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Abstract

Large language model (LLM) performance is001
increasingly linked to not just the size but also002
the quality of internet-derived datasets. While003
LLM data selection methods have evolved,004
their evaluations often rely on overall metrics005
that may not capture their impacts on differ-006
ent downstream task performances. Motivated007
by this gap, our study finds that selecting pre-008
training data based on loss metrics could result009
in poor performance on knowledge-intensive010
benchmarks, such as the MMLU. Addressing011
this, we focus on filtering out low-information012
content, specifically ads, and create an effective013
ad classifier for this purpose. Besides, the most014
straightforward approach to assess the quality015
of pretraining datasets is to train a full-scale016
LLM, but this is prohibitively expensive and017
impractical for large-scale comparative stud-018
ies. To overcome this, we use a smaller, 100M019
parameter LLM as a proxy to predict the down-020
stream performance of larger models. We ef-021
fectively demonstrate the correlation between022
the small model’s proxy indicators and the023
large SFT model’s downstream task metrics.024
This smaller model evaluation technique not025
only greatly shortens the cycle time for refining026
data selection strategies but also achieves sig-027
nificant budget savings, amounting to 92.7%.028
Finally, our findings suggest eliminating ad-029
vertisement content not only improves perfor-030
mance on knowledge-intensive benchmarks but031
also yields commendable results across various032
other capability dimensions within benchmarks.033
We will publish part of our work soon.034

1 Introduction035

Pre-training on extensive unlabeled and uncrated036

corpus sourced from internet snapshots (Gao et al.,037

2020; Penedo et al., 2023; Computer, 2023; Sol-038

daini et al., 2024), empowers large language mod-039

els (LLMs) with unprecedented capabilities across040

various domains. Meanwhile, the performance041

of LLMs scales as a power law with regards as042

to the data quantity (Kaplan et al., 2020). How- 043

ever, alongside quantity, the quality of the corpus 044

is equally crucial. Recent consensus suggests that 045

high-quality corpora have the potential to signif- 046

icantly alter scaling laws (Sorscher et al., 2022), 047

enabling performance on par with large-scale mod- 048

els while requiring leaner training costs (Gunasekar 049

et al., 2023; Eldan and Li, 2023) 050

Therefore, many studies have explored LLM pre- 051

training data selection, including rule-based (Rae 052

et al., 2021), metric-based (Coleman et al., 2019; 053

Marion et al., 2023a; Tirumala et al., 2023), and 054

semantics-based (Brown et al., 2020), each em- 055

ploying different criteria for data quality. Yet, these 056

methods are commonly evaluated by overall met- 057

rics, overlooking the detailed influence on different 058

downstream task performances. 059

Motivated by this gap, we investigate the impact 060

of these strategies on downstream tasks. Surpris- 061

ingly, our experiments reveal while loss filtering 062

(Marion et al., 2023b) enhances text fluency, it can 063

also diminish performance on knowledge-intensive 064

benchmarks like MMLU (Hendrycks et al., 2020). 065

This decline is linked to two main issues: first, the 066

tendency of loss filtering to preferentially preserve 067

fluency-centric marketing content, leading to its 068

overrepresentation; second, the potential exclusion 069

of knowledge-dense texts that incur higher losses 070

when they elude the capturing capabilities of the 071

underlying LLM. Moreover, domain-specific filter- 072

ing(e.g., Wikipedia classifier (Brown et al., 2020)), 073

although intended to curate domain-relevant data, 074

risks losing valuable cross-domain information. 075

Based on the previous discussion, we pose two 076

questions: 077

1. Is it possible to devise a data selection strat- 078

egy that minimizes the inclusion of low- 079

information content while preserving high- 080

information content? 081

2. How can we quickly assess the effectiveness 082
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of data selection strategies in pre-training083

scenarios?084

To answer the first question, we focus on identi-085

fying common traits within web datasets to address086

the prevalence of low-information content in cor-087

pora. Our investigation reveal that advertisements088

significantly contribute to this issue. In response,089

we develop an ad classifier, a step beyond the initial090

mentions in prior work (Wu et al., 2021), providing091

a detailed approach and thorough analysis of its092

positive impact on LLM benchmarks, especially093

knowledge-intensive benchmarks.094

To answer the second question, setting aside the095

costly approach of directly training an LLM end-096

to-end, D4 (Tirumala et al., 2023) have taken a097

step forward by exploring the use of proxy met-098

rics from smaller models to validate the quality099

of pre-training data filtering. However, there are100

several limitations to these approaches. Firstly, in-101

sufficient training (e.g., 1.3B-parameter models on102

40B tokens, and 6.7B-parameter models on 100B103

tokens) obscures the manifestation of higher-order104

abilities, such as knowledge comprehension as mea-105

sured by tasks like the MMLU. Secondly, proxy106

indicators, including perplexity (PPL) from pre-107

training and various NLP task validation sets, lack108

sufficient correlation with downstream task per-109

formance, limiting domain-specific insights. To110

address these issues, on the one hand, we evaluate111

base models after SFT, which reveals higher-order112

skills like knowledge comprehension even with113

limited training. On the other hand, we enhance114

the proxy indicators for small models by including115

PPL based on validation sets converted from down-116

stream tasks, enabling early downstream perfor-117

mance predictions and quantifying the correlation118

between small model proxies and post-SFT large-119

model downstream metrics. Specifically, we find120

that the performance of a larger-scale SFT model121

can be well characterized through the PPL of a122

100M proxy LLM on the validation sets.123

Using a 100M-parameter proxy model for rapid124

pre-training iterations (pretraining budget analysis125

see Section 5.4), we comprehensively assess pop-126

ular data selection methods for LLMs, comparing127

them against our ad classifier’s performance. As128

depicted in Figure 1, our analysis pipeline high-129

lights the impact of various strategies on model130

efficacy. Our findings suggest that eliminating ad-131

vertisement content not only improves performance132

on knowledge-intensive benchmarks but also yields133

Figure 1: Ad Filtering Outperforms Other Methods
Across Three Pre-training Data Selection Techniques

commendable results across various other capabil- 134

ity dimensions within benchmarks. 135

In summary, our contributions are as follows: 136

1. We demonstrate that employing a 100M- 137

parameter LLM can reliably predict the utility 138

of pretraining corpora for larger models. We 139

comprehensively establish the correlation be- 140

tween the proxy indicators of the small model 141

and the downstream task metrics of the large 142

SFT model. 143

2. We emphasize that by using the proxy small 144

model evaluation mechanism with 100M pa- 145

rameters, we can dramatically reduce the it- 146

eration cycles of pre-training data selection 147

strategies, resulting in a substantial budgetary 148

saving of 92.7%. 149

3. We highlight that eliminating advertisement 150

content substantially not only enhances the ef- 151

ficacy of knowledge-intensive benchmarks but 152

also yields commendable results across vari- 153

ous other capability dimensions within bench- 154

marks. Additionally, the extent of these perfor- 155

mance enhancements varies depending on the 156

data filtering applied, indicating differential 157

downstream effects. 158

2 Related Work 159

2.1 Data Selection 160

As previously emphasized, the importance of high- 161

quality data for training LLMs cannot be overstated. 162

Research on data selection extends across various 163

fields, sharing fundamental principles despite di- 164

verse applications. We identify four primary data 165

selection methodologies and provide a systematic 166

analysis of each in the following sections. 167
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Figure 2: The relative score of performance between different data selection methods with Non-pruning method. In
this Figure, each of the models is pre-trained with 300B tokens. See Table 1 and 2 for absolute performance of
downstream tasks.

Metric-Based Data Selection This line of work168

primarily focuses on filtering data based on auto-169

mated metrics generated through dynamic model170

training. One part of these works explores data171

filtering on computer vision (CV), with filtering172

strategies including prioritizing hard sample sam-173

pling(Coleman et al., 2019), moderate sample sam-174

pling(Xia et al., 2023), uncertainty sampling, and175

filtering based on dynamic changes in statistical176

values across different epochs(Paul et al., 2021).177

Another part of the work explores data filtering178

in the context of NLP and LLM scenarios. The179

filtering approaches include using perplexity scor-180

ing(Marion et al., 2023a; Wang et al., 2023), cus-181

tom IFD(Li et al., 2023a), and multi-metric loss182

fitting(Cao et al., 2023). In summary, these efforts183

primarily rely on statistical patterns in the data to184

obtain valuable samples for model training. How-185

ever, they struggle to perceive the semantic infor-186

mation in the samples and have difficulty under-187

standing the diversity distribution of the samples.188

Semantics-based Data Selection This line of189

work primarily involves scoring data based on the190

Wikipedia & Web classifier(Brown et al., 2020;191

Touvron et al., 2023), reward model(Du et al.,192

2023), and LLM(Eldan and Li, 2023; Chen et al.,193

2023; Li et al., 2023b). Intuitively, a semantics-194

based scoring strategy should have the ability to195

recognize semantics. However, at the same time,196

special attention must be paid to whether the filter-197

ing is biased(Gao, 2021).198

Geometry-based Data Selection This line of199

work primarily involves conducting diversity-200

prioritized sampling based on the clustering sit-201

uation in the feature space. These works often202

combine with metric-based or semantic-based data 203

filtering strategies(Maharana et al., 2023; Du et al., 204

2023; Tirumala et al., 2023). 205

Rule-based Data Selection Several research 206

works (Computer, 2023; Soldaini et al., 2024; Rae 207

et al., 2021; Workshop et al.) tries to establish 208

a number of hand-curated filtering techniques to 209

remove low-quality examples. While these hand- 210

curated filters can mitigate the inclusion of certain 211

noisy examples, they cannot serve as a comprehen- 212

sive substitute for a robust metric that assesses the 213

’quality’ of individual training examples. 214

2.2 Evaluation of Pre-training Data Selection 215

In addition to D4 (Tirumala et al., 2023) as men- 216

tioned in section 1, (Marion et al., 2023b) exhibits 217

pre-trained models of 124M and 1.5B parameters 218

with Validation Set Perplexity and downstream SFT 219

task evaluation. However, it is limited by the use 220

of a validation set whose domain is aligned with 221

the training dataset’s distribution. Perplexity rank- 222

ings within in-domain validation sets can be in- 223

consistent across different data selection strategies, 224

potentially misrepresenting a model’s true capabili- 225

ties. Furthermore, it only reports classification task 226

performance on GLUE after SFT, offering a partial 227

view of LLM’s overall abilities. We not only extend 228

beyond those mentioned in comparison with D4 229

but also include our choice of validation sets. We 230

select three types of validation sets, which are all 231

out of training set domains, to reflect the model’s 232

generalization on smaller scales. 233
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Figure 3: Pipeline of Data Labeling & BERT Classifier Training

3 Method234

As previously outlined, the data selection pipeline235

is depicted in Figure 1. Within this pipeline, a236

small proxy model evaluation mechanism is em-237

ployed to predict the downstream performance of238

the larger SFT models. Our investigation com-239

mences with an analysis of prevalent LLM data240

selection techniques, including the loss filter and241

the Wikipedia Classifier, with a focus on their in-242

fluence on downstream tasks. Subsequently, we243

delve into the development and efficacy of the ad-244

vertisement classifier. The critical components of245

this process are elucidated below.246

3.1 Small Proxy Model Evaluation247

Mechanism248

We scale up the parameters of our pre-trained249

model in a stepwise manner, initially from 100M to250

1B and subsequently from 1B to 3B. Each data fil-251

tering strategy undergoes a thorough performance252

evaluation. We explore the potential of smaller253

models to predict the outcomes of their larger coun-254

terparts, utilizing the 100M model for hyperparam-255

eter selection and presenting a 1B model for com-256

parison within a manageable training cost range.257

However, the substantial training cost associated258

with the 3B model prevents its use for hyperparam-259

eter experiments at this stage. As a result, we di-260

rectly apply the optimal hyperparameters obtained261

from the 100M model to pre-train and SFT the 3B262

model, followed by downstream evaluation.263

3.2 Loss Filter264

This method leverages pre-trained models to com-265

pute perplexity for the entire dataset. It is indicated266

that employing moderate perplexity thresholds for267

data filtering can enhance training efficiency (Mar-268

ion et al., 2023a; Xia et al., 2023), a hypothesis we269

will explore in depth. A detailed explanation of the270

relevant hyperparameters can be found in A.3.1271

3.3 Wikipedia and Web Classifier 272

Contrasting with the ad filter, this strategy em- 273

ploys a binary classifier to separate high-quality, 274

knowledge-rich text (e.g., Wikipedia) from low- 275

quality Common Crawl data (Brown et al., 2020; 276

Chowdhery et al., 2023; Touvron et al., 2023). De- 277

spite superficial similarities to the ad filter, this 278

method focuses on the automatic segregation of 279

text corpora, aiming to enhance data quality for 280

pre-training. However, defining clear-cut divisions 281

between these text types presents significant chal- 282

lenges and may inadvertently introduce biases. We 283

will delve into a detailed analysis of these biases 284

in subsequent Section 5.2.2. Details of the relevant 285

hyperparameters can be found in A.3.2. 286

3.4 Advertisement Classifier 287

In our examination of the English Common Crawl 288

corpus, we observe a significant prevalence of mar- 289

keting content and product placements. Notably, 290

product placements frequently exhibit redundancy 291

and lack of fluency, whereas marketing content is 292

typically distinguished by its high fluency. Given 293

this background, we aim to sift through the data, 294

removing ads to potentially enhance the corpus 295

with knowledge-intensive material of higher quality 296

for LLM pretraining. We filter out advertisements 297

through a well-designed ad classification process, 298

involving data sampling from RefinedWeb, human 299

annotation, and a binary BERT model to distin- 300

guish non-ads from ads. The process was iterative, 301

with continuous manual review and re-labeling of 302

misclassified samples until achieving a desired low 303

ad misclassification rate. The development of this 304

ad classifier, aligned with human judgment, is de- 305

picted in Figure 3. 306

Unlike Yuan1.0, which uses a ternary classifier 307

to filter a Chinese corpus into low-quality, advertis- 308

ing, or high-quality texts based on repetition rates 309

(Wu et al., 2021), we categorize texts as advertising 310

or non-advertising by focusing on promotional con- 311
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tent and product placement. Yuan1.0’s methodol-312

ogy, which targets coherent but redundant texts like313

website descriptions, differs from our content and314

style-based approach. Furthermore, while Yuan315

1.0 has not disclosed their pre-training experiment316

results, we have detailed ours in 5.2.3.317

4 Experiments318

4.1 Training Details319

Our pretrain experiments are conducted with the320

RefinedWeb dataset (Penedo et al., 2023), which321

uses advanced rule-based filtering and deduplica-322

tion methods, without any secondary classifier-323

based filtering. In this way, we are able to im-324

plement detailed ablation studies, comparing the325

impacts of various filtering methods. and SFT ex-326

periments are with Flan Collection (Longpre et al.,327

2023). In our experiment, we train decoder-only328

Transformer from scratch only once for each ex-329

periment due to constraints of training costs. We330

provide full details of pre-training and SFT hyper-331

parameters in Appendix A.1.1 and A.1.2. Mean-332

while, we estimate computational costs in A.1.3.333

4.2 Evaluation Metrics334

We consider two key metrics for evaluation: valida-335

tion set PPL and downstream benchmark metrics,336

with a detailed correlation analysis in Section 5.1.337

Validation Set Perplexity To evaluate the338

model’s impact on downstream tasks, we utilize339

three distinct validation datasets, with each catering340

to different domains, to offer an early performance341

assessment for models with 100M parameters. De-342

tailed descriptions are available in Section A.1.4.343

Downstream Benchmark Metrics We select 10344

tasks across five categories to gauge our model’s345

effectiveness on downstream tasks: text completion346

(Mostafazadeh et al., 2017), reading comprehen-347

sion (Lai et al., 2017), common-sense question348

answering (Zellers et al., 2019; Bisk et al., 2020;349

ai2, 2019; Mihaylov et al., 2018), factual question350

answering (Kwiatkowski et al., 2019; Joshi et al.,351

2017), and examination(Hendrycks et al., 2020).352

An overview of these tasks is presented in A.1.5.353

5 Result354

5.1 Correlation Analysis of Proxy and355

Downstream Metrics356

This study quantitatively assesses the correlation357

between the proxy metric (validation set PPL) of358

the 100M model and the downstream task metrics 359

of the 3B SFT model. The evaluation employs a 360

three-stage correlation analysis, using a 1B model 361

as a bridge to handle the significant increase in 362

training costs and improve the correlation calcula- 363

tion’s reliability. The ranking correlation is quanti- 364

fied using Pearson and Spearman Correlation coeffi- 365

cients, with each of them corresponding to "P" and 366

"S" in the figures respectively. Correlation values 367

closer to 1 indicate a higher-ranking correlation. 368

In the first phase, our study commences with 369

the analysis of 14 sets of experiments, focusing 370

on proxy metrics for models with 100M and 1B 371

parameters, resulting in 91 paired experiments over 372

11 validation sets. To counter early training insta- 373

bility, we utilize PPL values from models trained 374

with 100B tokens as the proxy metric. As demon- 375

strated in Figure 4, there’s a high correlation in 376

PPL between the 100M and 1B models across most 377

validation sets, with exceptions noted in specific 378

datasets such as RACE-middle and TrivialQA. Gen- 379

erally, smaller models can predict the PPL of larger 380

models accurately, although discrepancies in cor- 381

relation coefficients are observed. Nonetheless, 382

a clear trend is evident: an increase in PPL dif- 383

ferences among smaller models tends to predict 384

similar trends in larger models. Further correla- 385

tion details across validation sets are presented in 386

section A.2. 387
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Figure 4: Validation Perplexity Difference Comparison
Between 100M and 1B Model

In the second phase, we conduct experiments 388

with 7 sets of data filtering hyperparameters, each 389

comprising proxy indicators for both 1B and 3B 390

models. We calculate the PPL difference between 391

each paired hyperparameter set, resulting in 21 ex- 392

perimental pairings on each of the seven validation 393

sets. Considering potential early training instability, 394

we use PPL values at the 100-billion token training 395

mark as our metric. As illustrated in Figure 5, the 396

PPL of the 1B and 3B models show a significant 397

correlation across most validation datasets, with a 398
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lower correlation on RACE-middle and TrivialQA399

datasets, consistent with the first phase, More fig-400

ures depicting the correlation on different valida-401

tion sets can be seen in section A.2.402
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Figure 5: Validation Perplexity Difference Comparison
Between 1B and 3B Model

The final phase involves experiments with 7 sets403

of data filtering hyperparameters, each contain-404

ing 3B proxy indicators and corresponding down-405

stream evaluation metrics. As depicted in Figure406

6, A Correlation value approaching -1 indicates a407

strong negative correlation, suggesting that PPL408

in different 3B models on the validation sets cor-409

relates with higher downstream task metrics. For410

most tasks, PPL can effectively predict the per-411

formance of larger models on downstream tasks.412

Some tasks exhibit greater variance in downstream413

performance, resulting in a lower correlation coeffi-414

cient. Nonetheless, the graph still reveals a distinct415

trend: as the PPL decreases, there is a gradual im-416

provement in the performance of downstream tasks.417

Detailed analysis can be seen in Appendix A.2.3.418

Summarizing the previous analysis, using a419

100M parameter LLM can serve as a reliable indi-420

cator for the effectiveness of pretraining corpora421

when applied to larger models.422
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Figure 6: 3B Model Validation Perplexity Difference vs.
3B Model Downstream Score Difference

5.2 Pretraining Efficacy of Different Data423

Filtering Methods424

5.2.1 Loss Filtering Performace425

Our analysis of the impact of data selection strate-426

gies on the LLaMA2-7B model at 100M and 1B427

parameter scale reveals varied outcomes. Strategies 428

include no filtering, and retaining the central 50%, 429

and 30% of data by loss ranking. As detailed in Fig- 430

ure 7 and further in Figure 12, loss filtering shows 431

mixed results: it decreases PPL (increase perfor- 432

mance) on the HellaSwag test but increases PPL 433

(decreases performance) on knowledge-intensive 434

datasets like MMLU and Pile subsets. Conversely, 435

it benefits the Tiny Story test set by reducing PPL. 436

Based on these insights, we choose to retain the 437

central 50% of data by loss, finding it to be the 438

most effective strategy. 439
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100M & 1B Models with Moderate Perplexity Filtering

Further evaluation of the 3B SFT model, as 440

shown in Table (1) and Table (2), indicates that 441

the strategy of retaining the middle 50% of data 442

based on loss generally surpasses the no-pruning 443

method across most tasks, However, in knowledge- 444

intensive tasks, this approach is less effective com- 445

pared to other selection methods. 446

5.2.2 Wikipedia Classifier Performace 447

We analyze the perplexity curves of downstream 448

validation sets for the 100M and 1B parameter pre- 449

trained models, as depicted in Figure 8, with addi- 450

tional results in Figure 13. These models process 451

datasets refined by the Wikipedia & Web Classi- 452

fier using different thresholds. The efficacy of this 453

filtering varies: while some Pile validation sub- 454

sets and the MMLU test show decreased PPL, in- 455

dicating enhanced pre-training from filtering, the 456

HellaSwag validation set see an increase in PPL, 457

likely due to the loss of relevant data. In the case 458
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Data Remaining
Reading Comprehension Exam Factual QA

RACE-High RACE-middle MMLU Natural Question TriviaQA

No Pruning 100% 29.33 32.38 29.71 11.19 30.61
Loss middle 50% 53.9% 31.13 36.84 30.63 9.56 31.65
Wikipedia threshold 0.075 63.4% 37.62 41.57 33.41 12.35 33.41
Ad threshold 0.9 53.9% 40.08 45.82 35.35 12.08 33.8

Table 1: The downstream metric of each data selection method, including Reading Comprehension, Exam, and
Factual QA, with 3B models pretrained with 300 billion tokens. Underlined results surpass the baseline performance
with no pruning. The best results for each task are marked in bold.

Data Remaining
Text Completion Common-Sense QA

StoryCloze HellaSwag PIQA WinoGrande OpenBookQA

No Pruning 100% 75.15 64.75 77.15 57.93 22
Loss middle 50% 53.9% 75.73 66.3 77.31 59.67 29
Wikipedia threshold 0.075 63.4% 75.36 62.17 75.19 58.41 30
Ad threshold 0.9 53.9% 76.06 64.2 76.71 59.35 27.8

Table 2: Downstream metric of each data selection method, including Text Completion, Common-Sense QA, with
3B models pretrained with 300 billion tokens. Underlined results surpass the baseline performance with no pruning.
The best results for each task are marked in bold.
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Figure 8: Validation Perplexities Comparison Between
100M & 1B Models with Wikipedia & Web

of Tiny Story, a 0.25 threshold increases perplexity459

compared to no filtering, but lower thresholds of460

0.075 and 0.025 initially reduce PPL, aligning with461

unfiltered data by 24,000 steps. This pattern under-462

scores the nuanced effect of data filtering on text463

generation fluency. Generally, RefinedWeb data464

demonstrates a marginal improvement with a 0.075465

threshold, suggesting selective filtering benefits.466

Building on this analysis, we further evaluate the467

downstream results for the 3B model, as presented468

in Table (1) and Table (2). Our observations indi-469

cate that applying a Wikipedia data selection thresh- 470

old of 0.075 substantially enhances performance 471

across a majority of evaluated tasks, in compari- 472

son to the baseline no-pruning method. However, 473

this improvement does not extend to a subset of 474

common sense question-answering tasks, where 475

the method’s efficacy appears to be limited. 476

5.2.3 Ad Classifier Performance 477

We train a BERT classifier using manually anno- 478

tated data with non-ad text to be labeled 1 and ad 479

text to be labeled 0. Then we apply the trained 480

BERT on another batch of manually annotated data 481

for ad classification to validate the effectiveness of 482

our classifier, where we reach the average precision 483

of 96.63% for non-ad classification and 80.66% for 484

ad classification. The resulting Precision-Recall 485

curve with confidence intervals is depicted in A.3.3. 486

Additionally, we explore varying ad identification 487

thresholds to refine our model, training across dif- 488

ferent scales: 100M, 1B, and 3B models, to opti- 489

mize ad recognition capabilities. 490

Our analysis begins with an examination of PPL 491

curves for downstream validation sets of the pre- 492

trained 100M and 1B models, as shown in Figure 493

9, with additional data in Figure 16. We observe 494

that with the ad threshold of 0.9, both 100M and 495

1B models achieve a PPL lower than that observed 496

with the no-pruning method across most validation 497

sets. This performance is also better compared 498

to other evaluated thresholds. Consequently, we 499

select 0.9 for the pre-training of 3B model. 500
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Figure 9: Validation Perplexities Comparison Between
100M & 1B Models with Ad Filtering

Wiki threshold loss middle Ad threshold
0.075 50% 0.9

Pile-wikipedia 68.8% 17.5% 98.3%
StoryCloze 0.1% 63.2% 98.9%
RACE-High 67.6% 75.9% 74.5%

RACE-Middle 45.5% 70.8% 88.4%
HellaSwag 0.3% 52.2% 95.2%
TriviaQA 0.1% 7.2% 99.5%
MMLU 82.7% 11.1% 94.4%

Tiny Story 33.0% 5.0% 99.6%

Table 3: Data Remaining Rates for Different Data Fil-
tering Schemes on Downstream Validation Sets of Dif-
ferent Domains

Downstream Results of 3B SFT model are dis-501

played in Table (1) and (2). We observe that the502

ad threshold of 0.9 yields superior performance on503

most of tasks when compared to the no-pruning and504

other methods, especially in knowledge-intensive505

benchmark, MMLU. In other benchmarks, this506

method also shows commendable results.507

5.3 Analysis of Data Remaining Ratios for508

Different Data Filtering Methods509

We evaluate the data retention ratios of various fil-510

tering strategies on validation sets as an indirect511

measure of their influence on downstream tasks.512

Despite the validation set partly originating from513

downstream instruction tasks, which diverge in for-514

mat from our pre-training corpus, we consider these515

tasks as domain-specific corpus material. Conse-516

quently, we propose that the varying data remaining517

ratios across domains within our validation set can518

provide insights into the impacts of data filtering519

strategies on these domains. Furthermore, com-520

paring data retention ratios for different strategies 521

within the same validation set domain can yield 522

relative effectiveness insights. 523

As shown in Table (3), the loss filtering method 524

results in a reduced data remaining ratio on the 525

MMLU, indicating potential negative impacts on 526

the MMLU benchmark. This observation aligns 527

with the finding that loss filtering falls short of 528

other strategies in the 3B SFT-enhanced MMLU 529

context. Similarly, the Wikipedia filtering strategy, 530

with its lower data retention ratio on HellaSwag, 531

suggests a detrimental effect on the common sense 532

benchmark, corroborating its underperformance in 533

post-3B SFT HellaSwag evaluations. Interestingly, 534

the ad filtering strategy consistently exhibits high 535

data remaining ratios across the validation set, an 536

outcome achieved without incorporating any infor- 537

mation from the validation set in the development 538

of our ad classifier. 539

5.4 Analysis about Cost of Proxy Model 540

Proxy small model evaluation mechanism dramati- 541

cally reduces the iteration cycles for refining data 542

selection methods, cutting down the computational 543

expense from 3472 GPU hours for a 3B model to 544

253 GPU hours for a 100M model, thereby sav- 545

ing approximately 3219 GPU hours. Detailed 546

computational costs see Appendix A.1.3. 547

6 Conclusion 548

In our study, we have shown that reliance on 549

loss metrics for pretraining data selection can ad- 550

versely affect performance on complex, knowledge- 551

dependent tasks such as MMLU. By develop- 552

ing a specialized ad classifier to filter out low- 553

information content, we have enhanced the data 554

quality for LLM training, leading to measurable 555

improvements in model performance across a range 556

of benchmarks. Furthermore, we’ve introduced a 557

cost-effective and time-efficient evaluation method- 558

ology using a smaller LLM to predict the poten- 559

tial downstream success of larger models. This 560

proxy approach has proven to be a valuable tool for 561

dataset refinement, offering a reduction in resource 562

expenditure by 92.7% The significant budgetary 563

savings and the ability to rapidly iterate on data se- 564

lection strategies make this a scalable and practical 565

solution for future LLM development. 566
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Limitations567

Small models to predict the reasoning ability of568

large models: The reasoning ability of existing569

LLMs emerges under certain conditions, such as570

model size, high-quality mixed data, and a certain571

computational budget. We do not have the time to572

explore whether it is possible to use smaller mod-573

els on web datasets with appropriate proxy indica-574

tors to reflect the reasoning ability of a medium-575

sized model. There is no consensus yet on the576

origins of the reasoning mechanism produced by577

LLMs. If the changes in reasoning ability could578

be reflected through proxy indicators on smaller579

models, it would greatly aid in understanding the580

origins of reasoning abilities.581

Ad filtering in conjunction with other filtering582

solutions: Ad filtering is about removing corpora583

with advertising content. Although loss filtering584

may discard knowledgeable content, it can still585

eliminate a lot of incoherent corpora. What kind586

of integrated scheme could complement the advan-587

tages of multiple filtering solutions? Limited by588

time and cost, we have not explored the integration589

of multiple existing filtering solutions in this work.590

7 Ethics Statement591

7.1 Data Collection592

All the datasets we use in our work are from pub-593

licly available resources (RefinedWeb). And we594

will open part of quality scores of this dataset. The595

data License will follow RefineWeb.596

7.2 Human Labeling597

For the BERT advertisement classifier, we curate a598

dataset of 40,000 samples from RefinedWeb, which599

are then labeled as either advertisement (ad) or non-600

advertisement (non-ad) by annotators. Because the601

annotators are formal employees of the company602

and are subject to confidentiality requirements re-603

garding their remuneration, it is not possible to604

provide information on average salaries to the out-605

side. The form and instructions presented to human606

evaluators are shown in Figure 14.607
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A Appendix793

A.1 Experimental Setup Details794

A.1.1 Hyperparameters for Pre-training795

All models in our experiments use the SwiGLU796

activation function, similar to LLaMA. We use the797

Adam optimizer [26] with hyperparameters set to798

β1 = 0.9, β2 = 0.95, ε = 10−8, and weight decay799

fixed at 0.01. Additionally, we implement gradient800

norm clipping with a threshold of 1.0. A cosine801

learning rate schedule is employed, ensuring that802

the final learning rate equals 10% of the maximal803

learning rate (3e-4). We maintain a global batch804

size of 4M and vary warm-up steps based on dif-805

ferent model sizes. To avoid the complications of806

insufficient training and the need for secondary ad-807

justments, the preset steps for all pre-training pro-808

cesses are configured to be sufficiently long. For809

all training parameters see Table (4). We conduct810

model training based on the InternEvo framework811

(Team, 2023).812

A.1.2 Hyperparameters for SFT813

During the SFT phase, we use a cosine learning814

rate schedule, such that the final learning rate (1e-815

5) is equal to 33.3% of the maximal learning rate816

(3e-5). Meanwhile, no warmup is used, and the817

number of training steps is set to 328 (1 epoch).818

Other training parameters remain consistent with819

pre-training.820

A.1.3 Computation Cost Estimation821

In a series of pretraining experiments, models with822

varying parameter counts are evaluated for com-823

putational efficiency. For a model with 100M pa-824

rameters, processing 100B tokens necessitates ap-825

proximately 253 GPU hours. When the model826

size increased to 1B parameters, the same number827

of tokens required about 1388 GPU hours. Fur- 828

ther scaling the model to 3B parameters, the to- 829

ken processing demands roughly 3472 GPU hours. 830

Additionally, a 3B SFT model over 328 steps is 831

completed within an estimated 47 GPU hours 832

A.1.4 Validation Sets Details 833

To thoroughly assess the potential impact on down- 834

stream tasks, we have meticulously chosen three 835

unique validation datasets (pile validation sets, 836

downstream task validation sets, and synthetic vali- 837

dation set), each tailored to a specific domain. 838

• Pile validation sets (Gao et al., 2020), 839

including Pile-arXiv, Pile-books, Pile- 840

OpenWebText2, and Pile-Wikipedia. These 841

subsets are used to test the model’s language 842

modeling capabilities across a variety of 843

knowledge-intensive tasks: 844

• Downstream task validation sets, which sim- 845

ply join prompt with a right answer from 846

downstream benchmarks (see 4.2). These val- 847

idation sets are designed to evaluate the lan- 848

guage modeling capabilities across a variety 849

of downstream benchmarks. 850

• Synthetic data validation set, including the 851

Tiny-Story dataset (Eldan and Li, 2023). This 852

type of validation set is primarily designed to 853

assess a model’s language modeling capabil- 854

ities on synthetic texts characterized by high 855

fluidity. 856

A.1.5 Downstream Tasks Details 857

Here, we provide a detailed description of 10 dif- 858

ferent downstream tasks in Table (5), providing 859

insights into our model’s performance in diverse 860

linguistic contexts. We use OpenCompass (Con- 861

tributors, 2023) framework to evaluate downstream 862

tasks. 863

Categories Datasets Metric

Text Completion StoryCloze Acc.

Reading Comprehension RACE-high Acc.
RACE-middle

Common-Sense QA HellaSwag Acc.
PIQA

WinoGrande
OpenBookQA

Factual QA NaturalQuestion EM
TriviaQA

Examination MMLU Acc.

Table 5: Downstream Benchmarks
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params dimension n heads n layers sequence length warmup steps maximal learning rate preset maximal training tokens
100M 768 12 12 2048 2000 6e-4 377B

1B 2048 16 20 2048 2000 3e-4 377B
3B 3200 32 26 2048 2500 3e-4 1.1T

Table 4: Hyperparameters Setting for Pre-training Models of Different Sizes

A.2 Proxy Metric Ranking Correlation on All864

Validation Sets865

Here we present the ranking correlations of proxy866

metrics on all validation sets, including 100M pre-867

trained model vs. 1B pre-trained model and also868

1B pre-trained model vs. 3B pre-trained model.869

A.2.1 100M Pre-trained vs. 1B Pre-trained870

The data presented in Figure 10 show a general871

trend where a lower PPL in the 100M model on the872

validation set leads to lower PPL in the correspond-873

ing 1B model.874
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Figure 10: Validation Perplexity Difference Compari-
son Between 100M and 1B Model With "P" for Pearson
Correlation Coefficients and "S" for Spearman Correla-
tion Coeficients

A.2.2 1B Pre-trained vs. 3B Pre-trained875

The data presented in Figure 11 show a general876

trend where a lower PPL in the 1B model on the877

validation set leads to lower PPL in the correspond-878

ing 3B model.879

A.2.3 3B Pre-trained PPL vs. 3B SFT Metric880

Specifically, to address the significant variance in881

downstream task performance, we enhance robust-882

ness by evaluating multiple checkpoints for the883

same experiment, with training steps ranging from884

200 to 300 billion tokens, across 25 groups. So885

these hyperparameters are paired to compare the886

PPL differences in the 3B model against the dif-887

ferences in downstream metrics, resulting in 300888

paired experiments on each of the seven validation889
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Figure 11: Validation Perplexity Difference Compari-
son Between 1B and 3B Model With "P" for Pearson
Correlation Coefficients and "S" for Spearman Correla-
tion Coeficients

sets. A value approaching -1 indicates a strong neg- 890

ative correlation, suggesting that a smaller PPL in 891

different 3B models on the validation set correlates 892

with higher downstream task metrics. To further 893

mitigate the issue of large variances, we adopt the 894

DBSCAN method to filter out outliers, obtaining 895

non-outlier Pearson and Spearman correlation coef- 896

ficients. As depicted in Figure 6, a lower PPL in the 897

3B model on the validation set corresponds to su- 898

perior performance on downstream tasks. For most 899

tasks, smaller models can effectively predict the 900

performance of larger models on downstream tasks. 901

Some tasks exhibit greater variance in downstream 902

performance, resulting in a lower correlation coeffi- 903

cient. Nonetheless, the graph still reveals a distinct 904

trend: as the PPL decreases, the performance of 905

downstream tasks improves gradually. 906

A.3 Comparison Between 100M & 1B 907

Pre-trained Models on All Validation Sets 908

Here we present 3 groups of comparison between 909

100M and 1B pre-trained models, with each group 910

using different data selection methods: moderate 911

loss filtering, Wikipedia & Web classifier, and Ad 912

classifier. 913

A.3.1 Data Selection via Moderate Loss 914

Filtering 915

We utilize LLaMA2-7B for dataset scoring and 916

adopted a strategy of remaining mid-range data for 917

12



comparative experiments (Marion et al., 2023b).918

We evaluate the effects of no filtering, remaining919

the middle 50% of all data based on loss ranking,920

and retaining the middle 30% of all data based on921

loss ranking. The respective data remaining ratios922

for no pruning, loss middle 50%, and loss middle923

30% are 100%, 53.9%, and 32%. Figure 12 shows924

the perplexities of 100M pre-trained model and925

1B pre-trained model, which select the data with926

moderate loss filtering, on all validation sets.
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Figure 12: Validation Perplexities Comparison Between
100M & 1B Models with Moderate Perplexity

927

A.3.2 Data Selection via Wikipedia & Web928

Classifier929

We employ a quality classifier trained with Red-930

Pajama. Although a threshold of 0.25 is recom-931

mended to filter out low-quality data, we compare932

the experimental effects of four sets of thresholds933

(0, 0.025, 0.075, 0.25). The data remaining rates934

of no pruning, threshold 0.025, threshold 0.075,935

and threshold 0.25 are 100%, 78.6%, 63.4%, and936

42%. Figure 13 shows the perplexities of 100M937

pre-trained model and 1B pre-trained model, which938

select the data with Wikipedia & Web classifier, on939

all validation sets.940

A.3.3 Data Selection via Ad Classifier941

When evaluating the effectiveness of our BERT942

classifier, we employ a bootstrap method, sampling943
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Figure 13: Validation Perplexities Comparison Between
100M & 1B Models with Wikipedia & Web

1000 times, with each time randomly selecting 50% 944

of the data to calculate precision and recall values 945

at different thresholds. The Precision-Recall curve 946

for BERT training, complete with confidence inter- 947

vals, is shown in 15, demonstrating our classifier’s 948

effectiveness in identifying ads, closely mirroring 949

human judgment. 950

Furthermore, we try different thresholds(0.4, 0.6, 951

0.8, 0.9 and 0.95) for our BERT advertising clas- 952

sifier, which outputs a probability of a text being 953

non-ad data. Not only do we include data remain- 954

ing ratios under these thresholds in Table (6), but 955

we also take the precisions and recalls of ad and 956

non-ad prediction into account, so that we could 957

make the best choice for the threshold of ad classi- 958

fication. Figure 16 shows the perplexities of 100M 959

pre-trained model and 1B pre-trained model, which 960

select the data with ad classifier, on all validation 961

sets. 962
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Threshold Non-ad Precision Non-ad Recall Ad Precision Ad Recall Data Remaining
0 71.4% 100.0% – 0.0% 100%

0.4 80.0% 96.6% 82.1% 39.7% 88.7%
0.6 86.2% 94.5% 81.8% 62.1% 82.9%
0.8 89.7% 89.7% 74.1% 74.1% 73%
0.9 91.9% 86.2% 70.2% 81.0% 64.1%
0.95 95.1% 80.0% 64.2% 89.7% 55.2%

Table 6: Data Remaining Ratio, Precision and Recall Under Different Non-ad Probability Thresholds

Figure 14: The form and instructions presented to hu-
man evaluators
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Figure 15: Effectiveness of Ad Classifier
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Figure 16: Validation Perplexities Comparison Between
100M & 1B Models with Ad Filtering
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