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Abstract
Large Language Models (LLMs) with their strong task-handling ca-
pabilities have shown remarkable advancements across a spectrum
of fields, moving beyond natural language understanding. However,
their proficiency within the chemistry domain remains restricted,
especially in solving molecule-related tasks. This challenge is at-
tributed to their inherent limitations in comprehending molecules
using only common textual representations, i.e. SMILES strings.
In this study, we seek to enhance the ability of LLMs to compre-
hend molecules by equipping them with a multi-modal external
module, termed MolX. Instead of directly using SMILES strings
to represent a molecule, we utilize specific encoders to extract
fine-grained features from both SMILES string and 2D molecular
graph representations for feeding into an LLM. A hand-crafted
molecular fingerprint is incorporated to leverage its embedded do-
main knowledge. To establish an alignment between MolX and the
LLM’s textual input space, the model in which the LLM is frozen, is
pre-trained with a strategy including a diverse set of tasks. Experi-
mental evaluations show that our proposed method outperforms
baselines across 4 downstream molecule-related tasks ranging from
molecule-to-text translation to retrosynthesis, with and without
fine-tuning the LLM, while only introducing a small number of
trainable parameters—0.53% and 0.82%, respectively.
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• Computing methodologies → Learning paradigms; • Ap-
plied computing→ Bioinformatics.
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1 Introduction
Large Language Models (LLMs) have demonstrated impressive per-
formances across a wide array of fields. Extending beyond the
boundaries of natural language understanding, LLMs have facili-
tated various scientific disciplines [38, 39]. LLMs have recently been
investigated for augmenting research in chemistry as an alternative
approach to the traditional supervised learning approach [1, 6].

Despite their strong task-handling capabilities, LLMs still strug-
gle with the chemistry domain, as evidenced by their limited per-
formances on various professional molecule-related tasks [13, 51].
Llama-2 [40], performs unsatisfactorily on the molecule-to-text
translation tasks such as molecule description generation and IU-
PAC name generation, providing the correct answer only half as
often as supervised learning models. Additionally, such LLM fails to
predict molecular properties even using expert-designed prompts.
One potential cause of this challenge has been figured out that most
existing LLMs represent molecules only by their common textual
representations, i.e., SMILES strings [45], and process them in a
paradigm similar to texts [13, 22], as illustrated in Figure 1a. While
convenient, several issues make it challenging for LLMs to compre-
hend molecules solely by interpreting SMILES strings. Firstly, LLMs
lack an inherent understanding of SMILES strings and blindly treat
them as sequences of separate characters relying on their byte-pair
encoding tokenizers [36], which break SMILES strings into smaller
pieces in ways that do not represent the chemical principles behind
these strings. Without an understanding of these principles, it is dif-
ficult for LLMs to capture molecular structure from SMILES strings
due to inaccuracies such as incorrect transcription of complex aro-
matic systems or the absence of hydrogens and other atoms [41],
as shown in Figure 1b and Figure 1c.

There have been some early attempts to enhance LLMs for solv-
ing molecule-related tasks. Su et al. [37] employed a GNN-based
graph encoder to extract features from the molecule’s 2D molecular
graph and directly input such features into the LLM to perform
molecule-to-text translation tasks. Developed from that idea, Li
et al. [22] input features extracted from the 2D or 3D molecular
graph into the LLM through an intermediate projector, which is
previously aligned with the LLM’s textual input space by a pre-
training stage. Although bridging the gap between the 2D or 3D
molecular graph and the LLMs, previous approaches are ineffective
in using the information contained in a SMILES string, as well as
handcrafted molecular descriptors, which have advantages over
2D or 3D molecular graph [8, 19]. This might lead to suboptimal
performances. Existing methods are only optimized for a limited
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Given a molecule, provide a description of that molecule. 
Molecule: CNC1(CCCCC1=O)C2=CC=CC=C2Cl

Instruction

LLM

The molecule is a member of the class of cyclohexanones
in which one of the hydrogens at position 2 is substituted
by a 2-chlorophenyl group, while the other is substituted
by a methylamino group. ...

Answer

a) Current paradigm of using an LLM for molecule-related tasks

b) LLM's BPE Tokenizer processes the SMILES string

CNC1(CCCCC1=O)C2=CC=CC=C2Cl

LLM's BPE Tokenizer

'C','NC','1','(','CC','CC','C','1','=','O',')','C','2','=','CC','=','CC','=','C','2','Cl'

c) Potential inaccuracies of topological structures represented in the SMILES string

CNC1(CCCCC1=O)C2=CC=CC=C2Cl

Figure 1: Current paradigm of using an LLM for molecule-related tasks and its issues.

number of chemistry-related tasks, omitting other crucial tasks
such as molecular property prediction, molecular optimization, or
retrosynthesis.

In this study, we introduce a novel framework for enhancing
LLMs to capture molecules from multiple representations, thus im-
proving their performances on various molecule-related tasks. Our
proposed framework consists of two main components which are
a multi-modal external module, namely MolX, equipped with the
LLMs, and a versatile pre-training strategy for aligning MolX into
the LLMs’ textual input space. We first utilize a pre-trained BERT-
like [9] SMILES encoder to extract features from the SMILES string
instead of directly using it to represent the molecule. Because of its
initial pre-training, the SMILES encoder works with its tokenizer to
capture long-range dependencies encoded in the SMILES string. We
simultaneously utilize a pre-trained GNN-based graph encoder to
extract features from the molecule’s 2D molecular graph, capturing
its topological structures. In addition to features extracted from raw
representations, i.e., SMILES string and 2Dmolecular graph, a hand-
crafted molecular fingerprint [26] containing domain knowledge is
incorporated in a weighted scheme of MolX. Finally, the modelin
which the LLM is frozen undergoes pre-training strategy with a
diverse set of tasks, providing the model with information about
the molecules. This process provides an alignment between MolX
and the LLM’s textual input space. Figure 2 shows an overview of
our proposed method.

Our experimental results demonstrate that the proposed method
outperforms baselines by a statistically significant margin on var-
ious downstream molecule-related tasks in two different model
configurations, with and without fine-tuning the LLM. It is worth
noting that MolX can act as a plug-in module to the LLMs for en-
hancing the performances on molecule-related tasks while fully
preserving its general-purpose usage in other domains.

To summarize, our contributions are outlined as follows:

• We introduce a novel framework enhancing LLMs to compre-
hend molecules, thus improving their performances on vari-
ous molecule-related tasks. The LLMs are equipped with a
multi-modal external module, MolX, to extract features from
both SMILES string and 2D molecular graph representations,
as well as leverage a handcrafted molecular fingerprint.

• A pre-training strategy including a diverse set of tasks, is
applied to establish an alignment between MolX and the
LLMs’ textual input space. This process advances the models’
ability of molecular understanding, as well as instruction
following.

• Extensive experimental evaluations demonstrate that our
proposed method outperforms baselines by a substantial
margin on a diverse range of downstream molecule-related
tasks in two differentmodel configurations, with andwithout
fine-tuning the LLM.

2 Related Work
In this section, we provide a review of the literature related to
molecular learning via language modeling and leveraging LLMs for
solving molecule-related tasks.

2.1 Molecular Learning
Molecules form the basis of chemistry and molecular learning has
been a long-standing problem in cheminformatics [3, 29, 30, 48].
Traditionally, molecular fingerprints such as Morgan fingerprint
[26] or ECFP [32] serve as one of the most important descriptors
for molecules, encoding a molecule into a fixed bit string, where
each bit indicates the presence of a certain substructure. With the
rapid development of language modeling, textual representations
such as SMILES strings have become widely used [45]. Studying
molecule property prediction tasks, Wang et al. [43] introduced
SMILES-BERT, a BERT-like model [9] that is pre-trained with the
masked language modeling mechanism (MLM) on a large-scale set
of unlabeled molecules. Wang et al. [42] proposed using chemical
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Provide a detailed description of this molecule. Molecule: 

Instruction

LLM
(Text Embedder)

d d dd

LLM
(Self-Attention Layers)

d

CCC1=CC=CC=C1N

Molecule

MolX

d

The molecule appears as a brown liquid. Insoluble in water and less dense than water.
Hence floats on water. May irritate skin, eyes and mucous membranes. Toxic by ingestion,
inhalation or skin absorption.

Answer

CCC1=CC=CC=C1N

SMILES Encoder

Projection

Graph Encoder

Projection

Average

1 0 1 0 0 1 0

Projection

Figure 2: An overview of our proposed method with the main pre-training task.

reactions to assist the pre-training. Ahmad et al. [2] proposed using
auxiliary tasks with more domain relevance for chemistry such
as predicting computed properties of molecules, supporting MLM.
Irwin et al. [18] investigated the challenging sequence-to-sequence
tasks such as retrosynthesis and introduced Chemformer. Zhong
et al. [53] proposed the root-aligned SMILES (R-SMILES), adopting
a tighter representation for those tasks. Edwards et al. [11] stud-
ied molecule-to-text translation tasks and vice versa and proposed
MolT5, which is pre-trained with the multi-lingual MLM, consider-
ing SMILES strings as a conventional language. Lu and Zhang [25]
and Christofidellis et al. [7] presented ChemT5 and Text+ChemT5,
unifying all sequence-to-sequence tasks. Several studies [14, 23]
demonstrated that fusing the molecule’s 2D molecular graphs with
language modeling provides complementary benefits to molecu-
lar learning, improving performance on tasks such as molecule
property prediction. With rising use across a wide array of fields,
including chemistry [1, 6], LLMs have emerged as an evolution of
the traditional language modeling approach for molecular learning.

2.2 LLMs for Molecule-Related Tasks
Several studies have evaluated LLM applications in chemistry. Cas-
tro Nascimento and Pimentel [6] explored how well ChatGPT "un-
derstands" chemistry by posing five student-level tasks in different
subareas of chemistry and noticed moderate performance. Zhao
et al. [51] investigated the molecule property prediction task and
showed that LLMs relied on memorized information rather than
true understanding for making predictions, which limits their ap-
plications to new types of molecules required in practical appli-
cations. Guo et al. [13] benchmarked several published LLMs on
eight molecule-related tasks. Empirical results reveal that LLMs
such as Llama-2 [40] that were widely used at the time typically
fail to perform challenging tasks of molecule-to-text translation
or predict molecule activity for high-level properties even using
expert-designed prompts. A potential reason behind this challenge
has been identified that most existing LLMs represent molecules

only by their common textual representations, i.e., SMILES strings,
which LLMs have a limited understanding of. In response to these
findings, Su et al. [37] propose MoMu to enhance LLMs by applying
a GNN-based graph encoder to extract features from the molecule’s
2D molecular graph and input such features into the LLM for per-
forming molecule-to-text translation tasks. Li et al. [22] proposed
2D and 3D MoLM to leverage an intermediate projector for feeding
features extracted from the 2D or 3D molecular graph into the LLM,
which is previously aligned with the LLM’s textual input space by
a pre-training stage. Despite improvements by bridging the gap be-
tween the 2D or 3D molecular graph and the LLMs, the importance
of representation other than SMILES strings such as handcrafted
molecular descriptors are underexplored. Existing methods are only
optimized for a limited set of molecule-related tasks, how well the
enhanced LLMs perform on other tasks such as molecular prop-
erty prediction, molecule optimization, or retrosynthesis is not well
understood.

3 Methodology
Wepropose a framework enhancing LLMs to comprehendmolecules
from multiple representations, consisting of two main components,
a multi-modal external module and a novel pre-training strategy.
Here, we present the details of these components.

3.1 Model Architecture
The proposed MolX, which is equipped with a base LLM, consists of
two key designs: 1) Trainable encoders, focusing on encoding raw
representations of a molecule, i.e., SMILES string and 2D molec-
ular graph; 2) A weighted scheme to incorporate a handcrafted
molecular fingerprint.

Trainable Encoders.We define a molecule as𝑚 and consider
𝑚𝑆 and𝑚𝐺 to depict its SMILES string and 2D molecular graph,
respectively. While𝑚𝑆 is simply a sequence of ASCII characters,
𝑚𝐺 is considered as𝑚𝐺 = {V, E}, where each node inV indicates
an atom and each edge in E indicates a chemical bond. Also, 𝑿 ∈
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R |V |×𝑁 is the attribute matrix of𝑚𝐺 where 𝑥𝑛 = 𝑿 [𝑛, :]𝑇 is the
𝑁 -dimensional attribute vector of the node 𝑣𝑛 ∈ V .

To encode the SMILES string𝑚𝑆 , we adopt a pre-trained BERT-
like [9] SMILES encoder, ChemBERTa [2], which is constructed
by stacking multiple Transformer layers. ChemBERTa, denoted as
𝐸𝑆 , is pre-trained on a large-scale set of unlabeled molecules with
MLM, enabling it to capture long-range dependencies identified in
the SMILES string. An average is taken over outputs of 𝐸𝑆 to obtain
an embedding vector for𝑚𝑆 , which is then projected to the hidden
dimension 𝑑 of the base LLM by a multi-layer perceptron 𝑓𝑆 :

𝑒𝑆 = 𝑓𝑆 (Average({𝑡𝑖 , 𝑡𝑖 ∈ 𝐸𝑆 (𝑚𝑆 )})) ∈ R𝑑 . (1)

To encode the 2D molecular graph𝑚𝐺 , we adopt a pre-trained
GNN-based graph encoder, ChemGraphCL [49], which is constructed
based on an emerging message-passing GNN, GIN [16]. Chem-
GraphCL, denoted as 𝐸𝐺 , is pre-trained on a large-scale set of un-
labeled molecules with a contrastive learning strategy [31] and
thus able to capture the topological structures of the molecule from
its 2D molecular graph. Starting from the initial 𝑥𝑛 , after multiple
layers of message propagation, 𝐸𝐺 produces an updated attribute
vector ℎ𝑛 for the node 𝑣𝑛 ∈ V . Then, an average is taken over all
node-level attribute vectors to obtain an embedding vector for𝑚𝐺 ,
which is projected to the hidden dimension 𝑑 of the base LLM by a
multi-layer perceptron 𝑓𝐺 :

𝑒𝐺 = 𝑓𝐺 (Average({ℎ𝑛, ℎ𝑛 ∈ 𝐸𝐺 (𝑚𝐺 )})) ∈ R𝑑 . (2)

𝑒𝑆 and 𝑒𝐺 are then averaged to establish a unified embedding
vector 𝑒 ∈ R𝑑 .

Molecular Fingerprint Incorporation.Molecular fingerprints
are some of the most important descriptors of molecules due to
the encoded domain knowledge. While SMILES strings and 2D
molecular graphs capture global information about the molecule,
molecular fingerprints capture information about the local atomic
environments and neighborhoods, explicitly encoding the presence
of specific substructures [10]. Unfortunately, molecular fingerprints
are not often used in deep learning models even though they have
been shown to be valuable for specific tasks such as molecule prop-
erty prediction [47]. We seek to exploit their benefits by incorporat-
ing the popular Morgan fingerprint [26] into the unified embedding
vector 𝑒 from trainable encoders described above. RDKit [20] is
utilized to compute the Morgan fingerprints with a radius of 2 from
the molecule𝑚, which is then projected to the hidden dimension 𝑑
of the base LLM by a multi-layer perceptron 𝑓𝐹 . The incorporation
scheme works as follows:

𝑒 = 𝑤𝑒 · 𝑒 +𝑤𝑒𝐹 · 𝑒𝐹 ,
where 𝑒𝐹 = 𝑓𝐹 (MorganFP(𝑚)), (3)

where 𝑤𝑒 and 𝑤𝑒𝐹 are trainable parameters introduced for pro-
viding the model sufficient flexibility to incorporate the Morgan
fingerprint into 𝑒 .

3.2 Pre-training Strategy
There is a noticeable misalignment in the latent spaces of MolX and
the base LLM where the former encodes molecules while the latter
has a textual input space. Therefore a cross-space alignment stage
is needed. This is accomplished by feeding the embedding vector
from MolX into the LLM as a soft token. We propose to pre-train

Predicting the basic chemical and physical properties

 A heavy atom refers to any atom that is not hydrogen.
 How many heavy atoms are there in this molecule?
 Molecule: C1C[C@H](NC1)C(=O)O
 Answer: 8

Heavy Atom

Molecular weight

 The molecular weight is the sum of the atomic weights of all the atoms in the molecule.
 What is the molecular weight of that molecule?
 Molecule: C1C[C@H](NC1)C(=O)O
 Answer: 115.13

...

 Provide the molecule’s canonical SMILES string, a unique representation of this molecule.
 Molecule: C1C[C@H](NC1)C(=O)O
 Answer: C1CC(NC1)C(=O)O

Canonicalizing the molecule's SMILES string

10%

...

10%

10%

Figure 3: Examples of auxiliary tasks in our instruction-based
pre-training strategy.

the MolX-enhanced LLM with a diverse set of tasks including a
molecule-to-text translation task, i.e., molecule description gener-
ation, accompanied by several auxiliary tasks. It is worth noting
that while MolX is trainable, the base LLM is kept frozen during
pre-training. This setting maintains the LLM’s inherent generaliz-
ability, forcing MolX to produce embedding vectors that are suited
in the LLM’s textual input space and can be effectively understood
by the LLM to generate accurate answers. This allows the LLM to
function normally on general domains by using MolX as a plug-in
module for the handling of molecule-related tasks.

Multi-Task Dataset. To conduct the pre-training, we utilize
the pre-train subset of PubChem [22], a dataset that contains 300k
molecule-description pairs 1 for the molecule description genera-
tion task. By using this task as an objective, MolX is encouraged to
produce meaningful embedding vectors, so that the LLM can cap-
tion molecules with their substructures and properties accurately,
as illustrated in Figure 2. Although this dataset collected from a
reliable source, descriptions in the dataset retain several limitations
that might hinder the model’s ability of molecular understand-
ing. The average number of words in the dataset’s descriptions is
roughly 20, which is insufficient to describe a molecule. Addition-
ally, some of the dataset’s descriptions are noisy and uninformative
[22]. Therefore, to assist the molecule description task, we design a
set of auxiliary tasks including predicting the basic chemical and
physical properties of molecules such as the number of heavy atoms
or molecular weight. We select a set of 10 low-level properties that
are available for easy collection from PubChem and present compre-
hensive information about the molecules. Further, leveraging the
fact that a molecule can be represented by multiple valid SMILES
strings [4], we utilize one more special auxiliary task which is
canonicalizing the molecule’s SMILES string. This task enhances
the model’s understanding of chemical laws behind SMILES strings.
To keep the pre-training stage controllable, 10% of the dataset is
used for each auxiliary task. Examples of proposed auxiliary tasks
are shown in Figure 3 and details are in Appendix A.

Instruction-based Pre-training. LLMs tend to exhibit hallu-
cinations in the domain of chemistry [13], generating unexpected
answers regarding a molecule. Hence, we enrich our pre-training
dataset by designing an informative instruction for each task. We
then employ instruction-based pre-training [28, 34], enhancing the

1https://pubchem.ncbi.nlm.nih.gov
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Table 1: Experimental results for molecule-to-text translation.

Model Description Generation IUPAC Name Generation
BLE-2↑ BLE-4↑ ROG-1↑ ROG-2↑ ROG-L↑ MET↑ BLE-2↑ BLE-4↑ ROG-1↑ ROG-2↑ ROG-L↑ MET↑

Infer-only Llama-2-7B 03.64 02.98 18.28 04.26 12.87 16.21 05.55 01.81 05.40 00.23 04.39 10.30
Llama-2-7B +MolX 08.22 06.40 30.82 21.69 28.94 21.77 10.67 04.76 14.61 01.24 11.47 18.54

LoRA FT Llama-2-7B 27.54 21.24 36.50 21.33 28.99 31.69 51.43 36.94 48.54 20.57 40.53 53.38
Llama-2-7B + MoMu 27.68 21.50 36.76 21.42 29.23 31.86 51.70 37.38 48.89 20.65 40.87 53.66
Llama-2-7B + MoLM-2D 27.95 21.77 38.66 22.99 30.92 33.69 52.32 37.65 51.77 21.83 43.62 57.10
Llama-2-7B + MoLM-3D 29.82 22.39 39.12 23.62 32.64 34.34 55.70 38.93 52.03 22.78 45.63 57.84
Llama-2-7B +MolX 31.40 24.25 44.20 28.96 38.76 39.55 56.88 45.01 55.45 30.14 48.19 59.35
LlaSMol-7B 26.71 18.06 38.75 22.77 33.32 32.63 49.48 36.33 52.38 28.53 45.20 58.48
ChemDFM-13B 13.02 08.30 20.42 11.31 17.93 18.44 39.33 22.83 37.61 09.49 28.68 45.99

Full FT MolT5-Large 25.87 17.28 34.07 16.42 23.41 28.04 50.88 38.69 45.89 21.11 33.03 44.82
MolT5-Large + MoMu 26.34 18.01 34.75 16.86 24.76 28.73 51.81 40.32 46.81 21.68 34.93 45.92

model’s ability of instruction following. Formally, we first define
𝑝 (.) as the textual distribution parameterized by the base LLM. The
base LLM is decomposed into two subparts, the text embedder 𝐹𝑒𝑚𝑏

and self-attention layers 𝐹𝑎𝑡𝑡 , in which the text embedder 𝐹𝑒𝑚𝑏 con-
verts an instruction of a task into a list of𝑇 tokens𝑍 = [𝑧1, 𝑧2, .., 𝑧𝑇 ].
Given a molecule𝑚 and its label 𝑦 for the given task, after the em-
bedding vector 𝑒 is extracted from MolX, the auto-regressive loss
for pre-training is defined as:

L𝑟𝑒𝑔 = −log 𝑝 (𝑦 |𝐹𝑎𝑡𝑡 (𝑧1, 𝑧2, .., 𝑧𝑇 , 𝑒))

= −
𝐿∑︁
𝑙=1

log 𝑝 (𝑦𝑙 |𝐹𝑎𝑡𝑡 (𝑧1, 𝑧2, .., 𝑧𝑇 , 𝑒), 𝑦1, ..., 𝑦𝑙−1),
(4)

where 𝐿 is the length of the label 𝑦 for the given task.

4 Experiments
In this section, we conduct experiments on various downstream
molecule-related tasks including molecule-to-text translation, mole-
cule property prediction, molecule optimization, and retrosynthesis,
to demonstrate the effectiveness of our proposed method. Through-
out experiments, we utilize Llama-2 [40] with 7B parameters as our
base LLM to leverage its text generation capability and internal
chemistry knowledge. We consider two different model configu-
rations for the evaluation: I) Inference-only: The model is frozen
after pre-training for direct question answering on downstream
tasks, evaluating the model’s generalizability without fine-tuning;
II) LoRA fine-tuning: The model is fine-tuned on downstream tasks
using a parameter-efficient technique, LoRA [17], verifying the
model’s adaptability in scenarios where downstream data are avail-
able. In addition to direct comparison with previous related works
including MoMu [37], as well as 2D and 3D MoLM [22], we also
compare with competitive supervised learning models in each task.
For further reference, we evaluate two recently introduced general-
ist chemical LLMs derived from Llama-2 [40] that are tailored for
molecule-related tasks, i.e., LlaSMol-7B [50] and ChemDFM-13B
[52]. The experimental settings and hyper-parameters are provided
in Appendix B.

4.1 Molecule-to-Text Translation
We first consider the molecule-to-text translation tasks, i.e., mol-
ecule description generation and IUPAC name generation. These
tasks reflect the general molecular understanding of the model and
have crucial applications, enabling humans to gain an overview of
a molecule. We conduct experiments on the downstream subset of

the PubChem dataset [22], which has 15k high-quality molecule-
description pairs and is separate from the pre-train one. We opt
not to use the CheBI-20 dataset [11] because it is also sourced from
PubChem and can be viewed as an older version of the used dataset.
Following [11, 22], we adopt BLEU-2, BLEU-4, ROUGE-1, ROUGE-2,
ROUGE-L, and METEOR as evaluation metrics.

Table 1 presents experimental results for these tasks across 6
different metrics. Based on the Inference-only results, we observe
that the proposed framework significantly enhances the base LLM
for direct question answering on both tasks without fine-tuning. In
the scenario of LoRA fine-tuning, the MolX-enhanced LLM demon-
strates superior performance compared to baselines with the high-
est scores on all metrics, especially for ROUGE-based and METEOR
metrics which might be attributed to the proposed versatile pre-
training strategy that provides the model with comprehensive infor-
mation about the molecules. The approach of fine-tuning the LLM
to establish multi-modal models shows better performances than
generalist chemical LLMs, i.e., LlaSMol-7B [50] and ChemDFM-13B
[52], as well as competitive supervised learning models such as
MolT5 [11] and its MoMu-enhanced one [37].

4.2 Molecule Property Prediction
Besides the overall understanding, we assess the model’s perception
of molecular properties by conducting experiments on the mole-
cule property prediction task. This task involves approximating
quantitative attributes such as solubility or determining the activity
for assays of a molecule. We employ the MoleculeNet dataset [46]
with 8 different subsets including ESOL, FreeSolv, Lipophilicity,
MUV, HIV, BACE, BBBP, and Tox21. As evaluation metrics, RMSE
is used for regression subsets, and Accuracy and F1 are used for
classification, following [50]. Figure 4 shows an example of this
task.

Experimental results in Table 2 show that MolX improves perfor-
mances of the base LLM in both model configurations. Especially
for Inference-only results, MolX remarkably narrows approxima-
tion errors. Additionally, MolX enhances the model’s ability of in-
struction following, generating expected answers without LLMs’s
favorite phrases. In addition to LoRA fine-tuned models, we con-
sider ChemGraphCL [49] which serves as the GNN-based graph
encoder in MolX, ensuring an adequate comparison. We observe
that the MolX-enhanced LLM achieves the best scores in 6 out of
8 subsets of the MoleculeNet dataset and is the second-best in the
other 2. Notably, properties in the MoleculeNet dataset are unseen
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Table 2: Experimental results for molecule property prediction.

Model ESOL FreeSolv Lipophilicity MUV HIV BACE BBBP Tox21
RMSE↓ RMSE↓ RMSE↓ ACC↑ | F1↑ ACC↑ | F1↑ ACC↑ | F1↑ ACC↑ | F1↑ ACC↑ | F1↑

Infer-only Llama-2-7B 58.719 357.371 222.426 0.110 | 0.100 0.135 | 0.129 0.522 | 0.362 0.485 | 0.351 0.090 | 0.084
Llama-2-7B +MolX 4.929 9.692 1.605 0.827 | 0.454 0.807 | 0.484 0.530 | 0.524 0.588 | 0.516 0.622 | 0.459

LoRA FT Llama-2-7B 2.061 4.203 0.956 0.984 | 0.572 0.960 | 0.610 0.612 | 0.584 0.603 | 0.564 0.740 | 0.578
Llama-2-7B + MoMu 2.112 4.214 0.998 0.992 | 0.576 0.968 | 0.614 0.618 | 0.587 0.612 | 0.574 0.746 | 0.582
Llama-2-7B + MoLM-2D 1.521 3.161 0.898 0.992 | 0.588 0.968 | 0.627 0.631 | 0.599 0.624 | 0.586 0.746 | 0.594
Llama-2-7B + MoLM-3D 1.095 2.119 0.780 0.992 | 0.600 0.968 | 0.640 0.644 | 0.587 0.637 | 0.574 0.746 | 0.606
Llama-2-7B +MolX 0.967 2.371 0.808 0.994 | 0.609 0.972 | 0.649 0.704 | 0.697 0.666 | 0.650 0.748 | 0.616
LlaSMol-7B 1.871 6.047 1.361 0.829 | 0.434 0.968 | 0.492 0.467 | 0.318 0.529 | 0.346 0.608 | 0.475
ChemDFM-13B 8.476 9.686 2.180 0.923 | 0.483 0.952 | 0.534 0.564 | 0.518 0.522 | 0.505 0.677 | 0.529

Full FT ChemGraphCL 1.231 2.951 0.822 0.992 | 0.589 0.968 | 0.628 0.659 | 0.657 0.638 | 0.629 0.746 | 0.596
ChemGraphMVP 1.091 2.106 0.718 0.993 | 0.590 0.971 | 0.630 0.691 | 0.689 0.647 | 0.638 0.747 | 0.597

 Solubility (logS) can be approximated by negative LogP -0.01 * (MPt – 25) + 0.5.
 What is the logS of this molecule?
 Molecule: Cc1cc(=O)[nH]c(=S)[nH]1
 Please answer the question with a numerical value only. 

Instruction 

Ground Truth : -2.44

Answer
Llama-2-7B + MolX : Sure, based on the provided SMILES string, estimated logS of the molecule is -0.49
Llama-2-7B + MolX : -2.3479

Figure 4: An example of molecule property prediction.

from the pre-training stage, showing the strong adaptability of our
proposed method on unseen downstream tasks.

4.3 Molecule Optimization
Molecule optimization [15] is a more challenging task to assess the
model’s perception of molecular properties and the understand-
ing of chemical laws behind SMILES strings. This task aims to
modify a molecule toward a target property profile and the model
is expected to generate the SMILES string of the modified mole-
cule. The used dataset, ChEMBL-02 [15], contains 200k molecule
pairs from ChEMBL database [12] with changes in properties, i.e.,
solubility, clearance, and LogD. Following [11], we adopt BLEU-2,
Levenshtein, Morgan fingerprint-based Similarity, and Validity as
evaluation metrics. Figure 5 shows an example of this task.

Experimental results for this task are shown in Table 3. For
inference-only results, MolX not only boosts the performances of
the base LLM to an acceptable level but also reduces hallucinations
with chemically unreasonable SMILES strings, which are typically
found when LLMs generate SMILES strings [13]. As an example in
Figure 5, although still imperfect, the MolX-enhanced LLM recog-
nized that the fluorine atom is the key modification. In the LoRA
fine-tuning scenario, the MolX-enhanced LLM outperforms base-
lines including robust supervised learning models, Chemformer
[18] and ReactionT5 [33] in most metrics.

4.4 Retrosynthesis
Retrosynthesis is a crucial task in chemistry [27]. This task involves
a reverse extrapolation from a molecule to possible reactants used
in its synthesis. The model is expected to generate SMILES strings
of reactants separated by a ‘.’. We use the USPTO-50k dataset [35],
containing 50k reactions for conducting experiments. Following
[11], we adopt evaluation metrics similar to those used for the
molecule optimization task. Figure 6 shows an example of this task.

Table 3: Experimental results for molecule optimization.

Model BLE-2↑ Leven↓ FTS↑ Valid↑

Infer-only Llama-2-7B 08.49 666.70 - 00.00
Llama-2-7B +MolX 30.87 88.66 0.3732 07.27

LoRA FT Llama-2-7B 72.32 17.34 0.5715 91.31
Llama-2-7B + MoMu 63.78 22.20 0.4659 92.59
Llama-2-7B + MoLM-2D 73.16 17.32 0.6010 93.20
Llama-2-7B + MoLM-3D 73.83 16.99 0.5834 94.05
Llama-2-7B +MolX 74.32 16.82 0.6113 94.29
LlaSMol-7B 34.95 39.50 0.5431 99.85
ChemDFM-13B 32.94 50.65 0.5302 43.08

Full FT Chemformer 66.60 20.86 0.5690 99.36
ReactionT5-Large 73.45 18.91 0.6058 99.81

From experiential results presented in Table 4, we can observe
that MolX improves the Inference-only results of the base LLM and
alleviates the hallucinations with a similar effect as the molecule op-
timization task. As an example in Figure 6, the MolX-enhanced LLM
recognized the first reactant and slightly erred the second one with
the lack of an isocyanate group O=C=N. In the LoRA fine-tuning
scenario, the MolX-enhanced LLM surpasses baselines and robust
supervised learning models, Chemformer [18] and ReactionT5 [33]
in most metrics.

5 Discussion
Here we discuss the limitations of our work and future directions.
Firstly, we are aligning MolX into the LLM via a soft token, which is
simple but effective. Althoughwe are aware of advanced cross-space
alignment techniques such as Q-Former [21], we opt not to employ
them since they require a large number of high-quality molecule-
description pairs and an extra pre-training stage, leading to high
computational costs. A better alignment technique tailored for
molecule-related tasks needs to be explored. Moreover, throughout
experiments, we show the limitations of current generalist chemical
LLMs, therefore, a novel generalist chemical LLM enhanced with
MolX should be developed. LLMs also have been demonstrated to
have intriguing abilities like In-context Learning [5] or Chain-of-
Thought [44]. Leveraging these abilities for molecule-related tasks
is a potential direction.

6 Conclusion
In this paper, we propose a novel framework enhancing LLMs to
comprehend molecules, thus, improving their performances on
molecule-related tasks. The LLMs are equipped with a multi-modal
external module, MolX, which is aligned with their textual input
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 Modify the molecule to create a new one such that
 the solubility is unchanged, the clearance is unchanged, and a change in LogD within the interval (0.1, 0.3].
 Molecule: Fc1ccc(C2(c3nnc4n3CCCCCC4)CCCC2)cc1

Instruction 

Ground Truth : Cc1ccc(C2(c3nnc4n3CCCCCC4)CCCC2)cc1

Answer
Llama-2-7B + MolX : Fc1ccc(C2(c3nnc4n3CCCCCC4)CCCC2)cc1-O-[CH(CH3)CH2OH]-
Llama-2-7B + MolX : CCC1ccc(C2(C3nnnC4n3CCCCCC4)CCCC2)cc1

Figure 5: An example of molecule optimization.

Table 4: Experimental results for retrosynthesis.

Model BLE-2↑ Leven↓ FTS↑ Valid↑

Infer-only Llama-2-7B 10.10 468.74 - 00.00
Llama-2-7B + MolX 36.73 62.33 0.4041 13.71

LoRA FT Llama-2-7B 80.37 16.22 0.6981 89.27
Llama-2-7B + MoMu 70.88 20.77 0.5691 90.53
Llama-2-7B + MoLM-2D 82.05 15.90 0.7126 91.13
Llama-2-7B + MoLM-3D 81.31 16.21 0.7341 90.31
Llama-2-7B + MolX 82.59 15.74 0.7466 92.19
LlaSMol-7B 50.09 31.28 0.7351 99.65
ChemDFM-13B 39.93 57.48 0.5380 14.04

Full FT Chemformer 74.01 19.51 0.6951 97.14
ReactionT5-Large 81.63 17.69 0.7400 97.58

 Provide SMILES strings of possible reactants used in the molecule’s synthesis.
 The reactants should be split by '.'. 
 Molecule: O=C(NCCCl)Nc1cccc(Br)n1

Instruction 

Ground Truth : Nc1cccc(Br)n1.O=C=NCCCl

Answer
Llama-2-7B + MolX : C6H5Br + NH3 + NaCN + HCl + NaN3 + H2O
Llama-2-7B + MolX : Nc1cccc(Br)n1.O=C(NCCCl)N

Figure 6: An example of retrosynthesis.

Table 5: Numbers of trainable parameters in experiments.

Model # Trainable Params
Pre-training↓ Downstream↓

LoRA FT Llama-2-7B 0.0M (0.00%) 20.5M (0.30%)
Llama-2-7B + MoMu 2.0M (0.00%) 22.5M (0.30%)
Llama-2-7B + MoLM-2D 120.0M (1.74%) 120.0M (1.74%)
Llama-2-7B + MoLM-3D 120.0M (1.74%) 120.0M (1.74%)
Llama-2-7B +MolX 36.1M (0.53%) 56.6M (0.82%)
LlaSMol-7B 0.0M (0.00%) 113.2M (1.64%)
ChemDFM-13B 13B (100.%) 13B (100.%)

Full FT MolT5-Large 0.0M (0.00%) 780.1M (100.%)
MolT5-Large + MoMu 2.0M (0.00%) 782.1M (100.%)

space using a versatile pre-training strategy. Experimental evalu-
ations show that our proposed method consistently outperforms
baselines across 4 downstream molecule-related tasks ranging from
molecule-to-text translation to retrosynthesis, with and without
fine-tuning the LLM, while only introducing a small number of
trainable parameters—0.53% and 0.82%, respectively. As shown in
Table 5, our proposed method is designed to be more efficient than
most baselines while giving superior performances.
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A Pre-training Strategy
Here we elaborate the pre-training strategy by describing all pro-
posed pre-training tasks. The molecule description generation task
serves as the main task, accompanied by a couple of auxiliary tasks.
We select a set of 10 low-level properties that present comprehen-
sive information about the molecules. We use one more special aux-
iliary task which is canonicalizing the molecule’s SMILES string.
Examples of these tasks and their instructions are illustrated in
Figure 7.

B Experimental Settings
The MolX-enhanced LLM is pre-trained with the above tasks in a
multi-task learning setting for 5 epochs. AdamW optimizer [24] is
adopted with a weight decay of 0.05 and a learning rate scheduler of
a combination of linear warmup with 1000 steps and cosine decay,
in which the peak and minimal learning rates are 1e-5 and 5e-6,
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 A heavy atom refers to any atom that is not hydrogen.
 How many heavy atoms are there in this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 24

Predicting the basic chemical and physical properties

10%

 Provide a detailed description of the molecule.
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: The molecule is a cyclo(tyrosyl-tyrosyl) in which both stereocentres have L-configuration. Synthesized by Mycobacterium tuberculosis. It has a role as a metabolite.

Molecule description generation

100%

Heavy Atom

 A hydrogen bond acceptor has lone electron pairs that help form hydrogen bonds.
 How many hydrogen bond acceptors are there in this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 4

10%

Hydrogen Bond Acceptor

 A hydrogen bond donor is a compound that donates protons (hydrogen atoms) covalently bound to itself, allowing it to form hydrogen bonds.
 How many hydrogen bond donors are there in this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 4

10%

Hydrogen Bond Donor

 A rotatable bond is any single non-ring bond, attached to a non-terminal, non-hydrogen atom.
 How many rotatable bonds are there in this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 4

10%

Rotatable Bond

 Aromatic rings are hydrocarbons with a benzene or related ring.
 How many aromatic rings are there in this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 2

10%

Aromatic Ring

 The complexity rating of a compound estimates its structural complexity based on its elements and structural features, including symmetry.
 What is the complexity rating of this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 412

10%

Complexity

 The topological polar surface area (TPSA) is the surface sum of all polar atoms or molecules, primarily oxygen and nitrogen, also including their attached hydrogen atoms.
 What is the TPSA value of this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 98.66

10%

Topological Polar Surface Area

 The molecular weight is the sum of the atomic weights of all the atoms in the molecule.
 What is the molecular weight of this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 326.352

10%

Molecular weight

 LogP, or octanol-water partition coefficient, is a measure of how hydrophilic or hydrophobic a molecule is.
 What is the LogP value of this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 0.8662

10%

LogP

 The quantitative estimate of druglikeness (QED) is a measure of how drug-like a molecule is, based on various molecular properties associated with druglikeness. 
 What is the QED value of this molecule?
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: 0.669781

10%

Quantitative Estimate of Druglikeness

 Provide the molecule’s canonical SMILES string, which is a unique representation of this molecule.
 Molecule: C1=CC(=CC=C1C[C@H]2C(=O)N[C@H](C(=O)N2)CC3=CC=C(C=C3)O)O
 Answer: O=C1N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@H]1Cc1ccc(O)cc1

Canonicalizing the molecule's SMILES string

10%

Figure 7: Examples of all pre-training tasks in our instruction-based pre-training strategy.

Table 6: Added results for molecule description generation.

Model # Trainable Params Description Generation
Pre-training Downstream BLE-2↑ BLE-4↑ ROG-1↑ ROG-2↑ ROG-L↑ MET↑

LoRA FT Llama-2-7B + MolX w/o ChemInit 36.1M (0.53%) 56.6M (0.82%) 30.21 22.67 43.64 28.80 38.47 38.43
Llama-2-7B + MolX w/o MorganFP 23.5M (0.35%) 44.0M (0.64%) 29.33 22.01 42.37 27.96 37.35 37.31
Llama-2-7B + MolX w/o WeightedInc 36.1M (0.53%) 56.6M (0.82%) 31.13 24.01 44.16 28.50 38.56 39.34
Llama-2-7B + MolX w/o Auxiliaries 36.1M (0.53%) 56.6M (0.82%) 30.71 23.06 40.29 24.33 33.62 35.37
Llama-2-7B + MolX w/o Pre-training 00.0M (0.00%) 56.6M (0.82%) 28.79 22.36 38.23 22.28 30.40 33.13
Llama-2-7B +MolX 36.1M (0.53%) 56.6M (0.82%) 31.40 24.25 44.20 28.96 38.76 39.55

respectively. The batch size is 12 and the maximal text length is
set to be 256. The computation time is 72 hours on 2 A100 GPUs
with BFloat16 mixed precision. For experiments on downstream

tasks, we consider two different model configurations for the eval-
uation: I) Inference-only: The model is frozen after pre-training
for direct question answering on downstream tasks, evaluating the
model’s generalizability without fine-tuning; II) LoRA fine-tuning:
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The model is fine-tuned on downstream tasks using a parameter-
efficient technique, LoRA [17], verifying the model’s adaptability
in scenarios where downstream data are available. For LoRA fine-
tuning, the model is fine-tuned on train sets of downstream tasks
for 50 epochs, using the same settings of optimizer and learning rate
scheduler as pre-training. LoRA is applied with the same hyper-
parameters as the baselines 2D and 3D MoLM [22], factorizing
all ∗_𝑝𝑟𝑜 𝑗 modules of LlamaSdpaAttention and LlamaMLP layers
with a rank 𝑟 = 8, 𝛼 = 32, and 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.1. Notably, for all tasks,
the loss function employed is the auto-regressive loss as described
in Equation (4). We report performances on the test sets selected
by the corresponding validation sets.

C Ablation Study
Here we study the influence of building components in our pro-
posed framework. Firstly, we use random initializations for trainable
encoders, exploring the possibility of eliminating reliance on robust
pre-trained weights. Next, we investigate the contributions of incor-
porating the Morgan fingerprint, as well as the weighted scheme
by removing them from the framework. Moreover, to demonstrate
the effectiveness of our versatile pre-training strategy, we discard
auxiliary tasks and only use the molecule description generation
objective during pre-training. Lastly, by totally skipping the pre-
training stage, we aim to understand its alignment impact on the

framework. Experiments are conducted on the molecule descrip-
tion generation task on the PubChem dataset [22] under the LoRA
fine-tuning scenario, simultaneously highlighting the proposed
framework’s efficiency regarding the number of trainable parame-
ters during pre-training and fine-tuning on downstream tasks.

Table 6 shows experimental results for the described ablation
study. Firstly, a drop in the performances of MolX without chem-
ical initializations for encoders indicates the role of robust pre-
trained weights. Next, while the weighted scheme brings a modest
improvement, incorporating the Morgan fingerprint contributed
significantly to the performances of MolX. Moreover, without pro-
posed auxiliary tasks, a noticeable decrease in performances can be
viewed, especially for ROUGE-based and METEOR metrics, demon-
strating their effectiveness in providing the model with comprehen-
sive information about the molecules. Lastly, it is not surprising that
the pre-training stage which forms an alignment between MolX
and the LLMs’ textual input space, has a large impact. In terms of
efficiency, our proposed framework only introduces a small number
of trainable parameters, accounting for 0.53% of the entire parame-
ters during pre-training and 0.82% with fine-tuning on downstream
tasks.
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