

EFFICIENT CONFORMAL PREDICTION WITH ORDER-PRESERVING PREDICTIONS FOR CLASSIFIERS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Conformal prediction provides prediction sets with distribution-free, finite-sample
012 coverage guarantees for machine learning classifiers. Numerous methods reduce
013 set size by retraining classifiers or designing novel non-conformity scores, but they
014 often suffer from high computational cost or inflexibility. To address this issue,
015 we propose **Flexible Prediction Sets (FPS)**, a post-hoc framework that learns an
016 order-preserving transformation which preserves the order of model’s predicted
017 class-probability while reshaping their magnitudes, enabling smaller conformal
018 prediction sets. This transformation is obtained by optimizing a smooth surrogate
019 of the set-size objective on a tuning dataset, then applied to the predicted class-
020 probability before conformal calibration. This process yields smaller prediction sets
021 while maintaining the coverage level. Theoretically, we prove coverage preservation
022 under transformation, provide generalization bounds for the function class and
023 surrogate risk, and show convergence to a stationary point. Empirically, extensive
024 experiments on image and text benchmarks with multiple base machine learning
025 classifiers demonstrate consistent reductions in set size at various nominal coverage
026 rates, outperforming conformal prediction baselines.
027

1 INTRODUCTION

028 Uncertainty quantification is essential for reliable machine learning. In high-stakes settings such
029 as medical diagnosis (Lambert et al., 2024), autonomous driving (Kendall & Gal, 2017), and risk-
030 sensitive decision making in finance (Blasco et al., 2024), small predictive errors can lead to large
031 costs or safety hazards. A broad toolkit has emerged for quantifying uncertainty, including con-
032 fidence calibration (Guo et al., 2017), MC-Dropout (Gal & Ghahramani, 2016), deep ensembles
033 (Lakshminarayanan et al., 2017) and conformal prediction (Vovk et al., 2005; Shafer & Vovk, 2008;
034 Balasubramanian et al., 2014). Among these approaches, conformal prediction (CP) stands out for
035 offering distribution-free, finite-sample coverage guarantees. In the classification setting (Sadinle
036 et al., 2019; Romano et al., 2020; Angelopoulos et al., 2021), CP assembles a label set for each input
037 with marginal coverage at the user-specified level.
038

039 A key goal in conformal prediction for classification is set-size efficiency: prediction sets that are small
040 yet still achieve the desired coverage convey more actionable information. Split conformal prediction
041 (Papadopoulos et al., 2002; Vovk et al., 2005) computes non-conformity scores on calibration data
042 and selects a quantile threshold. At test time, it includes all labels below this threshold to ensure
043 marginal coverage. Adaptive Prediction Sets (APS) (Romano et al., 2020) is a representative split CP
044 method that defines the non-conformity score as the cumulative sum of probabilities needed to include
045 the true label, with labels sorted by model-predicted probabilities. To further improve size efficiency,
046 Regularized Adaptive Prediction Sets (RAPS) (Angelopoulos et al., 2021) introduces a refined
047 non-conformity score with additional regularization, which stabilizes the threshold under heavy-
048 tailed distributions. RAPS yields smaller sets with valid coverage but keeps predicted probabilities
049 fixed, limiting flexibility and leaving potential gains untapped. This motivates directly changing the
050 model-predicted class probabilities to improve set-size efficiency.

051 In this paper, we introduce Flexible Prediction Sets (FPS), a post-hoc framework designed to obtain
052 smaller prediction sets in conformal prediction while maintaining the target coverage. The core of our
053 approach is to apply an order-preserving transformation to the model’s predicted class probabilities
before the conformal prediction procedure. We specifically emphasize order preservation to ensure

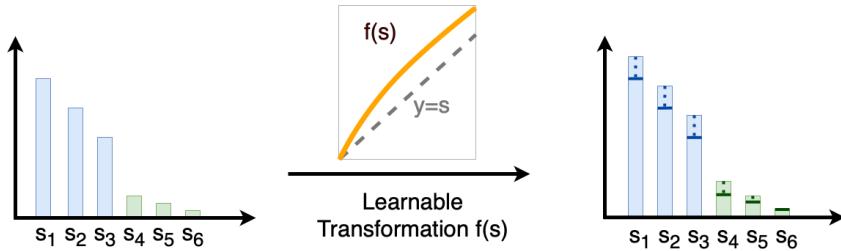


Figure 1: **Flexible Prediction Sets (FPS).** The FPS framework introduces a learnable, order-preserving transformation $f(s)$ that rescales the predicted class probabilities before computing non-conformity scores. We illustrate one possibility of $f(s)$ which enlarges the separation between large probabilities (blue) and small ones (green). This transformation potentially makes the true label stand out, yielding smaller conformal prediction sets.

the base classifier’s point prediction remains unchanged, thereby adhering to the post-hoc principle. Building upon this rule, our approach demonstrates that directly modifying predicted probabilities while preserving their original order is a powerful and flexible means of improving the size-efficiency of conformal prediction. As illustrated in Fig. 1, adjusting probability values while preserving their order enables FPS to produce more compact prediction sets.

Operationally, we learn the transformation that improves set size efficiency in two steps. First, we approximate it with a smooth, order-preserving parametric family whose derivative is positive by construction, implemented via an exponentiated trigonometric polynomial; second, we replace the hard indicators in the set-size objective with a sigmoid surrogate to enable stable, gradient-based optimization. After learning on an independent tuning set, we integrate the transformation into split conformal prediction. The only modification to the standard procedure is that the same order-preserving transformation is consistently applied to predicted class probabilities. It is first applied to the calibration set to compute non-conformity scores and determine the threshold, and then applied to each new input at test time to transform its predicted probabilities before forming the prediction set.

Our contributions are summarized as follows:

- **Order-preserving transform with learnable size objective.** We introduce a post-hoc framework that learns an order-preserving transformation of predicted class probabilities by minimizing a smooth surrogate within a parameterized function class, as implemented in Algorithm 2. When applied before split conformal prediction, the learned transform reduces prediction set size while maintaining valid coverage.
- **Extensive empirical validation.** As shown in Section 5, across diverse image and text classification benchmarks, our method consistently meets the target coverage while producing smaller prediction sets, thereby improving set-size efficiency. The advantage is empirically robust to the choice of backbone classifier and persists under dataset shifts, outperforming widely used conformal prediction baselines.
- **Theory for coverage, generalization, and optimization.** We establish that the learned transformation preserves the conformal prediction coverage guarantee, as shown in Theorem 1. Besides, we derive generalization bounds on the learned transformation obtained by minimizing the surrogate objective within the class of order-preserving functions, as presented in Theorem 2. Finally, we show in Theorem 3 that the optimization procedure converges to a stationary point in the sense of limit points.

2 RELATED WORK

Conformal prediction. Conformal prediction (CP) is a convenient uncertainty quantification framework that offers rigorous, distribution-free, finite-sample coverage guarantees (Vovk et al., 2005; Shafer & Vovk, 2008; Balasubramanian et al., 2014). It has been widely applied in regression (Papadopoulos et al., 2002; Lei et al., 2018; Romano et al., 2019) and classification (Sadinle et al., 2019; Romano et al., 2020; Bates et al., 2021), as well as in domain applications including medical imaging (Lu et al., 2022a;b), computer vision (Timans et al., 2024; Angelopoulos et al., 2021),

108 robotics control (Dixit et al., 2023; Sun et al., 2023), and natural language processing (Maltoudoglou
 109 et al., 2020; Choubey et al., 2022; Kumar et al., 2023; Quach et al., 2024). We study classification
 110 under split CP framework (Romano et al., 2020; Angelopoulos & Bates, 2021) with the goal of
 111 minimizing prediction set size while preserving the desired coverage level.
 112

113 **Size efficiency.** While CP guarantees coverage, an equally important key performance criterion
 114 is size efficiency: the ability to produce small, and informative prediction sets (Sadinle et al., 2019;
 115 Romano et al., 2019; Dhillon et al., 2024; Gasparin & Ramdas, 2025). There is a substantial body
 116 of work on reducing the size of conformal classification sets. Existing approaches can be broadly
 117 grouped into two strands: (i) retraining methods that add size regularizers to the learning objective
 118 and train (or fine-tune) the classifier to reduce the prediction-set size (Yang & Kuchibhotla, 2021;
 119 Fisch et al., 2021; Einbinder et al., 2022; Stutz et al., 2022; Bai et al., 2022; Liang et al., 2023; Kiyani
 120 et al., 2024; Shi et al., 2025); and (ii) post-hoc procedures that keep the base predictor fixed and
 121 adjust the non-conformity scores to obtain tighter sets (Romano et al., 2020; Angelopoulos et al.,
 122 2021; Ghosh et al., 2023; Huang et al., 2024; Xi et al., 2024; Luo & Zhou, 2025). Our approach
 123 further explores the post-hoc line, avoiding the computational burden of retraining. Unlike fixed-form
 124 methods, we tune a flexible order-preserving transform that directly minimizes expected set size.
 125

3 PRELIMINARIES

127 This section formalizes the multiclass classification problem and introduces the split conformal
 128 prediction framework for constructing prediction sets.
 129

130 **K-class classification.** Let (X, Y) be a random pair with $X \in \mathcal{X} \subset \mathbb{R}^d$ and $Y \in \mathcal{Y} = \{1, \dots, K\}$.
 131 Assume we are given a black-box classifier that outputs predicted class-probability $\hat{\pi}_y(x)$ approx-
 132 imating $\mathbb{P}(Y = y \mid X = x)$ for each $y \in \mathcal{Y}$. The prediction rule for classification problems
 133 is $\hat{y} = \arg \max_{y \in \mathcal{Y}} \hat{\pi}_y(x)$. Throughout the paper, we assume that the predicted class-probability
 134 $\hat{\pi}(x) = (\hat{\pi}_1(x), \dots, \hat{\pi}_K(x))$ is standardized: for all x and y , $0 \leq \hat{\pi}_y(x) \leq 1$ and $\sum_{y=1}^K \hat{\pi}_y(x) = 1$.
 135

136 **Split conformal prediction.** For a user defined miscoverage rate $\alpha \in (0, 1)$, conformal prediction
 137 framework constructs a set-valued predictor $\mathcal{C} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ that outputs a label set $\mathcal{C}(x) \subseteq \{1, \dots, K\}$
 138 with marginal coverage $\mathbb{P}\{Y \in \mathcal{C}(X)\} \geq 1 - \alpha$.
 139

140 Split conformal prediction uses a calibration set $\mathcal{D}_{\text{cal}} = \{(x_i, y_i)\}_{i=1}^n$, where $(x_i, y_i) \stackrel{\text{i.i.d.}}{\sim} P_{XY}$ and
 141 \mathcal{D}_{cal} is independent of the data used to fit the base classifier, together with a non-conformity score
 142 $E : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$. In CP procedure, compute scores $e_i = E(x_i, y_i)$ for $i = 1, \dots, n$, and set the
 143 empirical $(1 - \alpha)$ quantile as the threshold:
 144

$$\tau = \inf \left\{ e : \frac{|\{i : E(x_i, y_i) \leq e\}|}{n} \geq \frac{\lceil (n+1)(1-\alpha) \rceil}{n} \right\}. \quad (1)$$

145 For a new input x_{n+1} , the prediction set is $\mathcal{C}(x_{n+1}, \tau) = \{y \in \mathcal{Y} : E(x_{n+1}, y) \leq \tau\}$. We focus on
 146 the size efficiency of split-conformal methods that use an accumulated-output non-conformity score
 147 function. Two popular methods in this family are Adaptive Prediction Sets (APS) and Regularized
 148 Adaptive Prediction Sets (RAPS) (Romano et al., 2020; Angelopoulos et al., 2021).
 149

150 In APS, the non-conformity score is the cumulative sum of sorted class-probability prediction up to
 151 the order of y :
 152

$$E_{\text{APS}}(x, y, u) = \hat{\pi}_{(1)}(x) + \hat{\pi}_{(2)}(x) + \dots + u \cdot \hat{\pi}_{(o(y, x))}(x).$$

153 RAPS augments APS with an order penalty to discourage inclusion of low-ordered labels:
 154

$$E_{\text{RAPS}}(x, y, u) = E_{\text{APS}}(x, y, u) + \lambda \cdot (o(y, x) - k_{\text{reg}})^+.$$

155 Here, $(\hat{\pi}_{(1)}(x) \geq \dots \geq \hat{\pi}_{(K)}(x))$ are the model’s predicted class-probability sorted in descending
 156 order; $o(y, x)$ is the order of $\hat{\pi}_y(x)$; λ is the penalty applied to labels with order exceeding k_{reg} ; and
 157 $u \sim \text{Unif}[0, 1]$ is a randomizer used at calibration to ensure exact finite-sample $(1 - \alpha)$ coverage,
 158 see Romano et al. (2020); Angelopoulos et al. (2021) for details.
 159

4 FLEXIBLE PREDICTION SETS

This section shows how to integrate the proposed FPS framework into the CP procedure and then develops a data-driven strategy to select the order-preserving function. Let $\mathbf{s}(x) = (s_1(x), \dots, s_K(x))$ be the vector of predicted class-probability fed into the CP procedure. As an example, under the APS method we take $\mathbf{s}(x) = (\hat{\pi}_{(1)}(x), \dots, \hat{\pi}_{(K)}(x))$, where $\hat{\pi}_{(1)}(x) \geq \dots \geq \hat{\pi}_{(K)}(x)$. We denote by f the transformation function, which acts componentwise on \mathbf{s} . Then, the non-conformity score after our transformation becomes:

$$E_{\text{FPS}}(x, y, u) = f(s_1(x)) + \cdots + u \cdot f(s_{o(y, x)}(x)), \quad (2)$$

where $o(y, x)$ is the index of the entry of $s(x)$ that corresponds to class y .

Set-size objective. The conformal set size for a test input point x can be written as

$$\text{len}(\mathcal{C}(x)) = \max \left\{ k : \sum_{i=1}^k f(s_i) \leq \tau \right\} = \sum_{k=1}^K \mathbb{1} \left\{ \sum_{i=1}^k f(s_i) \leq \sum_{i=1}^q f(s_i^c) \right\}.$$

Here, $\tau = \sum_{i=1}^q f(s_i^c)$ is the sample $(1 - \alpha)$ -quantile of the calibration non-conformity scores, realized by some calibration example as in Algorithm 1.

Order-preserving function. Another important topic is to specify the function class for f . We follow a post-hoc principle: the base classifier’s weights are fixed, and only its predicted class probabilities are reshaped. If f is monotone and applied identically to all coordinates, the order of predicted class probabilities is preserved. Consequently, the arg max label, and therefore the base classifier’s point prediction, remains unchanged. This respects the model’s property that *higher predicted probability means stronger preference*. Since s is derived from probabilities, we consider the nonnegative, bounded regime $s \in [0, D]$ and set $f(0) = 0$ to anchor the scale. Formally, we restrict attention to the continuous differentiable and monotone function class:

$$\mathcal{F} = \{ f \in C^1([0, D]) : \forall s_1 < s_2 \Rightarrow f(s_1) < f(s_2), f(0) = 0 \}.$$

Learning methods. We make the set-size objective learnable via two mechanisms.

First, we approximate \mathcal{F} by restricting to a parameterized subspace $\mathcal{G} \subset \mathcal{F}$:

$$\mathcal{G} = \left\{ g_{\mathbf{a}} \in C^1([0, D]) \left| \begin{array}{l} \frac{\partial g_{\mathbf{a}}(s)}{\partial s} = \exp\left(a_0 + \sum_{m=1}^M (a_{2m-1} \sin(ms) + a_{2m} \cos(ms))\right), \\ g_{\mathbf{a}}(0) = 0 \end{array} \right. \right\},$$

with $\mathbf{a} = (a_0, \dots, a_{2M}) \in \mathbb{R}^{2M+1}$. We adopt trigonometric polynomials for three significant reasons. (i) Structural guarantee: the exponential parameterization of the derivative $\partial g_{\mathbf{a}}(s)/\partial s$ enforces positivity and therefore preserves order. (ii) Approximation power: according to the Stone-Weierstrass

theorem (Stone, 1948; Rudin, 1987), the class \mathcal{G} can uniformly approximate any continuous function on $[0, D]$. (iii) Optimization stability: the trigonometric polynomial parameterization is simple and its gradients are easy to compute, which yields a more direct and stable optimization procedure than approaches that enforce monotonicity by constraining parameters or outputs, including neural network parameterizations with positivity constraints. Monotone splines (Ramsay, 1988; He & Shi, 1998) are another option, but they require choosing both the number and the locations of knots and maintaining global monotonicity, which introduces inequality constraints or reparameterizations and complicates training. Performance is sensitive to knot placement and boundary treatment. Overall, our choice balances theoretical guarantees, flexibility, and practical stability.

The main hyperparameter introduced by class \mathcal{G} is the degree M of the trigonometric polynomial. A larger M reduces approximation bias and captures finer structure, but it also increases the risk of overfitting. In practice, a moderate degree, for example $M \leq 5$, already performs well on image benchmarks. See Sec. 5.3 and Appendix A for sensitivity analysis and further details.

Second, to enable gradient-based learning, we replace the indicators with a smooth surrogate (e.g., a sigmoid function; (Stutz et al., 2022)) and optimize the resulting objective. Finally, the optimization problem reduces to the following form

$$\min_{g_a \in \mathcal{G}} \mathcal{L}(g_a), \quad \mathcal{L}(g_a) := \mathbb{E} \left[\sum_{k=1}^K \sigma \left(\beta^{-1} \left\{ \sum_{i=1}^q g_a(s_i^c) - \sum_{i=1}^k g_a(s_i) \right\} \right) \right], \quad (3)$$

where $\sigma(x) = \frac{1}{1+e^{-x}}$ is the sigmoid function and $\beta > 0$ is a temperature parameter. The temperature rescales the margin inside $\sigma(\beta^{-1}\{\cdot\})$, thereby controlling the surrogate’s smoothness. Smaller β yields a sharper, indicator-like surrogate that preserves boundaries but risks tail gradient saturation and instability. Larger β smooths transitions and eases optimization but loosens the approximation. In our experiments we fix $\beta = 1$, which we find strikes a practical balance between fidelity and trainability. Moreover, performance is relatively insensitive to changes in β compared with other hyperparameters in most cases (see Sec. 5.3 for details).

Algorithm 2 describes the procedure for estimating the coefficients \mathbf{a} using a parameter tuning set $\mathcal{D}_{\text{tune}}$ drawn i.i.d. from the same distribution as the black-box model’s training set and the conformal calibration set. When learning f , we compute τ and the associated vector \mathbf{s}^c with the randomizer $u = 1$ to make the training objective stable. At evaluation, we retain the standard split-conformal randomization to guarantee exact finite-sample $(1 - \alpha)$ coverage.

Remark. *The same idea extends to RAPS: it can be viewed as APS applied to a penalty-shifted predicted class-probability vector*

$$\mathbf{s}(x) := (\hat{\pi}_{(1)}(x), \dots, \hat{\pi}_{(k_{\text{reg}})}(x), \hat{\pi}_{(k_{\text{reg}}+1)}(x) + \lambda, \dots, \hat{\pi}_{(K)}(x) + \lambda),$$

where $\hat{\pi}_{(1)}(x) \geq \dots \geq \hat{\pi}_{(K)}(x)$ are the sorted model predictions and all orders exceeding k_{reg} receive a constant shift $0 \leq \lambda \leq \Lambda$. Choosing $D \geq 1 + \Lambda$ keeps the shifted class probabilities remain in $[0, D]$, so $f \in C^1([0, D])$ is preserved. We then apply f componentwise to transform $\mathbf{s}(x)$.

5 EXPERIMENTS

In this section, we describe the experimental setup in Sec. 5.1, present the CP classification results under our FPS framework in Sec. 5.2, and analyze the sensitivity of the parameters in Sec. 5.3.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on diverse classification benchmarks spanning images and text. For image classification, we use ImageNet (Deng et al., 2009) and ImageNet-V2 (Recht et al., 2019); for text classification, we use Banking77 (Casanueva et al., 2020; Lhoest et al., 2021; Muennighoff et al., 2022; Enevoldsen et al., 2025), an open-source dataset composed of online banking queries annotated with their corresponding intents. For each dataset, we randomly partition it into three disjoint parts in a 2 : 1 : 2 ratio: a tuning set, a conformal calibration set, and an evaluation set. Furthermore, We randomly split the tuning set 1:1, half for gradient-based optimization, half for threshold selection. We also evaluated alternative data splits, details and results are provided in Appendix D.

270 **Algorithm 2** Tuning FPS Transformation271 **Input:** Tuning set $\mathcal{D}_{\text{tune}} = \{(x_i, y_i)\}_{i=1}^{n_{\text{tune}}}$; temperature β ; learning rate γ ; maximum iterations T ;
272 tolerance ε ; initial coefficients $\mathbf{a}^0 = (a_0^0, \dots, a_{2M}^0)$.273 **Precompute:** Randomly split $\mathcal{D}_{\text{tune}}$ into two sets: \mathcal{D} for optimization and \mathcal{D}^c for calibration. For each
274 $(x_i, y_i) \in \mathcal{D}$, form the predicted class-probability vector $(s_{i,1}, \dots, s_{i,K})$. For each $(x_i^c, y_i^c) \in \mathcal{D}^c$,
275 form $(s_{i,1}^c, \dots, s_{i,K}^c)$ likewise.276 **Procedure:**277 1: **for** $t = 1$ to T **do**278 2: Find calibration components $\mathbf{s}^{c,t-1} = (s_1^{c,t-1}, \dots, s_{q_{t-1}}^{c,t-1})$ by Algorithm 1 based on $g_{\mathbf{a}^{t-1}}$;
279 3: Compute empirical loss from Eq. (3), with $n = |\mathcal{D}|$:

280
$$\mathcal{L}_n(g_{\mathbf{a}^{t-1}}, \mathbf{s}^{c,t-1}) \leftarrow \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^K \sigma \left(\beta^{-1} \left\{ \sum_{j=1}^{q_{t-1}} g_{\mathbf{a}^{t-1}}(s_j^{c,t-1}) - \sum_{j=1}^k g_{\mathbf{a}^{t-1}}(s_{i,j}) \right\} \right);$$

281 4: Update coefficients by one gradient step w.r.t. \mathbf{a} :

282
$$\mathbf{a}^t \leftarrow \mathbf{a}^{t-1} - \gamma \nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}^{t-1}}, \mathbf{s}^{c,t-1}).$$

283 5: **if** $\|\mathbf{a}^t - \mathbf{a}^{t-1}\|_2 < \varepsilon$ **then**284 6: **return** \mathbf{a}^t . ▷ converged285 7: **end if**286 8: **end for**287 9: **return** \mathbf{a}^T . ▷ maximum iterations reached288 **Output:** Estimated coefficients $\hat{\mathbf{a}}$. Prediction sets can then be constructed by CP algorithm using
289 transformed predicted class probabilities $g_{\hat{\mathbf{a}}}(\mathbf{s}(x))$.290 **Base models.** For ImageNet and ImageNet-V2, we use eight off-the-shelf ImageNet-pretrained deep
291 classifiers from the TorchVision (Paszke et al., 2019): ResNet101/152 (He et al., 2016), ResNeXt101
292 (Xie et al., 2017), DenseNet-161 (Huang et al., 2017), VGG-16 (Simonyan & Zisserman, 2015), and
293 ShuffleNet (Zhang et al., 2018). For the Banking, we use publicly available Transformer encoders
294 from the Hugging Face Hub (Wolf et al., 2020): BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
295 2019), DistilBERT (Sanh et al., 2019), and DistilRoBERTa (a distilled variant of RoBERTa). Across
296 all experiments, base classifiers’ weights are kept fixed.297 **Conformal prediction.** We evaluate two target miscoverage levels, $\alpha \in \{0.05, 0.10\}$. For a fair
298 comparison, we evaluate APS against its FPS transformed variant, using identical base classifier
299 outputs generated under the same random seed. For RAPS, we select $(k_{\text{reg}}, \lambda)$ by a grid search
300 following Angelopoulos et al. (2021). When comparing RAPS with its FPS transformed counterpart,
301 we reuse the same $(k_{\text{reg}}, \lambda)$ and the same seeded classifier outputs, ensuring that any observed
302 differences arise from the learned transformation $g_{\hat{\mathbf{a}}}$ rather than from hyperparameters or randomness.303 **Evaluation metrics.** Let $\mathcal{D}_{\text{eval}} = \{(x_i, y_i)\}_{i=1}^{n_{\text{eval}}}$ be the evaluation set. We report two quantities at
304 target level α : Coverage, the fraction of evaluation examples whose true label lies in the prediction
305 set; and Size, the mean cardinality of the set. We target coverage very close to the nominal $1 - \alpha$;
306 size is compared at matched coverage levels, where a smaller average size indicates higher efficiency.

307
$$\text{Coverage} = \frac{1}{n_{\text{eval}}} \sum_{i=1}^{n_{\text{eval}}} \mathbb{1}\{y_i \in \mathcal{C}(x_i)\}, \quad \text{Size} = \frac{1}{n_{\text{eval}}} \sum_{i=1}^{n_{\text{eval}}} |\mathcal{C}(x_i)|.$$

310 5.2 MAIN RESULTS

311 We evaluate three datasets (ImageNet, ImageNet-V2, and Banking77), multiple base classifiers, and
312 conformal prediction methods (APS, RAPS, and their FPS-transformed variants) at user-defined
313 target levels α . To quantify variability, we repeat 10 independent trials on ImageNet and 100 trials on
314 ImageNet-V2 and Banking77, reporting Coverage (mean) and Size (mean \pm standard error) across
315 runs. All experiments are executed on a machine with an Intel Xeon CPU (12 cores) and two NVIDIA
316 GeForce GTX 1080 Ti GPUs.

324
 325 Table 1: Coverage and Size results on ImageNet across α levels and base image classifiers. APS and
 326 RAPS are baselines; +ours denotes applying our FPS framework (APS+ours, RAPS+ours).

327 Model	α	Coverage				Size			
		APS	APS+ours	RAPS	RAPS+ours	APS	APS+ours	RAPS	RAPS+ours
329 ResNeXt101	0.05	0.951	0.951	0.950	0.948	20.865 \pm 0.342	10.939 \pm 0.217	3.829 \pm 0.080	3.640 \pm 0.043
	0.10	0.901	0.900	0.900	0.898	7.171 \pm 0.109	2.894 \pm 0.033	2.020 \pm 0.011	1.966 \pm 0.009
331 ResNet152	0.05	0.951	0.950	0.950	0.950	14.725 \pm 0.186	8.298 \pm 0.112	4.087 \pm 0.032	4.032 \pm 0.042
	0.10	0.900	0.901	0.901	0.900	6.360 \pm 0.065	3.010 \pm 0.039	2.260 \pm 0.006	2.176 \pm 0.012
333 ResNet101	0.05	0.951	0.950	0.949	0.949	16.091 \pm 0.130	9.022 \pm 0.175	4.417 \pm 0.063	4.382 \pm 0.052
	0.10	0.902	0.901	0.900	0.898	7.015 \pm 0.057	3.315 \pm 0.033	2.387 \pm 0.013	2.286 \pm 0.010
335 DenseNet161	0.05	0.950	0.951	0.949	0.949	17.218 \pm 0.184	9.866 \pm 0.140	4.702 \pm 0.104	4.664 \pm 0.080
	0.10	0.901	0.900	0.898	0.900	6.956 \pm 0.101	3.275 \pm 0.039	2.338 \pm 0.020	2.299 \pm 0.011
337 VGG16	0.05	0.949	0.949	0.951	0.950	23.917 \pm 0.367	15.329 \pm 0.194	8.803 \pm 0.548	8.542 \pm 0.380
	0.10	0.899	0.899	0.899	0.898	11.845 \pm 0.086	5.943 \pm 0.051	3.768 \pm 0.012	3.577 \pm 0.019
339 ShuffleNet	0.05	0.949	0.950	0.950	0.950	54.133 \pm 1.072	27.588 \pm 0.521	15.696 \pm 0.719	15.029 \pm 0.460
	0.10	0.899	0.901	0.900	0.899	22.584 \pm 0.305	8.931 \pm 0.141	5.026 \pm 0.077	4.898 \pm 0.068

340
 341 Table 2: Coverage and Size results on ImageNet-V2 across α levels and base image classifiers.

343 Model	α	Coverage				Size			
		APS	APS+ours	RAPS	RAPS+ours	APS	APS+ours	RAPS	RAPS+ours
345 ResNeXt101	0.05	0.951	0.951	0.951	0.950	72.310 \pm 0.756	50.075 \pm 0.402	19.746 \pm 0.449	18.656 \pm 0.323
	0.10	0.901	0.900	0.900	0.900	27.597 \pm 0.283	14.436 \pm 0.103	6.163 \pm 0.120	5.933 \pm 0.088
347 ResNet152	0.05	0.951	0.951	0.950	0.949	42.745 \pm 0.403	35.740 \pm 0.292	16.173 \pm 0.361	15.277 \pm 0.246
	0.10	0.900	0.901	0.900	0.900	17.869 \pm 0.160	12.375 \pm 0.092	5.794 \pm 0.081	5.625 \pm 0.054
349 ResNet101	0.05	0.950	0.949	0.951	0.950	48.963 \pm 0.459	39.948 \pm 0.311	21.691 \pm 0.496	20.029 \pm 0.391
	0.10	0.899	0.899	0.901	0.900	20.937 \pm 0.175	14.218 \pm 0.099	6.957 \pm 0.119	6.618 \pm 0.071
351 DenseNet161	0.05	0.950	0.949	0.951	0.950	54.296 \pm 0.641	43.468 \pm 0.416	22.168 \pm 0.503	20.601 \pm 0.343
	0.10	0.899	0.900	0.902	0.901	20.776 \pm 0.237	13.437 \pm 0.118	6.825 \pm 0.093	6.575 \pm 0.071
353 VGG16	0.05	0.950	0.950	0.950	0.949	57.578 \pm 0.483	51.266 \pm 0.415	40.564 \pm 9.667	29.368 \pm 0.507
	0.10	0.900	0.900	0.898	0.899	27.740 \pm 0.198	21.620 \pm 0.139	11.824 \pm 0.190	11.346 \pm 0.128
355 ShuffleNet	0.05	0.950	0.951	0.950	0.949	130.688 \pm 1.112	113.189 \pm 0.767	74.546 \pm 1.359	71.162 \pm 1.080
	0.10	0.900	0.900	0.899	0.899	59.976 \pm 0.550	39.292 \pm 0.293	23.361 \pm 0.481	22.463 \pm 0.360

356
 357 As shown in Tables 1, 2, and 3, our FPS transformation reduces set size for both APS and RAPS
 358 while maintaining coverage, consistently across α levels, base classifiers, and multi-modal datasets.
 359 Since our method is post-hoc and computationally light, we fix $\beta = 1$ and select the hyperparameters
 360 M and γ via a simple grid search. Implementation details are provided in Appendix A.

363 5.3 SENSITIVITY ANALYSIS

364 We conduct a sensitivity analysis for all the parameters introduced by FPS: the sigmoid temperature
 365 β , the trigonometric polynomial order M , and the learning rate γ . For each factor, we use a grid of
 366 values while holding the remaining hyperparameters fixed, tune the FPS transformation for both APS
 367 and RAPS, evaluate the resulting conformal prediction sets Size and Coverage at $\alpha \in \{0.05, 0.10\}$.
 368 As seen in Table 4, prediction-set size is relatively more sensitive to γ and M than to β , which
 369 corroborates our hyperparameter selection strategy of fixing $\beta = 1$ while tuning M and γ . Table 5
 370 indicates that the target nominal coverage is achieved irrespective of the hyperparameter configuration.
 371 Implementation details are also provided in Appendix A.

374 6 THEORETICAL RESULTS

375 This section provides the theoretical guarantees for our proposed FPS method. Theorem 1 shows that
 376 split CP procedure, after the FPS transformation, still preserves the coverage guarantee. Theorem 2
 377 characterizes the generalization bound of the approximation approach used in FPS. Finally, Theorem 3

378

379

Table 3: Coverage and Size results on Banking77 across α levels and base text classifiers.

Model	α	Coverage				Size			
		APS	APS+ours	RAPS	RAPS+ours	APS	APS+ours	RAPS	RAPS+ours
BERT	0.05	0.950	0.949	0.948	0.948	2.537 \pm 0.031	1.577 \pm 0.034	1.446 \pm 0.014	1.361 \pm 0.015
	0.10	0.898	0.900	0.898	0.898	1.524 \pm 0.011	0.972 \pm 0.001	1.153 \pm 0.009	0.972 \pm 0.001
RoBERTa	0.05	0.949	0.950	0.950	0.949	2.017 \pm 0.030	1.273 \pm 0.013	1.242 \pm 0.010	1.186 \pm 0.013
	0.10	0.898	0.899	0.902	0.898	1.316 \pm 0.009	0.967 \pm 0.001	1.082 \pm 0.007	0.966 \pm 0.001
DistilBERT	0.05	0.949	0.950	0.950	0.950	2.127 \pm 0.023	1.449 \pm 0.015	1.461 \pm 0.012	1.344 \pm 0.010
	0.10	0.900	0.901	0.902	0.899	1.463 \pm 0.009	0.977 \pm 0.001	1.191 \pm 0.007	0.977 \pm 0.001
DistilRoBERTa	0.05	0.949	0.948	0.950	0.949	4.226 \pm 0.041	2.080 \pm 0.020	2.299 \pm 0.023	1.842 \pm 0.013
	0.10	0.898	0.898	0.900	0.899	2.729 \pm 0.028	1.647 \pm 0.134	1.703 \pm 0.013	1.123 \pm 0.020

390

391

Table 4: Size sensitivity for FPS at $\alpha \in \{0.05, 0.10\}$. Each hyperparameter is varied in turn, with the others held fixed as indicated; we report the mean size over repeated experiments. For each hyperparameter we also report the range Δ (max–min) over its four settings.

α	Method	Vary β ($\gamma=0.001, M=1$)					Vary M ($\beta=1, \gamma=0.001$)					Vary γ ($\beta=1, M=1$)				
		$\beta=0.01$	$\beta=0.1$	$\beta=1$	$\beta=10$	Δ_β	$M=1$	$M=2$	$M=3$	$M=4$	Δ_M	$\gamma=10^{-5}$	$\gamma=10^{-4}$	$\gamma=10^{-3}$	$\gamma=10^{-2}$	Δ_γ
0.05	APS+ours	9.08	8.78	8.89	9.06	0.30	8.89	8.21	7.68	7.22	1.67	14.05	13.23	8.89	8.66	5.39
	RAPS+ours	4.11	4.04	4.05	4.16	0.12	4.05	4.09	6.19	6.83	2.78	4.12	4.04	4.05	4.03	0.09
0.10	APS+ours	4.99	4.81	4.75	4.78	0.24	4.75	3.39	3.03	3.09	1.72	6.26	6.14	4.75	3.05	3.21
	RAPS+ours	2.20	2.22	2.21	2.28	0.08	2.21	2.20	2.19	2.17	0.04	2.26	2.27	2.21	2.19	0.08

399

400 establishes that Algorithm 2 admits a subsequence converging to a stationary point. The complete proofs for all the theoretical results are given in Appendix E.

401 **Theorem 1** (FPS coverage guarantee). *Suppose $\{(x_i, y_i, u_i)\}_{i=1}^n$ and $(x_{n+1}, y_{n+1}, u_{n+1})$ are i.i.d. samples. Let $g_{\bar{a}}$ be selected by Algorithm 2 using a tuning set $\mathcal{D}_{\text{tune}}$ of i.i.d. samples, which is independent of the conformal calibration and evaluation set. Let $\mathcal{C}_{g_{\bar{a}}}(x, u, \tau)$ be the split CP prediction set obtained using the non-conformity score in Eq. (2) (with f replaced by $g_{\bar{a}}$) and the corresponding threshold τ defined in Eq. (1). Suppose further that \mathcal{F} is a measurable function class. Then the following coverage guarantee holds:*

402
$$1 - \alpha \leq \mathbb{P}\{y_{n+1} \in \mathcal{C}_{g_{\bar{a}}}(x_{n+1}, u_{n+1}, \tau)\} \leq 1 - \alpha + \frac{1}{n+1}.$$

403

404 Theorem 1 implies that FPS transformation preserves the coverage of the base CP method.

405

406 Prior to further analysis, we let $g_{\bar{a}} \in \mathcal{G}$ denote the transformation returned by Algorithm 2, $f^* \in \mathcal{F}$ be a minimizer of the population loss: $f^* \in \arg \min_{f \in \mathcal{F}} \mathcal{L}(f)$, and define the empirical version of $\mathcal{L}(g_{\bar{a}})$ appearing in Eq. (3): $\mathcal{L}_n(g_{\bar{a}}) = \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^K \sigma\left(\beta^{-1} \left\{ \sum_{j=1}^q g(s_j^c) - \sum_{j=1}^k g(s_{i,j}) \right\}\right)$.

407

408 **Assumption 1** (Approximate empirical risk minimization). *Let $g_{\bar{a}}$ be the transformation function returned by Algorithm 2, assume*

409
$$\mathcal{L}_n(g_{\bar{a}}) \leq \inf_{g_{\bar{a}} \in \mathcal{G}} \mathcal{L}_n(g_{\bar{a}}) + \varepsilon_{\text{opt}},$$

410

411 where $\varepsilon_{\text{opt}} \geq 0$ is the optimization suboptimality for empirical risk.

412

413 **Lemma 1** (Approximation error). *Define $\delta_M := \inf_{g \in \mathcal{G}} \|g - f^*\|_{\infty}$. Then $\delta_M \rightarrow 0$ as $M \rightarrow \infty$.*

414

415 Equipped with Assumption 1 and Lemma 1, we show that the surrogate loss used by FPS, together with our function-space approximation scheme, admits a high-probability generalization bound. In particular, the excess risk $\mathcal{L}(g_{\bar{a}}) - \mathcal{L}(f^*)$ is controlled by a standard estimation term (scaling with n) plus an approximation term (scaling with M). We state the result Theorem 2 formally below.

416

417 **Theorem 2** (Generalization bound). *Assume $\|\mathbf{a}\|_1 \leq A$ and Assumption 1 holds. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,*

418
$$\mathcal{L}(g_{\bar{a}}) - \mathcal{L}(f^*) \leq C_1 L_K \frac{e^A D}{\sqrt{n}} + C_2 \sqrt{\frac{\log(1/\delta)}{n}} + L_K \delta_M + \varepsilon_{\text{opt}},$$

432

433 Table 5: Coverage sensitivity for FPS at $\alpha \in \{0.05, 0.10\}$. Each hyperparameter is varied in turn,
434 with the others held fixed as indicated; we report the mean coverage over repeated experiments.

α	Method	Vary β ($\gamma=0.001, M=1$)				Vary M ($\beta=1, \gamma=0.001$)				Vary γ ($\beta=1, M=1$)			
		$\beta=0.01$	$\beta=0.1$	$\beta=1$	$\beta=10$	$M=1$	$M=2$	$M=3$	$M=4$	$\gamma=10^{-5}$	$\gamma=10^{-4}$	$\gamma=10^{-3}$	$\gamma=10^{-2}$
0.05	APS+ours	0.949	0.950	0.950	0.951	0.950	0.949	0.949	0.949	0.949	0.949	0.950	0.951
	RAPS+ours	0.950	0.950	0.950	0.949	0.950	0.951	0.950	0.951	0.950	0.950	0.950	0.949
0.10	APS+ours	0.900	0.901	0.899	0.901	0.899	0.899	0.899	0.900	0.899	0.901	0.899	0.900
	RAPS+ours	0.899	0.902	0.901	0.898	0.901	0.902	0.902	0.899	0.899	0.902	0.901	0.899

441

442 where $L_K = \frac{K(3K+1)}{8\beta}$, $C_1, C_2 > 0$ are universal constants. Furthermore, if $n, M \rightarrow \infty$ with
443 $\delta_M \rightarrow 0$, then by Lemma 1,

444
$$\mathcal{L}(g_{\mathbf{a}}) - \mathcal{L}(f^*) = \varepsilon_{\text{opt}} + o_{\mathbb{P}}(1),$$

445 i.e., the excess risk is asymptotically controlled solely by the optimization error.

446

447 Finally, we explore the convergence of Algorithm 2 in practice. Updating the components \mathbf{s}^c on the
448 calibration set may increase the loss, and we therefore state the following assumption.449 **Assumption 2** (Vanishing loss update). At iteration t of Algorithm 2, we take a gradient step
450 with calibration components frozen at $\mathbf{s}^{c,t-1}$ to obtain \mathbf{a}^t , then refresh calibration components
451 via $g_{\mathbf{a}^t}$ to get $\mathbf{s}^{c,t}$. Assume there exists a nonnegative sequence $\{\delta_t\}_{t \geq 1}$ with running average
452 $\lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \delta_t = 0$, such that for every t the loss after calibration update satisfies

453
$$\mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t}) \leq \mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t-1}) + \delta_t.$$

454

455 In our classification settings, Assumption 2 often holds. In particular, across iterations, the calibration
456 components vector $\mathbf{s}^{c,t}$ is not updated every time. Moreover, when it is updated, the change is small.
457 This is because the vector is short on average and its large entries are concentrated in the first few
458 coordinates, and supporting intuition and experimental evidence are provided in Appendix C. With
459 Assumption 2 in place, we formally show that the sequence $\{\mathbf{a}^t\}_{t \geq 1}$ generated by Algorithm 2 admits
460 a stationary limit point.461 **Theorem 3** (Limit point stationarity). Assume Assumption 2 holds, $\|\mathbf{a}\|_1 \leq A$, and the fixed gradient
462 step size satisfies $\gamma \in (0, 1/L_A]$ with $L_A = \frac{KDe^A}{24\beta} \left[\frac{De^A}{\beta} (14K^2 + 9K + 1) + 3(3K + 1) \right]$. Then,
463 for every $t \geq 1$, we have

464
$$\mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t}) \leq \mathcal{L}_n(g_{\mathbf{a}^{t-1}}, \mathbf{s}^{c,t-1}) - \frac{\gamma}{2} \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}^{t-1}}, \mathbf{s}^{c,t-1})\|^2 + \delta_t.$$

465 Since \mathcal{L}_n is the empirical average of a finite sum sigmoid terms, we have $\mathcal{L}_n \geq 0$, consequently,

466
$$\lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t})\|^2 = 0, \quad \liminf_{t \rightarrow \infty} \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t})\| = 0.$$

471

472

7 CONCLUSION AND FUTURE WORK

473

474 In this work, we introduced Flexible Prediction Sets (FPS), a post-hoc framework that improves the
475 size efficiency of conformal prediction for classifiers. FPS applies an order-preserving transformation
476 to predicted probabilities and, when integrated into standard conformal prediction procedures, yields
477 smaller sets. We learn the transformation by optimizing a smooth surrogate of expected set size
478 within an increasing function class. Across diverse image and text benchmarks, FPS reduces set sizes
479 for APS and RAPS while maintaining target coverage, supported by proofs of coverage preservation,
480 generalization bounds, and optimization convergence.481 While our standard approach uses a held-out tuning set for theoretical rigor, it is data-intensive.
482 Empirically, partially overlapping the tuning and calibration sets still yields valid coverage despite
483 violating exchangeability, as shown in Appendix D. A promising direction for future work is to
484 formally analyze FPS under data reuse. Another avenue for future work is to replace the length
485 surrogate with alternative objectives that tailor FPS to different desiderata, for example targeting
conditional coverage in applications where it is required.

486 ETHICS STATEMENT
487488 This research is methodological, focusing on the development of a new framework, Flexible Prediction
489 Sets (FPS), to improve the size efficiency of conformal prediction for machine learning classifiers. Our
490 work does not involve human subjects, and therefore no Institutional Review Board (IRB) approval
491 was required. All experiments were conducted on standard, publicly available benchmarks, which are
492 widely used in the machine learning community. Our research does not involve the collection of new
493 data, nor does it process personally identifiable or sensitive information, thus mitigating concerns
494 related to data privacy and security.495
496 REPRODUCIBILITY STATEMENT
497498 To ensure the reproducibility of our work, we provide detailed descriptions of our theoretical results
499 and experimental setup. The theoretical results presented in Section 6 are accompanied by complete
500 mathematical proofs in Appendix E. Our full experimental setup is described in Section 5.1. Further
501 implementation details, such as data splitting protocols and the specific hyperparameters used to
502 obtain the results, are provided in Appendix A. The source code is provided in the supplementary
503 material and will be made publicly available upon publication.504
505 REFERENCES506
507 Anastasios Nikolas Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction
508 and distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.
509
510 Anastasios Nikolas Angelopoulos, Stephen Bates, Michael I. Jordan, and Jitendra Malik. Uncertainty
511 sets for image classifiers using conformal prediction. In *9th International Conference on Learning
512 Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021.
513
514 Yu Bai, Song Mei, Huan Wang, Yingbo Zhou, and Caiming Xiong. Efficient and differentiable
515 conformal prediction with general function classes. In *International Conference on Learning
516 Representations*, 2022.
517
518 Vineeth Balasubramanian, Shen-Shyang Ho, and Vladimir Vovk. *Conformal Prediction for Reliable
519 Machine Learning: Theory, Adaptations and Applications*. Newnes, 2014.
520
521 Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan. Distribution-
522 free, risk-controlling prediction sets. *Journal of the ACM (JACM)*, 68(6):1–34, 2021.
523
524 Amir Beck. *First-order Methods in Optimization*. SIAM, 2017.
525
526 Txus Blasco, J Salvador Sánchez, and Vicente García. A survey on uncertainty quantification in deep
527 learning for financial time series prediction. *Neurocomputing*, 576:127339, 2024.
528
529 Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
530 intent detection with dual sentence encoders. In Tsung-Hsien Wen, Asli Celikyilmaz, Zhou Yu,
531 Alexandros Papangelis, Mihail Eric, Anuj Kumar, Iñigo Casanueva, and Rushin Shah (eds.),
532 *Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI*, pp.
533 38–45, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
534 nlp4convai-1.5.
535
536 Prafulla Kumar Choubey, Yu Bai, Chien-Sheng Wu, Wenhao Liu, and Nazneen Rajani. Confor-
537 mal predictor for improving zero-shot text classification efficiency. In *Proceedings of the 2022
538 Conference on Empirical Methods in Natural Language Processing*, pp. 3027–3034, 2022.
539
540 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
541 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
542 pp. 248–255, 2009.
543
544 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
545 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
546 the North American chapter of the Association for Computational Linguistics: Human Language
547 Technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

540 Guneet S Dhillon, George Deligiannidis, and Tom Rainforth. On the expected size of conformal
 541 prediction sets. In *International Conference on Artificial Intelligence and Statistics*, pp. 1549–1557.
 542 PMLR, 2024.

543 Anushri Dixit, Lars Lindemann, Skylar X Wei, Matthew Cleaveland, George J Pappas, and Joel W
 544 Burdick. Adaptive conformal prediction for motion planning among dynamic agents. In *Learning
 545 for Dynamics and Control Conference*, pp. 300–314. PMLR, 2023.

546 Bat-Sheva Einbinder, Yaniv Romano, Matteo Sesia, and Yanfei Zhou. Training uncertainty-aware
 547 classifiers with conformalized deep learning. *Advances in Neural Information Processing Systems*,
 548 35:22380–22395, 2022.

549 Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, David Stap,
 550 Jay Gala, Wissam Siblini, Dominik Krzemiński, Genta Indra Winata, Saba Sturua, Saiteja Utpala,
 551 Mathieu Ciancone, Marion Schaeffer, Gabriel Sequeira, Diganta Misra, Shreeya Dhakal, Jonathan
 552 Ryström, Roman Solomatin, Ömer Çağatan, Akash Kundu, Martin Bernstorff, Shitao Xiao, Akshita
 553 Sukhlecha, Bhavish Pahwa, Rafał Poświata, Kranthi Kiran GV, Shawon Ashraf, Daniel Auras,
 554 Björn Plüster, Jan Philipp Harries, Loïc Magne, Isabelle Mohr, Mariya Hendriksen, Dawei Zhu,
 555 Hippolyte Gisserot-Boukhlef, Tom Aarsen, Jan Kostkan, Konrad Wojtasik, Taemin Lee, Marek
 556 Šuppa, Cristina Zhang, Roberta Rocca, Mohammed Hamdy, Andrianos Michail, John Yang,
 557 Manuel Faysse, Aleksei Vatolin, Nandan Thakur, Manan Dey, Dipam Vasani, Pranjal Chitale,
 558 Simone Tedeschi, Nguyen Tai, Artem Snegirev, Michael Günther, Mengzhou Xia, Weijia Shi,
 559 Xing Han Lù, Jordan Clive, Gayatri Krishnakumar, Anna Maksimova, Silvan Wehrli, Maria
 560 Tikhonova, Henil Panchal, Aleksandr Abramov, Malte Ostendorff, Zheng Liu, Simon Clematide,
 561 Lester James Miranda, Alena Fenogenova, Guangyu Song, Ruqiya Bin Safi, Wen-Ding Li, Alessia
 562 Borghini, Federico Cassano, Hongjin Su, Jimmy Lin, Howard Yen, Lasse Hansen, Sara Hooker,
 563 Chenghao Xiao, Vaibhav Adlakha, Orion Weller, Siva Reddy, and Niklas Muennighoff. Mmteb:
 564 Massive multilingual text embedding benchmark. *arXiv preprint arXiv:2502.13595*, 2025. doi:
 565 10.48550/arXiv.2502.13595.

566 Adam Fisch, Tal Schuster, Tommi Jaakkola, and Regina Barzilay. Few-shot conformal prediction
 567 with auxiliary tasks. In *International Conference on Machine Learning*, pp. 3329–3339. PMLR,
 568 2021.

569 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
 570 uncertainty in deep learning. In *International Conference on Machine Learning*, pp. 1050–1059.
 571 PMLR, 2016.

572 Matteo Gasparin and Aaditya Ramdas. Improving the statistical efficiency of cross-conformal
 573 prediction. In *Forty-second International Conference on Machine Learning*, 2025.

574 Subhankar Ghosh, Taha Belkhouja, Yan Yan, and Janardhan Rao Doppa. Improving uncertainty
 575 quantification of deep classifiers via neighborhood conformal prediction: Novel algorithm and
 576 theoretical analysis. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37,
 577 pp. 7722–7730, 2023.

578 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 579 networks. In *International Conference on Machine Learning*, pp. 1321–1330. PMLR, 2017.

580 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 581 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
 582 pp. 770–778, 2016.

583 Xuming He and Peide Shi. Monotone b-spline smoothing. *Journal of the American Statistical
 584 Association*, 93(442):643–650, 1998.

585 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
 586 convolutional networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 587 Recognition*, pp. 4700–4708, 2017.

588 Jianguo Huang, Huajun Xi, Linjun Zhang, Huaxiu Yao, Yue Qiu, and Hongxin Wei. Conformal
 589 prediction for deep classifier via label ranking. In *International Conference on Machine Learning*,
 590 pp. 20331–20347. PMLR, 2024.

594 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
 595 vision? *Advances in Neural Information Processing Systems*, 30, 2017.

596

597 Shayan Kiyani, George J Pappas, and Hamed Hassani. Length optimization in conformal prediction.
 598 *Advances in Neural Information Processing Systems*, 37:99519–99563, 2024.

599

600 Bhawesh Kumar, Charlie Lu, Gauri Gupta, Anil Palepu, David Bellamy, Ramesh Raskar, and Andrew
 601 Beam. Conformal prediction with large language models for multi-choice question answering.
 602 *arXiv preprint arXiv:2305.18404*, 2023.

603

604 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 605 uncertainty estimation using deep ensembles. *Advances in Neural Information Processing Systems*,
 606 30, 2017.

607

608 Benjamin Lambert, Florence Forbes, Senan Doyle, Harmonie Dehaene, and Michel Dojat. Trustwor-
 609 thy clinical ai solutions: A unified review of uncertainty quantification in deep learning models for
 610 medical image analysis. *Artif. Intell. Medicine*, 150:102830, 2024.

611

612 Michel Ledoux and Michel Talagrand. *Probability in Banach Spaces: Isoperimetry and Processes*.
 613 Springer Science & Business Media, 2013.

614

615 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free
 616 predictive inference for regression. *Journal of the American Statistical Association*, 113(523):
 617 1094–1111, 2018.

618

619 Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
 620 Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A
 621 community library for natural language processing. In *Proceedings of the 2021 Conference on
 622 Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 175–184, 2021.

623

624 Ziyi Liang, Yanfei Zhou, and Matteo Sesia. Conformal inference is (almost) free for neural networks
 625 trained with early stopping. In *International Conference on Machine Learning*, pp. 20810–20851.
 626 PMLR, 2023.

627

628 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 629 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 630 approach. *arXiv preprint arXiv:1907.11692*, 2019.

631

632 Charles Lu, Anastasios N Angelopoulos, and Stuart Pomerantz. Improving trustworthiness of ai
 633 disease severity rating in medical imaging with ordinal conformal prediction sets. In *International
 634 Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 545–554.
 635 Springer, 2022a.

636

637 Charles Lu, Andréanne Lemay, Ken Chang, Katharina Höbel, and Jayashree Kalpathy-Cramer. Fair
 638 conformal predictors for applications in medical imaging. In *Proceedings of the AAAI conference
 639 on artificial intelligence*, volume 36, pp. 12008–12016, 2022b.

640

641 Rui Luo and Zhixin Zhou. Conformity score averaging for classification. In *Forty-second Interna-
 642 tional Conference on Machine Learning*, 2025.

643

644 Lysimachos Maltoudoglou, Andreas Paisios, and Harris Papadopoulos. Bert-based conformal
 645 predictor for sentiment analysis. In *Conformal and Probabilistic Prediction and Applications*, pp.
 646 269–284. PMLR, 2020.

647

648 Andreas Maurer. A vector-contraction inequality for rademacher complexities. In *International
 649 Conference on Algorithmic Learning Theory*, pp. 3–17. Springer, 2016.

650

651 Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding
 652 benchmark. *arXiv preprint arXiv:2210.07316*, 2022. doi: 10.48550/ARXIV.2210.07316.

653

654 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
 655 machines for regression. In *European Conference on Machine Learning*, pp. 345–356. Springer,
 656 2002.

648 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 649 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 650 high-performance deep learning library. *Advances in Neural Information Processing Systems*, 32,
 651 2019.

652 Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S. Jaakkola, and Regina
 653 Barzilay. Conformal language modeling. In *The Twelfth International Conference on Learning
 654 Representations*, 2024.

655 James O Ramsay. Monotone regression splines in action. *Statistical Science*, pp. 425–441, 1988.

656 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 657 generalize to imagenet? In *International Conference on Machine Learning*, pp. 5389–5400. PMLR,
 658 2019.

659 Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. *Advances
 660 in Neural Information Processing Systems*, 32, 2019.

661 Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive coverage.
 662 *Advances in Neural Information Processing Systems*, 33:3581–3591, 2020.

663 Walter Rudin. *Real and Complex Analysis*. McGraw-Hill, Inc., 1987.

664 Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
 665 bounded error levels. *Journal of the American Statistical Association*, 114(525):223–234, 2019.

666 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 667 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

668 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning
 669 Research*, 9(3), 2008.

670 Yuanjie Shi, Hooman Shahrokhi, Xuesong Jia, Xiongzh Chen, Jana Doppa, and Yan Yan. Direct
 671 prediction set minimization via bilevel conformal classifier training. In *Forty-second International
 672 Conference on Machine Learning*, 2025.

673 K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recognition.
 674 In *3rd International Conference on Learning Representations (ICLR 2015)*. Computational and
 675 Biological Learning Society, 2015.

676 Marshall H Stone. The generalized weierstrass approximation theorem. *Mathematics Magazine*, 21
 677 (5):237–254, 1948.

678 David Stutz, Krishnamurthy Dvijotham, Ali Taylan Cemgil, and Arnaud Doucet. Learning optimal
 679 conformal classifiers. In *The Tenth International Conference on Learning Representations, ICLR
 680 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022.

681 Jiankai Sun, Yiqi Jiang, Jianing Qiu, Parth Nobel, Mykel J Kochenderfer, and Mac Schwager.
 682 Conformal prediction for uncertainty-aware planning with diffusion dynamics model. *Advances in
 683 Neural Information Processing Systems*, 36:80324–80337, 2023.

684 Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann, and Eric Nalisnick. Adaptive
 685 bounding box uncertainties via two-step conformal prediction. In *European Conference on
 686 Computer Vision*, pp. 363–398. Springer, 2024.

687 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random
 688 World*. Springer, 2005.

689 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 690 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
 691 natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in
 692 Natural Language Processing: System Demonstrations*, pp. 38–45, 2020.

693 Huajun Xi, Jianguo Huang, Kangdao Liu, Lei Feng, and Hongxin Wei. Does confidence calibration
 694 improve conformal prediction. *arXiv preprint arXiv:2402.04344*, 3(4):6, 2024.

702 Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
703 transformations for deep neural networks. In *Proceedings of the IEEE Conference on Computer*
704 *Vision and Pattern Recognition*, pp. 1492–1500, 2017.

705 Yachong Yang and Arun Kumar Kuchibhotla. Finite-sample efficient conformal prediction. *arXiv*
706 *preprint arXiv:2104.13871*, 5, 2021.

708 Hao Zeng, Kangdao Liu, Bingyi Jing, and Hongxin Wei. Parametric scaling law of tuning bias in
709 conformal prediction. In *Forty-second International Conference on Machine Learning*, 2025.

710 Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
711 convolutional neural network for mobile devices. In *Proceedings of the IEEE Conference on*
712 *Computer Vision and Pattern Recognition*, pp. 6848–6856, 2018.

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 757 758 759 760 761 762 763 764 765 Appendix

765
766 In the appendix, we present implementation details for the results in the main paper in Appendix A,
767 and visualize some of the learned transformations in Appendix B. We also provide intuition and
768 experimental evidence for Assumption 2, see Appendix C. In addition, we report results under a
769 partially overlapping data-splits strategy, see Appendix D. Moreover, we provide detailed proofs
770 for the theorems and lemmas in the main paper, see Appendix E. We further discuss FPS together
771 with two related methods, Temperature Scaling and Least Ambiguous Sets, see Appendices F and G.
772 Finally, we clarify the usage of large language models in our paper, see Appendix H.

773 A IMPLEMENTATION DETAILS

774 In this section, we detail the experimental setup for the results reported in Tables 1-5.

775 A.1 IMPLEMENTATION DETAILS OF TABLE 1

776 We split the 50k-sample ImageNet validation set into three disjoint subsets: 20k for tuning the FPS
777 transformation (split evenly into 10k for gradient-based learning and 10k for searching the threshold
778 and associated calibration components), 10k for conformal calibration, and 20k for evaluating the
779 size and coverage of prediction sets. Following Angelopoulos et al. (2021), we select k_{reg} and search
780 $\lambda \in \{0.001, 0.005, 0.01, 0.02, 0.05\}$ for RAPS. With $\beta = 1$ fixed, we search $M \in \{1, 2, 3, 4\}$ and
781 $\gamma \in \{10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$. We then tune FPS, initialized at zero \mathbf{a}^0 , using AdamW (weight
782 decay 10^{-4}). The final hyperparameters are as follows. For $\alpha = 0.05$: APS+ours uses $M = 2$,
783 $\gamma = 10^{-3}$; RAPS+ours uses $M = 1$, $\gamma = 10^{-4}$. For $\alpha = 0.10$: APS+ours uses $M = 3$, $\gamma = 10^{-3}$;
784 RAPS+ours uses $M = 2$, $\gamma = 10^{-3}$. We repeat each experiment 10 times and report the mean size
785 with its standard error, and the mean coverage.

786 A.2 IMPLEMENTATION DETAILS OF TABLE 2

787 We split the 10k-sample ImageNetV2 set into three disjoint subsets: 4k for tuning the FPS trans-
788 formation (split evenly into 2k for gradient-based learning and 2k for searching the threshold and
789 associated calibration components), 2k for conformal calibration, and 4k for evaluating the size
790 and coverage of prediction sets. Following Angelopoulos et al. (2021), we select k_{reg} and search
791 $\lambda \in \{0.001, 0.005, 0.01, 0.02, 0.05\}$ for RAPS. With $\beta = 1$ fixed, we search $M \in \{1, 2, 3, 4\}$ and
792 $\gamma \in \{10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$. We then tune FPS, initialized at zero \mathbf{a}^0 , using AdamW (weight
793 decay 10^{-4}). The final hyperparameters are as follows. For $\alpha = 0.05$: APS+ours uses $M = 1$,
794 $\gamma = 10^{-3}$; RAPS+ours uses $M = 1$, $\gamma = 10^{-4}$. For $\alpha = 0.10$: APS+ours uses $M = 3$, $\gamma = 10^{-3}$;
795 RAPS+ours uses $M = 1$, $\gamma = 10^{-3}$. We repeat each experiment 100 times and report the mean size
796 with its standard error, and the mean coverage.

797 A.3 IMPLEMENTATION DETAILS OF TABLE 3

798 We split the 3076-sample Banking77 test set into three disjoint subsets: 1230 for tuning the FPS
799 transformation (split evenly into 615 for gradient-based learning and 615 for searching the threshold
800 and associated calibration components), 615 for conformal calibration, and 1231 for evaluating the
801 size and coverage of prediction sets. Following Angelopoulos et al. (2021), we select k_{reg} and search
802 $\lambda \in \{0.001, 0.005, 0.01, 0.02, 0.05\}$ for RAPS. With $\beta = 1$ fixed, we search $M \in \{5, 6, 7, 8, 9, 10\}$
803 and $\gamma \in \{1.0, 10^{-1}, 10^{-2}, 10^{-3}\}$. We then tune FPS, initialized at zero \mathbf{a}^0 , using AdamW (weight
804 decay 10^{-4}). The final hyperparameters are as follows. For $\alpha = 0.05$: APS+ours uses $M = 9$,
805 $\gamma = 10^{-2}$; RAPS+ours uses $M = 6$, $\gamma = 10^{-2}$. For $\alpha = 0.10$: APS+ours uses $M = 7$, $\gamma = 10^{-1}$;
806 RAPS+ours uses $M = 6$, $\gamma = 10^{-1}$. We repeat each experiment 100 times and report the mean size
807 with its standard error, and the mean coverage.

808 A.4 IMPLEMENTATION DETAILS OF TABLE 4 AND 5

809 The sensitivity analysis is conducted on ImageNet. We tune FPS with the base model ResNet152 with
810 $\beta \in \{10, 1.0, 0.1, 0.01\}$, $M \in \{1, 2, 3, 4\}$, and $\gamma \in \{10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$ for both nominal
811 coverage levels $\alpha \in \{0.05, 0.10\}$. All other configurations are the same as in Appendix A.1.

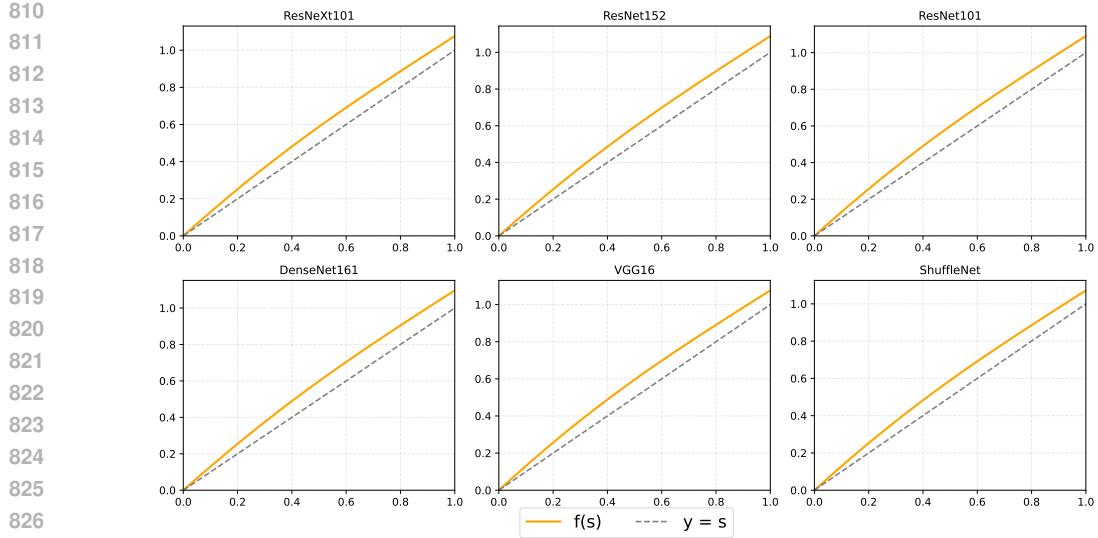


Figure 2: Learned order-preserving FPS transformation $f(s)$ (orange) across base classifiers, compared with the identity $y = s$ (gray dashed).

B VISUALIZATION OF THE FPS TRANSFORMATION

At the significance level $\alpha = 0.10$, we tune the FPS order-preserving transformation $f(s)$ for APS and visualize the learned $f(s)$ in Fig. 2. Unless otherwise noted, all experimental settings follow Appendix A.1. Notably, the learned transformation exhibits a highly similar qualitative pattern across all tested backbones; accordingly, FPS demonstrates robustness with respect to the base classifiers and offers general applicability to conformal prediction classification tasks.

C LOSS UPDATE AFTER RECALIBRATION

Intuitively, the concentration of s^c on its leading entries arises because our base classifier attains high top- k accuracy, which makes the predicted probabilities sharply peaked and thus concentrated on the first few entries. Empirically, on ImageNet we consider APS with its FPS-tuned counterpart. We use ResNet-152, set $M = 1$, $\beta = 1$, and coverage levels to $\alpha \in \{0.05, 0.10\}$. We tune FPS with zero initialization using AdamW (learning rate $\gamma = 10^{-3}$, weight decay 10^{-4}). We examine examples of s^c , the average vector length, and the quantity $\sum_t \delta_t$ introduced in Assumption 2.

In the vast majority of cases, s^c is highly concentrated on a single entry, e.g., [1]. In other common cases, the mass is still dominated by the first two or three entries, e.g., [0.999, 0.0007], [0.994, 0.005], or [0.991, 0.004, 0.003]. Less frequently, we observe longer tails, such as [0.998, 0.0011, 0.00017, 0.00016, 0.00010, 0.000051, 0.000021, 0.0000082], and only rarely a pattern like [0.517, 0.410]. Overall, these patterns indicate a sharply peaked predictive distribution consistent with a high top- k accuracy base classifier, supporting our concentration assumption for s^c . The average length of s^c remains below 2 across $T = 50$ iterations, which is small and further supports our concentration assumption on s^c . Finally, we directly report the cumulative loss update $\sum_{t=1}^T \delta_t$. Figure 3 reports the cumulative loss update over the first $T = 50$ iterations, computed solely from changes in s^c and excluding the gradient-descent term. The trajectories increase with diminishing increments and remain small in magnitude; empirically, they exhibit sublinear growth, i.e., $\sum_{t=1}^T \delta_t = o(T)$, consistent with the vanishing-loss behavior in Assumption 2.

D OVERLAPPING DATA SPLITS INDUCE LIMITED TUNING BIAS

In Algorithm 2, we use a hold-out set $\mathcal{D}_{\text{tune}}$ to learn the FPS transformation and then integrate it into split conformal prediction. This may raise concerns about requiring too much additional

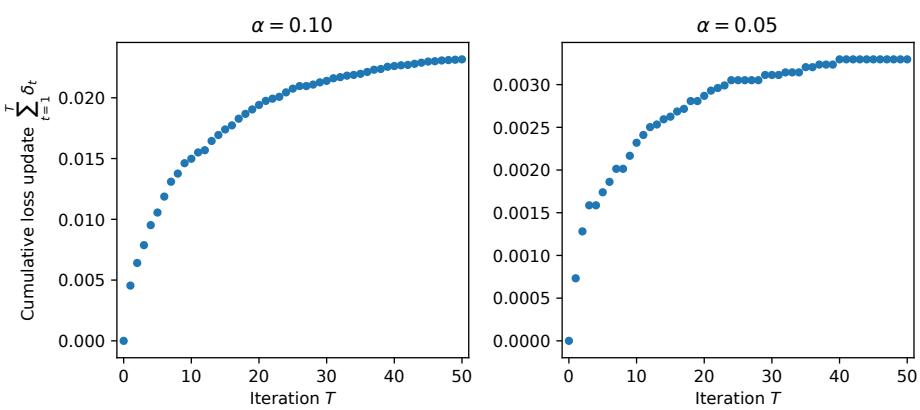


Figure 3: Cumulative loss update $\sum_{t=1}^T \delta_t$ over the first $T = 50$ iterations, based solely on changes in s^c (gradient-descent term excluded), for $\alpha = 0.10$ (left) and $\alpha = 0.05$ (right).

Table 6: Coverage and size on ImageNet under *partially overlapping* FPS tuning and conformal calibration sets, across α levels and base image classifiers. APS and RAPS are baselines; +ours denotes applying our FPS framework (APS+ours, RAPS+ours).

Model	α	Coverage				Size			
		APS	APS+ours	RAPS	RAPS+ours	APS	APS+ours	RAPS	RAPS+ours
ResNeXt101	0.05	0.951	0.951	0.951	0.951	20.672 ± 0.203	10.847 ± 0.266	3.763 ± 0.040	3.746 ± 0.040
	0.10	0.900	0.900	0.901	0.902	7.112 ± 0.085	2.894 ± 0.042	2.030 ± 0.004	1.994 ± 0.003
ResNet152	0.05	0.950	0.951	0.950	0.950	14.384 ± 0.166	8.159 ± 0.136	4.091 ± 0.063	4.067 ± 0.046
	0.10	0.901	0.901	0.900	0.901	6.229 ± 0.032	2.975 ± 0.033	2.254 ± 0.007	2.182 ± 0.006
ResNet101	0.05	0.950	0.950	0.950	0.949	15.678 ± 0.163	8.989 ± 0.121	4.445 ± 0.029	4.359 ± 0.025
	0.10	0.902	0.901	0.901	0.901	6.924 ± 0.043	3.259 ± 0.034	2.376 ± 0.006	2.298 ± 0.003
DenseNet161	0.05	0.951	0.951	0.950	0.950	17.256 ± 0.151	9.980 ± 0.146	4.673 ± 0.028	4.671 ± 0.019
	0.10	0.900	0.900	0.900	0.901	6.759 ± 0.073	3.300 ± 0.017	2.353 ± 0.005	2.296 ± 0.006
VGG16	0.05	0.952	0.951	0.951	0.951	24.374 ± 0.214	15.321 ± 0.152	8.341 ± 0.068	8.186 ± 0.068
	0.10	0.899	0.899	0.899	0.900	11.596 ± 0.081	5.735 ± 0.045	3.802 ± 0.029	3.628 ± 0.022
ShuffleNet	0.05	0.951	0.952	0.951	0.951	55.364 ± 0.316	32.924 ± 4.682	14.811 ± 0.203	14.365 ± 0.179
	0.10	0.898	0.899	0.901	0.901	22.990 ± 0.226	8.786 ± 0.106	4.968 ± 0.040	4.878 ± 0.047

data. However, Zeng et al. (2025) show that prediction-set coverage remains near nominal despite violations of exchangeability in the non-conformity scores, as long as the calibration set is large. In this section, we therefore allow $\mathcal{D}_{\text{tune}} := \mathcal{D} \cup \mathcal{D}^c$ and \mathcal{D}_{cal} to partially overlap. Specifically, we reuse the same calibration set for tuning the FPS transformation and for the subsequent split conformal prediction, i.e., $\mathcal{D}^c := \mathcal{D}_{\text{cal}}$. We report experimental results under this data-splitting scheme. We split the dataset in a 1:2:2 ratio into a tuning set (used exclusively for gradient learning), a calibration set (shared for estimating s^c and executing the split CP procedures), and an evaluation set to evaluate Coverage and Size. For example, we split the 50k-sample ImageNet validation set into three partially overlapping subsets: 10k for tuning the FPS transformation (for gradient-based learning only), 20k for both conformal calibration and searching for the threshold and the associated calibration components needed to learn the FPS transformation, and 20k for evaluating prediction set size and coverage. Apart from the changes noted above, all parameter settings are identical to those in Appendix A.

Tables 6, 7, and 8 show that even when the FPS transformation tuning set partially overlaps with the conformal calibration set, FPS attains target coverage and yields smaller prediction sets for both APS and RAPS. The improvements are consistent across α levels, base architectures, and multimodal datasets. In conclusion, although this data-split scheme breaks exchangeability and thus invalidates the coverage guarantee in Theorem 1, our experiments show that coverage is still achieved in practice, thereby alleviating potential concerns about data waste.

918
919 Table 7: Coverage and Size results on ImageNet-V2 under *partially overlapping* FPS tuning and
920 conformal calibration sets, across α levels and base image classifiers.

Model	α	Coverage				Size			
		APS	APS+ours	RAPS	RAPS+ours	APS	APS+ours	RAPS	RAPS+ours
ResNeXt101	0.05	0.949	0.950	0.952	0.951	69.305 \pm 0.372	48.459 \pm 0.189	18.774 \pm 0.248	18.087 \pm 0.137
	0.10	0.899	0.901	0.897	0.897	25.773 \pm 0.172	14.067 \pm 0.068	6.150 \pm 0.075	5.723 \pm 0.048
ResNet152	0.05	0.950	0.951	0.951	0.951	42.697 \pm 0.172	35.830 \pm 0.141	15.850 \pm 0.251	15.100 \pm 0.165
	0.10	0.900	0.900	0.898	0.899	17.912 \pm 0.145	12.439 \pm 0.083	5.437 \pm 0.031	5.410 \pm 0.022
ResNet101	0.05	0.950	0.950	0.949	0.950	49.713 \pm 0.426	41.037 \pm 0.295	19.823 \pm 0.227	19.361 \pm 0.248
	0.10	0.900	0.903	0.903	0.901	20.763 \pm 0.125	14.329 \pm 0.060	6.860 \pm 0.070	6.380 \pm 0.023
DenseNet161	0.05	0.953	0.953	0.950	0.949	58.149 \pm 0.469	45.249 \pm 0.257	19.268 \pm 0.112	18.487 \pm 0.073
	0.10	0.897	0.898	0.904	0.903	20.267 \pm 0.156	13.468 \pm 0.066	6.626 \pm 0.077	6.344 \pm 0.040
VGG16	0.05	0.948	0.947	0.951	0.950	56.276 \pm 0.213	50.023 \pm 0.230	30.646 \pm 0.545	28.279 \pm 0.358
	0.10	0.899	0.898	0.898	0.899	27.661 \pm 0.191	21.459 \pm 0.125	11.440 \pm 0.105	11.124 \pm 0.073
ShuffleNet	0.05	0.951	0.952	0.949	0.947	132.295 \pm 0.288	114.352 \pm 0.266	72.303 \pm 0.836	69.546 \pm 0.585
	0.10	0.903	0.901	0.903	0.901	60.811 \pm 0.436	38.840 \pm 0.223	24.045 \pm 0.323	22.719 \pm 0.199

934
935 Table 8: Coverage and Size results on Banking77 under *partially overlapping* FPS tuning and
936 conformal calibration sets, across α levels and base text classifiers.

Model	α	Coverage				Size			
		APS	APS+ours	RAPS	RAPS+ours	APS	APS+ours	RAPS	RAPS+ours
BERT	0.05	0.950	0.950	0.948	0.949	2.531 \pm 0.024	1.469 \pm 0.014	1.438 \pm 0.009	1.351 \pm 0.010
	0.10	0.900	0.899	0.900	0.900	1.537 \pm 0.011	1.155 \pm 0.130	1.132 \pm 0.005	0.976 \pm 0.001
RoBERTa	0.05	0.950	0.950	0.949	0.949	2.019 \pm 0.022	1.260 \pm 0.010	1.224 \pm 0.005	1.171 \pm 0.004
	0.10	0.901	0.901	0.900	0.899	1.335 \pm 0.009	0.969 \pm 0.001	1.059 \pm 0.004	0.968 \pm 0.001
DistilBERT	0.05	0.950	0.950	0.950	0.951	2.144 \pm 0.018	1.420 \pm 0.010	1.446 \pm 0.009	1.346 \pm 0.008
	0.10	0.902	0.901	0.898	0.900	1.478 \pm 0.007	0.979 \pm 0.001	1.159 \pm 0.005	0.979 \pm 0.001
DistilRoBERTa	0.05	0.949	0.949	0.948	0.949	4.201 \pm 0.028	2.054 \pm 0.014	2.249 \pm 0.019	1.819 \pm 0.009
	0.10	0.901	0.902	0.900	0.902	2.735 \pm 0.018	1.451 \pm 0.077	1.669 \pm 0.010	1.081 \pm 0.010

E PROOFS

948 In this section, we present the proofs of Theorems 1, 2, and 3, together with Lemma 1.

E.1 PROOF OF THEOREM 1

955 *Proof.* Let E_g be the measurable non-conformity score in Eq. (2), and let $Z_i = (x_i, y_i, u_i)$, $i =$
956 $1, \dots, n+1$, be i.i.d. Algorithm 2 produces $g_{\hat{a}}$ from an independent tuning set $\mathcal{D}_{\text{tune}}$. Conditioning
957 on $\mathcal{D}_{\text{tune}}$ makes $g_{\hat{a}} \in \mathcal{G} \subseteq \mathcal{F}$ a fixed measurable map, so $E_{g_{\hat{a}}}$ is fixed and measurable as well,
958 while Z_1, \dots, Z_{n+1} remain i.i.d. Applying the same fixed map to i.i.d. variables preserves i.i.d.,
959 hence $E_{g_{\hat{a}}}(Z_1), \dots, E_{g_{\hat{a}}}(Z_{n+1})$ are i.i.d. given $\mathcal{D}_{\text{tune}}$. Unconditioning preserves exchangeability.
960 Thus selecting $g_{\hat{a}}$ via the independent tuning set does not affect the i.i.d. property of the scores
961 $\{E_{g_{\hat{a}}}(Z_i)\}_{i=1}^{n+1}$. The coverage guarantee

$$1 - \alpha \leq \mathbb{P}\{y_{n+1} \in \mathcal{C}_{g_{\hat{a}}}(x_{n+1}, u_{n+1}, \tau)\} \leq 1 - \alpha + \frac{1}{n+1}$$

962 then follows directly from Theorem 1 of Romano et al. (2020). \square

E.2 PROOF OF LEMMA 1

963 *Proof.* For some $\varepsilon > 0$, define the ε -lifted function

$$\tilde{f}'_{\varepsilon}(s) = f^{*\prime}(s) + \varepsilon, \quad \tilde{f}_{\varepsilon}(0) = 0.$$

964 Then $\tilde{f}_{\varepsilon} \in C([0, D])$ is strictly increasing and $\|\tilde{f}_{\varepsilon} - f^*\|_{\infty} \leq \varepsilon D$.

972 Set $\psi_\varepsilon(s) = \log(\tilde{f}'_\varepsilon(s)) = \log(f^{*\prime}(s) + \varepsilon) \in C([0, D])$. By the Stone-Weierstrass theorem (Stone, 973 1948; Rudin, 1987), the algebra generated by $\{1, \sin(ms), \cos(ms) : m \geq 1\}$ is uniformly dense in 974 $C([0, 2\pi])$. Via the linear change of variable $\theta = \frac{2\pi}{D}s$, this density transfers to $C([0, D])$. Hence for 975 $\psi_\varepsilon \in C([0, D])$, there exist trigonometric polynomials 976

$$977 \quad \phi_M(s) = a_0 + \sum_{m=1}^M (a_{2m-1} \sin(ms) + a_{2m} \cos(ms)) \quad (4) \\ 978 \\ 979$$

980 such that $\|\phi_M - \psi_\varepsilon\|_\infty \rightarrow 0$ as $M \rightarrow \infty$.

981 Define g_M by $g'_M(s) = \exp(\phi_M(s))$ and $g_M(0) = 0$. Since $\psi_\varepsilon(s)$ is continuous and bounded on 982 $[0, D]$; denote $B_\varepsilon := \|\psi_\varepsilon\|_\infty < \infty$. Fix any $\eta \in (0, 1]$. Because $\|\phi_M - \psi_\varepsilon\|_\infty \rightarrow 0$, there exists M_0 983 such that for all $M \geq M_0$,

$$984 \quad \|\phi_M - \psi_\varepsilon\|_\infty \leq \eta \Rightarrow \max\{\phi_M(s), \psi_\varepsilon(s)\} \leq B_\varepsilon + \eta \text{ for all } s \in [0, D]. \\ 985 \\ 986$$

By the mean value theorem, for each $s \in [0, D]$ there exists $\xi(s)$ between $\phi_M(s)$ and $\psi_\varepsilon(s)$ such that 987

$$988 \quad |e^{\phi_M(s)} - e^{\psi_\varepsilon(s)}| = e^{\xi(s)} |\phi_M(s) - \psi_\varepsilon(s)| \leq e^{B_\varepsilon + \eta} |\phi_M(s) - \psi_\varepsilon(s)|. \\ 989$$

Hence, for all $M \geq M_0$ and all $s \in [0, D]$,

$$991 \quad |g'_M(s) - \tilde{f}'_\varepsilon(s)| = |e^{\phi_M(s)} - e^{\psi_\varepsilon(s)}| \leq e^{B_\varepsilon + \eta} |\phi_M(s) - \psi_\varepsilon(s)|. \\ 992$$

Integrating the pointwise bound from 0 to s and taking the supremum over $s \in [0, D]$ gives

$$995 \quad \|g_M - \tilde{f}_\varepsilon\|_\infty \leq \int_0^D e^{B_\varepsilon + \eta} |\phi_M(t) - \psi_\varepsilon(t)| dt \leq D e^{B_\varepsilon + \eta} \|\phi_M - \psi_\varepsilon\|_\infty. \\ 996$$

997 Therefore,

$$998 \quad \inf_{g \in \mathcal{G}} \|g - f^*\|_\infty \leq \|g_M - f^*\|_\infty \\ 999 \quad \leq \|g_M - \tilde{f}_\varepsilon\|_\infty + \|\tilde{f}_\varepsilon - f^*\|_\infty \\ 1000 \quad \leq D(e^{B_\varepsilon + \eta} \|\phi_M - \psi_\varepsilon\|_\infty + \varepsilon). \\ 1001 \\ 1002$$

1003 Since $\varepsilon > 0$ is arbitrary, letting $\varepsilon \downarrow 0$ yields

$$1004 \quad \lim_{M \rightarrow \infty} \inf_{g \in \mathcal{G}} \|g - f^*\|_\infty = 0, \\ 1005$$

1006 which completes the proof. □

1008 E.3 PROOF OF THEOREM 2

1010 *Proof.* We divide the proof into three steps.

1011 **Step 1 ($\mathcal{L}(\cdot)$ is Lipschitz in function g).** Denote one sample class-probability vector as $Z =$ 1012 $(\{s_i^c\}_{i=1}^q, \{s_i\}_{i=1}^K)$ and the corresponding loss:

$$1014 \quad \ell(g; Z) := \sum_{k=1}^K \sigma\left(\beta^{-1} \left\{ \sum_{i=1}^q g(s_i^c) - \sum_{i=1}^k g(s_i) \right\}\right). \\ 1015 \\ 1016$$

1017 Since the sigmoid function is $\frac{1}{4}$ -Lipschitz, for any $g_1, g_2 \in \mathcal{G}$,

$$1019 \quad |\ell(g_1; Z) - \ell(g_2; Z)| \leq \frac{1}{4\beta} \sum_{k=1}^K \left| \sum_{i=1}^q (g_1 - g_2)(s_i^c) - \sum_{i=1}^k (g_1 - g_2)(s_i) \right| \\ 1020 \\ 1021 \leq \frac{1}{4\beta} \sum_{k=1}^K \left(\sum_{i=1}^q |g_1 - g_2|(s_i^c) + \sum_{i=1}^k |g_1 - g_2|(s_i) \right) \\ 1022 \\ 1023 \leq \frac{Kq + \frac{K(K+1)}{2}}{4\beta} \|g_1 - g_2\|_\infty. \\ 1024 \\ 1025$$

1026 Since q may vary across iterations, we upper bound it by K . Finally, taking expectations yields the
 1027 Lipschitz property:
 1028

$$1029 \quad |\mathcal{L}(g_1) - \mathcal{L}(g_2)| \leq L_K \|g_1 - g_2\|_\infty, \quad L_K = \frac{K(3K+1)}{8\beta}. \quad (5)$$

1031 **Step 2 (Rademacher complexity).** Let $\widehat{\mathfrak{R}}_n(\mathcal{H})$ denote the empirical Rademacher complexity. Note
 1032 that $\ell(\cdot)$ is L_K -Lipschitz by Eq. (5), by the vector contraction inequality (Ledoux & Talagrand, 2013;
 1033 Maurer, 2016),

$$1034 \quad \widehat{\mathfrak{R}}_n(\ell \circ \mathcal{G}) \leq L_K \widehat{\mathfrak{R}}_n(\mathcal{G}; \|\cdot\|_\infty).$$

1035 For $g_{\mathbf{a}}(s) = \int_0^s \exp(\phi_{\mathbf{a}}(t)) dt$ with $\phi_{\mathbf{a}}(\cdot)$ defined in Eq. (4) and $\|\mathbf{a}\|_1 \leq A$, we have $|g_{\mathbf{a}}(s)| \leq s e^A \leq$
 1036 $D e^A$ and, moreover, $|g_{\mathbf{a}_1}(s) - g_{\mathbf{a}_2}(s)| \leq D e^A \|\mathbf{a}_1 - \mathbf{a}_2\|_1$. Hence by standard Dudley bounds:
 1037

$$1038 \quad \widehat{\mathfrak{R}}_n(\mathcal{G}; \|\cdot\|_\infty) \lesssim \frac{D e^A}{\sqrt{n}}.$$

1039 Finally, with probability exceeding $1 - \delta$,

$$1040 \quad \sup_{g \in \mathcal{G}} |\mathcal{L}(g) - \mathcal{L}_n(g)| \lesssim L_K \frac{D e^A}{\sqrt{n}} + \sqrt{\frac{\log(1/\delta)}{n}}. \quad (6)$$

1041 **Step 3: Generalization bound.** Decompose

$$1042 \quad \mathcal{L}(g_{\widehat{\mathbf{a}}}) - \mathcal{L}(f^*) = [\mathcal{L}(g_{\widehat{\mathbf{a}}}) - \mathcal{L}_n(g_{\widehat{\mathbf{a}}})] + [\mathcal{L}_n(g_{\widehat{\mathbf{a}}}) - \inf_{g \in \mathcal{G}} \mathcal{L}_n(g)]$$

$$1043 \quad + [\inf_{g \in \mathcal{G}} \mathcal{L}_n(g) - \inf_{g \in \mathcal{G}} \mathcal{L}(g)] + [\inf_{g \in \mathcal{G}} \mathcal{L}(g) - \mathcal{L}(f^*)],$$

1044 where the second term is bounded by ε_{opt} with Assumption 1, and the first and third brackets are each
 1045 bounded by the uniform deviation in (6). For the fourth term, pick $\tilde{g} \in \mathcal{G}$ with $\|\tilde{g} - f^*\|_\infty \leq \delta_M$ (cf.
 1046 Lemma 1); then by the Lipschitz property (5),

$$1047 \quad 0 \leq \inf_{g \in \mathcal{G}} \mathcal{L}(g) - \mathcal{L}(f^*) \leq \mathcal{L}(\tilde{g}) - \mathcal{L}(f^*) \leq L_K \delta_M.$$

1048 Collecting the bounds yields

$$1049 \quad \mathcal{L}(g_{\widehat{\mathbf{a}}}) - \mathcal{L}(f^*) \leq C_1 L_K \frac{D e^A}{\sqrt{n}} + C_2 \sqrt{\frac{\log(1/\delta)}{n}} + L_K \delta_M + \varepsilon_{\text{opt}},$$

1050 with probability at least $1 - \delta$, where $C_1, C_2 > 0$ are universal constants. Finally, by Lemma 1,
 1051 $\delta_M \rightarrow 0$ as $M \rightarrow \infty$, and thus $\mathcal{L}(g_{\widehat{\mathbf{a}}}) - \mathcal{L}(f^*) = \varepsilon_{\text{opt}} + o_{\mathbb{P}}(1)$ as stated. \square

1052 E.4 PROOF OF THEOREM 3

1053 *Proof.* We divide the proof into three steps.

1054 **Step 1 (L-smooth in \mathbf{a}).** Fix $t \geq 1$ and freeze the calibration $\mathbf{s}^{c,t-1}$. Consider the map $\mathbf{a} \mapsto$
 1055 $\mathcal{L}_n(g_{\mathbf{a}}, \mathbf{s}^{c,t-1})$ for parameters constrained by $\|\mathbf{a}\|_1 \leq A$. Write $\phi_{\mathbf{a}}(u) = \langle \mathbf{a}, \mathbf{b}(u) \rangle$ with

$$1056 \quad \mathbf{b}(u) = (1, \sin u, \cos u, \dots, \sin Mu, \cos Mu)^\top$$

1057 so that $g_{\mathbf{a}}(s) = \int_0^s e^{\phi_{\mathbf{a}}(u)} du$. Define $J_{\mathbf{a}}(s) := \nabla_{\mathbf{a}} g_{\mathbf{a}}(s) = \int_0^s e^{\phi_{\mathbf{a}}(u)} \mathbf{b}(u) du$, and the inner term
 1058 $z_{i,k}(\mathbf{a}) = \beta^{-1} \left\{ \sum_{j=1}^q g_{\mathbf{a}}(s_j^{c,t-1}) - \sum_{j=1}^k g_{\mathbf{a}}(s_{i,j}) \right\}$. Then, the gradient w.r.t. \mathbf{a} is

$$1059 \quad \nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}}, \mathbf{s}^{c,t-1}) = \frac{1}{\beta n} \sum_{i=1}^n \sum_{k=1}^K \sigma'(z_{i,k}(\mathbf{a})) \left(\sum_{j=1}^q J_{\mathbf{a}}(s_j^{c,t-1}) - \sum_{j=1}^k J_{\mathbf{a}}(s_{i,j}) \right).$$

1060 For two parameters $\mathbf{a}_1, \mathbf{a}_2$, by $0 < \sigma'(x) \leq 1/4$,

$$1061 \quad \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}_1}, \mathbf{s}^{c,t-1}) - \nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}_2}, \mathbf{s}^{c,t-1})\| \leq \frac{1}{\beta} \sum_{k=1}^K \left\{ |\Delta \sigma'_{i,k}| \cdot \|\sum J_{\mathbf{a}_1}\| + \frac{1}{4} \|\sum (J_{\mathbf{a}_1} - J_{\mathbf{a}_2})\| \right\}.$$

1080 Here we set, for each sample i and level k ,

$$1082 \quad \Delta\sigma'_{i,k} := \sigma'(z_{i,k}(\mathbf{a}_1)) - \sigma'(z_{i,k}(\mathbf{a}_2)), \quad \sum J_{\mathbf{a}} := \sum_{j=1}^q J_{\mathbf{a}}(s_j^{c,t-1}) - \sum_{j=1}^k J_{\mathbf{a}}(s_{i,j}).$$

1085 Since σ' is $L_{\sigma'}$ -Lipschitz with $L_{\sigma'} = \sup_x |\sigma''(x)| \leq 1/6\sqrt{3} \leq 1/4$ and $\|\sum J_{\mathbf{a}}\| \leq (q+k)De^A$,
1086 we get

$$1087 \quad |\Delta\sigma'_{i,k}| \leq L_{\sigma'} |z_{i,k}(\mathbf{a}_1) - z_{i,k}(\mathbf{a}_2)| \leq \frac{1}{4\beta} (q+k) De^A \|\mathbf{a}_1 - \mathbf{a}_2\|_1.$$

1089 Also, by the mean-value argument in parameter space,

$$1091 \quad \|\sum (J_{\mathbf{a}_1} - J_{\mathbf{a}_2})\| \leq (q+k)De^A \|\mathbf{a}_1 - \mathbf{a}_2\|_1.$$

1092 Combining and summing over k (using $q \leq K$) yields

$$1094 \quad \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}_1}, \mathbf{s}^{c,t-1}) - \nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}_2}, \mathbf{s}^{c,t-1})\| \leq L_A \|\mathbf{a}_1 - \mathbf{a}_2\|_1,$$

$$1096 \quad \text{where } L_A = \frac{KDe^A}{24\beta} \left[\frac{De^A}{\beta} (14K^2 + 9K + 1) + 3(3K + 1) \right].$$

1098 **Step 2 (One-step descent).** With step size $\gamma \in (0, 1/L_A]$, the descent lemma (Beck, 2017) gives

$$1100 \quad \mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t-1}) \leq \mathcal{L}_n(g_{\mathbf{a}^{t-1}}, \mathbf{s}^{c,t-1}) - \frac{\gamma}{2} \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}^{t-1}}, \mathbf{s}^{c,t-1})\|^2.$$

1102 **Step 3 (Limit point stationarity).** By Assumption 2,

$$1104 \quad \mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t}) \leq \mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t-1}) + \delta_t,$$

1106 which, combined with Step 2, yields

$$1107 \quad \mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t}) \leq \mathcal{L}_n(g_{\mathbf{a}^{t-1}}, \mathbf{s}^{c,t-1}) - \frac{\gamma}{2} \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}^{t-1}}, \mathbf{s}^{c,t-1})\|^2 + \delta_t.$$

1109 Summing over $t = 1, \dots, T$ and using $\mathcal{L}_n \geq 0$ gives

$$1111 \quad \frac{1}{T} \sum_{t=1}^T \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}^{t-1}}, \mathbf{s}^{c,t-1})\|^2 \leq \frac{2}{\gamma} \frac{\mathcal{L}_n(g_{\mathbf{a}^0}, \mathbf{s}^{c,0})}{T} + \frac{2}{\gamma} \cdot \frac{1}{T} \sum_{t=1}^T \delta_t.$$

1114 Letting $T \rightarrow \infty$ and invoking $\frac{1}{T} \sum_{t=1}^T \delta_t \rightarrow 0$ from Assumption 2 yields

$$1116 \quad \lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t})\|^2 = 0, \quad \text{and hence} \quad \liminf_{T \rightarrow \infty} \|\nabla_{\mathbf{a}} \mathcal{L}_n(g_{\mathbf{a}^t}, \mathbf{s}^{c,t})\| = 0,$$

1119 which completes the proof. \square

1121 F COMPARISON WITH LEAST AMBIGUOUS SET-VALUED CLASSIFIER

1123 The Least Ambiguous Set-valued Classifier (LAC; (Sadinle et al., 2019)) is a method known for size
1124 efficiency. LAC induces prediction sets by thresholding the model scores $\hat{\pi}(x)$; in our notation this
1125 corresponds to the following non-conformity score and prediction rule:

$$1127 \quad E_{\text{LAC}}(x, y) = 1 - \hat{\pi}_y(x).$$

1128 Given a calibration set $\mathcal{D}_{\text{cal}} = \{(x_i, y_i)\}_{i=1}^n$, compute $e_i = E_{\text{LAC}}(x_i, y_i)$ and the empirical $(1 - \alpha)$
1129 quantile

$$1130 \quad \tau = \inf \left\{ e : \frac{|\{i : e_i \leq e\}|}{n} \geq \frac{\lceil (n+1)(1-\alpha) \rceil}{n} \right\}.$$

1132 For a new input x , the LAC prediction set is

$$1133 \quad \mathcal{C}(x) = \{y \in \mathcal{Y} : E_{\text{LAC}}(x, y) \leq \tau\} = \{y \in \mathcal{Y} : \hat{\pi}_y(x) \geq 1 - \tau\}.$$

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

As in standard split conformal classification, optional tie-breaking randomization can be used on the boundary $E_{\text{LAC}}(x, y) = \tau$ to ensure exact finite-sample coverage.

Though LAC is highly size efficient, it sacrifices (group) conditional coverage such as coverage conditioned on the realized set size $|\mathcal{C}(X)|$. To assess such heterogeneity in coverage, a common metric is the Size-Stratified Coverage Violation (SSCV; (Angelopoulos et al., 2021)), which measures deviations from the target level $1 - \alpha$ across strata defined by set size; we formalize SSCV below.

Let $\mathcal{D}_{\text{eval}} = \{(x_i, y_i)\}_{i=1}^{n_{\text{eval}}}$ be an evaluation set. Fix a partition of possible set sizes $\{S_j\}_{j=1}^s$ with $\bigcup_{j=1}^s S_j = \{1, \dots, K\}$ and $S_j \cap S_{j'} = \emptyset$ for $j \neq j'$. Define the index sets

$$\mathcal{J}_j = \{i \in \{1, \dots, n_{\text{eval}}\} : |\mathcal{C}(x_i)| \in S_j\}.$$

Then the empirical SSCV at miscoverage α is

$$\widehat{\text{SSCV}}_{\alpha}(\mathcal{C}, \{S_j\}_{j=1}^s) = \sup_{j: |\mathcal{J}_j| > 0} \left| \frac{1}{|\mathcal{J}_j|} \sum_{i \in \mathcal{J}_j} \mathbb{1}\{\mathcal{C}(x_i) \in S_j\} - (1 - \alpha) \right|.$$

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Table 9: SSCV (mean \pm SE) results on ImageNet.

Model	$\alpha = 0.05$			$\alpha = 0.10$		
	APS+ours	RAPS+ours	LAC	APS+ours	RAPS+ours	LAC
ResNeXt101	0.031 \pm 0.001	0.030 \pm 0.003	0.082 \pm 0.004	0.057 \pm 0.003	0.068 \pm 0.008	0.347 \pm 0.063
ResNet152	0.026 \pm 0.001	0.032 \pm 0.004	0.118 \pm 0.005	0.042 \pm 0.003	0.083 \pm 0.012	0.246 \pm 0.014
ResNet101	0.030 \pm 0.002	0.033 \pm 0.004	0.107 \pm 0.004	0.054 \pm 0.003	0.082 \pm 0.010	0.202 \pm 0.011
DenseNet161	0.026 \pm 0.001	0.038 \pm 0.007	0.087 \pm 0.004	0.045 \pm 0.004	0.061 \pm 0.009	0.264 \pm 0.071
VGG16	0.020 \pm 0.001	0.026 \pm 0.004	0.064 \pm 0.004	0.033 \pm 0.002	0.040 \pm 0.007	0.223 \pm 0.008
ShuffleNet	0.022 \pm 0.001	0.028 \pm 0.006	0.130 \pm 0.005	0.031 \pm 0.001	0.033 \pm 0.003	0.171 \pm 0.003