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ABSTRACT

Fairness is one of the newly emerging focuses for building trustworthy artificial
intelligence (AI) models. One of the reasons resulting in an unfair model is the
algorithm bias towards different groups of samples. A biased model may benefit
certain groups but disfavor others. As a result, leaving the fairness problem unre-
solved might have a significant negative impact, especially in the context of health-
care applications. Integrating both domain-specific and domain-invariant repre-
sentations, we propose a masked triple attention transformer encoder (MTATE) to
learn unbiased and fair data representations of different subpopulations. Specifi-
cally, MTATE includes multiple domain classifiers and uses three attention mech-
anisms to effectively learn the representations of diverse subpopulations. In the
experiment on real-world healthcare data, MTATE performed the best among the
compared models regarding overall performance and fairness.

1 INTRODUCTION

Electronic Health Record (EHR) based clinical risk prediction using temporal machine learning
(ML) and deep learning (DL) models benefits clinicians for providing precise and timely interven-
tions to high-risk patients and better-allocating hospital resources (Xiao et al., 2018; Shamout et al.,
2020). Nevertheless, a long-standing issue that hinders ML and DL model deployment is the con-
cern about model fairness (Gianfrancesco et al., 2018; Ahmad et al., 2020). Fairness in AI/DL refers
to a model’s ability to make a prediction or decision without any bias against any individual or group
(Mehrabi et al., 2021). The behaviors of a biased model often result in two facets: it performs sig-
nificantly better in certain populations than the others (Parikh et al., 2019), and it makes inequities
decisions towards different groups (Panch et al., 2019). Clinical decision-making based upon bi-
ased predictions may cause delayed treatment plans for patients in minority groups or misspend
healthcare resources where treatment is unnecessary (Gerke et al., 2020).

The data distribution shift problem across different domains is one of the major reasons a model
could be biased (Adragna et al., 2020). To address the fairness issue, domain adaptation methods
have been developed. The main idea is to learn invariant hidden features across different domains,
such that a model would perform similarly no matter to which domain the test cases belong. Pioneer
domain adaptation models, including DANN (Ganin et al., 2016), VARADA (Purushotham et al.,
2017), and VRNN (Chung et al., 2015), learn invariant hidden features by adding a domain classifier
and using a gradient reversal layer to maximize the domain classifier’s loss. In return, the learned
hidden features are indifferent across domains. Recent work MS-ADS (Khoshnevisan & Chi, 2021)
has shown robust performance across minority racial groups by maximizing the distance between
the globally-shared presentations with individual local representations of every domain, which ef-
fectively consolidates the invariant globally-shared representations across domains. However, it is
difficult to align large domain shifts and model complex domain shifts across multiple overlapped
domains.

Alternatively, the data distribution shift problem could be addressed using domain-specific bias cor-
rection approaches. A recent study showed that features strongly associated with the outcome of
interest could be subpopulation-specific (Chouldechova & Roth, 2018). It indicates that lumping
together all features from patients with different backgrounds might bury unique domain-specific
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Figure 1: Overall framework of masked triple attention transformer encoder (MTATE). HR, SBP,
and sCr stand for heart rate, systolic blood pressure, and serum creatinine, respectively. xt represents
all clinical features at time t, fi represents values of feature i at all time points. Z ′

i represents the
data representations learned from the ith feature relevance attention module.

characteristics. Afrose et al. proposed to use double prioritized bias correction to train multiple
candidate models for different demographic groups (Afrose et al., 2022). Similarly, AC-TPC Lee &
Van Der Schaar (2020) and CAMELOT Aguiar et al. (2022) used clustering algorithms to generate
representations of patients with similar backgrounds and use cluster-specific representations for the
outcome prediction.

In summary, both domain adaptation and domain-specific bias correction approaches address the
same fairness issue with different assumptions about the relationships between latent representation
and the prediction outcome. The former believes that performance variation across domains would
be benefited from invariant feature representation, while the latter affirms domain-specific represen-
tations. It remains unclear whether domain-invariant and domain-specific data representation should
be used for a prediction task.

To better address the fairness issue, we propose an adaptive multi-task learning algorithm, called
MTATE (i.e. Masked Triple Attention Transformer Encoder), to automatically learn and select the
optimal and fair data representations instead of explicitly choosing domain adaptation or domain-
specific bias correction. Under this setting, both invariant and domain-specific representations are
special cases where one of the approaches dominates the data representation. The purpose of
MTATE is to generate multiple masked representations of the same data that are attended by both
time-wise attention and multiple feature-wise attentions in parallel, where each masked representa-
tion corresponds to a specific domain classification task. For example, one of the domain classifiers
breaks the patient cohort into subpopulations defined by race, and another classifier is focused on
gender. The learned EHR representations could be domain-specific, domain-invariant, or the mix of
the two reflected by the domain classification loss values. A low loss value indicates the representa-
tion is domain-specific, and a high loss value indicates domain-invariant. The model will compute
the representation-wise attention for each individual testing case, leading to personalized data repre-
sentation for downstream predictive tasks. The overall framework of MTATE is shown in Figure 1.
The primary goal of MTATE is to learn an unbiased representation to make fair and precise patient
outcome predictions in a real-world healthcare setting.

To demonstrate the effectiveness of MTATE, we focus on rolling mortality predictions for patients
with Acute Kidney Injury requiring Dialysis (AKI-D), a severe complication for critically ill pa-
tients, with a high in-hospital mortality rate (Lee & Son, 2020). The clinical risk classification
for AKI-D patients is challenging due to complex subphenotypes and treatment exposures (Neyra
& Nadkarni, 2021; Vaara et al., 2022). There is an urgent need to develop actionable approaches
to account for patients’ backgrounds and subpopulations for personalized medicine and improve
patients-centered outcomes (Chang et al., 2022).
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Figure 2: Network structure of the masked triple attention transformer (MTATE) algorithm. The
TR-attention and domain specific FR-Attention module can be stacked N times

The contributions of this work are three-fold: 1) To the best of our knowledge, MTATE is the first
model that integrates both domain-specific and domain-invariant features in one model. It trains the
fair representation and predicts the downstream task altogether, which is critical for reliable clinical
outcome predictions for patients with different demographics and clinical backgrounds; 2) MTATE
employs time-wise, feature-wise, and representation-wise attention mechanisms to compose data
representations for downstream prediction tasks dynamically; and 3) MTATE effectively mitigated
the bias towards different subpopulations in the rolling mortality prediction tasks on AKI-D patients
and achieved the best performance compared to baselines.

2 METHOD

MTATE consists of five components, and the detailed architecture is shown in Figure 2. The first
component is a temporal-relevance attention (TR-Attention) module to generate time-wise attention
that associates each time step with the other time steps considering all features. The output is a
time-attended representation. The second component is a domain-specific feature-relevance atten-
tion module to generate feature-wise attentions that associate each feature with the other features
considering all the time steps. The outputs are multiple feature-attended representations, one for
each domain. The third component is a module consists multiple domain classifiers, and each clas-
sifier classifies each feature-attended representation into a predefined domain. The fourth module
is a unified data representation module, which uses the representation-wise attention to aggregate
feature-attended representations (domain-invariant or domain-specific) to a final representation. The
last module is an outcome prediction module where the final representation is used for patient out-
come prediction.

2.1 NOTATIONS

A patient’s EHR data can be represented as X = {x1,x2, ...,xt, ...,xNt
}, X ∈ RNt×Nf , where

Nf is the number of features and Nt is the number of time steps. xt ∈ R1×Nf represents a vector
of clinical parameters (e.g., heart rate, blood pressure, etc.) at time step t. We consider a binary
outcome and domain classification problem in this study. The patient domain class labels are denoted
as dy ∈ RNd , where Nd represents the total number of domains, dyi ∈ {0, 1} represents the label
for the i-th domain, 1 and 0 represent whether a given patient falls in the target domain or not,
respectively. The patient outcome label is denoted as y ∈ {0, 1}, where 1 and 0 represent death and
alive before hospital discharge.

2.2 TEMPORAL RELEVANCE ATTENTION

The temporal-relevance attention (TR-Attention) module aims to learn the relationships between
each time step to other time steps considering all features at each time step. We first use the position
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encoding from the original Transformer to encode the relative position information to the input X
and use the multi-head attention mechanism to learn the temporal-relevance attention.

Specifically, query, key, value vectors (Q,K,V) are the linear projections of all features at every
time steps X. Thus, the attention weights computed from the query and key represent how much
focus all features at one single time step is associated with themselves at other time steps. Then, the
output of each head Zh is the multiplication of value vectors and time-wise attention ATR. The final
output of the TR-Attention module Z ∈ RNt×Nf is the linear transformation of the concatenation
of the output of every head. Lastly, the residual connection and and layer normalization are applied
to Z, denoted as Z = LayerNorm(Z + X). The temporal-relevance attention of each head is
represented as:

Q,K,V = XWQ,XWK,XWV (1)

ATR = softmax(
QKT

√
dk

) (2)

Zh = ATRV (3)

Z = Concat(Zh
1 , ..., Z

h
i , ..., Z

h
Nh

)WO (4)

For simplicity, we assume all projection matrices WQ,WK,WV have the same dimension dk.
Thus, WQ,WK,WV ∈ RNf×dk , Q,K,V ∈ RNt×dk , the temporal relevance attention is ATR ∈
RNt×Nt , the output of each head is Zh ∈ RNt×dk . The projection matrix for the final output is
WO ∈ R(Nhdk)×Nf , where Nh represents the number of heads.

2.3 DOMAIN-SPECIFIC FEATURE RELEVANCE ATTENTION

The domain-specific feature relevance attention module aims to learn each domain’s diverse and
unique latent representation. The module includes a set of parallel sub-modules called feature-
relevance attention (FR-Attention), where each FR-Attention module focuses on the representation
of one specific domain. Since features for the different domains are not equally important, we
randomly masked out some number of latent features along all time steps differently for each FR-
Attention module. In return, the masking procedure forces each sub-module to learn different feature
focuses for each domain to generate unique domain representations. Then feature-wise attention is
computed using the multi-head attention similar to the TR-Attention model. FR-Attention module
learns the relationships between each latent feature and the others considering all time steps.

The input of each FR-Attention sub-module is ZT ∈ RNf×Nt , which is the transposed output of the
TR-Attention module Z. Then, ZT is passed through a masking layer, in which MR×Nf number
of latent features are randomly selected and removed from ZT , where MR represents the masking
rate. We denote the masked input of each sub-module as M ∈ RNl×Nt , where Nl represents
the number of features after masking. M is passed through the multi-head attention block as well
as the residual connection and layer normalization. Finally, M is transposed back to the original
form. Then it is passed through a point-wise feed-forward network (FFN) as well as the residual
connection and layer normalization to get the final output, denoted as Z′ ∈ RNt×Nl . Please see the
detailed architecture and formula for FR-Attention in Appendix Section A.1.

2.4 DOMAIN CLASSIFIER

Multiple domain classifiers are used to classify patients into subpopulations based on the latent
representation from FR-Attention sub-module. The input of one domain classifier is Z′

i ∈ RNt×Nl ,
where i denotes the index of the sub-module or domain. Z′

i is flattened by taking the max along the
time-dimension, then followed by a linear layer with a sigmoid function for binary classification. We
use binary cross-entropy for the domain classification loss, denoted as Ldi

. The domain classifier
module assists to learn latent representation for each domain and the domain classification loss is
used for generating representation-wise attention in the next module.
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2.5 DOMAIN-FOCUSED REPRESENTATION AND REPRESENTATION-WISE ATTENTION

While a domain-specific representation module is focused on representing its target domain, the
resulting representation from each domain can be domain-specific or domain-invariant according
to the domain loss. However, not all representations are equally crucial to outcome prediction.
Thus, this module aims to generate the final representation for the outcome prediction considering
both domain-specific and domain-invariant representations and their corresponding domain loss. We
call this module a domain-focused representation module since both domain-specific and domain-
invariant are candidate representations.

The input to this module is a transformed version of the latent representation generated from
each FR-Attention module Z′

i. Every Z′
i gets transformed to its original dimension by adding the

masked(removed) feature back with values of 0 so that all latent representations can be aligned in
feature space. We denoted this particular form of latent representation as Zo

i . Zo
i is flattened by tak-

ing the max along the time dimension, and all flattened vectors are concatenated together, denoted
as E ∈ RNd×Nf . The final representation C ∈ RNf×1 is the weighted sum of all the candidate rep-
resentations, where the weights a ∈ RNd×1 are the representation-wise attention (RW-Attention),
which is computed based on E and the domain prediction loss Ld ∈ RNd×1 as following:

a = softmax(tanh(Concat(E,Ld)UA)WA) (5)

Cj =

Nd∑
i=1

aiEi,j (6)

where UA ∈ R(Nf+1)×da and WA ∈ Rda×1 are the projection matrices, i represents the domain
index, j represents the feature index.

2.6 PATIENT OUTCOME PREDICTION

The final representation C of EHR is concatenated with all static features, such as demographics and
comorbidity, followed by a linear layer with a sigmoid function for the outcome binary prediction.
Let the patient outcome label be y and the predicted label be ŷ, and we use the binary cross entropy as
the part of the final loss, denoted as Lp. We also constructed the supervised contrastive loss Khosla
et al. (2020) to mitigate further the model bias as another part of the final loss. The contrastive loss
is denoted as Lc. The final prediction loss L is:

L = Lp + Lc (7)

Lp =

Ns∑
i=1

−(yi log(ŷi) + (1− yi) log(1− ŷi)) (8)

Lc =

Ns∑
j=1

−1

Np

Np∑
p=1

log
exp(hj ∗ hp/τ)∑Na

a=1 exp(hj ∗ ha/τ)
(9)

where Ns,Np, Na represents the number of all samples, the number of samples having the same
labels as the anchor samples (j), and the number of samples having the opposite label to the anchor
samples (j). h represents the concatenation of the learned representation C and the static features.
τ is a scale parameter.

3 EXPERIMENTS SETTINGS

In the experiment, we aim to continuously predict AKI-D patients’ mortality risk in their dialy-
sis/renal replacement therapy (RRT) duration. More specifically, given a period of EHR in dialysis
duration before time T , we will continuously predict the mortality risk between T and T + 72h.

3.1 EXPERIMENT DATA

The study population consists of 570 AKI-D adult patients admitted to ICU at the University Hos-
pital from January 2009 to October 2019. Among them, 237 (41.6 %) died before discharge, and
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Table 1: Training, validation and testing data.

Total N
Samples (Patient)

Alive N
Samples (Patient)

Death in the next 72 hours
N Samples (Patient)

Negative to Positive
Ratio (Patient)

Train 9979 (432) 7652 (388) 2327 (149) 3:1 (3:1)
Valid 642 (24) 519 (22) 123 (9) 4:1 (2:1)
Test 2712 (114) 2187 (104) 525 (31) 4:1 (3:1)
All 13333 (570) 10358 (514) 2975 (189) 3:1 (3:1)

333 (58.4%) survived. Patients are excluded if they were diagnosed with end-stage kidney disease
(ESKD) before or at the time of hospital admission, are recipients of a kidney transplant, or has RRT
less than 72 or greater than 2,000 hours.

Data features include 12 temporal features (systolic blood pressure, diastolic blood pressure, serum
creatinine, bicarbonate, hematocrit, potassium, bilirubin, sodium, temperature, white blood cells
(WBC) count, heart rate, and respiratory rate) and 11 static features including demographics and
comorbidities (age, race, gender, admission weight, body mass index (BMI), Charlson comorbidity
score, diabetes, hypertension, cardiovascular disease, Chronic Kidney Disease, and Sepsis). All out-
liers (> 97.5% or < 2.5%) were excluded and missing values are imputed with the last observation
carried forward (LOCF) method.

To continuously predict mortality risks, we generate 30 samples from each patient’s EHR data with
random start and end times as long as the duration is greater than 10 time steps. The class label of a
sample is whether the patient died (positive) or survived (negative) in the next 72 hours. From 570
AKI-D patients, 13,333 EHR samples are extracted, including 2,975 positive and 10,358 negative
samples. As shown in Table 1, all the EHR samples are split into train (75%), validation (5%), and
test data (20%) patient-wise, which ensures that samples from the same patients only appear in one
of the three sets. Eighteen subpopulations were considered in this study based on nine domains
according to patient demographics (i.e., age, gender, race) and commodities (i.e., Charlson score,
diabetes, hypertension, cardiovascular disease, chronic kidney disease, and sepsis).

3.2 BASELINE METHOD AND FAIRNESS PERFORMANCE METRICS

We compared MTATE with two widely used and accessible sequence DL methods, LSTM and
Transformer, one well-known EHR-specific representations method, RETAIN, and one pioneer
domain-adaptation method, DANN*. For Transformer, the encoder part of the original Transformer
is used. For DANN*, we only use the gradient reversal layer from the original DANN to get domain-
invariant representation with all other structures the same as MTATE. For all models, the input data
are the EHR temporal features, and static features are concatenated with latent representation be-
fore the prediction layer, as described in Section 2.6. We evaluate the performance of all models
using traditional performance metrics: Area under the ROC Curve (ROCAUC), Accuracy(ACC),
Area under the Precision-Recall Curve (PRAUC) as well as three fairness metrics Demographic
Parity Difference (DPD), Equality of Opportunity Difference (EOD) and Equalized Odds Differ-
ence (EQOD) (Feldman et al., 2015; Hardt et al., 2016; Afrose et al., 2022) (see fairness metric
equations 15, 16, 17 in Appendix). We compare all models on both imbalanced and balanced sets.
The positive samples (died) and negative samples (survived) are 1:4 and 1:1, respectively.

4 RESULTS AND DISCUSSION

4.1 COMPARISON WITH BASELINE METHODS

The overall performance of rolling mortality prediction in the next 72 hours for all test data with
an imbalanced positive to negative ratio are shown in Table 2. We also show the performance on
the balanced data in Table A1. Regarding the imbalanced test data, Table 2 shows that MTATE
outperforms all the compared baseline methods in almost all metrics. LSTM is the most competitive
method since it has the same highest ROCAUC as MTATE and the highest PRAUC. Nevertheless,
the fairness scores of LSTM are not as good as MTATE. RETAIN, and Transformer have a moderate
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Table 2: Performance comparison on mortality prediction in the next 72 hours on imbalanced test
data (pos:neg=1:4). DPD, EOD, and EQOD are the lower the better.

Method ROCAUC ACC PRAUC DPD EOD EQOD

Transformer 0.71(0.08) 0.69(0.09) 0.39(0.17) 0.18(0.10) 0.08(0.08) 0.10(0.05)
LSTM 0.72(0.11) 0.77(0.07) 0.55(0.20) 0.12(0.08) 0.10(0.07) 0.07(0.04)
RETAIN 0.69(0.12) 0.78(0.07) 0.45(0.20) 0.13(0.12) 0.10(0.07) 0.07(0.06)
DANN* 0.60(0.12) 0.64(0.14) 0.31(0.16) 0.23(0.18) 0.08(0.06) 0.12(0.08)
MTATE (Ours) 0.72(0.09) 0.81(0.07) 0.49(0.18) 0.09(0.07) 0.07(0.06) 0.05(0.03)

Figure 3: Equalized odds difference for every subpopulation domain. Y-axis represents the EQOD
score (the lower the better) and X-axis represents the subpopulation domains, where each domain
consists of two subpopulations (e.g., Young (< 65 y/o) vs. Old in Age and Sepsis vs. Non-Sepsis).
Here, CCI, DB, CVD, and CKD stand for Charlson comorbidity score, diabetes, hypertension, car-
diovascular disease, and chronic kidney disease, respectively.

performance. The performance of all the compared algorithms on the balanced test data shows that
MTATE has the best ROCAUC, DPD, EOD, and EQOD, and second-best accuracy (see Table A1).

We compare MTATE with all baseline methods within each subpopulation domain. Figure 3 shows
that MTATE has the best (lowest) averaged EQOD score. We also compare MTATE with all base-
lines regarding the difference of PRAUC within each subpopulation domain (e.g., the difference of
PRAUC between female and male). The difference in PRAUC for each domain and the averaged
score across all domains is in Figure A2. It shows that MTATE has the lowest percentage difference
in PRAUC between subpopulations in Age, Gender, and Hypertension domains.

4.2 ABLATION STUDY

We conduct an ablation study to test how each component of MTATE performs by removing them
from MTATE. Table 3 shows that MTATE has the best performance for almost all metrics except for
ROCAUC, which is the second best to MTATE without masking. However, the accuracy of MTATE
without masking is 18% lower than MTATE. In addition, RW-ATT is the most effective component
since the performance drops the most in the two ablations that are without RW-ATT.

A primary goal of MTATE is to learn fair representations that can be used by a wide spectrum of
downstream predictive models. To this end, we test whether the representation learned from MTATE
can be used by traditional machine learning methods. The last three lines in Table 3 shows that all
three traditional methods, XGboost, SVM, and Random Forest, have achieved similar performance
as MTATE and are better than some of the compared deep learning methods. This comparison
confirms that MTATE can serve as a pre-trained EHR data representation generator, and the learned
representations can be used by downstream prediction tasks implemented with different classifiers.
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Table 3: Performance comparison of MTATE and its ablation components for the mortality predic-
tion in the next 72 hours (pos:neg = 1:4). w/o. DC: remove all domain classifiers. w/o. RW-ATT:
remove representation-wise attention. w/o. DC & RW-ATT: remove both domain classifier and
representation-wise attention. w/o. Masking: remove masking layers in FR-Attention module.
w/o. Lc : remove contrastive loss.

Method ROCAUC ACC PRAUC DPD EOD EQOD

w/o. DC 0.70(0.09) 0.70(0.07) 0.47(0.18) 0.15(0.12) 0.09(0.07) 0.09(0.06)
w/o. RW-ATT 0.64(0.13) 0.72(0.10) 0.37(0.21) 0.23(0.20) 0.12(0.09) 0.13(0.09)
w/o. DC & RW-ATT 0.63(0.13) 0.70(0.11) 0.37(0.21) 0.25(0.20) 0.11(0.10) 0.13(0.09)
w/o. Masking 0.73(0.09) 0.63(0.06) 0.48(0.18) 0.15(0.12) 0.09(0.08) 0.09(0.06)
w/o. Lc 0.71(0.09) 0.77(0.07) 0.44(0.17) 0.11(0.11) 0.08(0.06) 0.07(0.05)
MTATE 0.72(0.09) 0.81(0.07) 0.49(0.18) 0.09(0.07) 0.07(0.06) 0.05(0.03)

XGBoost w/ MTATE 0.69(0.09) 0.70(0.07) 0.43(0.17) 0.09(0.08) 0.07(0.07) 0.07(0.03)
SVM w/ MTATE 0.71(0.10) 0.81(0.06) 0.48(0.19) 0.10(0.08) 0.07(0.06) 0.06(0.04)
RF w/ MTATE 0.72(0.09) 0.80(0.06) 0.49(0.17) 0.07(0.07) 0.06(0.06) 0.05(0.03)

Figure 4: Relationship between outcome loss, domain loss and representation-wise attention. Y-
axis represents the outcome loss, X-axis represents the domain loss. The colored dots represent
representation-wise attention, and the darker color represents higher attention.

4.3 EFFECTIVENESS ASSESSMENT OF RW-ATTENTION

Since RW-Attention is the most effective component in MTATE, we study its relationships with
the outcome prediction loss Lp and domain loss Ld, as shown in Figure 4. Each dot in the figure
presents the averaged value of all samples from the same subpopulation. The figure shows three
example domains in two facets. First, the correlation between the outcome prediction loss and the
domain loss could be negatively correlated (Age), positive (CVD), or mixed (Race). In the negative
correlation scenario, the higher the domain loss, the lower the outcome prediction loss, which sug-
gests the RW-Attention is putting more weight on the representations with larger domain loss (i.e.,
domain-invariant representations). In the positively correlated scenario, outcome prediction loss de-
creases with the decrease of domain loss. It suggests the RW-Attention is putting more weight on
the representations with smaller domain loss (domain-specific representations). Second, attention
weights, as indicated by the color of the dots in the figure, demonstrate the relationship between RW-
Attention and the outcome prediction loss. The darker colored dots (greater attention) are almost
always related to the lower outcome prediction loss, whether the outcome prediction loss and the do-
main loss are positively or negatively correlated. This indicates that the RW-Attention module can
weigh both domain-specific or domain-invariant representations toward lower outcome prediction
loss. Similar patterns in all other domains are in Figure A4.
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5 CONCLUSION

In this work, we presented MTATE, an attention-based encoder for EHR data. MTATE uses three
different attention mechanism (time-relevance, feature-relevance, and representation-wise) to learn
unbiased data representations. Experiments on real-world healthcare data demonstrated that MTATE
outperforms the compared baseline methods on continuous mortality risk prediction for critically ill
AKI-D patients regarding fairness.
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A APPENDIX

A.1 FR-ATTENTION

The FR-Attention sub-module for each head is computed as:

Q′,K′,V′ = MUQ,MUK,MUV (10)

AFR = softmax(
Q′K ′T√

d′k
) (11)

M′h = AFRV ′ (12)

M′ = Concat(M ′h
1 , ...,M ′h

i , ...,M ′h
N ′

h
)UO (13)

Z′ = max(0, (M′)TW1 + b1)W2 + b2 (14)

Similar to TR-Attention module, we assume all projection matrix UQ,UK,UV have the same di-
mension d′k. Thus, UQ,UK,UV ∈ RNt×d′

k and Q′,K′,V′ ∈ RNl×d′
k . The feature-relevance

attention AFR ∈ RNl×Nl . The output of each head is M′h ∈ RNl×d′
k . Similar to the TR-Attention

module, all outputs from all heads are concatenated to form M′ ∈ RNl×Nt , and linear transforma-
tion are applied with the projection matrix UO ∈ R(N ′

hd
′
k)×Nt , where N ′

h represents the number of
head.

Figure A1: A. The structure of FR-Attention module in MTATE. B. The multi-head attention module
from the original Transformer used in MTATE.

A.2 FAIRNESS METRICS

Demographic parity suggests that a predictor is unbiased if the prediction is independent of the
protected attribute (e.g., Age, Gender, and etc.). We denote protected attribute as A ∈ a, b, and A
only take two groups a, b (e.g., Young vs Old for Age) for simplicity. Thus, the Demographic parity
difference (DPD) is the difference between the two group a and b The formula for Demographic
parity difference (DPD) is shown in below:

DPD = P (ŷ = 1|A = a)− P (ŷ = 1|A = b) (15)

Equality of opportunity suggests that a predictor is unbiased if the true-positive rate between two
groups are equal. Similarly, the Equality of opportunity difference (EOD) is the difference between
the two group a and b. The formula for EOD is shown in below:

EOD = P (ŷ = 1|y = 1, A = a)− P (ŷ = 1|y = 1, A = b) (16)
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Equalized odds suggests that a predictor is unbiased if both the true-positive rate (TPR) and false-
positive rate (FPR) between two groups are equal. We computes the Equalized odds Difference
(EQOD) as the average of the difference in both TPR and FPR. The formula for EQOD is shown in
below:

EQOD = (TPRD + FPRD)/2 (17)
TPRD = P (ŷ = 1|y = 1, A = a)− P (ŷ = 1|y = 1, A = b) (18)
FPRD = P (ŷ = 1|y = 0, A = a)− P (ŷ = 1|y = 0, A = b) (19)

A.3 PERFORMANCE COMPARISONS

A.3.1 OVERALL PERFORMANCE

The following table shows the performance comparison between MTATE and baseline methods for
the balanced test data.

Table A1: Balanced performance of MTATE and compared algorithms for the mortality prediction
in the next 72 hours (pos:neg = 1:1).

Method ROCAUC ACC PRAUC DPD EOD EQOD

Transformer 0.70(0.09) 0.67(0.09) 0.69(0.11) 0.17(0.13) 0.15(0.12) 0.10(0.06)
LSTM 0.71(0.11) 0.67(0.11) 0.76(0.12) 0.19(0.12) 0.20(0.12) 0.12(0.05)
RETAIN 0.68(0.12) 0.67(0.11) 0.72(0.13) 0.22(0.13) 0.21(0.12) 0.12(0.06)
DANN* 0.58(0.12) 0.54(0.14) 0.59(0.12) 0.21(0.19) 0.16(0.13) 0.12(0.08)
MTATE (Ours) 0.73(0.09) 0.65(0.11) 0.75(0.11) 0.15(0.10) 0.14(0.11) 0.08(0.05)

A.3.2 FAIRNESS PERFORMANCE WITHIN EACH DOMAIN

Figure A2: The comparison between MTATE with baseline methods for the percentage difference
score in PRAUC for each domain. Y-axis represents the percentage difference. X-axis represents
the subpopulation domain, each domain consists of two subpopulations (e.g., Young (< 65 y/o) vs.
Old in Age domain, Sepsis vs. Non-Sepsis in Sepsis Domain ). CCI stands for charlson comorbidity
score, DB stands for diabetes, HT stands for hypertension, CVD stands for cardiovascular disease,
CKD stands for chronic kidney disease.
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A.4 STUDY OF MASKING RATE

We analysed the effect on the performance by different masking ratio. Figure A3 shows the per-
formance metrics of ROCAUC, PRAUC and accuracy with respect to the masking ratio from 0 to
0.9. Both ROCAUC and PRAUC have a similar trend, both starting with a relative high score and
gradually decrease with some punctuation, and both reach lowest scores at masking rate 0.8 and
0.9. In contrast, the accuracy has a opposite trend, where it starts with the lowest score, and almost
monotonically increasing. The masking rate is highly dependant on the input data, thus the chosen
of masking rate is not universal. For our experimental data, one of the best masking rate is 0.4,
where it has the highest accuracy and PRAUC and the third best ROCAUC.

Figure A3: Performance Score of ROCAUC, PRAUC and Accuracy with different masking rate

A.5 RELATIONSHIP BETWEEN OUTCOME LOSS, DOMAIN LOSS AND REPRESENTATION-WISE
ATTENTION

Figure A4: Relationship between outcome loss, domain loss and representation-wise attention in all
domains. Y-axis represents the outcome loss, x-axis represents the domain loss. The colored dots
represent the representation-wise attention, and darker color represents higher attention.
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