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Abstract

Blue light cystoscopy (BLC) has been shown to detect bladder tumors with better sensitiv-
ity than white light cystoscopy (WLC); however, its increased cost and dye administration
time have challenged widespread adoption of the technology. Here, we demonstrate a low-
cost strategy to generate BLC images directly from WLC images. We performed digital
staining of WLC images obtained from tumor resection procedures and demonstrate that
the resulting digitally generated BLC images show strong resemblance to ground truth
BLC images, with negligible degradation of the image quality.
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1. Introduction

The high recurrence rate of urothelial carcinoma necessitates repeated surveillance cys-
toscopy to detect suspicious lesions in the bladder. Left untreated, undetected or incom-
pletely resected non-invasive cancers may progress to the muscle-invasive stage and require
aggressive treatment, including removal of the bladder. White Light Cystoscopy (WLC) is
commonly used to examine the bladder for suspicious lesions during a transurethral resection
of bladder tumor (TURBT) procedure. Blue Light Cystoscopy (BLC) utilizes an exogenous
contrasting dye that selectively accumulates in cancerous tissues. With the added contrast,
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BLC successfully reduces short-term recurrence by 10% and increases the detection rate of
high-grade tumors by 43%, compared to WLC. Despite the sensitivity advantage of BLC,
the high cost of the system and the time and space needed to administer the dye prior to
imaging have limited availability of BLC to few (less than 5%) hospitals in the U.S. and
limited use to the operating room. Moreover, a significant number of patients are unable to
retain the dye for the required instillation time. A simple, quick and low-cost strategy to
produce BLC images would make improved detection sensitivity accessible to more hospitals
and enable affordability of BLC technology for use in clinics.

To address the sensitivity limitation of WLC, a classification-based approach to identify
tumor present in WLC frames, CystoNet, was introduced (Shkolyar et al., 2019). However,
the model was trained on manually labeled WLC frames, which by definition involves a
subset of tumors already detectable by human eyes with white light. To overcome the
challenge of low sensitivity, it is important to visualize tumors that are not currently seen
under white light imaging. In 2021, Ali et al. introduced a BLC-image-based artificial
intelligence diagnostic platform, where they showed the classification of malignant lesions
with 95.77% sensitivity (Ali et al., 2021). However, the proposed platform can only be
utilized in the few hospitals and clinics where BLC systems are already available.

In our study, we aim to enable dye-free bladder tumor detection by using deep learning
to create BLC-like images (that is, digitally generated BLC images) from WLC images
that having been digitally stained (Chang et al., 2023). To our knowledge, this is the
first demonstration of digital staining on cystoscopy data. Our proposed workflow has the
potential to reduce the current gap in bladder cancer detection by improving the detection
sensitivity of WLC while increasing the accessibility of BLC-like images without the burdens
of cost and dye administration.

2. Methods and Results

Data collection and preparation. Data used in this study were originally collected for a
proof-of-concept study of multiparametric cystoscopy for bladder cancer imaging (Kriegmair
et al., 2020). A color camera equipped with a multi-bandpass filter and a multi-LED light
source were used to collect near-simultaneous reflectance (i.e., WLC) and fluorescence (i.e.,
BLC) frames through temporal multiplexing. Near-perfectly registered WLC and BLC
videos at a frame rate of 20 Hz were derived from the multispectral data collected, among
others; the blue light videos provide ground truth data to evaluate our network. Videos
from three patients were used for our study, where the frames included papillary tumors,
flat tumors, and normal bladder tissue regions. The videos were concatenated, and paired
frames were extracted and cropped to 256 by 256 pixels to create sequential image data.
The sequential data were then split to have the first 90% reserved for training and the last
10% reserved for testing as the holdout set. To prepare the training data for the model,
the WLC and BLC pairs were first synthetically unpaired by randomizing the order of the
BLC frames while keeping the WLC frame order fixed. Then, the frames from both BLC
and WLC were randomly split into 80/20 training and validation sets.

Transfer model. To create a robust model for semantically-aware modality transfer,
we trained our model using unpaired WLC/BLC image data following the Density Chang-
ing Regularized Unpaired Image Translation (DECENT) method (Xie et al., 2022). We
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employed autoregressive flows for density estimation and used a ResNet-based generator
with a PatchGAN discriminator. During the training process, we first updated the density
estimators, followed by updating the discriminator and optimizing the generator with the
Polyak-averaged version of the density estimator and the LSGAN (Least Squares GAN)
objective to help stabilize the learning process. The model consisted of three terms from
the original method: an adversarial loss, an identity mapping loss, and a density changing
loss. The outputs are the digitally stained WLC frames or, equivalently, dgBLC frames.

Evaluation metrics. We defined three categories of analysis metrics that evaluate the
staining accuracy, color consistency and overall image quality. Staining accuracy assessment
was performed by creating a fluorescence segmentation mask. Using the BLC data as the
ground truth, we compared its masks with those for the corresponding dgBLC data and
computed the percentages of correctly and incorrectly stained pixels (i.e., red pixel in the
ground truth showing up as blue pixel in dgBLC, or vice versa). To assess the realistic
appearance of the network output, the color of the dgBLC images was analyzed in the
YCbCr color space for each color channel. For overall image quality, both reference-based
(FSIM, PSNR) and reference-less (BRISQUE) image quality metrics were computed.

Table 1 reports the mean and standard deviation of the assessment metrics, where
we observed excellent agreement in staining area and color and negligible degradation in
overall image quality. Figure 1 shows two examples of original WLC-BLC pairs and the
output dgBLC images. It is important to note that while this proof-of-concept study uses a
registered dataset for quality evaluation purposes, our approach does not rely on registered
datasets. In the future work, we will train the model using clinically acquired WLC and
BLC videos, where the video frames are no longer perfectly registered.

Table 1: Assessment metrics calculated from digitally stained frames from the testing set,
using the corresponding BLC frames as reference.

Figure 1: Two examples of WLC-BLC image pair and dgBLC results.
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