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Abstract

Large language model (LLM) performance is
increasingly linked to not just the size but also
the quality of internet-derived datasets. While
LLM data selection methods have evolved,
their evaluations often rely on overall metrics
that may not capture their impacts on differ-
ent downstream task performances. Motivated
by this gap, our study finds that selecting pre-
training data based on loss metrics could result
in poor performance on knowledge-intensive
benchmarks, such as the MMLU. Addressing
this, we focus on filtering out low-information
content, specifically ads, and create an effective
ad classifier for this purpose. Besides, the most
straightforward approach to assess the quality
of pretraining datasets is to train a full-scale
LLM, but this is prohibitively expensive and
impractical for large-scale comparative stud-
ies. To overcome this, we use a smaller, 100M
parameter LLM as a proxy to predict the down-
stream performance of larger models. We ef-
fectively demonstrate the correlation between
the small model’s proxy indicators and the
large SFT model’s downstream task metrics.
This smaller model evaluation technique not
only greatly shortens the cycle time for refining
data selection strategies but also achieves sig-
nificant budget savings, amounting to 92.7%.
Finally, our findings suggest eliminating ad-
vertisement content not only improves perfor-
mance on knowledge-intensive benchmarks but
also yields commendable results across various
other capability dimensions within benchmarks.
We will publish part of our work soon.

1 Introduction

Pre-training on extensive unlabeled and uncrated
corpus sourced from internet snapshots (Gao et al.,
2020; Penedo et al., 2023; Computer, 2023; Sol-
daini et al., 2024), empowers large language mod-
els (LLMs) with unprecedented capabilities across
various domains. Meanwhile, the performance
of LLMs scales as a power law with regards as

to the data quantity (Kaplan et al., 2020). How-
ever, alongside quantity, the quality of the corpus
is equally crucial. Recent consensus suggests that
high-quality corpora have the potential to signif-
icantly alter scaling laws (Sorscher et al., 2022),
enabling performance on par with large-scale mod-
els while requiring leaner training costs (Gunasekar
et al., 2023; Eldan and Li, 2023)

Therefore, many studies have explored LLM pre-
training data selection, including rule-based (Rae
et al., 2021), metric-based (Coleman et al., 2019;
Marion et al., 2023a; Tirumala et al., 2023), and
semantics-based (Brown et al., 2020), each em-
ploying different criteria for data quality. Yet, these
methods are commonly evaluated by overall met-
rics, overlooking the detailed influence on different
downstream task performances.

Motivated by this gap, we investigate the impact
of these strategies on downstream tasks. Surpris-
ingly, our experiments reveal while loss filtering
(Marion et al., 2023b) enhances text fluency, it can
also diminish performance on knowledge-intensive
benchmarks like MMLU (Hendrycks et al., 2020).
This decline is linked to two main issues: first, the
tendency of loss filtering to preferentially preserve
fluency-centric marketing content, leading to its
overrepresentation; second, the potential exclusion
of knowledge-dense texts that incur higher losses
when they elude the capturing capabilities of the
underlying LLM. Moreover, domain-specific filter-
ing(e.g., Wikipedia classifier (Brown et al., 2020)),
although intended to curate domain-relevant data,
risks losing valuable cross-domain information.

Based on the previous discussion, we pose two
questions:

1. Is it possible to devise a data selection strat-
egy that minimizes the inclusion of low-
information content while preserving high-
information content?

2. How can we quickly assess the effectiveness



of data selection strategies in pre-training
scenarios?

To answer the first question, we focus on identi-
fying common traits within web datasets to address
the prevalence of low-information content in cor-
pora. Our investigation reveal that advertisements
significantly contribute to this issue. In response,
we develop an ad classifier, a step beyond the initial
mentions in prior work (Wu et al., 2021), providing
a detailed approach and thorough analysis of its
positive impact on LLM benchmarks, especially
knowledge-intensive benchmarks.

To answer the second question, setting aside the
costly approach of directly training an LLM end-
to-end, D4 (Tirumala et al., 2023) have taken a
step forward by exploring the use of proxy met-
rics from smaller models to validate the quality
of pre-training data filtering. However, there are
several limitations to these approaches. Firstly, in-
sufficient training (e.g., 1.3B-parameter models on
40B tokens, and 6.7B-parameter models on 100B
tokens) obscures the manifestation of higher-order
abilities, such as knowledge comprehension as mea-
sured by tasks like the MMLU. Secondly, proxy
indicators, including perplexity (PPL) from pre-
training and various NLP task validation sets, lack
sufficient correlation with downstream task per-
formance, limiting domain-specific insights. To
address these issues, on the one hand, we evaluate
base models after SFT, which reveals higher-order
skills like knowledge comprehension even with
limited training. On the other hand, we enhance
the proxy indicators for small models by including
PPL based on validation sets converted from down-
stream tasks, enabling early downstream perfor-
mance predictions and quantifying the correlation
between small model proxies and post-SFT large-
model downstream metrics. Specifically, we find
that the performance of a larger-scale SFT model
can be well characterized through the PPL of a
100M proxy LLM on the validation sets.

Using a 100M-parameter proxy model for rapid
pre-training iterations (pretraining budget analysis
see Section 5.4), we comprehensively assess pop-
ular data selection methods for LLMs, comparing
them against our ad classifier’s performance. As
depicted in Figure 1, our analysis pipeline high-
lights the impact of various strategies on model
efficacy. Our findings suggest that eliminating ad-
vertisement content not only improves performance
on knowledge-intensive benchmarks but also yields
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Figure 1: Ad Filtering Outperforms Other Methods
Across Three Pre-training Data Selection Techniques

commendable results across various other capabil-
ity dimensions within benchmarks.

In summary, our contributions are as follows:

1. We demonstrate that employing a 100M-
parameter LLM can reliably predict the utility
of pretraining corpora for larger models. We
comprehensively establish the correlation be-
tween the proxy indicators of the small model
and the downstream task metrics of the large
SFT model.

2. We emphasize that by using the proxy small
model evaluation mechanism with 100M pa-
rameters, we can dramatically reduce the it-
eration cycles of pre-training data selection
strategies, resulting in a substantial budgetary
saving of 92.7%.

3. We highlight that eliminating advertisement
content substantially not only enhances the ef-
ficacy of knowledge-intensive benchmarks but
also yields commendable results across vari-
ous other capability dimensions within bench-
marks. Additionally, the extent of these perfor-
mance enhancements varies depending on the
data filtering applied, indicating differential
downstream effects.

2 Related Work
2.1 Data Selection

As previously emphasized, the importance of high-
quality data for training LLMs cannot be overstated.
Research on data selection extends across various
fields, sharing fundamental principles despite di-
verse applications. We identify four primary data
selection methodologies and provide a systematic
analysis of each in the following sections.



+10.75

+10.0
+8.29

+5.64

+3.7
g 1319

+1.8

Relative Scores
+
(9.}
=)

+0.92 +1.04;

-5.0

RACE-high MMLU TriviaQA

< +0.
'0'38+0_21

StoryCloze

Loss middle 50%
Wikipedia threshold 0.075
Ad threshold 0.9

+8

+5.8

4155 +1.74 | a

+0.16 10143
-0.55 -0.44

-1.96
-2.58

HellaSwag PIQA WinoGrande OpenBookQA

Figure 2: The relative score of performance between different data selection methods with Non-pruning method. In
this Figure, each of the models is pre-trained with 300B tokens. See Table 1 and 2 for absolute performance of

downstream tasks.

Metric-Based Data Selection This line of work
primarily focuses on filtering data based on auto-
mated metrics generated through dynamic model
training. One part of these works explores data
filtering on computer vision (CV), with filtering
strategies including prioritizing hard sample sam-
pling(Coleman et al., 2019), moderate sample sam-
pling(Xia et al., 2023), uncertainty sampling, and
filtering based on dynamic changes in statistical
values across different epochs(Paul et al., 2021).
Another part of the work explores data filtering
in the context of NLP and LLM scenarios. The
filtering approaches include using perplexity scor-
ing(Marion et al., 2023a; Wang et al., 2023), cus-
tom IFD(Li et al., 2023a), and multi-metric loss
fitting(Cao et al., 2023). In summary, these efforts
primarily rely on statistical patterns in the data to
obtain valuable samples for model training. How-
ever, they struggle to perceive the semantic infor-
mation in the samples and have difficulty under-
standing the diversity distribution of the samples.

Semantics-based Data Selection This line of
work primarily involves scoring data based on the
Wikipedia & Web classifier(Brown et al., 2020;
Touvron et al., 2023), reward model(Du et al.,
2023), and LLM(Eldan and Li, 2023; Chen et al.,
2023; Li et al., 2023b). Intuitively, a semantics-
based scoring strategy should have the ability to
recognize semantics. However, at the same time,
special attention must be paid to whether the filter-
ing is biased(Gao, 2021).

Geometry-based Data Selection This line of
work primarily involves conducting diversity-
prioritized sampling based on the clustering sit-
uation in the feature space. These works often

combine with metric-based or semantic-based data
filtering strategies(Maharana et al., 2023; Du et al.,
2023; Tirumala et al., 2023).

Rule-based Data Selection Several research
works (Computer, 2023; Soldaini et al., 2024; Rae
et al., 2021; Workshop et al.) tries to establish
a number of hand-curated filtering techniques to
remove low-quality examples. While these hand-
curated filters can mitigate the inclusion of certain
noisy examples, they cannot serve as a comprehen-
sive substitute for a robust metric that assesses the
’quality’ of individual training examples.

2.2 Evaluation of Pre-training Data Selection

In addition to D4 (Tirumala et al., 2023) as men-
tioned in section 1, (Marion et al., 2023b) exhibits
pre-trained models of 124M and 1.5B parameters
with Validation Set Perplexity and downstream SFT
task evaluation. However, it is limited by the use
of a validation set whose domain is aligned with
the training dataset’s distribution. Perplexity rank-
ings within in-domain validation sets can be in-
consistent across different data selection strategies,
potentially misrepresenting a model’s true capabili-
ties. Furthermore, it only reports classification task
performance on GLUE after SFT, offering a partial
view of LLM’s overall abilities. We not only extend
beyond those mentioned in comparison with D4
but also include our choice of validation sets. We
select three types of validation sets, which are all
out of training set domains, to reflect the model’s
generalization on smaller scales.
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3 Method

As previously outlined, the data selection pipeline
is depicted in Figure 1. Within this pipeline, a
small proxy model evaluation mechanism is em-
ployed to predict the downstream performance of
the larger SFT models. Our investigation com-
mences with an analysis of prevalent LLM data
selection techniques, including the loss filter and
the Wikipedia Classifier, with a focus on their in-
fluence on downstream tasks. Subsequently, we
delve into the development and efficacy of the ad-
vertisement classifier. The critical components of
this process are elucidated below.

3.1 Small Proxy Model Evaluation
Mechanism

We scale up the parameters of our pre-trained
model in a stepwise manner, initially from 100M to
1B and subsequently from 1B to 3B. Each data fil-
tering strategy undergoes a thorough performance
evaluation. We explore the potential of smaller
models to predict the outcomes of their larger coun-
terparts, utilizing the 100M model for hyperparam-
eter selection and presenting a 1B model for com-
parison within a manageable training cost range.
However, the substantial training cost associated
with the 3B model prevents its use for hyperparam-
eter experiments at this stage. As a result, we di-
rectly apply the optimal hyperparameters obtained
from the 100M model to pre-train and SFT the 3B
model, followed by downstream evaluation.

3.2 Loss Filter

This method leverages pre-trained models to com-
pute perplexity for the entire dataset. It is indicated
that employing moderate perplexity thresholds for
data filtering can enhance training efficiency (Mar-
ion et al., 2023a; Xia et al., 2023), a hypothesis we
will explore in depth. A detailed explanation of the
relevant hyperparameters can be found in A.3.1

3.3 Wikipedia and Web Classifier

Contrasting with the ad filter, this strategy em-
ploys a binary classifier to separate high-quality,
knowledge-rich text (e.g., Wikipedia) from low-
quality Common Crawl data (Brown et al., 2020;
Chowdhery et al., 2023; Touvron et al., 2023). De-
spite superficial similarities to the ad filter, this
method focuses on the automatic segregation of
text corpora, aiming to enhance data quality for
pre-training. However, defining clear-cut divisions
between these text types presents significant chal-
lenges and may inadvertently introduce biases. We
will delve into a detailed analysis of these biases
in subsequent Section 5.2.2. Details of the relevant
hyperparameters can be found in A.3.2.

3.4 Advertisement Classifier

In our examination of the English Common Crawl
corpus, we observe a significant prevalence of mar-
keting content and product placements. Notably,
product placements frequently exhibit redundancy
and lack of fluency, whereas marketing content is
typically distinguished by its high fluency. Given
this background, we aim to sift through the data,
removing ads to potentially enhance the corpus
with knowledge-intensive material of higher quality
for LLM pretraining. We filter out advertisements
through a well-designed ad classification process,
involving data sampling from RefinedWeb, human
annotation, and a binary BERT model to distin-
guish non-ads from ads. The process was iterative,
with continuous manual review and re-labeling of
misclassified samples until achieving a desired low
ad misclassification rate. The development of this
ad classifier, aligned with human judgment, is de-
picted in Figure 3.

Unlike Yuanl1.0, which uses a ternary classifier
to filter a Chinese corpus into low-quality, advertis-
ing, or high-quality texts based on repetition rates
(Wu et al., 2021), we categorize texts as advertising
or non-advertising by focusing on promotional con-



tent and product placement. Yuanl.0’s methodol-
ogy, which targets coherent but redundant texts like
website descriptions, differs from our content and
style-based approach. Furthermore, while Yuan
1.0 has not disclosed their pre-training experiment
results, we have detailed ours in 5.2.3.

4 Experiments

4.1 Training Details

Our pretrain experiments are conducted with the
RefinedWeb dataset (Penedo et al., 2023), which
uses advanced rule-based filtering and deduplica-
tion methods, without any secondary classifier-
based filtering. In this way, we are able to im-
plement detailed ablation studies, comparing the
impacts of various filtering methods. and SFT ex-
periments are with Flan Collection (Longpre et al.,
2023). In our experiment, we train decoder-only
Transformer from scratch only once for each ex-
periment due to constraints of training costs. We
provide full details of pre-training and SFT hyper-
parameters in Appendix A.1.1 and A.1.2. Mean-
while, we estimate computational costs in A.1.3.

4.2 Evaluation Metrics

We consider two key metrics for evaluation: valida-
tion set PPL and downstream benchmark metrics,
with a detailed correlation analysis in Section 5.1.

Validation Set Perplexity To evaluate the
model’s impact on downstream tasks, we utilize
three distinct validation datasets, with each catering
to different domains, to offer an early performance
assessment for models with 100M parameters. De-
tailed descriptions are available in Section A.1.4.

Downstream Benchmark Metrics We select 10
tasks across five categories to gauge our model’s
effectiveness on downstream tasks: text completion
(Mostafazadeh et al., 2017), reading comprehen-
sion (Lai et al., 2017), common-sense question
answering (Zellers et al., 2019; Bisk et al., 2020;
ai2, 2019; Mihaylov et al., 2018), factual question
answering (Kwiatkowski et al., 2019; Joshi et al.,
2017), and examination(Hendrycks et al., 2020).
An overview of these tasks is presented in A.1.5.

5 Result

5.1 Correlation Analysis of Proxy and
Downstream Metrics

This study quantitatively assesses the correlation
between the proxy metric (validation set PPL) of

the 100M model and the downstream task metrics
of the 3B SFT model. The evaluation employs a
three-stage correlation analysis, using a 1B model
as a bridge to handle the significant increase in
training costs and improve the correlation calcula-
tion’s reliability. The ranking correlation is quanti-
fied using Pearson and Spearman Correlation coeffi-
cients, with each of them corresponding to "P" and
"S" in the figures respectively. Correlation values
closer to 1 indicate a higher-ranking correlation.

In the first phase, our study commences with
the analysis of 14 sets of experiments, focusing
on proxy metrics for models with 100M and 1B
parameters, resulting in 91 paired experiments over
11 validation sets. To counter early training insta-
bility, we utilize PPL values from models trained
with 100B tokens as the proxy metric. As demon-
strated in Figure 4, there’s a high correlation in
PPL between the 100M and 1B models across most
validation sets, with exceptions noted in specific
datasets such as RACE-middle and TrivialQA. Gen-
erally, smaller models can predict the PPL of larger
models accurately, although discrepancies in cor-
relation coefficients are observed. Nonetheless,
a clear trend is evident: an increase in PPL dif-
ferences among smaller models tends to predict
similar trends in larger models. Further correla-
tion details across validation sets are presented in
section A.2.
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In the second phase, we conduct experiments
with 7 sets of data filtering hyperparameters, each
comprising proxy indicators for both 1B and 3B
models. We calculate the PPL difference between
each paired hyperparameter set, resulting in 21 ex-
perimental pairings on each of the seven validation
sets. Considering potential early training instability,
we use PPL values at the 100-billion token training
mark as our metric. As illustrated in Figure 5, the
PPL of the 1B and 3B models show a significant
correlation across most validation datasets, with a



lower correlation on RACE-middle and TrivialQA
datasets, consistent with the first phase, More fig-
ures depicting the correlation on different valida-
tion sets can be seen in section A.2.
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The final phase involves experiments with 7 sets
of data filtering hyperparameters, each contain-
ing 3B proxy indicators and corresponding down-
stream evaluation metrics. As depicted in Figure
6, A Correlation value approaching -1 indicates a
strong negative correlation, suggesting that PPL
in different 3B models on the validation sets cor-
relates with higher downstream task metrics. For
most tasks, PPL can effectively predict the per-
formance of larger models on downstream tasks.
Some tasks exhibit greater variance in downstream
performance, resulting in a lower correlation coeffi-
cient. Nonetheless, the graph still reveals a distinct
trend: as the PPL decreases, there is a gradual im-
provement in the performance of downstream tasks.
Detailed analysis can be seen in Appendix A.2.3.

Summarizing the previous analysis, using a
100M parameter LLLM can serve as a reliable indi-
cator for the effectiveness of pretraining corpora
when applied to larger models.
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5.2 Pretraining Efficacy of Different Data
Filtering Methods
5.2.1 Loss Filtering Performace

Our analysis of the impact of data selection strate-
gies on the LLaMA2-7B model at 100M and 1B

parameter scale reveals varied outcomes. Strategies
include no filtering, and retaining the central 50%,
and 30% of data by loss ranking. As detailed in Fig-
ure 7 and further in Figure 12, loss filtering shows
mixed results: it decreases PPL (increase perfor-
mance) on the HellaSwag test but increases PPL
(decreases performance) on knowledge-intensive
datasets like MMLU and Pile subsets. Conversely,
it benefits the Tiny Story test set by reducing PPL.
Based on these insights, we choose to retain the
central 50% of data by loss, finding it to be the
most effective strategy.
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Further evaluation of the 3B SFT model, as
shown in Table (1) and Table (2), indicates that
the strategy of retaining the middle 50% of data
based on loss generally surpasses the no-pruning
method across most tasks, However, in knowledge-
intensive tasks, this approach is less effective com-
pared to other selection methods.

5.2.2 Wikipedia Classifier Performace

We analyze the perplexity curves of downstream
validation sets for the 100M and 1B parameter pre-
trained models, as depicted in Figure 8, with addi-
tional results in Figure 13. These models process
datasets refined by the Wikipedia & Web Classi-
fier using different thresholds. The efficacy of this
filtering varies: while some Pile validation sub-
sets and the MMLU test show decreased PPL, in-
dicating enhanced pre-training from filtering, the
HellaSwag validation set see an increase in PPL,
likely due to the loss of relevant data. In the case



.. Reading Comprehension Exam Factual QA
Data Remaining
RACE-High RACE-middle MMLU Natural Question TriviaQA
No Pruning 100% 29.33 32.38 29.71 11.19 30.61
Loss middle 50% 53.9% 31.13 36.84 30.63 9.56 31.65
Wikipedia threshold 0.075 63.4% 37.62 41.57 3341 12.35 33.41
Ad threshold 0.9 53.9% 40.08 45.82 35.35 12.08 33.8

Table 1: The downstream metric of each data selection method, including Reading Comprehension, Exam, and
Factual QA, with 3B models pretrained with 300 billion tokens. Underlined results surpass the baseline performance
with no pruning. The best results for each task are marked in bold.

Data Remaining

Text Completion

Common-Sense QA

StoryCloze HellaSwag PIQA  WinoGrande OpenBookQA
No Pruning 100% 75.15 64.75 77.15 57.93 22
Loss middle 50% 53.9% 75.73 66.3 77.31 59.67 29
Wikipedia threshold 0.075 63.4% 75.36 62.17 75.19 5841 30
Ad threshold 0.9 53.9% 76.06 64.2 76.71 59.35 27.8

Table 2: Downstream metric of each data selection method, including Text Completion, Common-Sense QA, with
3B models pretrained with 300 billion tokens. Underlined results surpass the baseline performance with no pruning.

The best results for each task are marked in bold.
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Figure 8: Validation Perplexities Comparison Between
100M & 1B Models with Wikipedia & Web

of Tiny Story, a 0.25 threshold increases perplexity
compared to no filtering, but lower thresholds of
0.075 and 0.025 initially reduce PPL, aligning with
unfiltered data by 24,000 steps. This pattern under-
scores the nuanced effect of data filtering on text
generation fluency. Generally, RefinedWeb data
demonstrates a marginal improvement with a 0.075
threshold, suggesting selective filtering benefits.
Building on this analysis, we further evaluate the

downstream results for the 3B model, as presented
in Table (1) and Table (2). Our observations indi-

cate that applying a Wikipedia data selection thresh-
old of 0.075 substantially enhances performance
across a majority of evaluated tasks, in compari-
son to the baseline no-pruning method. However,
this improvement does not extend to a subset of
common sense question-answering tasks, where
the method’s efficacy appears to be limited.

5.2.3 Ad Classifier Performance

We train a BERT classifier using manually anno-
tated data with non-ad text to be labeled 1 and ad
text to be labeled 0. Then we apply the trained
BERT on another batch of manually annotated data
for ad classification to validate the effectiveness of
our classifier, where we reach the average precision
of 96.63% for non-ad classification and 80.66% for
ad classification. The resulting Precision-Recall
curve with confidence intervals is depicted in A.3.3.
Additionally, we explore varying ad identification
thresholds to refine our model, training across dif-
ferent scales: 100M, 1B, and 3B models, to opti-
mize ad recognition capabilities.

Our analysis begins with an examination of PPL
curves for downstream validation sets of the pre-
trained 100M and 1B models, as shown in Figure
9, with additional data in Figure 16. We observe
that with the ad threshold of 0.9, both 100M and
1B models achieve a PPL lower than that observed
with the no-pruning method across most validation
sets. This performance is also better compared
to other evaluated thresholds. Consequently, we
select 0.9 for the pre-training of 3B model.
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Wiki threshold  loss middle ~ Ad threshold
0.075 50% 0.9

Pile-wikipedia 68.8% 17.5% 98.3%
StoryCloze 0.1% 63.2% 98.9%
RACE-High 67.6% 75.9% 74.5%
RACE-Middle 45.5% 70.8% 88.4%
HellaSwag 0.3% 52.2% 95.2%
TriviaQA 0.1% 7.2% 99.5%
MMLU 82.7% 11.1% 94.4%
Tiny Story 33.0% 5.0% 99.6%

Table 3: Data Remaining Rates for Different Data Fil-
tering Schemes on Downstream Validation Sets of Dif-
ferent Domains

Downstream Results of 3B SFT model are dis-
played in Table (1) and (2). We observe that the
ad threshold of 0.9 yields superior performance on
most of tasks when compared to the no-pruning and
other methods, especially in knowledge-intensive
benchmark, MMLU. In other benchmarks, this
method also shows commendable results.

5.3 Analysis of Data Remaining Ratios for
Different Data Filtering Methods

We evaluate the data retention ratios of various fil-
tering strategies on validation sets as an indirect
measure of their influence on downstream tasks.
Despite the validation set partly originating from
downstream instruction tasks, which diverge in for-
mat from our pre-training corpus, we consider these
tasks as domain-specific corpus material. Conse-
quently, we propose that the varying data remaining
ratios across domains within our validation set can
provide insights into the impacts of data filtering
strategies on these domains. Furthermore, com-

paring data retention ratios for different strategies
within the same validation set domain can yield
relative effectiveness insights.

As shown in Table (3), the loss filtering method
results in a reduced data remaining ratio on the
MMLU, indicating potential negative impacts on
the MMLU benchmark. This observation aligns
with the finding that loss filtering falls short of
other strategies in the 3B SFT-enhanced MMLU
context. Similarly, the Wikipedia filtering strategy,
with its lower data retention ratio on HellaSwag,
suggests a detrimental effect on the common sense
benchmark, corroborating its underperformance in
post-3B SFT HellaSwag evaluations. Interestingly,
the ad filtering strategy consistently exhibits high
data remaining ratios across the validation set, an
outcome achieved without incorporating any infor-
mation from the validation set in the development
of our ad classifier.

5.4 Analysis about Cost of Proxy Model

Proxy small model evaluation mechanism dramati-
cally reduces the iteration cycles for refining data
selection methods, cutting down the computational
expense from 3472 GPU hours for a 3B model to
253 GPU hours for a 100M model, thereby sav-
ing approximately 3219 GPU hours. Detailed
computational costs see Appendix A.1.3.

6 Conclusion

In our study, we have shown that reliance on
loss metrics for pretraining data selection can ad-
versely affect performance on complex, knowledge-
dependent tasks such as MMLU. By develop-
ing a specialized ad classifier to filter out low-
information content, we have enhanced the data
quality for LLM training, leading to measurable
improvements in model performance across a range
of benchmarks. Furthermore, we’ve introduced a
cost-effective and time-efficient evaluation method-
ology using a smaller LLM to predict the poten-
tial downstream success of larger models. This
proxy approach has proven to be a valuable tool for
dataset refinement, offering a reduction in resource
expenditure by 92.7% The significant budgetary
savings and the ability to rapidly iterate on data se-
lection strategies make this a scalable and practical
solution for future LLM development.



Limitations

Small models to predict the reasoning ability of
large models: The reasoning ability of existing
LLMs emerges under certain conditions, such as
model size, high-quality mixed data, and a certain
computational budget. We do not have the time to
explore whether it is possible to use smaller mod-
els on web datasets with appropriate proxy indica-
tors to reflect the reasoning ability of a medium-
sized model. There is no consensus yet on the
origins of the reasoning mechanism produced by
LLMs. If the changes in reasoning ability could
be reflected through proxy indicators on smaller
models, it would greatly aid in understanding the
origins of reasoning abilities.

Ad filtering in conjunction with other filtering
solutions:  Ad filtering is about removing corpora
with advertising content. Although loss filtering
may discard knowledgeable content, it can still
eliminate a lot of incoherent corpora. What kind
of integrated scheme could complement the advan-
tages of multiple filtering solutions? Limited by
time and cost, we have not explored the integration
of multiple existing filtering solutions in this work.

7 Ethics Statement
7.1 Data Collection

All the datasets we use in our work are from pub-
licly available resources (RefinedWeb). And we
will open part of quality scores of this dataset. The
data License will follow RefineWeb.

7.2 Human Labeling

For the BERT advertisement classifier, we curate a
dataset of 40,000 samples from RefinedWeb, which
are then labeled as either advertisement (ad) or non-
advertisement (non-ad) by annotators. Because the
annotators are formal employees of the company
and are subject to confidentiality requirements re-
garding their remuneration, it is not possible to
provide information on average salaries to the out-
side. The form and instructions presented to human
evaluators are shown in Figure 14.
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A Appendix
A.1 Experimental Setup Details

A.1.1 Hyperparameters for Pre-training

All models in our experiments use the SwiGLU
activation function, similar to LLaMA. We use the
Adam optimizer [26] with hyperparameters set to
B =0.9, 82 =0.95,¢ = 1078, and weight decay
fixed at 0.01. Additionally, we implement gradient
norm clipping with a threshold of 1.0. A cosine
learning rate schedule is employed, ensuring that
the final learning rate equals 10% of the maximal
learning rate (3e-4). We maintain a global batch
size of 4M and vary warm-up steps based on dif-
ferent model sizes. To avoid the complications of
insufficient training and the need for secondary ad-
justments, the preset steps for all pre-training pro-
cesses are configured to be sufficiently long. For
all training parameters see Table (4). We conduct
model training based on the InternEvo framework
(Team, 2023).

A.1.2 Hyperparameters for SFT

During the SFT phase, we use a cosine learning
rate schedule, such that the final learning rate (le-
5) is equal to 33.3% of the maximal learning rate
(3e-5). Meanwhile, no warmup is used, and the
number of training steps is set to 328 (1 epoch).
Other training parameters remain consistent with
pre-training.

A.1.3 Computation Cost Estimation

In a series of pretraining experiments, models with
varying parameter counts are evaluated for com-
putational efficiency. For a model with 100M pa-
rameters, processing 100B tokens necessitates ap-
proximately 253 GPU hours. When the model
size increased to 1B parameters, the same number
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of tokens required about 1388 GPU hours. Fur-
ther scaling the model to 3B parameters, the to-
ken processing demands roughly 3472 GPU hours.
Additionally, a 3B SFT model over 328 steps is
completed within an estimated 47 GPU hours

A.1.4 Validation Sets Details

To thoroughly assess the potential impact on down-
stream tasks, we have meticulously chosen three
unique validation datasets (pile validation sets,
downstream task validation sets, and synthetic vali-
dation set), each tailored to a specific domain.

e Pile validation sets (Gao et al.,, 2020),
including Pile-arXiv, Pile-books, Pile-
OpenWebText2, and Pile-Wikipedia. These
subsets are used to test the model’s language
modeling capabilities across a variety of
knowledge-intensive tasks:

* Downstream task validation sets, which sim-
ply join prompt with a right answer from
downstream benchmarks (see 4.2). These val-
idation sets are designed to evaluate the lan-
guage modeling capabilities across a variety
of downstream benchmarks.

* Synthetic data validation set, including the
Tiny-Story dataset (Eldan and Li, 2023). This
type of validation set is primarily designed to
assess a model’s language modeling capabil-
ities on synthetic texts characterized by high
fluidity.

A.1.5 Downstream Tasks Details

Here, we provide a detailed description of 10 dif-
ferent downstream tasks in Table (5), providing
insights into our model’s performance in diverse
linguistic contexts. We use OpenCompass (Con-
tributors, 2023) framework to evaluate downstream
tasks.

Categories Datasets Metric
Text Completion StoryCloze Acc.
Reading Comprehension RACE-high Acc.
RACE-middle
Common-Sense QA HellaSwag Acc.
PIQA
WinoGrande
OpenBookQA
Factual QA NaturalQuestion ~ EM
TriviaQA
Examination MMLU Acc.

Table 5: Downstream Benchmarks
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params dimension n heads n layers sequence length warmup steps maximal learning rate preset maximal training tokens
100M 768 12 12 2048 2000 6e-4 3778
1B 2048 16 20 2048 2000 3e-4 377B
3B 3200 3 26 2048 2500 3e-4 LIT
Table 4: Hyperparameters Setting for Pre-training Models of Different Sizes
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100M Model Validation Perplexity Difference

Figure 10: Validation Perplexity Difference Compari-
son Between 100M and 1B Model With "P" for Pearson
Correlation Coefficients and "S" for Spearman Correla-
tion Coeficients

A.2.2 1B Pre-trained vs. 3B Pre-trained

The data presented in Figure 11 show a general
trend where a lower PPL in the 1B model on the
validation set leads to lower PPL in the correspond-
ing 3B model.

A.2.3 3B Pre-trained PPL vs. 3B SFT Metric

Specifically, to address the significant variance in
downstream task performance, we enhance robust-
ness by evaluating multiple checkpoints for the
same experiment, with training steps ranging from
200 to 300 billion tokens, across 25 groups. So
these hyperparameters are paired to compare the
PPL differences in the 3B model against the dif-
ferences in downstream metrics, resulting in 300
paired experiments on each of the seven validation
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1B Model Validation Perplexity Difference

Figure 11: Validation Perplexity Difference Compari-
son Between 1B and 3B Model With "P" for Pearson
Correlation Coefficients and "S" for Spearman Correla-
tion Coeficients

sets. A value approaching -1 indicates a strong neg-
ative correlation, suggesting that a smaller PPL in
different 3B models on the validation set correlates
with higher downstream task metrics. To further
mitigate the issue of large variances, we adopt the
DBSCAN method to filter out outliers, obtaining
non-outlier Pearson and Spearman correlation coef-
ficients. As depicted in Figure 6, a lower PPL in the
3B model on the validation set corresponds to su-
perior performance on downstream tasks. For most
tasks, smaller models can effectively predict the
performance of larger models on downstream tasks.
Some tasks exhibit greater variance in downstream
performance, resulting in a lower correlation coeffi-
cient. Nonetheless, the graph still reveals a distinct
trend: as the PPL decreases, the performance of
downstream tasks improves gradually.

A.3 Comparison Between 100M & 1B

Pre-trained Models on All Validation Sets
Here we present 3 groups of comparison between
100M and 1B pre-trained models, with each group
using different data selection methods: moderate
loss filtering, Wikipedia & Web classifier, and Ad
classifier.

A.3.1 Data Selection via Moderate Loss
Filtering

We utilize LLaMA2-7B for dataset scoring and
adopted a strategy of remaining mid-range data for



comparative experiments (Marion et al., 2023b).
We evaluate the effects of no filtering, remaining
the middle 50% of all data based on loss ranking,
and retaining the middle 30% of all data based on
loss ranking. The respective data remaining ratios
for no pruning, loss middle 50%, and loss middle
30% are 100%, 53.9%, and 32%. Figure 12 shows
the perplexities of 100M pre-trained model and
1B pre-trained model, which select the data with
moderate loss filtering, on all validation sets.
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Figure 12: Validation Perplexities Comparison Between
100M & 1B Models with Moderate Perplexity

A.3.2 Data Selection via Wikipedia & Web
Classifier

We employ a quality classifier trained with Red-
Pajama. Although a threshold of 0.25 is recom-
mended to filter out low-quality data, we compare
the experimental effects of four sets of thresholds
(0, 0.025, 0.075, 0.25). The data remaining rates
of no pruning, threshold 0.025, threshold 0.075,
and threshold 0.25 are 100%, 78.6%, 63.4%, and
42%. Figure 13 shows the perplexities of 100M
pre-trained model and 1B pre-trained model, which
select the data with Wikipedia & Web classifier, on
all validation sets.

A.3.3 Data Selection via Ad Classifier

When evaluating the effectiveness of our BERT
classifier, we employ a bootstrap method, sampling
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Figure 13: Validation Perplexities Comparison Between
100M & 1B Models with Wikipedia & Web

1000 times, with each time randomly selecting 50%
of the data to calculate precision and recall values
at different thresholds. The Precision-Recall curve
for BERT training, complete with confidence inter-
vals, is shown in 15, demonstrating our classifier’s
effectiveness in identifying ads, closely mirroring
human judgment.

Furthermore, we try different thresholds(0.4, 0.6,
0.8, 0.9 and 0.95) for our BERT advertising clas-
sifier, which outputs a probability of a text being
non-ad data. Not only do we include data remain-
ing ratios under these thresholds in Table (6), but
we also take the precisions and recalls of ad and
non-ad prediction into account, so that we could
make the best choice for the threshold of ad classi-
fication. Figure 16 shows the perplexities of 100M
pre-trained model and 1B pre-trained model, which
select the data with ad classifier, on all validation
sets.



Threshold Non-ad Precision Non-ad Recall Ad Precision Ad Recall Data Remaining

0 71.4% 100.0% - 0.0% 100%
0.4 80.0% 96.6% 82.1% 39.7% 88.7%
0.6 86.2% 94.5% 81.8% 62.1% 82.9%
0.8 89.7% 89.7% 74.1% 74.1% 73%
0.9 91.9% 86.2% 70.2% 81.0% 64.1%
0.95 95.1% 80.0% 64.2% 89.7% 55.2%

Table 6: Data Remaining Ratio, Precision and Recall Under Different Non-ad Probability Thresholds
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Figure 15: Effectiveness of Ad Classifier
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