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Abstract

Ex vivo brain MRI enables sub-millimeter ultra-high-resolution studies, uncovering struc-
tural details unattainable with in vivo MRI. Cortical surface reconstruction (CSR) based
on these detailed images is crucial for studying cortical anatomy and structure. In this
study, we propose SelfCSR, a self-supervised deep learning framework for accurate ex
vivo 7T MRI CSR without the need for manually labeled training data.

Keywords: Ex vivo Brain, 7T MRI, Self-supervised Learning, Cortical Surface Recon-
struction.

1. Introduction

Ex vivo MRI offers significant advantages over in vivo MRI by enabling detailed neu-
roanatomy visualization, bridging microscale histology studies with morphometric mea-
surements, and linking macroscopic features such as cortical thickness to underlying cy-
toarchitecture and pathology (Khandelwal et al., 2024). Meanwhile, compared to standard
1.5T or 3T MRI, 7T MRI provides ultra-high resolution and significantly enhanced con-
trast, making it an invaluable tool for detailed neuroimaging. Since ex vivo MRI can be
conducted with less time constraints (e.g., lasting days) and is free from cardiorespiratory
or head motion, it enables the application of 7T imaging for brain neuroscientific studies.
For example, Coras et al. (Coras et al., 2014) leveraged 7T ex vivo MRI to characterize
the microstructural differences between normal and sclerotic hippocampi in temporal lobe
epilepsy. Zeng et al. (Zeng et al., 2024) developed a segmentation model specifically for 7T
ex vivo MRI data using manually labeled training datasets. Another study also developed a
deep learning pipeline for automated high-resolution postmortem MRI segmentation, link-
ing cortical and subcortical morphometry to neuropathology in neurodegenerative diseases
(Khandelwal et al., 2024).
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Cortical surface reconstruction (CSR) for ex vivo brain is crucial for studying cortical
anatomy and structure. However, existing CSR tools, such as FreeSurfer (Fischl, 2012) and
BrainSuite (Shattuck and Leahy, 2002), struggle to process 7T MRI ex vivo brain data due
to its unique tissue contrast, ultra-high resolution, and geometric distortions arising from
the absence of CSF and menings. These violations of in vivo assumptions, such as opposing
sulcal banks being pressed together, complicate tissue segmentation and cortical surface
reconstruction.

Deep learning provides a promising approach for CSR (Ma et al., 2022; Li et al., 2025).
However, due to the scarcity of datasets, limited imaging resources, pronounced suscepti-
bility artifacts, and signal inhomogeneity, existing supervised learning methods like Cortex-
ODE (Ma et al., 2022) and CoTAN (Ma et al., 2023) are not applicable to ex vivo brain
imaging. Recent advances, such as SegCSR (Zheng et al., 2024) and CoSeg (Ma et al., 2024),
have explored self-supervised CSR for in vivo T1-weighted brain MRI by leveraging pseudo
ground truth synthesized from segmentation. Despite these advancements, there remains a
lack of methods tailored for cortical surface reconstruction directly from 7T MRI data. To
address this gap, we present SelfCSR, the first self-supervised CSR method tailored for 7T
ex vivo brain MRI. SelfCSR harnesses the unique advantages of 7T MRI while addressing
challenges from its distinct tissue contrast and high resolution, enabling more accurate and
efficient cortical surface analysis.

2. Method

2.1. Data Description

This study used the publicly available 7 Tesla ex vivo human brain MRI dataset at 100-
micron resolution from Edlow et al. (Edlow et al., 2019). The scans were acquired using a 7
Tesla whole-body human MRI scanner with four single-echo spoiled gradient-recalled echo
(SPGR/GRE) or Fast Low-Angle Shot (FLASH) sequences. The dataset features excep-
tionally high-resolution images (1600×1400×640 voxels), with each dataset approximating
4.9GB in size.

2.2. ex vivo Brain Cortex Surface Reconstruction Pipeline

The proposed SelfCSR consists of four stages: automatic segmentation, downsampling and
denoising, marching cubes, and self-supervised surface deformation.

Automatic Segmentation. The segmentation of supragranular and infragranular
layers is achieved using the semi-supervised multi-resolution U-Net framework proposed by
Zeng et al (Zeng et al., 2024).

Downsampling and Denoising. The data is first downsampled to an isotropic res-
olution of 0.5 mm, significantly reducing memory consumption while preserving essential
anatomical details. Furthermore, the BM4D algorithm (Maggioni et al., 2012) is applied
for denoising to enhance data quality.

Marching Cube. The marching cubes algorithm (WE, 1987) is employed to extract
three cortical surfaces from the segmentation: the white matter (WM) surface, the mid-
surface (representing the boundary between the supragranular and infragranular layers),
and the pial surface. However, the middle surface and the pial surface are different from
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the true boundary due to partial volume effects and possible topological errors. The WM
surface is used as the initial input and reference geometry for subsequent deformation, while
the mid-surface and pial surface are used as pseudo-labels for training in the framework.

Surface Deformation. To ensure point-wise correspondence between the three gen-
erated surfaces, we trained two U-Net models to predict stationary velocity fields (SVFs).
The first U-Net deforms the white matter surface to align with the mid-surface, and the sec-
ond U-Net subsequently deforms the mid-surface to align with the pial surface. Inspired by
FreeSurfer’s intensity term and spring term(Dale et al., 1999), we designed a self-supervised
loss function:

L = wcdLcd + wgrLgr + witLit + wedgeLedge + wnormalLnormal (1)

The boundary alignment loss (Lcd) optimizes surface-to-boundary fit using one-way Cham-
fer distance(Zheng et al., 2025), while the gradient loss (Lgr) maximizes MRI gradients
at the surface for sharper boundaries. The intensity loss (Lit) constrains voxel values to
plausible ranges. Topological integrity is enforced by a mesh regularity term (Ledge) penal-
izing irregular edge lengths and an inflation constraint (Ldeform) ensuring normal-direction
expansion. The terms wcd, wgr, wit, wedge, and wnormal serve as weight hyperparameters to
balance the contribution of each loss component.
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Figure 1: Cortical surface reconstruction and morphological analysis. Partial defects exist
on the pial surface.

3. Results and Conclusion

Figure 1 demonstrates the reconstruction results of the corresponding WM surface, mid
surface, and pial surface. The model accurately identifies the boundaries between different
cortical layers. We further analyzed ex vivo brain morphology using FreeSurfer (Fischl,
2012) to quantify cortical curvature, thickness, and sulcal depth. In conclusion, SelfCSR
is the first learning-based ex vivo CSR method and offering a novel tool for ex vivo MRI-
based neuroimaging research.
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