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Abstract001

Evaluation is important for multimodal genera-002
tion tasks. With the rapid progress of MLLMs,003
there is growing interest in applying MLLMs004
to build general evaluation systems. However,005
existing work overlooks two aspects: (1) the de-006
velopment of evaluation capabilities for text-to-007
image (T2I) generation task, and (2) the incor-008
poration of large-scale human evaluation data.009
In this paper, we introduce Minos-Corpus, a010
large-scale multimodal evaluation dataset that011
combines evaluation data from both human012
and GPT. The corpus contains evaluation data013
across both image-to-text(I2T) and T2I gener-014
ation tasks. Based on this corpus, we propose015
Data Selection and Balance, Mix-SFT training016
methods, and apply DPO to develop Minos,017
a multimodal evaluation model built upon a018
7B backbone. Minos achieves state-of-the-art019
(SoTA) performance among all open-source020
evaluation models of similar scale on the av-021
erage of evaluation performance on all tasks,022
and outperforms all open-source and closed-023
source models on evaluation of T2I generation024
task. Extensive experiments demonstrate the025
importance of leveraging high-quality human026
evaluation data and jointly training on evalu-027
ation data from both I2T and T2I generation028
tasks.029

1 Introduction030

Multimodal evaluation(Huang and Zhang, 2024;031

Zhang et al., 2023; Ge et al., 2023) is crucial for032

multimodal generation tasks and developing mut-033

limodal models. A reliable evaluation not only034

enables more accurate comparison across models,035

but also reduces the cost of human annotation, fa-036

cilitates the generation of higher-quality synthetic037

data, and supports simulation of human feedback038

during alignment. Although multimodal evalua-039

tion is crucial, traditional metrics, though widely040

used, still face notable limitations(Hessel et al.;041

Mañas et al., 2024), such as correlating poorly with042

human judgments, requiring reference data, and 043

task-dependent. Therefore, developing a general- 044

purpose multimodal evaluation system is becoming 045

increasingly important. However, developing such 046

evaluation system often faces several challenges, 047

such as limited generalizability across diverse mul- 048

timodal tasks, the scarcity of human-annotated data, 049

and the high cost of data annotation. 050

With the rapid development of multimodal large 051

language models (MLLMs), recent studies(Chen 052

et al., 2024; Lee et al., 2024; Xiong et al., 2024) 053

begin to explore applying MLLMs as the founda- 054

tion for building general multimodal evaluation 055

systems. For example, MLLM-as-a-Judge(Chen 056

et al., 2024) follows the LLM-as-a-Judge(Zheng 057

et al., 2023) paradigm to construct a benchmark for 058

multimodal evaluation on many multimodal tasks, 059

testing prompt-based methods across a range of 060

open-source and closed-source models. LLaVA- 061

Critic(Xiong et al., 2024) collects existed multi- 062

modal generation data and prompts the GPT to 063

obtain evaluation results among various image-to- 064

text(I2T) generation tasks to train a general evalua- 065

tion model. 066

However, the training and testing data used in 067

existing work(Chen et al., 2024; Lee et al., 2024; 068

Xiong et al., 2024) are limited to image-to-text gen- 069

eration tasks such as image captioning, visual ques- 070

tion answering, and instruction following. Previous 071

works have not sufficiently considered supporting 072

another important multimodal task which is text- 073

to-image(T2I) generation task. In addition, current 074

multimodal evaluation models typically rely on syn- 075

thetic labels and have not applied large-scale high- 076

quality human evaluation data. Most training data 077

employs annotations produced by GPT, essentially 078

serving as a distillation of GPT’s own judgments. 079

Though LLaVA-Critic applies small amount of pair- 080

wise human evaluation data, developing effective 081

evaluation models may require large-scale point- 082

wise evaluation data (Hu et al., 2024), which is 083

1



overlooked in previous works. Drawing inspiration084

from textual evaluation models such as Themis(Hu085

et al., 2024), we argue that the role of large-scale086

human evaluations in multimodal settings might be087

important as well.088

To alleviate the scarcity of high-quality evalua-089

tion data across various multimodal tasks, we in-090

troduce Minos-Corpus, a multimodal evaluation091

corpus covering 16 datasets across 6 common mul-092

timodal tasks. Minos-Corpus contains 124k eval-093

uation samples, all annotated by GPT-4o, among094

which 48k also include human annotations. Each095

data instance comprises an evaluation input and an-096

notated outputs, which include both analyses and097

scores. Specifically, for instances without human098

scores, GPT-4o provides both scores and analyses;099

for those with human scores, GPT-4o generates100

only the corresponding analyses. Minos-Corpus101

incorporates high-quality human evaluation data102

and expands multimodal evaluation to cover both103

image-to-text and text-to-image generation tasks,104

improving generality and data diversity.105

Moreover, prior multimodal evaluation models106

such as LLaVA-Critic typically rely on supervised107

fine-tuning(SFT) using evaluation data, while over-108

looking the alignment stage that plays a crucial109

role in MLLMs development. Alignment tech-110

niques such as RLHF(Ouyang et al., 2022) and111

RLAIF(Lee et al., 2023) have proven effective in112

aligning models with human intent. In particu-113

lar, Direct Preference Optimization(DPO)(Rafailov114

et al., 2023), which leverages human or model-115

generated preference data, has become a widely116

adopted method for aligning LLMs. Inspired by117

this, we further utilize Minos-Corpus to construct118

preference data from existing human-annotated and119

GPT-annotated evaluation data, thereby enabling120

DPO alignment of the evaluation model. More-121

over, we observe that preference over evaluation122

outputs is the pairwise evaluation of the evaluation123

output, constituting another form of the evaluation124

task. Therefore, to make more effective usage of125

preference signals, we construct pairwise compar-126

ison data from them and mix the resulting com-127

parison data with the original training data during128

the SFT stage as Mix-SFT training. We find that129

this Mix-SFT training strategy further improves the130

model’s evaluation performance on various mul-131

timodal tasks. And after Mix-SFT training, DPO132

can still be applied for alignment training to further133

improve model performance, providing our final134

proposed model Minos.135

Our proposed Minos is an evaluation model on a 136

7B backbone designed for the evaluation of bidirec- 137

tional (I2T and T2I) multimodal generation. Our 138

model is capable of evaluating diverse multimodal 139

generation tasks across text-to-image(T2I) and 140

image-to-text(I2T) tasks(Modality Generaliza- 141

tion) by providing reference-free(Independence) 142

scores and generating human-interpretable anal- 143

ysis(Interpretability), highlighting its practical 144

value. 145

Overall, our main contributions are as follows: 146

• We construct Minos-Corpus, a large-scale 147

multimodal evaluation dataset comprising 148

124k evaluation samples across 16 datasets 149

and 6 multimodal tasks, including I2T genera- 150

tion task, using human annotations and GPT- 151

4o. 152

• We propose Minos, a multimodal evaluation 153

model with modality generalization, indepen- 154

dence and interpretability, trained using a Mix- 155

SFT training and DPO alignment strategy on 156

Minos-Corpus. Minos outperforms previous 157

state-of-the-art models of the same parameter 158

size, and even surpasses the performance of 159

prior SoTA models GPT-4o on evaluating T2I 160

generation tasks. 161

• We conduct extensive experiments demon- 162

strating that introducing human annotated data 163

and incorporating multimodal tasks(including 164

T2I and I2T) help enhance evaluation capabil- 165

ity, pointing out future research directions. 166

2 Minos-Corpus 167

There are a wide range of tasks and associated 168

datasets in multimodal area. We start constructing 169

Minos-Corpus by collecting existing human evalua- 170

tion data. For tasks lacking human annotations, we 171

leverage GPT-4o to generate corresponding evalua- 172

tion annotations. 173

2.1 Data Format 174

Following previous settings in LLaVA- 175

Critic(Xiong et al., 2024), a multimodal evaluation 176

instance consists of the task input i, the task 177

description d, the model output t, the evaluation 178

criteria c, and an optional reference answer r. The 179

corresponding output of the evaluation instance 180

includes an analysis a and a score s. A single 181
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Figure 1: An example of Evaluation instance in Minos-Corpus. We select a sample from the human-annotated
image captioning evaluation dataset Polaris to illustrate our data. Note that only instances from human evaluation
data contain human evaluation score like presented in the figure. Depending on the specific multimodal task, the
task input can be an image, text, or a combination of both, while the task output can be either text or an image.

multimodal evalution instance can be represented182

as: (i, d, t, c, [r], a, s)183

This standardized format provides a flexible and184

unified structure for representing evaluation of di-185

verse multimodal generation tasks, enabling consis-186

tent model training and assessment across different187

modalities and objectives. An example of Minos-188

Corpus evaluation data can be seen in the Figure189

1.190

2.2 Corpus Construction191

We start the data construction process by collect-192

ing human annotated evaluation dataset. We col-193

lect four large-scale human-annotation evaluation194

dataset which are Image Captioning dataset Po-195

laris(Wada et al., 2024), Visual Question Answer-196

ing dataset LAVE(Mañas et al., 2024) and Text-to-197

Image Generation dataset ImageReward(Xu et al.,198

2023), RichHF-18K(Liang et al., 2024), which we199

collect nearly 60k evaluation samples. However,200

this subset of evaluation data only contains human-201

provided scores without corresponding analyses.202

To address this, we follow the prompt design in203

their original paper and use GPT-4o to generate 10204

candidate evaluation outputs which contain both205

analyses and scores. There are 48k samples left206

which obtain valid GPT-annotated candidate evalu- 207

ation outputs. 208

However, many tasks lack corresponding human- 209

annotated evaluation datasets. Following previous 210

settings(Xiong et al., 2024), to cover more multi- 211

modal tasks, we additionally extract relevant sam- 212

ples from several commonly used datasets and ob- 213

tain model responses from VLFeedback(Li et al., 214

2024b). We then use GPT-4o to generate 10 evalua- 215

tion output candidates which contain both analysis 216

and scores for these instances. After applying the 217

selection and balance method, we obtain 76k evalu- 218

ation samples in the end. The entire Minos-Corpus 219

consists of 124k evaluation samples, each contain- 220

ing the corresponding evaluation input and a set of 221

candidate outputs. Details regarding the source of 222

evaluation, task types, and data source are provided 223

in Table 1. 224

3 Minos 225

We designed two main methods to develop our mul- 226

timodal evaluation model Minos. We first design 227

a Selection and Balancing strategy to filter and re- 228

fine multimodal evaluation data, aiming to obtain a 229

smaller but higher-quality dataset. Then, we con- 230

sider the evaluation comparisons as a form of pair- 231
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Evaluation Source Multimodal Task Data Source Data Size

Human
Image Captioning Polaris 6.7k

Visual Question Answering LAVE 13.7k
Text-to-Image Generation ImageReward,RichHF-18K 27.4k

GPT-4o

Image Captioning SViT-detail, LLaVA 10.8k
Visual Question Answering LLaVAMed, LLaVA, comvint, SVIT 28.4k

Text Reading LLaVAR 13.5k
Reasoning LLaVA, SVIT 15.3k

instruction following PCAEVAL, M3IT, LRV-Instruction 8.5k

Table 1: The Evaluation Sources, contained Multimodal Tasks, Data Sources„ and corresponding Data Sizes of
Minos-Corpus. Minos-Corpus contains a total of 124k evaluation instances constructed from diverse sources.

wise evaluation data and construct corresponding232

evaluation comparison data. We mix these pair-233

wise samples with the evaluation data for Mix-SFT234

training. After Mix-SFT training, we apply DPO235

alignment to obtain final evaluation model Minos.236

3.1 Selection and Balance237

According to prior research on textual evaluation238

models such as Themis(Hu et al., 2024), high-239

quality data Selection and Balance are critical for240

improving model evaluation capabilities. In the241

multimodal setting, although LLaVA-Critic(Xiong242

et al., 2024) explores the usage of evaluation data,243

it simply samples a subset of evaluiton instances244

without performing in-depth filtering or balancing245

method. To enhance the evaluation capability of246

Minos, we design a Selection and Balance method247

over the constructed 124k evaluation samples, aim-248

ing to achieve better evaluation performance with249

fewer but higher-quality data.250

First, we try to select one evaluation output from251

the the GPT-generated evaluation output candidates.252

For human-annotated instances which only contain253

evaluation scores, we perform quality filtering by254

comparing the GPT-generated scores with human255

evaluation score, resulting in a filtered subset. We256

refer this quality filtering to as Human Selection.257

Specifically, we sample one result where the GPT-258

assigned score matches the human score from 10259

generated evaluation results. If none of the ten260

GPT scores align with the human judgment, the261

instance is discarded. For those datasets that lack262

human-labeled evaluation data, we randomly select263

a GPT-generated evaluation output whose score264

matches the mode of the score in GPT-generated265

candidates.266

Score #1 #2 #3 #4 #5 All

Full
9.5k 15k 16k 18k 65k 124k
7% 12% 13% 15% 53% 100%

Filtered
9.2k 9.8k 12k 13k 14k 57k
16% 17% 21% 23% 23% 100%

Table 2: Score distribution of Full and Filtered Corpus.
We apply Data Selection and Balance method to filter
the Corpus. We calculated the number and correspond-
ing proportion of data samples for each score.

We then analyzed the overall score distribution 267

of the combination of two filtered datasets and ob- 268

served a significant imbalance of evaluation scores. 269

To address this issue, we manually balanced the 270

score distribution, resulting in the final evaluation 271

data. The score distribution of the Full and Filtered 272

data can be seen in Table 2. 273

3.2 Mix-SFT Training and DPO Alignment 274

For MLLM development, it is common to follow 275

the supervised fine-tuning (SFT) stage with an 276

alignment phase, which often leads to further per- 277

formance improvements. However, preference data 278

in evaluation tasks is more special, as it reflects 279

pairwise judgments over candidate evaluation re- 280

sults. It can also be regarded as a form of evaluation 281

task in itself. 282

Inspired by this observation, we not only con- 283

structed preference data for alignment but also ex- 284

plicitly formulated them as evaluation comparison 285

samples which can be seen in the bottom of the 286

Figure 2. 287

Specifically, for each instance on the filtered eval- 288

uation dataset, we select the previously chosen an- 289

4



Model
MLLM-as-a-Judge

RichHF
All

CO C.C. Dif Graph Math Text WIT Chart Vis CC M2W Sci Aes MM Ave. Ave.

Gemini-Pro-1.5 32.2 38.6 29.4 34.6 45.2 41.9 43.6 43.3 34.7 18.4 5.8 27.2 28.4 32.9 32.6 52.5 33.9

GPT-4o 39.6 45.2 34.1 46.4 46.0 56.4 40.8 57.3 58.9 30.5 26.2 56.9 42.1 34.2 43.9 54.5 44.6

LLaVA-OV(72B) 26.4 39.0 4.6 26.2 35.8 32.7 19.5 29.0 41.5 14.4 35.9 26.7 44.4 25.3 28.7 48.8 30.0

LLaVA-Critic(72B) 33.3 46.3 14.6 45.2 47.4 55.9 39.6 54.5 48.8 27.3 25.9 33.4 40.3 37.4 39.3 51.0 40.1

LLaVA-OV(7B) 22.4 2.4 6.30 18.9 9.70 26.5 -13.5 27.4 22.7 8.10 3.0 26.1 24.9 26.2 15.1 21.4 15.5

Prometheus-V(7B) 28.9 34.2 10.6 17.2 18.2 21.4 20.9 22.4 22.6 22.8 8.90 17.4 36.8 15.7 21.3 28.8 21.8

LLaVA-Critic(7B) 38.2 45.0 10.3 31.6 35.6 37.8 17.9 42.1 32.2 24.6 30.1 26.9 39.5 27.2 31.4 32.0 31.4

Minos(7B) 24.5 38.4 32.5 34.9 43.4 47.8 37.0 46.9 42.9 24.4 23.5 33.4 31.7 36.1 35.5 57.9 37.0

Table 3: Main Result of Minos and other evaluators on MLLM-as-a-Judge and RichHF-18K. We present the
pearson-r between the evaluation scores of models with the evaluation scores of human. We report results across
three model categories: closed models, open-source MLLMs built on large-scale backbones, and open-source
MLLMs based on 7B backbones. We include results from previous researches(Chen et al., 2024; Xiong et al.,
2024), and additionally evaluate all models on the text-to-image evaluation dataset RichHF. For models based on 7B
backbones, we highlight in bold the model that achieves the highest consistency with human evaluations.

notation as the good evaluation sample. Among the290

remaining GPT-annotated evaluation output can-291

didates for the same sample, we identify the one292

with the largest score discrepancy from the selected293

sample and treat it as the bad evaluation sample to294

form a comparison pair. We discard the instance,295

where all GPT-annotated scores are identical to the296

previously selected good evaluation sample. We297

obtain 38k evaluation comparison samples in the298

end.299

We mix these evaluation comparison data with300

evaluation data during SFT training of our model,301

refered it as Mix-SFT. During Alignment stage, we302

also transform the comparison data into preference303

data for DPO alignment training by selecting the304

good evaluation as preferred data and bad evalua-305

tion as dispreferred data.306

4 Experiments307

4.1 Experimental Setup308

Benchmark Following the evaluation protocol309

established in LLaVA-Critic(Xiong et al., 2024),310

we adopt MLLM-as-a-Judge(Chen et al., 2024)311

to assess the generalization performance of our312

evaluation model on various datasets. MLLM-as-313

a-Judge consists of 5k evaluation samples span-314

ning 14 datasets across 9 tasks. Since MLLM-as-315

a-Judge doesn’t contain T2I generation task, We316

additionally sample 600 examples with balanced317

score distribution from RichHF-18K as test data318

for the text-to-image generation task. The T2I gen-319

eration evaluation data of our training data contain320

samples from ImageReward only and doesn’t con- 321

tain samples from RichHF-18K. Following previ- 322

ous setting(Xiong et al., 2024), we apply Pearson-r 323

to measure the consistency between the model’s 324

evaluation scores and human evaluation scores. 325

Baselines We selected Gemini-Pro-1.5(Team 326

et al., 2024) and GPT-4o(Achiam et al., 2023) to 327

evaluate the performance of closed-source models 328

across multiple multimodal tasks. For open-source 329

models, we evaluated general-purpose multimodal 330

models of different scales, including LLaVA-OV 331

(7B) and LLaVA-OV (72B), as well as prior mul- 332

timodal evaluation models such as Prometheus- 333

V(Lee et al., 2024) and LLaVA-Critic(Xiong et al., 334

2024). Specifically, Prometheus-V is built upon 335

LLaVA-v1.5-7B(Liu et al., 2023), while LLaVA- 336

Critic includes both version based on a 7B and a 337

72B LLaVA-OV(Li et al., 2024a). 338

Training Details We build our model on top 339

of LLaVA-OneVision (LLaVA-OV)-7B(Li et al., 340

2024a) as the backbone. During the SFT stage, 341

we train the model for 2 epochs using a batch size 342

of 192 and a learning rate of 1e-5. In the DPO 343

stage, we train for 1 epoch with a learning rate 344

of 5e-7, setting β = 0.1 and γ = 0. Through- 345

out both stages, we freeze the vision encoder and 346

update only the multimodal adapter and the lan- 347

guage model components of LLaVA-OV. All other 348

training configurations follow the default settings 349

of LLaVA-OV-7B. We train the model with BF16 350

precision on 4 H100 GPUs. The SFT stage takes 351
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approximately 10 hours, while the DPO stage takes352

around 5 hours.353

4.2 Main Results354

The main results of Minos with other models on355

different multimodal tasks can be seen in Table 3.356

We evaluate our model against closed-source mod-357

els, open-source MLLMs built on 72B backbones,358

and open-source MLLMs based on 7B backbones.359

As shown in the results, our model consistently360

obtains the highest evaluation on the average of361

all multimodal generation tasks and achieves the362

highest agreement with human evaluations across363

10 diverse multimodal evluation tasks among mod-364

els with 7B backbones. Notably, on the RichHF-365

18K dataset for text-to-image generation evaluation,366

our model Minos largely outperforms all previous367

closed source and open source models. One of368

a multimodal tasks in MLLM-as-a-Judge is con-369

structed on DiffusionDB, which is related to text-370

to-image generation task (though not text-to-image371

task). Our model outperforms all open-source mod-372

els and ranks second only to GPT-4o, another evi-373

dence supporting our model’s capability of evaluat-374

ing text-to-image generation task.375

In summary, Minos sets a new state of the art376

among 7B-scale evaluation models, outperforming377

all existing models across 10 datasets spanning 6378

multimodal tasks. Compared to prior models of379

similar scale, Minos achieves an average improve-380

ment of 4.1 Pearson-r on image-to-text generation381

tasks and 5.6 Pearson-r on all multimodal genera-382

tion tasks including T2I generation task.383

Despite based on a 7B backbone, Minos still384

achieves competitive results when compared with385

closed-source models and open-source models built386

on much larger(72B) backbones. Minos outper-387

forms the 72B general-purpose multimodal model388

LLaVA-OV, demonstrating that developing dedi-389

cated evaluation models remains important.390

4.3 Analysis of Training Data During SFT391

We first investigate the impact of applying different392

evaluation data as training data on SFT stage for393

multimodal evaluation models before incorporat-394

ing Evaluation Comparison data. The Result can395

be seen in Table 4. Full results can be found in396

Appendix A.397

Analysis of Selection and Balance Firstly, we398

would like to investigate the influence of our Selec-399

tion and Balance on the corpus. At a starting point,400

we train a model using the full set of 124k samples, 401

all of which rely solely on GPT-generated analyses 402

and scores. Specifically, for each evaluation input, 403

we randomly selected one of the GPT-generated 404

outputs whose score matched the mode of the mul- 405

tiple GPT annotations as the evaluation output, with 406

no selection and balance strategy applied. As can 407

be seen from the results, despite the large data vol- 408

ume, this model did not yield the best evaluation 409

performance, neither on image-to-text (I2T) tasks 410

nor on text-to-image (T2I) tasks. 411

There are two components in our Selection and 412

Balance method. We first apply only the Human 413

Selection strategy on the full set, and we find that 414

the Human Selection strategy only enhances the 415

model’s performance on only T2I generation eval- 416

uations. We then apply only the Score Balance 417

Strategy and find that applying score balancing 418

alone can slightly improve the model’s evaluation 419

capability on image-to-text (I2T) tasks, but it leads 420

to a decline in performance on text-to-image (T2I) 421

tasks. Finally, with the combination of Human Se- 422

lection and Score Balance, the model achieves the 423

highest evaluation consistency across Bidirectional 424

Generation (T2I and I2T) compared with other set- 425

tings. Notably, the model’s performance under this 426

setting on the T2I evaluation task even surpasses 427

that of GPT-4o, which achieves a Pearson correla- 428

tion of 54.5. 429

These results underscore the importance of high- 430

quality, human-annotated multimodal evaluation 431

data. Particularly for text-to-image generation 432

tasks, incorporating human-annotated data leads 433

to better evaluation performance than simply in- 434

creasing the volume of GPT-generated annotations. 435

Compared to LLaVA-Critic which trained on 113k 436

evalaution samples(73k pointwise and 40k pairwise 437

evaluation data), our model achieves better align- 438

ment with human scores using less training data on 439

the same 7B backbone, demonstrating the superior 440

quality of our dataset. 441

Analysis of relation between T2I and I2T We 442

would like to further investigate the interaction be- 443

tween evaluation tasks of image-to-text (I2T) and 444

text-to-image (T2I) generation. Specifically, we se- 445

lected all 10k T2I evaluation samples from dataset 446

after applying selection and balance method, and 447

conducted SFT using only this subset. As shown 448

in the results, training solely on 10k T2I evaluation 449

data fails to yield strong performance on image- 450

to-text generation tasks, although it does not lead 451
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Analysis of
Data Contained Tasks Selection with Human Score Score Judge

RichHF
All

Size I2T T2I on Human Evaluation Data Balance Ave. Ave.
124k ✓ ✓ ✗ ✗ 32.3 52.4 33.6

Selection 102k ✓ ✓ ✓ ✗ 32.2 55.3 33.7
and Balance 57k ✓ ✓ ✗ ✓ 33.4 50.2 34.5

57k ✓ ✓ ✓ ✓ 33.5 56.8 35.1
10k ✗ ✓ ✓ ✓ 19.5 52.7 21.7

I2T and 10k ✓ ✗ ✓ ✓ 30.8 50.4 32.1
T2I tasks 47k ✓ ✗ ✓ ✓ 33.4 52.1 34.6

57k ✓ ✓ ✓ ✓ 33.5 56.8 35.1

Table 4: Result of Minos on MLLM-as-a-Judge and RichHF-18K when training with different multimodal evaluation
Data only during SFT stage. We present the pearson-r between the evaluation scores of Minos with the evaluation
scores of human.

to bad T2I evaluation performance either. Inter-452

estingly, adding I2T evaluation data improves the453

model’s evaluation capability on T2I generation454

task(from 52.7 to 56.8 in Pearson-r correlation).455

This suggests that training on I2T evaluation tasks456

contributes positively to the model’s generalization457

on T2I evaluation tasks.458

We also analyzed the impact of training only459

with I2T evaluation data. To this end, we used rest460

47k I2T samples from the 57k total SFT dataset, as461

well as a sampled subset of 10k I2T samples, for462

separate SFT experiments. The results show that463

even training solely on I2T evaluation data enables464

the model to achieve non-trivial T2I evaluation per-465

formance. However, incorporating T2I evaluation466

data further enhances the model’s consistency on467

text-to-image generation tasks. In summary, we468

observe that I2T evaluation data contributes pos-469

itively to the model’s performance on the text-to-470

image generation task, while T2I evaluation data471

also does not harm the model performance on I2T472

evaluation tasks. This finding highlights the impor-473

tance of develop the multimodal evaluation model474

on image-to-text and text-to-image generation tasks475

together.476

In conclusion, we argue that building a strong477

multimodal evaluation model requires the use of478

large-scale, high-quality human-annotated evalua-479

tion data. Furthermore, it is crucial to jointly con-480

sider both image-to-text and text-to-image evalu-481

ation tasks during training. These important as-482

pects have been overlooked in previous research483

about MLLM evaluators, and our findings effec-484

tively point out directions for future research.485

Selection Mix
DPO

Judge
RichHF

All
& Balance Train Ave. Ave.

✗ ✗ ✗ 32.3 52.4 33.6
✓ ✗ ✗ 33.5 56.8 35.1
✓ ✗ ✓ 33.6 56.3 35.1
✓ ✓ ✗ 34.7 55.6 36.1
✓ ✓ ✓ 35.5 57.9 37.0

Table 5: Result of Ablation Study on MLLM-as-a-Judge
and RichHF-18K. We present the pearson-r between the
evaluation scores of models with the evaluation scores
of human.

4.4 Ablation Study 486

We conduct an ablation study on the key methods 487

used in Minos, and the results are summarized in 488

Table 5. Full results can be found in Appendix A. 489

We adopted selection and balancing strategies 490

on our data to enhance the model’s evaluation per- 491

formance on both image-to-text (I2T) and text-to- 492

image (T2I) tasks, which shows performance im- 493

provement over not applying this strategy, as details 494

in the previous part. However, directly applying 495

DPO alignment training on top of this model leads 496

to only marginal improvements, suggesting that 497

preference data pairs alone may be insufficient for 498

effective alignment. 499

Given that preference pairs in evaluation tasks 500

are inherently a form of pairwise evaluation, they 501

can still be considered valid evaluation data. There- 502

fore, we constructed Evaluation Pair Comparison 503

data and integrated it into the original evaluation 504

data for SFT. We observe that training with this 505

mixed data improve the model’s I2T evaluation 506

capabilities. However, it unexpectedly degraded 507

7



performance on text-to-image generation tasks.508

We further applied DPO alignment training on509

the Mix-Train model. This led to improvements in510

both I2T and T2I evaluation performance. These511

findings suggest that when developing multimodal512

evaluation models, solely using them for DPO513

alignment might be insufficient; instead, combin-514

ing the evaluation comparison data during SFT and515

then applying DPO alignment allows for more ef-516

fective utilization. Compared to the base model,517

our final Minos model achieved substantial im-518

provements in consistency with human evaluation519

scores. Specifically, on the image-to-text tasks in520

MLLM-as-a-Judge, the average Pearson correla-521

tion improves by 3.2; on the RichHF-18k text-to-522

image dataset, it improves by 5.5; and across all523

cross-modal tasks, the average gain is 3.4.524

5 Related Work525

5.1 LMM as a Judge526

As large multimodal models (LMMs) are increas-527

ingly employed to construct evaluation metrics528

across various tasks(Huang and Zhang, 2024; Xia529

et al., 2024), building a unified evaluation model530

for multiple multimodal tasks based on LMMs has531

become a promising direction. The MLLM-as-532

a-Judge(Chen et al., 2024) benchmark provides533

human-annotated evaluation data spanning 14 tasks534

and evaluates the performance of both open-source535

and proprietary MLLMs as evaluators. Prometheus-536

V(Lee et al., 2024) was the first to leverage MLLM537

to construct a dedicated multimodal evaluation538

model. LLaVA-Critic(Xiong et al., 2024) further539

collected a range of pairwise and pointwise evalua-540

tion data across multiple tasks annotated by GPT,541

and trained a larger-scale multimodal evaluation542

model based on this data. However, existing eval-543

uation datasets and MLLM-based evaluators have544

primarily focused on image-to-text tasks, with little545

exploration of text-to-image tasks, which are also546

a core part of multimodal evaluation. Moreover,547

prior works have largely relied on GPT-generated548

annotations, without systematically collecting or549

leveraging high-quality human-labeled evaluation550

data to develop a general-purpose multimodal eval-551

uation model. This gap is precisely what our work552

aims to address.553

5.2 Multimodal Human Evaluation554

With the rapid advancement of multimodal re-555

search, increasing attention has been paid to the556

evaluation of multimodal tasks. Early works, such 557

as CLIP-Score(Hessel et al.), introduced human 558

evaluation datasets for image captioning. However, 559

these early datasets often exhibited diverse and in- 560

consistent formats, making them difficult to consol- 561

idate into a unified training resource for evaluation 562

models. More recently, several studies(Wada et al., 563

2024; Mañas et al., 2024; Xu et al., 2023; Liang 564

et al., 2024) have collected human-annotated multi- 565

modal evaluation data across a variety of image-to- 566

text and text-to-image tasks. For image-to-text eval- 567

uation, Polaris(Wada et al., 2024) introduced the 568

image captioning dataset, comprising 131k human 569

ratings annotated by 550 unique annotators. Simi- 570

larly, LAVE(Mañas et al., 2024) proposed a human 571

evaluation dataset for visual question answering, 572

which includes 29k human-labeled instances. On 573

the text-to-image side, datasets such as ImageRe- 574

ward(Xu et al., 2023) and RichHF-18K(Liang et al., 575

2024) have been developed to support human eval- 576

uation. Nonetheless, despite these efforts, high- 577

quality and large-scale human evaluation datasets 578

that can be directly converted into pointwise super- 579

vision for training multimodal evaluation models 580

remain limited. Many multimodal tasks still lack 581

sufficient human evaluation data. 582

6 Conclusion 583

In this work, we first collect and construct a 584

large-scale, general-purpose multimodal evalua- 585

tion dataset: Minos-Corpus. Minos-Corpus com- 586

prises 124k multimodal evaluation samples span- 587

ning six common tasks and 16 datasets, covering 588

both image-to-text and text-to-image settings. Each 589

sample is accompanied by GPT-generated eval- 590

uation outputs, and a subset of 48k samples in- 591

cludes high-quality human annotations. Based on 592

Minos-Corpus, we propose a training strategy that 593

incorporates Data Selection and Balance, Evalu- 594

ation Comparison, and Alignment techniques to 595

develop Minos, a 7B-scale multimodal evaluation 596

model. Averaged across all benchmark tasks, Mi- 597

nos achieves state-of-the-art (SoTA) performance 598

among all open-source evaluation models built on a 599

7B backbone, and even outperforms several larger- 600

scale open-source and proprietary models. Notably, 601

on tasks such as text-to-image generation, Minos 602

surpasses all models across scales, including GPT- 603

4o. 604
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Limitations605

Some early multimodal human evaluation datasets606

are no longer accessible due to broken links, and607

more human-annotated datasets are continuously608

being proposed. Our work represents a snapshot609

collection of the currently available multimodal610

human evaluation datasets. As the field progresses,611

we anticipate the emergence of larger and higher-612

quality human-labeled datasets, which can support613

more reliable evaluation results and enable more614

comprehensive experimental analysis.615

Moreover, when constructing Minos-Corpus, we616

utilized a substantial amount of GPT-generated an-617

notations, which may introduce certain biases in-618

herent to GPT models. Nevertheless, given the619

current scarcity of multimodal evaluation data, we620

argue that releasing a large-scale, high-quality, and621

general-purpose multimodal evaluation dataset is622

of great value to the community. Our experiments623

demonstrate that training multimodal evaluators on624

Minos-Corpus leads to stronger performance com-625

pared to previous models with the same backbone,626

thereby establishing Minos-Corpus as a valuable627

new resource for multimodal evaluation research.628

Ethical Considerations629

Our evaluation results are annotated by GPT-4o,630

and may therefore carry certain inherent biases631

from the model. When applying these annotations632

in real-world scenarios, it is important to care-633

fully examine whether any such biases are present.634

Moreover, since our evaluation model is trained on635

data generated through this annotation process, the636

model itself may also reflect these biases. Conse-637

quently, we recommend conducting manual spot-638

checks of the model’s outputs during deployment639

to ensure the reliability and fairness of its evalua-640

tions. We follow the correct usage of the data and641

models with the corresponding license.642
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A Full Evaluation Results759

We present the full name of each task mentioned in760

Table 3. The full name remains the same as (Chen761

et al., 2024)762
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corresponding Evaluation Comparison instance in 768

Minos-Corpus. 769
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Figure 2: An example of Evaluation instance and its corresponding Evaluation Comparison instance in Minos-
Corpus. We select a sample from the human-annotated image captioning dataset Polaris to illustrate our data. In
total, 48k samples in Minos-Corpus are accompanied by corresponding human evaluation scores.

Task Name (Short) Task Name (Full)

CO MS COCO
C.C. Conceptual Captions
Dif DiffusionDB

Graph InfographicVOA
Math MathVista
Text TextVOA
WIT WIT
Chart ChartOA
Vis VisIT-Bench
CC CC-3M Concept-balanced

M2W Mind2Web
Sci ScienceOA
Aes AesBench
MM MMvet

Table 6: The full name of each task.
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Setting
MLLM-as-a-Judge

RichHF
All

CO C.C. Dif Graph Math Text WIT Chart Vis CC M2W Sci Aes MM Ave. Ave.

S1 23.2 42.8 16.2 31.7 43.7 41.9 35.4 45.3 37.2 19.9 22.7 24.7 34.6 33.1 32.3 52.4 33.6

S2 25.6 42.8 16.3 28.7 42.8 42.0 34.1 45.0 41.2 23.0 23.4 22.3 30.2 32.9 32.2 55.3 33.7

S3 23.4 41.6 17.2 31.2 43.1 44.4 34.8 43.8 42.5 22.2 24.7 31.1 32.9 34.1 33.4 50.2 34.5

S4 23.2 41.7 16.8 35.1 44.9 46.8 35.9 48.0 37.6 20.7 24.6 24.8 38.0 30.9 33.5 56.8 35.1

S5 23.8 16.3 8.9 26.1 25.9 35.5 -2.9 26.5 26.5 14.1 14.0 2.99 19.7 35.1 19.5 52.7 21.7

S6 19.7 38.7 16.0 29.8 41.9 43.5 25.3 42.8 35.8 23.2 29.6 26.4 33.2 24.9 30.8 50.4 32.1

S7 25.5 42.1 13.9 32.0 42.9 45.2 36.5 42.1 40.9 18.6 26.9 30.0 35.9 35.0 33.4 52.1 34.6

S8 23.2 41.7 16.8 35.1 44.9 46.8 35.9 48.0 37.6 20.7 24.6 24.8 38.0 30.9 33.5 56.8 35.1

Table 7: Detailed results of data analysis in Table 4. Si represents the setting corresponding to the i-th row in Table
4.

Setting
MLLM-as-a-Judge

RichHF
All

CO C.C. Dif Graph Math Text WIT Chart Vis CC M2W Sci Aes MM Ave. Ave.

S1 23.2 42.8 16.2 31.7 43.7 41.9 35.4 45.3 37.2 19.9 22.7 24.7 34.6 33.1 32.3 52.4 33.6

S2 23.2 41.7 16.8 35.1 44.9 46.8 35.9 48.0 37.6 20.7 24.6 24.8 38.0 30.9 33.5 56.8 35.1

S3 22.3 39.5 28.8 34.5 45.2 42.6 32.3 45.6 40.0 21.4 24.9 26.6 33.5 32.6 33.6 56.3 35.1

S4 25.6 44.0 18.6 36.2 44.7 47.0 34.4 42.4 46.8 24.3 22.9 26.1 38.6 34.3 35.5 55.6 36.1

S5 24.5 38.4 32.5 34.9 43.4 47.8 37.0 46.9 42.9 24.4 23.5 33.4 31.7 36.1 35.5 57.9 37.0

Table 8: Detailed results of data analysis in Table 5. Si represents the setting corresponding to the i-th row in Table
5.
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