TIMESTEPS 1E6

Table 1: Hyperparameters for baselines using SAC.

Expert Data. To experiment under the conditions of limited expert data, we set the amount of
expert data to be the lowest amount that still enabled the baseline IRL algorithms to learn. For Ant,
this was 50 expert state-action pairs. For Humanoid, this was 100 expert state-action pairs. For
Hopper, this was 600 expert state-action pairs.

33

https://nico-espinosadice.github.io/efficient-IRL/

Published as a conference paper at ICLR 2025

Joint Default Modified
Right hip x [−25◦, 5◦] [0◦, 30◦]
Left hip x [−25◦, 5◦] [0◦, 30◦]
Left knee [−160◦,−2◦] [−100◦, 50◦]

(a) Joint angle range differences

Body Part Default Modified
Right thigh 0.06 0.09 (+50%)
Right foot 0.075 0.1 (+33%)
Left lower arm 0.031 0.04 (+29%)

(b) Size parameter differences

Table 2: Comparison between default and modified Humanoid configurations.

Offline Data. We generate the offline data by rolling out the expert policy with a probability pπB

tremble
of sampling a random action. pπB

tremble = 0.25 for the Ant environment and pπB

tremble = 0.05 for the
Hopper and Humanoid environments.

Discriminator. For our discriminator, we start with a learning rate of 8e−4 and decay it linearly
over outer-loop iterations. We update the discriminator every 10,000 actor steps.

Baselines. We train all behavioral cloning baselines for 300k steps for Ant, Hopper, and Hu-
manoid. For MM and FILTER baselines, we follow the exact hyperparameters in Ren et al. (2024),
with a notable modification to how resets are performed, discussed below. We use the Soft Actor
Critic (Haarnoja et al., 2018) implementation provided by Raffin et al. (2021) with the hyperparam-
eters in Table 1.

Reset Substitute. We mimic resets by training a BC policy on the reset distribution specified
by each algorithm. MM does not employ resets. FILTER’s reset distribution is the expert data.
GUITAR’s reset distribution is a mixture of the expert and offline data. The BC roll-in logic follows
Ren et al. (2024)’s reset logic. The probability of performing a non-starting-state reset (i.e. an expert
reset in FILTER) is α. If a non-starting-state reset is performed, we sample a random timestep t
between 0 and the horizon, and we roll out the BC policy in the environment for t steps.

GUITAR. GUITAR follows the same implementation and reset logic as FILTER, with the only
change being the training data for the BC roll-in policy.

I.1.2 MISSPECIFIED SETTING II: DIFFERENT DYNAMICS

For these experiments, we use the same parameters as in Section I.1.1, with the following changes.

Expert Data. We use the same expert policy as in Section I.1.1. However, we do not consider the
finite expert sample regime, so we use 100,000 state-action pairs from the expert policy. Notably,
this expert policy uses the default configuration (i.e. the default MJCF file, MuJoCo’s XML file
specifying the robot’s morphology, including link lengths and joint ranges) and we collect expert
data by rolling out the policy with the default morphology.

Offline Data. We generate the offline data by training a policy under a new configuration, specified
below, otherwise following a similar setup to training the expert policy. We collect 100,000 state-
action pairs from the offline policy by rolling it out with the new morphology.

Baselines. We train all behavioral cloning baselines for 300k steps for Humanoid and Ant. For
MM and FILTER baselines, we otherwise follow the exact hyperparameters in Ren et al. (2024),
except for varying the robot’s morphology. We use the Soft Actor Critic (Haarnoja et al., 2018)
implementation provided by Raffin et al. (2021) with the hyperparameters in Table 1.

Resets. MM resets the learner to the true starting state, so no changes are needed. FILTER resets
the learner to expert states. However, due to the difference in morphology between the expert and
learner, it is not possible to reset the learner to expert states. Therefore, FILTER cannot be applied
in this misspecified setting.

34

Published as a conference paper at ICLR 2025

Joint Default Modified
All Hip joints [−30◦, 30◦] [−20◦, 40◦]
Front Ankles (1,4) [30◦, 70◦] [40◦, 80◦]
Back Ankles (2,3) [−70◦,−30◦] [−60◦,−20◦]

(a) Joint angle range differences

Body Part Default Modified
Auxiliary segments 0.08 0.11 (+38%)
Leg segments 0.08 0.11 (+38%)
Ankle segments 0.08 0.11 (+38%)

(b) Geometry size differences

Table 3: Comparison between default and modified Ant configurations. All changes are applied
consistently to all four legs.

GUITAR. GUITAR follows the same implementation as FILTER, with the notable change of its
reset distribution. Unlike FILTER, GUITAR resets the learner to the offline data, and in contrast to
resetting to expert states, is possible in this case, since the offline behavior policy and the learner
have the same morphology.

Learner. The learner, in both the training and evaluation environments, has a modified morphol-
ogy, as indicated by Table 2 and 3 for Humanoid and Ant, respectively.

I.2 D4RL TASKS

I.2.1 RESETTING TO SUBSETS OF π⋆’S STATE DISTRIBUTION

For the two Antmaze-Large tasks, we use the data provided by Fu et al. (2020) as the expert
demonstrations. We append goal information to the observation for all algorithms following Ren
et al. (2024); Swamy et al. (2023). For our policy optimizer in every algorithm, we build upon the
TD3+BC implementation of Fujimoto & Gu (2021) with the default hyperparameters.

Expert Data and Discriminator. We use the relevant D4RL dataset to learn the discriminator.
For our discriminator, we start with a learning rate of 8e − 3 and decay it linearly over outer-loop
iterations. We update the discriminator every 5,000 actor steps.

Baselines. For behavioral cloning, we run the TD3+BC optimizer for 500,000 steps while zeroing
out the component of the actor update that depends on rewards. We use a reset proportion of α = 1.0.
We provide all runs with the same expert data. All IRL algorithms are pretrained with 10,000 steps
of behavioral cloning on the expert dataset.

Reset Distributions. We reset GUITAR to various reset distributions. We consider the expert
dataset, short trajectories (of length less than 500) in the expert dataset, and long trajectories (of
length greater than or equal to 500) in the expert dataset. We use each of these datasets as different
reset distributions. For the D4RL tasks, we perform true state resets (i.e. reset the learner to states
in the reset distribution), rather than perform BC roll-ins as done in the MuJoCo tasks. Notably,
IRL with resets to the true starting state distribution (i.e. no selective reset distribution) has been
well studied by prior work (Swamy et al., 2023; Ren et al., 2024) and observed to not solve the
Antmaze-Large tasks.

I.2.2 MISSPECIFIED SETTING I: UNREACHABLE EXPERT STATES - BLOCK OBSTRUCTION

For the expert action misspecification experiments, we train an RL expert using TD3+BC. We ap-
pend goal information to the observation for all algorithms following Ren et al. (2024); Swamy et al.
(2023). For our policy optimizer in every algorithm, we build upon the TD3+BC implementation of
Fujimoto & Gu (2021) with the default hyperparameters.

35

Published as a conference paper at ICLR 2025

Start Goal

Figure 5: We plot the coverage of the D4RL Antmaze-Large expert data, including the full
dataset, short trajectories (episodes shorter than 500 steps), and long trajectories (episodes 500 steps
or longer).

Expert Data and Offline Data. We collect expert data by first training an RL expert using
TD3+BC on the following maze map:

MπE
:=


1 1 1 1 1
1 0 0 0 1
1 R 1 G 1
1 1 0 0 1
1 1 1 1 1


where R is the starting state and G is the goal state. The expert policy is then rolled out for 100,000
state-action samples. We collect the offline data by training an RL agent using TD3+BC on the
following maze map:

MπB
:=


1 1 1 1 1
1 1 0 0 1
1 R 1 G 1
1 0 0 0 1
1 1 1 1 1


and then rolling out the policy for 100,000 state-action samples. The differences between MπE

and
MπB

are bolded.

Discriminator. We use the expert data to learn the discriminator. For our discriminator, we start
with a learning rate of 8e−3 and decay it linearly over outer-loop iterations. We update the discrim-
inator every 5,000 actor steps. We use 10 sample trajectories for the discriminator update. Since
this is a strongly misspecified setting, we only use the x-position of the agent as the input to the
discriminator for all IRL algorithms. The explanation for this design choice is that the learner’s and
the expert’s behaviors may differ how they solve the maze (i.e. the y-position), but the goal is to
finish the maze in some way (i.e. dependent on the x-position).

Baselines and Reset Distributions. For behavioral cloning, we run the TD3+BC optimizer for
500,000 steps while zeroing out the component of the actor update that depends on rewards. We use
a reset proportion of α = 1.0. We provide all runs with the same expert data. Due to the strong
misspecification in this task, we do not pretrain the IRL algorithms with behavioral cloning.

36

Published as a conference paper at ICLR 2025

MM is reset to the true starting state, while FILTER is reset to the expert data. GUITAR is reset to
the offline data (i.e. πB’s data).

Misspecification. The learner is trained and evaluated on the map MπB
. Notably, this difference

ensures that the expert policy solves the maze via one path, and the learner must solve it in a different
path, where the only shared states can be the start and goal states. For the expert and offline data
collection, as well as the learner’s environment, we add a BackWallGoalWrapper, which allows
the expert to achieve a reward of 1.0 by solving the maze through the “top hallway,” but due to the
block in the learner’s maze, the learner is only able to achieve a reward of 0.9 by solving the maze
through the “bottom hallway.” The BackWallGoalWrapper’s required x-position to solve the
maze is 4.0.

It should be noted that this is not the typical Antmaze-Umaze task, which can typically be solved
by IRL approaches. In this setting, we consider the strongly misspecified setting, where the expert
policy solves the maze one way, but the learner must solve it differently due to differences in the
maze at “test-time.” The degree of exploration difficulty due to the misspecification is likely the
reason for the poor performance of the baselines.

I.2.3 MISSPECIFIED SETTING I: UNREACHABLE EXPERT STATES – TIME CONSTRAINT

Expert Data and Offline Data. We train an expert policy via RL to solve the
Antmaze-Umaze-v2 task and roll out the policy in the default Umaze configuration to collect
100,000 state-action pairs. We use the same policy for the offline data, but we stop the roll-out once
the “safety constraint” is reached (described below). This means that the offline data consists of only
states from the “first hallway” in the maze.

Misspecification. To incorporate a “safety constraint,” such that the learner is not able to reach the
“bottom halllway” of the maze, we impose a time constraint in the learner’s environment, such that
after ‘T=50‘ steps, the episode terminates.

Discriminator. We use the expert data to learn the discriminator. For our discriminator, we start
with a learning rate of 8e − 3 and decay it linearly over outer-loop iterations. We update the dis-
criminator every 5,000 actor steps. We use 10 sample trajectories for the discriminator update. We
use full agent’s observation for the discriminator input.

Baselines and Reset Distributions. For behavioral cloning, we run the TD3+BC optimizer for
500,000 steps while zeroing out the component of the actor update that depends on rewards. We use
a reset proportion of α = 1.0. We provide all runs with the same expert data. Due to the strong
misspecification in this task, we do not pretrain the IRL algorithms with behavioral cloning.

MM is reset to the true starting state, while FILTER is reset to the expert data. GUITAR is reset to
the offline data (i.e. πB’s data).

37

Published as a conference paper at ICLR 2025

J SETTING WITHOUT GENERATIVE MODEL ACCESS

We consider two additional constraints common in real-world robotics applications: settings with
finite expert data and environments without generative model access (i.e. where the robot cannot
be reset to an arbitrary state). To ensure we train in the low-data regime, we used the minimum
amount of expert data that allowed the baseline IRL algorithm (MM) to learn in each environment
(notably, less than one full episode). The offline data was generated by rolling out the pretrained
expert policy with a probability pπb

tremble of sampling a random action. We mimic resets by rolling
in with a BC policy trained on the corresponding reset distribution. More specifically, FILTER’s
reset distribution consists of the the expert states, so FILTER rolls in with BC(πE). GUITAR’s reset
distribution is a mixture of expert and offline states, so GUITAR rolls in with BC(πE + πb). MM
continues to reset to the environment’s true starting state.

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps ×106

0

1000

2000

3000

4000

IQ
M

of
J(

π
)

Hopper-v3, ptremble = 0.01

0.2 0.4 0.6 0.8 1.0
Env. Steps ×106

0

2000

4000
IQ

M
of

J(
π

)

Ant-v3, ptremble = 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps ×106

0

2000

4000

IQ
M

of
J(

π
)

Humanoid-v3, ptremble = 0.01

BC(πE) BC(πE + πB) MM FILTER, α = 0.5 GUITAR, α = 0.5 πE

Figure 6: Environment without arbitrary reset access. Standard errors are computed across 5
seeds. Expert data is a partial trajectory (i.e. a subset of one full trajectory).

Based on Theorem 4.1, the sample efficiency of IRL should improve as the reset distribution’s
coverage of the expert’s state distribution improves. More formally, this is when

CB =

∥∥∥∥dπE
µ

ρ

∥∥∥∥
∞
→ 1, (120)

where dπE
µ is the expert’s state distribution and ρ is the reset distribution. Since GUITAR resets to

BC(πE +πb), the performance of BC(πE +πb) is an estimation of the GUITAR’s reset distribution’s
coverage of the expert’s state distribution, and correspondingly for FILTER’s reset distribution
and BC(πE). From Figure 6, we see that as the reset distribution’s coverage of the expert’s states
improves—as measured by the corresponding BC performance—so does the performance of the IRL
algorithm. In the case where the BC performance is poor (Humanoid-v3), there is no observable
benefit to modified resets.

38

Published as a conference paper at ICLR 2025

K USEFUL LEMMAS

Theorem K.1 (Hoeffding’s Inequality). If Z1, . . . , ZM are independent with P (a ≤ Zi ≤ b) = 1
and common mean µ, then, with probability at least 1− δ,

|ZM − µ| ≤
√

c

2M
ln

2

δ
(121)

where c = 1
M

∑M
i=1(bi − ai)

2.

Lemma K.2 (Online Mirror Descent Regret). Regret is defined as

λN =
1

N

N∑
t=1

ℓ(ŷt, zt)− inf
f∈F

1

N

N∑
t=1

ℓ(f , zt). (122)

Given F = ∆(F ′) and ⟨f ,∇t⟩ = Ef ′∼f [ℓ(f
′, (xt, yt))], where sup∇∈D∥∇∥∞ ≤ B, let R be any

1-strongly convex function. If we use the Mirror descent algorithm with η =

√
2 supf∈F R(f)

NB2 , then,

λn ≤
√

2B2 supf∈F R(f)

N
. (123)

If R is the negative entropy function, then supf∈F R(f) ≤ log |F ′|.

39

	Introduction
	Imitation Learning in the Misspecified Setting
	Imitation Under Misspecification is Hard

	Approximate Policy Complete Inverse Reinforcement Learning
	Approximate Policy Completeness
	Efficient IRL with Approximate Policy Completeness
	Is Local Search Sufficient in the Misspecified Setting?

	The Theory of Where to Search Under Misspecification
	Augmenting The Reset Distribution with Offline Data
	When is Offline Data Beneficial in IRL?

	The Practice of Where to Search Under Misspecification
	Related Work
	Additional Empirical Results Under Misspecification
	Misspecified Setting II: Different Dynamics
	Are States the Unique Optimal Reset Distribution?

	Discussion
	Misspecified RL with Expert Feedback
	Statistically Optimal Imitation under Misspecification
	Proof of Theorem 2.1

	Further Explanation of GUITAR and PSDP
	Proofs of Section 3
	Proof of Theorem 3.3

	Proofs of Section 4
	Lemmas of Theorem H.5
	Finite Sample Analysis of Algorithm 2

	Implementation Details
	MuJoCo Tasks
	Setting without Generative Model Access
	Misspecified Setting II: Different Dynamics

	D4RL Tasks
	Resetting to Subsets of 's State Distribution
	Misspecified Setting I: Unreachable Expert States - Block Obstruction
	Misspecified Setting I: Unreachable Expert States – Time Constraint

	Setting Without Generative Model Access
	Useful Lemmas

