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Abstract

Current LLM quantization methods focus on single bitwidth quantization, requiring
time-consuming finetuning and benchmarking for each bitwidth version, which
limits their adaptability to different scenarios. To address these challenges, we
propose AdaQuantLM, a method for LLM quantization with adaptive bit-width.
Inspired by techniques such as AdaBits and Additive Quantization for Language
Models (AQLM), AdaQuantLM leverages the additivity of codewords in quan-
tized models. This allows for the efficient conversion between different bit-widths
by adding or removing specific codewords, eliminating the need for storing full-
precision weights. Our approach jointly quantizes and fine-tunes LLMs across
multiple bit-widths, enabling the model to adapt to devices with varying computa-
tional resources while maintaining performance. We demonstrate the effectiveness
of AdaQuantLM through experiments on the Gemma-2b model, highlighting its
potential for broad applicability in the efficient deployment of LLMs.

1 Introduction

Model quantization is a well-established technique that has been thoroughly studied and refined
over the years. It is widely applied to optimize neural networks, particularly in environments
with limited computational power and memory, such as mobile devices and embedded systems.
However, while quantization is well understood and broadly applied in traditional neural networks,
the emergence of Large Language Models (LLMs) introduces new complexities. These models, with
their immense scale and intricate architectures, present unique challenges in quantization that remain
largely unexplored.

Recent quantization methods for LLMs are typically divided into two categories: zero-shot and
optimization-based. Zero-shot techniques, such as Llm.int8() [3] and QLoRA [4], use scaling
operations to normalize parameters before quantization, allowing users to perform the process locally
with minimal computational resources. Optimization-based methods, such as those in [6, 7, 10, 5],
focus on minimizing quantization error using a calibration dataset. These resource-intensive processes
are typically done centrally, with the resulting quantized models distributed for use. All of these
methods focus on single bitwidth quantization. However, this approach is inefficient because it
requires time-consuming fine-tuning and benchmarking for each quantized version, making it difficult
to quickly adapt to different scenarios. As illustrated in Figure 2, directly combining the adapter from
8-bit LLM fine-tuning with a 4-bit LLM results in a decline in model performance. While separate
quantizing and finetuning process for the 4-bit LLM is required to achieve comparable performance,
this approach is not economical.

In order to overcome such shortcomings, we aim to quantize a LLM and finetune it only once and use
it on various bitwidth settings, as shown in the bottom of Figure 1. Many approaches addresses this
common issue for traditional neural networks. AdaBits [8] was the first approach to introduce the
idea of training a single model adaptable to multiple bit-widths. It achieves this by jointly training
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Figure 1: Deployment of LLMs with different bit-widths according to the computational budget.
Above: Individually finetune several quantized LLMs with different bit-widths for each scenario.
Bottom: Finetune a single LLM quantized with adaptive bit-widths and switch to the proper bit-width
in real application based on the device condition.

multiple bit-width versions. Additionally, it introduces a nested quantization scheme where lower
bitwidth model weights can be derived directly from higher bitwidth weights, rather than from the
full-precision model. The direct conversion between quantized models of different bitwidths obviates
the needs for the storage of the full-precision weights, which is especially beneficial for LLMs.

Figure 2: Comparison of finetuning 8-bit and 6-bit
version Llama-7b[13] on OASST1[9], the black
line denotes the loss level when we combine the
adapter obtained from 8-bit finetuning with 6-bit
version.

A recent work, AQLM [6], introduces Addi-
tive Quantization for Language Models, which
compresses the weight matrices of LLMs while
preserving model accuracy by using multiple
codebooks to better represent the weights. In-
spired by Adabits [8] and AQLM, we developed
our method for LLM quantization with adap-
tive bit-width, called AdaQuantLM. Leveraging
the inherent additivity of codewords in Additive
Quantization, our approach represents the quan-
tized weight vector using multiple codebooks
corresponding to different bit-width codes. The
transition between quantized LLMs of differ-
ent bit-widths can be achieved by adding or
dropping specific codewords. To ensure that
the quantized model can adapt to devices with
varying computational resources while maintain-
ing comparable performance, we jointly quan-
tize and finetune LLMs of different bit-widths,
learning the codebooks and codes alternately
following AQLM. We evaluate the effectiveness
of our method on the Gemma-2b model [12].
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2 Related Works & Preliminaries

2.1 LLM Quantization

To achieve memory-efficient model inference, LLMs are often deployed with lower-precision quan-
tized weights. Quantization methods for LLMs generally fall into two categories: zero-shot and
optimization-based quantization. The first category includes techniques like Llm.int8() [3] and
QLoRA [4], which rely on scaling operations to normalize parameters before mapping them into a
predefined set of quantization levels. Zero-shot quantization methods are computationally lightweight,
allowing users to download the full-precision model and perform quantization locally. However, this
approach can lead to lower precision, potentially resulting in a degradation of model performance.

On the other hand, optimization-based methods, such as those in [6, 7, 10, 5], focus on minimizing
quantization error, often using a calibration dataset. Due to the resource-intensive nature of these
optimization processes, they are typically performed once by a designated entity, with the resulting
quantized models distributed directly. However, these methods require significant computational
resources, making them impractical for many non-tech companies. Additionally, current LLM
quantization methods are limited in that a LLM is usually finetuned for a single dedicated bitwidth,
showing significant performance degradation when quantized to other bitwidths. In other words,
supporting multiple bitwidths would necessitate quantizing and fine-tuning multiple copies of the
model for each specific bitwidth, as depicted in the above part of Figure 1.

In this work, we focus on optimization-based quantization methods and aim to address the resource-
intensive challenges associated with multi-bit LLM quantization with adaptive configurations.

2.2 Adaptive Quantization

In neural network quantization, many approaches aim to train a model once and enable its use across
various bit-width settings. This strategy addresses the common issue where a model trained for a
specific bit-width often suffers significant performance degradation when quantized to other bit-
widths. AdaBits [8] was the first approach to introduce the idea of training a single model adaptable
to multiple bit-widths. It achieves this by jointly training multiple bit-width versions and applying
Switchable Clipping Levels to enhance the performance of quantized models at the lowest bit-width.
In Any-precision [15], the authors propose a training framework based on knowledge distillation,
allowing the model to be flexibly and directly adjusted to different bit-widths during runtime by
truncating the least significant bits, facilitating a dynamic trade-off between speed and accuracy.
Bit-Mixer [1] was introduced to train a meta-quantized network where any layer can change its
bit-width during testing without compromising the overall network’s performance. MEBQAT [14]
achieves adaptive bit-width quantization-aware training (QAT) by incorporating bit-width settings
and average gradients across different configurations, which are defined as meta-learning tasks. While
these methods have proven effective for quantizing and training smaller neural networks, they remain
impractical for large language models (LLMs).

2.3 Prior Work: AQLM

A recent work [6] introduces the Additive Quantization for Language Models (AQLM) method for the
extreme compression of large language models. AQLM extends the classical Additive Quantization
(AQ) approach, which has been primarily used in information retrieval, to compress the weight
matrices of LLMs while maintaining model accuracy. The method involves two key innovations:
first, it introduces learned additive quantization that adapts to the input distribution, and second,
it jointly optimizes the quantization codebooks across different layers of the transformer model.
These innovations allow AQLM to achieve Pareto-optimal performance in terms of the trade-off
between accuracy and model size, especially in scenarios requiring compression to less than 3 bits
per parameter.

Specifically, given a linear layer with weights W ∈ Rdout×din and calibration inputs X ∈ Rdin×n,
the goal is to find quantized weights Ŵ that minimize the squared error between the original and
compressed outputs:
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argmin
Ŵ

||WX− ŴX||22. (1)

In AQLM, Ŵ is quantized by splitting weight rows into groups of g elements, each represented as a
sum of M vectors from learned codebooks C1, . . . , CM , with each vector selected by a one-hot code
bm. The full weight matrix is then constructed by concatenating these groups:

Ŵi =

M∑
m=1

Cmbi,1,m ⊕ · · · ⊕
M∑

m=1

Cmbi,din/g,m. (2)

The algorithm learns the codebooks Cm ∈ Rg×2B and codes b, and optimizes the error:

argmin
C,b

||WX−

(
Concati,j

M∑
m=1

Cmbi,j,m

)
X||22. (3)

The process starts with a residual K-means initialization of the codebooks and codes, followed by
iterative alternating optimization of both until convergence. The method is detailed in the following
three phases.

1. Code Optimization: The method first optimizes the codes (one-hot vectors) that represent
the weight matrices by using a beam search algorithm, which iteratively refines these codes
to minimize the error between the original and quantized model outputs.

2. Codebook Update: Next, it updates the vectors in the codebooks by solving a least squares
problem, minimizing the difference between the quantized and original weights.

3. Intra-Layer Fine-Tuning: Finally, AQLM performs fine-tuning at the transformer block level
to further reduce quantization errors. This involves adjusting the non-quantized parameters
and codebooks together, ensuring the quantized model’s outputs remain close to those of the
original model.

3 AdaQuantLM

We aim to quantize a LLM and finetune it only once and use it on various bitwidth settings. In this
section, we present our method for adaptive bit-width LLM quantization, termed AdaQuantLM. Our
objective is to enable seamless conversion between different bitwidths, facilitating joint optimization
of LLMs under various bitwidth settings, particularly in resource-constrained environments. We start
by introducing the problem to be solved.

Given a linear layer with weights W ∈ Rdout×din and calibration inputs X ∈ Rdin×n, our objective
is to determine a set of quantized weights {ŴBi

} that minimize the mean squared error between the
outputs produced by the original and the quantized weights:

argmin
ŴB1

,...,ŴBN

1

N

N∑
i=1

||WX− ŴBi
X||22. (4)

where {B1, . . . , BN} are a set of bit-width candidates such that Bi < Bi+1, 1 ≤ i < N . The
set of quantized weights ŴBi is obtained using Additive Quantization. To make these weights
adaptive—ensuring that lower bitwidth weights are derived from higher bitwidth weights rather than
from the full-precision weights—we leverage the inherent additivity of codewords in Additive Quan-
tization. For example, aiming to generate N quantized version of weights given bitwidth {Bi}Ni=1

using codebooks {{Ci,j}Mi
j=1}Ni=1, we represent the quantized weights {ŴBi

}Ni=1 as follows:

ŴBi
=

i∑
m=1

Mi∑
j=1

Cm,jbi,m,1,j ⊕ · · · ⊕
i∑

m=1

Mi∑
j=1

Cm,jbi,m,din/g,j (5)
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where g is the group size. Codebooks {Cm,·}im=1 are used to represent the quantized weights with
bitwidth lower than Bi. Thus, the transformation from higher-bit quantized weights ŴBi

to lower-bit
quantized weights ŴBi−1

simply requires dropping the representations obtained from the {Ci,j}Mi
j=1

codebooks, expressed as
∑Mi

j=1 Ci,jbi,i,1,j ⊕ · · · ⊕
∑Mi

j=1 Ci,jbi,i,din/g,j . To elaborate further, the
transformation between any two quantized weight versions is straightforward by using (5).

We consider two kinds of optimization of codebooks and codes:

• Parallel Optimization: We optimize codebooks and codes corresponding to different
bitwidths in parallel.

• Sequential Optimization: We optimize codebooks and codes progressively, from lower to
higher bitwidths.

Furthermore, we follow the algorithm introduced in AQLM, as described in Section 2.3, to alter-
natively optimize codebooks and codes. Also, there is finetuning for intra-layer cohesion after
quantizing each layer.

4 Experiments

In this section, we evaluate AdaQuantLM through experiments.

Implementation & Configurations Our implementation is adapted from AQLM [6]. We quantize
Gemma-2b [12] using one 6-bit codebook and one 8-bit codebook with group size 8. After quantizing
each transformer layer by optimizing codes and codebooks alternatively, we finetune the remaining
layers for 4 epoches to compensate for the quantization error. We use batch size 32 for calibration
data of each layer. The calibration data is from RedPajama [2]. We use RTX6000 with 24GB GPU
RAM for quantizing and finetuning.

Loss during Quantization and Finetuning We implement parallel optimization of codebooks and
codes. Here we evaluate its effectiveness. After quantizing each transformer layer through alternating
optimization of codes and codebooks, we finetune the remaining layers for 4 epochs to mitigate the
quantization error. In Figure 3, we compare the finetuning loss of two quantization configurations,
with two 8-bit codebooks, adapted from AQLM, and with one 6-bit codebook and one 8-bit codebook.
In our method, despite using a lower-bitwidth codebook, the small gap between the two curves
demonstrates a balanced trade-off between performance and model size.

Figure 3: Comparison of the finetuning loss during quantization between two quantization setups:
one using two 8-bit codebooks (adapted from AQLM) and the other using one 6-bit and one 8-bit
codebook.
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Evaluation We evaluate the quantized models with the Wikitext-2 dataset [11]. Table 1 presents a
comparison of three quantized models: model-A, quantized with two learned 8-bit codebooks; model-
B, quantized with a combination of learned 6-bit and 8-bit codebooks; and model-C, represented
using only the learned 6-bit codebook. Our results show that while the performance gap between
model-A and model-B is minimal, model-B has a smaller size. However, relying solely on a 6-bit
codebook significantly degrades performance. In future work, we aim to optimize codebooks and
codes progressively, from lower to higher bitwidths, rather than optimizing codebooks and codes of
all bitwidths in parallel.

Model model-A model-B model-C

Avg bits 2.002 1.753 0.752
Perplexity 10.635 13.087 25.842

Table 1: Comparison of bitwidth and performance of three quantized models.

5 Conclusions & Future Work

We propose AdaQuantLM, a method for LLM quantization with adaptive bit-width. AdaQuantLM
addresses the limitations of existing LLM quantization methods, which require separate fine-tuning
and benchmarking for each bitwidth configuration. By leveraging the additivity of codewords in
quantized models, AdaQuantLM enables efficient conversion between different bitwidths without
the need to store full-precision weights. This adaptive approach allows for joint quantization and
fine-tuning across multiple bitwidths, making LLMs more versatile and suitable for deployment on
devices with varying computational capabilities.

We consider two kinds of optimization of codebooks and codes, and only implement and evaluate the
effectiveness of the parallel optimization on Gemma-2b model. In the future work, we will implement
sequential optimization method and compare two optimization methods on more large models.
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