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ABSTRACT

Conformal prediction provides prediction sets with distribution-free, finite-sample
coverage guarantees for machine learning classifiers. Numerous methods reduce
set size by retraining classifiers or designing novel non-conformity scores, but they
often suffer from high computational cost or inflexibility. To address this issue,
we propose Flexible Prediction Sets (FPS), a post-hoc framework that learns an
order-preserving transformation which preserves the order of model’s predicted
class-probability while reshaping their magnitudes, enabling smaller conformal
prediction sets. This transformation is obtained by optimizing a smooth surrogate
of the set-size objective on a tuning dataset, then applied to the predicted class-
probability before conformal calibration. This process yields smaller prediction sets
while maintaining the coverage level. Theoretically, we prove coverage preservation
under transformation, provide generalization bounds for the function class and
surrogate risk, and show convergence to a stationary point. Empirically, extensive
experiments on image and text benchmarks with multiple base machine learning
classifiers demonstrate consistent reductions in set size at various nominal coverage
rates, outperforming conformal prediction baselines.

1 INTRODUCTION

Uncertainty quantification is essential for reliable machine learning. In high-stakes settings such
as medical diagnosis (Lambert et al., 2024), autonomous driving (Kendall & Gal, 2017), and risk-
sensitive decision making in finance (Blasco et al., 2024), small predictive errors can lead to large
costs or safety hazards. A broad toolkit has emerged for quantifying uncertainty, including con-
fidence calibration (Guo et al., 2017), MC-Dropout (Gal & Ghahramani, 2016), deep ensembles
(Lakshminarayanan et al., 2017) and conformal prediction (Vovk et al., 2005; Shafer & Vovk, 2008;
Balasubramanian et al., 2014). Among these approaches, conformal prediction (CP) stands out for
offering distribution-free, finite-sample coverage guarantees. In the classification setting (Sadinle
et al., 2019; Romano et al., 2020; Angelopoulos et al., 2021), CP assembles a label set for each input
with marginal coverage at the user-specified level.

A key goal in conformal prediction for classification is set-size efficiency: prediction sets that are small
yet still achieve the desired coverage convey more actionable information. Split conformal prediction
(Papadopoulos et al., 2002; Vovk et al., 2005) computes non-conformity scores on calibration data
and selects a quantile threshold. At test time, it includes all labels below this threshold to ensure
marginal coverage. Adaptive Prediction Sets (APS) (Romano et al., 2020) is a representative split CP
method that defines the non-conformity score as the cumulative sum of probabilities needed to include
the true label, with labels sorted by model-predicted probabilities. To further improve size efficiency,
Regularized Adaptive Prediction Sets (RAPS) (Angelopoulos et al., 2021) introduces a refined
non-conformity score with additional regularization, which stabilizes the threshold under heavy-
tailed distributions. RAPS yields smaller sets with valid coverage but keeps predicted probabilities
fixed, limiting flexibility and leaving potential gains untapped. This motivates directly changing the
model-predicted class probabilities to improve set-size efficiency.

In this paper, we introduce Flexible Prediction Sets (FPS), a post-hoc framework designed to obtain
smaller prediction sets in conformal prediction while maintaining the target coverage. The core of our
approach is to apply an order-preserving transformation to the model’s predicted class probabilities
before the conformal prediction procedure. We specifically emphasize order preservation to ensure

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Flexible Prediction Sets (FPS). The FPS framework introduces a learnable, order-
preserving transformation f(s) that rescales the predicted class probabilities before computing
non-conformity scores. We illustrate one possibility of f(s) which enlarges the separation between
large probabilities (blue) and small ones (green). This transformation potentially makes the true label
stand out, yielding smaller conformal prediction sets.

the base classifier’s point prediction remains unchanged, thereby adhering to the post-hoc principle.
Building upon this rule, our approach demonstrates that directly modifying predicted probabilities
while preserving their original order is a powerful and flexible means of improving the size-efficiency
of conformal prediction. As illustrated in Fig. 1, adjusting probability values while preserving their
order enables FPS to produce more compact prediction sets.

Operationally, we learn the transformation that improves set size efficiency in two steps. First, we
approximate it with a smooth, order-preserving parametric family whose derivative is positive by
construction, implemented via an exponentiated trigonometric polynomial; second, we replace the
hard indicators in the set-size objective with a sigmoid surrogate to enable stable, gradient-based
optimization. After learning on an independent tuning set, we integrate the transformation into
split conformal prediction. The only modification to the standard procedure is that the same order-
preserving transformation is consistently applied to predicted class probabilities. It is first applied to
the calibration set to compute non-conformity scores and determine the threshold, and then applied to
each new input at test time to transform its predicted probabilities before forming the prediction set.

Our contributions are summarized as follows:

• Order-preserving transform with learnable size objective. We introduce a post-hoc
framework that learns an order-preserving transformation of predicted class probabilities by
minimizing a smooth surrogate within a parameterized function class, as implemented in
Algorithm 2. When applied before split conformal prediction, the learned transform reduces
prediction set size while maintaining valid coverage.

• Extensive empirical validation. As shown in Section 5, across diverse image and text clas-
sification benchmarks, our method consistently meets the target coverage while producing
smaller prediction sets, thereby improving set-size efficiency. The advantage is empirically
robust to the choice of backbone classifier and persists under dataset shifts, outperforming
widely used conformal prediction baselines.

• Theory for coverage, generalization, and optimization. We establish that the learned
transformation preserves the conformal prediction coverage guarantee, as shown in Theo-
rem 1. Besides, we derive generalization bounds on the learned transformation obtained
by minimizing the surrogate objective within the class of order-preserving functions, as
presented in Theorem 2. Finally, we show in Theorem 3 that the optimization procedure
converges to a stationary point in the sense of limit points.

2 RELATED WORK

Conformal prediction. Conformal prediction (CP) is a convenient uncertainty quantification
framework that offers rigorous, distribution-free, finite-sample coverage guarantees (Vovk et al.,
2005; Shafer & Vovk, 2008; Balasubramanian et al., 2014). It has been widely applied in regression
(Papadopoulos et al., 2002; Lei et al., 2018; Romano et al., 2019) and classification (Sadinle et al.,
2019; Romano et al., 2020; Bates et al., 2021), as well as in domain applications including medical
imaging (Lu et al., 2022a;b), computer vision (Timans et al., 2024; Angelopoulos et al., 2021),
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robotics control (Dixit et al., 2023; Sun et al., 2023), and natural language processing (Maltoudoglou
et al., 2020; Choubey et al., 2022; Kumar et al., 2023; Quach et al., 2024). We study classification
under split CP framework (Romano et al., 2020; Angelopoulos & Bates, 2021) with the goal of
minimizing prediction set size while preserving the desired coverage level.

Size efficiency. While CP guarantees coverage, an equally important key performance criterion
is size efficiency: the ability to produce small, and informative prediction sets (Sadinle et al., 2019;
Romano et al., 2019; Dhillon et al., 2024; Gasparin & Ramdas, 2025). There is a substantial body
of work on reducing the size of conformal classification sets. Existing approaches can be broadly
grouped into two strands: (i) retraining methods that add size regularizers to the learning objective
and train (or fine-tune) the classifier to reduce the prediction-set size (Yang & Kuchibhotla, 2021;
Fisch et al., 2021; Einbinder et al., 2022; Stutz et al., 2022; Bai et al., 2022; Liang et al., 2023; Kiyani
et al., 2024; Shi et al., 2025); and (ii) post-hoc procedures that keep the base predictor fixed and
adjust the non-conformity scores to obtain tighter sets (Romano et al., 2020; Angelopoulos et al.,
2021; Ghosh et al., 2023; Huang et al., 2024; Xi et al., 2024; Luo & Zhou, 2025). Our approach
further explores the post-hoc line, avoiding the computational burden of retraining. Unlike fixed-form
methods, we tune a flexible order-preserving transform that directly minimizes expected set size.

3 PRELIMINARIES

This section formalizes the multiclass classification problem and introduces the split conformal
prediction framework for constructing prediction sets.

K-class classification. Let (X,Y ) be a random pair with X ∈ X ⊂ Rd and Y ∈ Y = {1, . . . ,K}.
Assume we are given a black-box classifier that outputs predicted class-probability π̂y(x) approx-
imating P(Y = y | X = x) for each y ∈ Y . The prediction rule for classification problems
is ŷ = argmaxy∈Y π̂y(x). Throughout the paper, we assume that the predicted class-probability
π̂(x) = (π̂1(x), . . . , π̂K(x)) is standardized: for all x and y, 0 ≤ π̂y(x) ≤ 1 and

∑K
y=1 π̂y(x) = 1.

Split conformal prediction. For a user defined miscoverage rate α ∈ (0, 1), conformal prediction
framework constructs a set-valued predictor C : X → 2Y that outputs a label set C(x) ⊆ {1, . . . ,K}
with marginal coverage P{Y ∈ C(X)} ≥ 1− α.

Split conformal prediction uses a calibration set Dcal = {(xi, yi)}ni=1, where (xi, yi)
i.i.d.∼ PXY and

Dcal is independent of the data used to fit the base classifier, together with a non-conformity score
E : X × Y → R. In CP procedure, compute scores ei = E(xi, yi) for i = 1, . . . , n, and set the
empirical (1− α) quantile as the threshold:

τ = inf

{
e :

∣∣{ i : E(xi, yi) ≤ e }
∣∣

n
≥ ⌈(n+ 1)(1− α)⌉

n

}
. (1)

For a new input xn+1, the prediction set is C(xn+1, τ) = { y ∈ Y : E(xn+1, y) ≤ τ }. We focus on
the size efficiency of split-conformal methods that use an accumulated-output non-conformity score
function. Two popular methods in this family are Adaptive Prediction Sets (APS) and Regularized
Adaptive Prediction Sets (RAPS) (Romano et al., 2020; Angelopoulos et al., 2021).

In APS, the non-conformity score is the cumulative sum of sorted class-probability prediction up to
the order of y:

EAPS(x, y, u) = π̂(1)(x) + π̂(2)(x) + · · ·+ u · π̂(o(y,x))(x).
RAPS augments APS with an order penalty to discourage inclusion of low–ordered labels:

ERAPS(x, y, u) = EAPS(x, y, u) + λ ·
(
o(y, x)− kreg

)+
.

Here, (π̂(1)(x) ≥ · · · ≥ π̂(K)(x)) are the model’s predicted class-probability sorted in descending
order; o(y, x) is the order of π̂y(x); λ is the penalty applied to labels with order exceeding kreg; and
u ∼ Unif[0, 1] is a randomizer used at calibration to ensure exact finite-sample (1 − α) coverage,
see Romano et al. (2020); Angelopoulos et al. (2021) for details.
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Algorithm 1 Find Threshold τ and Corresponding Calibration Components
Input: Calibration set Dc = {(xi, yi)}ni=1; target α ∈ (0, 1); order-preserving function f .
Precompute: For each (xi, yi) ∈ Dc, form the predicted class-probability vector (si,1, . . . , si,K).
Procedure:

1: for i ∈ {1, . . . , n} do
2: ri ← o(yi, xi); ▷ order of the true label in the same order used in (si,1, . . . , si,K)

3: ei ←
ri∑
j=1

f
(
si,j

)
;

4: end for
5: k⋆ ← ⌈(n+ 1)(1− α)⌉; τ ← e(k⋆);
6: Find i⋆ with ei⋆ = τ ; q⋆ ← ri⋆ ; ▷ break ties randomly
7: Return τ and sc ←

(
si⋆,1, . . . , si⋆,q⋆

)
.

Output: Threshold τ and a q⋆-dimensional vector sc.

4 FLEXIBLE PREDICTION SETS

This section shows how to integrate the proposed FPS framework into the CP procedure and then de-
velops a data-driven strategy to select the order-preserving function. Let s(x) = (s1(x), . . . , sK(x))
be the vector of predicted class-probability fed into the CP procedure. As an example, under the APS
method we take s(x) =

(
π̂(1)(x), . . . , π̂(K)(x)

)
, where π̂(1)(x) ≥ · · · ≥ π̂(K)(x). We denote by f

the transformation function, which acts componentwise on s. Then, the non-conformity score after
our transformation becomes:

EFPS(x, y, u) = f(s1(x)) + · · ·+ u · f(so(y,x)(x)), (2)

where o(y, x) is the index of the entry of s(x) that corresponds to class y.

Set-size objective. The conformal set size for a test input point x can be written as

len(C(x)) = max
{
k :

k∑
i=1

f
(
si
)
≤ τ

}
=

K∑
k=1

1

{
k∑
i=1

f(si) ≤
q∑
i=1

f(sci )

}
.

Here, τ =
∑q
i=1 f(s

c
i ) is the sample (1 − α)-quantile of the calibration non-conformity scores,

realized by some calibration example as in Algorithm 1.

Order-preserving function. Another important topic is to specify the function class for f . We
follow a post-hoc principle: the base classifier’s weights are fixed, and only its predicted class
probabilities are reshaped. If f is monotone and applied identically to all coordinates, the order
of predicted class probabilities is preserved. Consequently, the argmax label, and therefore the
base classifier’s point prediction, remains unchanged. This respects the model’s property that higher
predicted probability means stronger preference. Since s is derived from probabilities, we consider
the nonnegative, bounded regime s ∈ [0, D] and set f(0) = 0 to anchor the scale. Formally, we
restrict attention to the continuous differentiable and monotone function class:

F =
{
f ∈ C1([0, D]) : ∀ s1 < s2 ⇒ f(s1) < f(s2) , f(0) = 0

}
.

Learning methods. We make the set-size objective learnable via two mechanisms.

First, we approximate F by restricting to a parameterized subspace G ⊆ F :

G =

 ga ∈ C1([0, D])

∣∣∣∣∣∣∣
∂ga(s)

∂s
= exp

(
a0 +

M∑
m=1

(
a2m−1 sin(ms) + a2m cos(ms)

))
,

ga(0) = 0

 ,

with a = (a0, . . . , a2M ) ∈ R2M+1. We adopt trigonometric polynomials for three significant reasons.
(i) Structural guarantee: the exponential parameterization of the derivative ∂ga(s)/∂s enforces
positivity and therefore preserves order. (ii) Approximation power: according to the Stone-Weierstrass
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theorem (Stone, 1948; Rudin, 1987), the class G can uniformly approximate any continuous function
on [0, D]. (iii) Optimization stability: the trigonometric polynomial parameterization is simple and
its gradients are easy to compute, which yields a more direct and stable optimization procedure
than approaches that enforce monotonicity by constraining parameters or outputs, including neural
network parameterizations with positivity constraints. Monotone splines (Ramsay, 1988; He & Shi,
1998) are another option, but they require choosing both the number and the locations of knots and
maintaining global monotonicity, which introduces inequality constraints or reparameterizations and
complicates training. Performance is sensitive to knot placement and boundary treatment. Overall,
our choice balances theoretical guarantees, flexibility, and practical stability.

The main hyperparameter introduced by class G is the degree M of the trigonometric polynomial.
A larger M reduces approximation bias and captures finer structure, but it also increases the risk of
overfitting. In practice, a moderate degree, for example M ≤ 5, already performs well on image
benchmarks. See Sec. 5.3 and Appendix A for sensitivity analysis and further details.

Second, to enable gradient-based learning, we replace the indicators with a smooth surrogate (e.g., a
sigmoid function; (Stutz et al., 2022)) and optimize the resulting objective. Finally, the optimization
problem reduces to the following form

min
ga∈G

L(ga), L(ga) := E

[
K∑
k=1

σ
(
β−1

{∑q
i=1 ga(s

c
i )−

∑k
i=1 ga(si)

})]
, (3)

where σ(x) = 1
1+e−x is the sigmoid function and β > 0 is a temperature parameter. The temperature

rescales the margin inside σ(β−1{·}), thereby controlling the surrogate’s smoothness. Smaller β
yields a sharper, indicator-like surrogate that preserves boundaries but risks tail gradient saturation
and instability. Larger β smooths transitions and eases optimization but loosens the approximation.
In our experiments we fix β = 1, which we find strikes a practical balance between fidelity and
trainability. Moreover, performance is relatively insensitive to changes in β compared with other
hyperparameters in most cases (see Sec. 5.3 for details).

Algorithm 2 describes the procedure for estimating the coefficients a using a parameter tuning set
Dtune drawn i.i.d. from the same distribution as the black-box model’s training set and the conformal
calibration set. When learning f , we compute τ and the associated vector sc with the randomizer
u = 1 to make the training objective stable. At evaluation, we retain the standard split-conformal
randomization to guarantee exact finite-sample (1− α) coverage.

Remark. The same idea extends to RAPS: it can be viewed as APS applied to a penalty–shifted
predicted class-probability vector

s(x) :=
(
π̂(1)(x), . . . , π̂(kreg)(x), π̂(kreg+1)(x) + λ, . . . , π̂(K)(x) + λ

)
,

where π̂(1)(x) ≥ · · · ≥ π̂(K)(x) are the sorted model predictions and all orders exceeding kreg
receive a constant shift 0 ≤ λ ≤ Λ. Choosing D ≥ 1+Λ keeps the shifted class probabilities remain
in [0, D], so f ∈ C1([0, D]) is preserved. We then apply f componentwise to transform s(x).

5 EXPERIMENTS

In this section, we describe the experimental setup in Sec. 5.1, present the CP classification results
under our FPS framework in Sec. 5.2, and analyze the sensitivity of the parameters in Sec. 5.3.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on diverse classification benchmarks spanning images and text. For image
classification, we use ImageNet (Deng et al., 2009) and ImageNet-V2 (Recht et al., 2019); for text
classification, we use Banking77 (Casanueva et al., 2020; Lhoest et al., 2021; Muennighoff et al.,
2022; Enevoldsen et al., 2025), an open-source dataset composed of online banking queries annotated
with their corresponding intents. For each dataset, we randomly partition it into three disjoint parts in
a 2 : 1 : 2 ratio: a tuning set, a conformal calibration set, and an evaluation set. Furthermore, We
randomly split the tuning set 1:1, half for gradient-based optimization, half for threshold selection.
We also evaluated alternative data splits, details and results are provided in Appendix D.
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Algorithm 2 Tuning FPS Transformation
Input: Tuning set Dtune = {(xi, yi)}ntune

i=1 ; temperature β; learning rate γ; maximum iterations T ;
tolerance ε; initial coefficients a0 = (a00, . . . , a

0
2M ).

Precompute: Randomly splitDtune into two sets: D for optimization andDc for calibration. For each
(xi, yi) ∈ D, form the predicted class-probability vector (si,1, . . . , si,K). For each (xci , y

c
i ) ∈ Dc,

form (sci,1, . . . , s
c
i,K) likewise.

Procedure:
1: for t = 1 to T do
2: Find calibration components sc,t−1 = (sc,t−1

1 , . . . , sc,t−1
qt−1

) by Algorithm 1 based on gat−1 ;
3: Compute empirical loss from Eq. (3), with n = |D|:

Ln(gat−1 , sc,t−1)← 1

n

n∑
i=1

K∑
k=1

σ
(
β−1

{ qt−1∑
j=1

gat−1(sc,t−1
j )−

k∑
j=1

gat−1(si,j)
})

;

4: Update coefficients by one gradient step w.r.t. a:

at ← at−1 − γ∇aLn(gat−1 , sc,t−1).

5: if ∥at − at−1∥2 < ε then
6: return at. ▷ converged
7: end if
8: end for
9: return aT . ▷ maximum iterations reached

Output: Estimated coefficients â. Prediction sets can then be constructed by CP algorithm using
transformed predicted class probabilities gâ(s(x)).

Base models. For ImageNet and ImageNet-V2, we use eight off-the-shelf ImageNet-pretrained deep
classifiers from the TorchVision (Paszke et al., 2019): ResNet101/152 (He et al., 2016), ResNeXt101
(Xie et al., 2017), DenseNet-161 (Huang et al., 2017), VGG-16 (Simonyan & Zisserman, 2015), and
ShuffleNet (Zhang et al., 2018). For the Banking, we use publicly available Transformer encoders
from the Hugging Face Hub (Wolf et al., 2020): BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), DistilBERT (Sanh et al., 2019), and DistilRoBERTa (a distilled variant of RoBERTa). Across
all experiments, base classifiers’ weights are kept fixed.

Conformal prediction. We evaluate two target miscoverage levels, α ∈ {0.05, 0.10}. For a fair
comparison, we evaluate APS against its FPS transformed variant, using identical base classifier
outputs generated under the same random seed. For RAPS, we select (kreg, λ) by a grid search
following Angelopoulos et al. (2021). When comparing RAPS with its FPS transformed counterpart,
we reuse the same (kreg, λ) and the same seeded classifier outputs, ensuring that any observed
differences arise from the learned transformation gâ rather than from hyperparameters or randomness.

Evaluation metrics. Let Deval = {(xi, yi)}neval
i=1 be the evaluation set. We report two quantities at

target level α: Coverage, the fraction of evaluation examples whose true label lies in the prediction
set; and Size, the mean cardinality of the set. We target coverage very close to the nominal 1− α;
size is compared at matched coverage levels, where a smaller average size indicates higher efficiency.

Coverage =
1

neval

neval∑
i=1

1{yi ∈ C(xi)}, Size =
1

neval

neval∑
i=1

∣∣C(xi)∣∣.
5.2 MAIN RESULTS

We evaluate three datasets (ImageNet, ImageNet-V2, and Banking77), multiple base classifiers, and
conformal prediction methods (APS, RAPS, and their FPS-transformed variants) at user-defined
target levels α. To quantify variability, we repeat 10 independent trials on ImageNet and 100 trials on
ImageNet-V2 and Banking77, reporting Coverage (mean) and Size (mean ± standard error) across
runs. All experiments are executed on a machine with an Intel Xeon CPU (12 cores) and two NVIDIA
GeForce GTX 1080 Ti GPUs.
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Table 1: Coverage and Size results on ImageNet across α levels and base image classifiers. APS and
RAPS are baselines; +ours denotes applying our FPS framework (APS+ours, RAPS+ours).

Coverage Size

Model α APS APS+ours RAPS RAPS+ours APS APS+ours RAPS RAPS+ours

ResNeXt101 0.05 0.951 0.951 0.950 0.948 20.865 ± 0.342 10.939 ± 0.217 3.829 ± 0.080 3.640 ± 0.043
0.10 0.901 0.900 0.900 0.898 7.171 ± 0.109 2.894 ± 0.033 2.020 ± 0.011 1.966 ± 0.009

ResNet152 0.05 0.951 0.950 0.950 0.950 14.725 ± 0.186 8.298 ± 0.112 4.087 ± 0.032 4.032 ± 0.042
0.10 0.900 0.901 0.901 0.900 6.360 ± 0.065 3.010 ± 0.039 2.260 ± 0.006 2.176 ± 0.012

ResNet101 0.05 0.951 0.950 0.949 0.949 16.091 ± 0.130 9.022 ± 0.175 4.417 ± 0.063 4.382 ± 0.052
0.10 0.902 0.901 0.900 0.898 7.015 ± 0.057 3.315 ± 0.033 2.387 ± 0.013 2.286 ± 0.010

DenseNet161 0.05 0.950 0.951 0.949 0.949 17.218 ± 0.184 9.866 ± 0.140 4.702 ± 0.104 4.664 ± 0.080
0.10 0.901 0.900 0.898 0.900 6.956 ± 0.101 3.275 ± 0.039 2.338 ± 0.020 2.299 ± 0.011

VGG16 0.05 0.949 0.949 0.951 0.950 23.917 ± 0.367 15.329 ± 0.194 8.803 ± 0.548 8.542 ± 0.380
0.10 0.899 0.899 0.899 0.898 11.845 ± 0.086 5.943 ± 0.051 3.768 ± 0.012 3.577 ± 0.019

ShuffleNet 0.05 0.949 0.950 0.950 0.950 54.133 ± 1.072 27.588 ± 0.521 15.696 ± 0.719 15.029 ± 0.460
0.10 0.899 0.901 0.900 0.899 22.584 ± 0.305 8.931 ± 0.141 5.026 ± 0.077 4.898 ± 0.068

Table 2: Coverage and Size results on ImageNet-V2 across α levels and base image classifiers.
Coverage Size

Model α APS APS+ours RAPS RAPS+ours APS APS+ours RAPS RAPS+ours

ResNeXt101 0.05 0.951 0.951 0.951 0.950 72.310 ± 0.756 50.075 ± 0.402 19.746 ± 0.449 18.656 ± 0.323
0.10 0.901 0.900 0.900 0.900 27.597 ± 0.283 14.436 ± 0.103 6.163 ± 0.120 5.933 ± 0.088

ResNet152 0.05 0.951 0.951 0.950 0.949 42.745 ± 0.403 35.740 ± 0.292 16.173 ± 0.361 15.277 ± 0.246
0.10 0.900 0.901 0.900 0.900 17.869 ± 0.160 12.375 ± 0.092 5.794 ± 0.081 5.625 ± 0.054

ResNet101 0.05 0.950 0.949 0.951 0.950 48.963 ± 0.459 39.948 ± 0.311 21.691 ± 0.496 20.029 ± 0.391
0.10 0.899 0.899 0.901 0.900 20.937 ± 0.175 14.218 ± 0.099 6.957 ± 0.119 6.618 ± 0.071

DenseNet161 0.05 0.950 0.949 0.951 0.950 54.296 ± 0.641 43.468 ± 0.416 22.168 ± 0.503 20.601 ± 0.343
0.10 0.899 0.900 0.902 0.901 20.776 ± 0.237 13.437 ± 0.118 6.825 ± 0.093 6.575 ± 0.071

VGG16 0.05 0.950 0.950 0.950 0.949 57.578 ± 0.483 51.266 ± 0.415 40.564 ± 9.667 29.368 ± 0.507
0.10 0.900 0.900 0.898 0.899 27.740 ± 0.198 21.620 ± 0.139 11.824 ± 0.190 11.346 ± 0.128

ShuffleNet 0.05 0.950 0.951 0.950 0.949 130.688 ± 1.112 113.189 ± 0.767 74.546 ± 1.359 71.162 ± 1.080
0.10 0.900 0.900 0.899 0.899 59.976 ± 0.550 39.292 ± 0.293 23.361 ± 0.481 22.463 ± 0.360

As shown in Tables 1, 2, and 3, our FPS transformation reduces set size for both APS and RAPS
while maintaining coverage, consistently across α levels, base classifiers, and multi-modal datasets.
Since our method is post-hoc and computationally light, we fix β = 1 and select the hyperparameters
M and γ via a simple grid search. Implementation details are provided in Appendix A.

5.3 SENSITIVITY ANALYSIS

We conduct a sensitivity analysis for all the parameters introduced by FPS: the sigmoid temperature
β, the trigonometric polynomial order M , and the learning rate γ. For each factor, we use a grid of
values while holding the remaining hyperparameters fixed, tune the FPS transformation for both APS
and RAPS, evaluate the resulting conformal prediction sets Size and Coverage at α ∈ {0.05, 0.10}.
As seen in Table 4, prediction-set size is relatively more sensitive to γ and M than to β, which
corroborates our hyperparameter selection strategy of fixing β = 1 while tuning M and γ. Table 5
indicates that the target nominal coverage is achieved irrespective of the hyperparameter configuration.
Implementation details are also provided in Appendix A.

6 THEORETICAL RESULTS

This section provides the theoretical guarantees for our proposed FPS method. Theorem 1 shows that
split CP procedure, after the FPS transformation, still preserves the coverage guarantee. Theorem 2
characterizes the generalization bound of the approximation approach used in FPS. Finally, Theorem 3

7
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Table 3: Coverage and Size results on Banking77 across α levels and base text classifiers.
Coverage Size

Model α APS APS+ours RAPS RAPS+ours APS APS+ours RAPS RAPS+ours

BERT 0.05 0.950 0.949 0.948 0.948 2.537 ± 0.031 1.577 ± 0.034 1.446 ± 0.014 1.361 ± 0.015
0.10 0.898 0.900 0.898 0.898 1.524 ± 0.011 0.972 ± 0.001 1.153 ± 0.009 0.972 ± 0.001

RoBERTa 0.05 0.949 0.950 0.950 0.949 2.017 ± 0.030 1.273 ± 0.013 1.242 ± 0.010 1.186 ± 0.013
0.10 0.898 0.899 0.902 0.898 1.316 ± 0.009 0.967 ± 0.001 1.082 ± 0.007 0.966 ± 0.001

DistilBERT 0.05 0.949 0.950 0.950 0.950 2.127 ± 0.023 1.449 ± 0.015 1.461 ± 0.012 1.344 ± 0.010
0.10 0.900 0.901 0.902 0.899 1.463 ± 0.009 0.977 ± 0.001 1.191 ± 0.007 0.977 ± 0.001

DistilRoBERTa 0.05 0.949 0.948 0.950 0.949 4.226 ± 0.041 2.080 ± 0.020 2.299 ± 0.023 1.842 ± 0.013
0.10 0.898 0.898 0.900 0.899 2.729 ± 0.028 1.647 ± 0.134 1.703 ± 0.013 1.123 ± 0.020

Table 4: Size sensitivity for FPS at α ∈ {0.05, 0.10}. Each hyperparameter is varied in turn, with
the others held fixed as indicated; we report the mean size over repeated experiments. For each
hyperparameter we also report the range ∆ (max–min) over its four settings.

Vary β (γ=0.001, M=1) Vary M (β=1, γ=0.001) Vary γ (β=1, M=1)

α Method β=0.01 β=0.1 β=1 β=10 ∆β M=1 M=2 M=3 M=4 ∆M γ=10−5 γ=10−4 γ=10−3 γ=10−2 ∆γ

0.05 APS+ours 9.08 8.78 8.89 9.06 0.30 8.89 8.21 7.68 7.22 1.67 14.05 13.23 8.89 8.66 5.39
RAPS+ours 4.11 4.04 4.05 4.16 0.12 4.05 4.09 6.19 6.83 2.78 4.12 4.04 4.05 4.03 0.09

0.10 APS+ours 4.99 4.81 4.75 4.78 0.24 4.75 3.39 3.03 3.09 1.72 6.26 6.14 4.75 3.05 3.21
RAPS+ours 2.20 2.22 2.21 2.28 0.08 2.21 2.20 2.19 2.17 0.04 2.26 2.27 2.21 2.19 0.08

establishes that Algorithm 2 admits a subsequence converging to a stationary point. The complete
proofs for all the theoretical results are given in Appendix E.
Theorem 1 (FPS coverage guarantee). Suppose {(xi, yi, ui)}ni=1 and (xn+1, yn+1, un+1) are i.i.d.
samples. Let gâ be selected by Algorithm 2 using a tuning set Dtune of i.i.d. samples, which
is independent of the conformal calibration and evaluation set. Let Cgâ(x, u, τ) be the split CP
prediction set obtained using the non-conformity score in Eq. (2) (with f replaced by gâ) and the
corresponding threshold τ defined in Eq. (1). Suppose further that F is a measurable function class.
Then the following coverage guarantee holds:

1− α ≤ P
{
yn+1 ∈ Cgâ(xn+1, un+1, τ)

}
≤ 1− α+

1

n+ 1
.

Theorem 1 implies that FPS transformation preserves the coverage of the base CP method.

Prior to further analysis, we let gâ ∈ G denote the transformation returned by Algorithm 2, f⋆ ∈ F
be a minimizer of the population loss:f⋆ ∈ argminf∈F L(f), and define the empirical version of

L(ga) appearing in Eq. (3): Ln(ga) = 1
n

∑n
i=1

∑K
k=1 σ

(
β−1

{∑q
j=1 g(s

c
j)−

∑k
j=1 g(si,j)

})
.

Assumption 1 (Approximate empirical risk minimization). Let gâ be the transformation function
returned by Algorithm 2, assume

Ln
(
gâ
)
≤ inf

ga∈G
Ln

(
ga
)
+ εopt,

where εopt ≥ 0 is the optimization suboptimality for empirical risk.
Lemma 1 (Approximation error). Define δM := infg∈G ∥g − f⋆∥∞. Then δM → 0 as M →∞.

Equipped with Assumption 1 and Lemma 1, we show that the surrogate loss used by FPS, together
with our function-space approximation scheme, admits a high-probability generalization bound. In
particular, the excess risk L(gâ)−L(f⋆) is controlled by a standard estimation term (scaling with n)
plus an approximation term (scaling with M ). We state the result Theorem 2 formally below.
Theorem 2 (Generalization bound). Assume ∥a∥1 ≤ A and Assumption 1 holds. Then, for any
δ ∈ (0, 1), with probability at least 1− δ,

L(gâ)− L(f⋆) ≤ C1 LK
eAD√
n

+ C2

√
log(1/δ)

n
+ LK δM + εopt,

8
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Table 5: Coverage sensitivity for FPS at α ∈ {0.05, 0.10}. Each hyperparameter is varied in turn,
with the others held fixed as indicated; we report the mean coverage over repeated experiments.

Vary β (γ=0.001, M=1) Vary M (β=1, γ=0.001) Vary γ (β=1, M=1)

α Method β=0.01 β=0.1 β=1 β=10 M=1 M=2 M=3 M=4 γ=10−5 γ=10−4 γ=10−3 γ=10−2

0.05 APS+ours 0.949 0.950 0.950 0.951 0.950 0.949 0.949 0.949 0.949 0.949 0.950 0.951
RAPS+ours 0.950 0.950 0.950 0.949 0.950 0.951 0.950 0.951 0.950 0.950 0.950 0.949

0.10 APS+ours 0.900 0.901 0.899 0.901 0.899 0.899 0.899 0.900 0.899 0.901 0.899 0.900
RAPS+ours 0.899 0.902 0.901 0.898 0.901 0.902 0.902 0.899 0.899 0.902 0.901 0.899

where LK = K(3K+1)
8β , C1, C2 > 0 are universal constants. Furthermore, if n,M → ∞ with

δM → 0, then by Lemma 1,
L
(
gâ
)
− L(f⋆) = εopt + oP(1),

i.e., the excess risk is asymptotically controlled solely by the optimization error.

Finally, we explore the convergence of Algorithm 2 in practice. Updating the components sc on the
calibration set may increase the loss, and we therefore state the following assumption.
Assumption 2 (Vanishing loss update). At iteration t of Algorithm 2, we take a gradient step
with calibration components frozen at sc,t−1 to obtain at, then refresh calibration components
via gat to get sc,t. Assume there exists a nonnegative sequence {δt}t≥1 with running average
limT→∞

1
T

∑T
t=1 δt = 0, such that for every t the loss after calibration update satisfies

Ln
(
gat , sc,t

)
≤ Ln

(
gat , sc,t−1

)
+ δt.

In our classification settings, Assumption 2 often holds. In particular, across iterations, the calibration
components vector sc,t is not updated every time. Moreover, when it is updated, the change is small.
This is because the vector is short on average and its large entries are concentrated in the first few
coordinates, and supporting intuition and experimental evidence are provided in Appendix C. With
Assumption 2 in place, we formally show that the sequence {at}t≥1 generated by Algorithm 2 admits
a stationary limit point.
Theorem 3 (Limit point stationarity). Assume Assumption 2 holds, ∥a∥1 ≤ A, and the fixed gradient

step size satisfies γ ∈ (0, 1/LA] with LA = KDeA

24 β

[
DeA

β (14K2 + 9K + 1) + 3(3K + 1)

]
. Then,

for every t ≥ 1, we have

Ln
(
gat , sc,t

)
≤ Ln

(
gat−1 , sc,t−1

)
− γ

2

∥∥∇aLn
(
gat−1 , sc,t−1

)∥∥2 + δt.

Since Ln is the empirical average of a finite sum sigmoid terms, we have Ln ≥ 0, consequently,

lim
T→∞

1

T

T∑
t=1

∥∥∇aLn
(
gat , sc,t

)∥∥2 = 0, lim inf
t→∞

∥∥∇aLn
(
gat , sc,t

)∥∥ = 0.

7 CONCLUSION AND FUTURE WORK

In this work, we introduced Flexible Prediction Sets (FPS), a post-hoc framework that improves the
size efficiency of conformal prediction for classifiers. FPS applies an order-preserving transformation
to predicted probabilities and, when integrated into standard conformal prediction procedures, yields
smaller sets. We learn the transformation by optimizing a smooth surrogate of expected set size
within an increasing function class. Across diverse image and text benchmarks, FPS reduces set sizes
for APS and RAPS while maintaining target coverage, supported by proofs of coverage preservation,
generalization bounds, and optimization convergence.

While our standard approach uses a held-out tuning set for theoretical rigor, it is data-intensive.
Empirically, partially overlapping the tuning and calibration sets still yields valid coverage despite
violating exchangeability, as shown in Appendix D. A promising direction for future work is to
formally analyze FPS under data reuse. Another avenue for future work is to replace the length
surrogate with alternative objectives that tailor FPS to different desiderata, for example targeting
conditional coverage in applications where it is required.
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ETHICS STATEMENT

This research is methodological, focusing on the development of a new framework, Flexible Prediction
Sets (FPS), to improve the size efficiency of conformal prediction for machine learning classifiers. Our
work does not involve human subjects, and therefore no Institutional Review Board (IRB) approval
was required. All experiments were conducted on standard, publicly available benchmarks, which are
widely used in the machine learning community. Our research does not involve the collection of new
data, nor does it process personally identifiable or sensitive information, thus mitigating concerns
related to data privacy and security.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed descriptions of our theoretical results
and experimental setup. The theoretical results presented in Section 6 are accompanied by complete
mathematical proofs in Appendix E. Our full experimental setup is described in Section 5.1. Further
implementation details, such as data splitting protocols and the specific hyperparameters used to
obtain the results, are provided in Appendix A. The source code is provided in the supplementary
material and will be made publicly available upon publication.
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Appendix
In the appendix, we present implementation details for the results in the main paper in Appendix A,
and visualize some of the learned transformations in Appendix B. We also provide intuition and
experimental evidence for Assumption 2, see Appendix C. In addition, we report results under a
partially overlapping data-splits strategy, see Appendix D. Moreover, we provide detailed proofs
for the theorems and lemmas in the main paper, see Appendix E. We further discuss FPS together
with two related methods, Temperature Scaling and Least Ambiguous Sets, see Appendices F and G.
Finally, we clarify the usage of large language models in our paper, see Appendix H.

A IMPLEMENTATION DETAILS

In this section, we detail the experimental setup for the results reported in Tables 1-5.

A.1 IMPLEMENTATION DETAILS OF TABLE 1

We split the 50k-sample ImageNet validation set into three disjoint subsets: 20k for tuning the FPS
transformation (split evenly into 10k for gradient-based learning and 10k for searching the threshold
and associated calibration components), 10k for conformal calibration, and 20k for evaluating the
size and coverage of prediction sets. Following Angelopoulos et al. (2021), we select kreg and search
λ ∈ {0.001, 0.005, 0.01, 0.02, 0.05} for RAPS. With β = 1 fixed, we search M ∈ {1, 2, 3, 4} and
γ ∈ {10−2, 10−3, 10−4, 10−5}. We then tune FPS, initialized at zero a0, using AdamW (weight
decay 10−4). The final hyperparameters are as follows. For α = 0.05: APS+ours uses M = 2,
γ = 10−3; RAPS+ours uses M = 1, γ = 10−4. For α = 0.10: APS+ours uses M = 3, γ = 10−3;
RAPS+ours uses M = 2, γ = 10−3. We repeat each experiment 10 times and report the mean size
with its standard error, and the mean coverage.

A.2 IMPLEMENTATION DETAILS OF TABLE 2

We split the 10k-sample ImageNetV2 set into three disjoint subsets: 4k for tuning the FPS trans-
formation (split evenly into 2k for gradient-based learning and 2k for searching the threshold and
associated calibration components), 2k for conformal calibration, and 4k for evaluating the size
and coverage of prediction sets. Following Angelopoulos et al. (2021), we select kreg and search
λ ∈ {0.001, 0.005, 0.01, 0.02, 0.05} for RAPS. With β = 1 fixed, we search M ∈ {1, 2, 3, 4} and
γ ∈ {10−2, 10−3, 10−4, 10−5}. We then tune FPS, initialized at zero a0, using AdamW (weight
decay 10−4). The final hyperparameters are as follows. For α = 0.05: APS+ours uses M = 1,
γ = 10−3; RAPS+ours uses M = 1, γ = 10−4. For α = 0.10: APS+ours uses M = 3, γ = 10−3;
RAPS+ours uses M = 1, γ = 10−3. We repeat each experiment 100 times and report the mean size
with its standard error, and the mean coverage.

A.3 IMPLEMENTATION DETAILS OF TABLE 3

We split the 3076-sample Banking77 test set into three disjoint subsets: 1230 for tuning the FPS
transformation (split evenly into 615 for gradient-based learning and 615 for searching the threshold
and associated calibration components), 615 for conformal calibration, and 1231 for evaluating the
size and coverage of prediction sets. Following Angelopoulos et al. (2021), we select kreg and search
λ ∈ {0.001, 0.005, 0.01, 0.02, 0.05} for RAPS. With β = 1 fixed, we search M ∈ {5, 6, 7, 8, 9, 10}
and γ ∈ {1.0, 10−1, 10−2, 10−3}. We then tune FPS, initialized at zero a0, using AdamW (weight
decay 10−4). The final hyperparameters are as follows. For α = 0.05: APS+ours uses M = 9,
γ = 10−2; RAPS+ours uses M = 6, γ = 10−2. For α = 0.10: APS+ours uses M = 7, γ = 10−1;
RAPS+ours uses M = 6, γ = 10−1. We repeat each experiment 100 times and report the mean size
with its standard error, and the mean coverage.

A.4 IMPLEMENTATION DETAILS OF TABLE 4 AND 5

The sensitivity analysis is conducted on ImageNet. We tune FPS with the base model ResNet152 with
β ∈ {10, 1.0, 0.1, 0.01}, M ∈ {1, 2, 3, 4}, and γ ∈ {10−2, 10−3, 10−4, 10−5} for both nominal
coverage levels α ∈ {0.05, 0.10}. All other configurations are the same as in Appendix A.1.
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Figure 2: Learned order-preserving FPS transformation f(s) (orange) across base classifiers, com-
pared with the identity y = s (gray dashed).

B VISUALIZATION OF THE FPS TRANSFORMATION

At the significance level α = 0.10, we tune the FPS order-preserving transformation f(s) for APS
and visualize the learned f(s) in Fig. 2. Unless otherwise noted, all experimental settings follow
Appendix A.1. Notably, the learned transformation exhibits a highly similar qualitative pattern across
all tested backbones; accordingly, FPS demonstrates robustness with respect to the base classifiers
and offers general applicability to conformal prediction classification tasks.

C LOSS UPDATE AFTER RECALIBRATION

Intuitively, the concentration of sc on its leading entries arises because our base classifier attains high
top-k accuracy, which makes the predicted probabilities sharply peaked and thus concentrated on the
first few entries. Empirically, on ImageNet we consider APS with its FPS-tuned counterpart. We use
ResNet-152, set M = 1, β = 1, and coverage levels to α ∈ {0.05, 0.10}. We tune FPS with zero
initialization using AdamW (learning rate γ = 10−3, weight decay 10−4). We examine examples of
sc, the average vector length, and the quantity

∑
t δt introduced in Assumption 2.

In the vast majority of cases, sc is highly concentrated on a single entry, e.g., [1.]. In other com-
mon cases, the mass is still dominated by the first two or three entries, e.g., [0.999, 0.0007],
[0.994, 0.005], or [0.991, 0.004, 0.003]. Less frequently, we observe longer tails, such as
[0.998, 0.0011, 0.00017, 0.00016, 0.00010, 0.000051, 0.000021, 0.0000082], and only rarely a
pattern like [0.517, 0.410]. Overall, these patterns indicate a sharply peaked predictive distribu-
tion consistent with a high top-k accuracy base classifier, supporting our concentration assumption
for sc. The average length of sc remains below 2 across T = 50 iterations, which is small and further
supports our concentration assumption on sc. Finally, we directly report the cumulative loss update∑T
t=1 δt. Figure 3 reports the cumulative loss update over the first T = 50 iterations, computed

solely from changes in sc and excluding the gradient–descent term. The trajectories increase with
diminishing increments and remain small in magnitude; empirically, they exhibit sublinear growth,
i.e.,

∑T
t=1 δt = o(T ), consistent with the vanishing-loss behavior in Assumption 2.

D OVERLAPPING DATA SPLITS INDUCE LIMITED TUNING BIAS

In Algorithm 2, we use a hold-out set Dtune to learn the FPS transformation and then integrate
it into split conformal prediction. This may raise concerns about requiring too much additional
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Figure 3: Cumulative loss update
∑T
t=1 δt over the first T = 50 iterations, based solely on changes

in sc (gradient–descent term excluded), for α = 0.10 (left) and α = 0.05 (right).

Table 6: Coverage and size on ImageNet under partially overlapping FPS tuning and conformal
calibration sets, across α levels and base image classifiers. APS and RAPS are baselines; +ours
denotes applying our FPS framework (APS+ours, RAPS+ours).

Coverage Size

Model α APS APS+ours RAPS RAPS+ours APS APS+ours RAPS RAPS+ours

ResNeXt101 0.05 0.951 0.951 0.951 0.951 20.672 ± 0.203 10.847 ± 0.266 3.763 ± 0.040 3.746 ± 0.040
0.10 0.900 0.900 0.901 0.902 7.112 ± 0.085 2.894 ± 0.042 2.030 ± 0.004 1.994 ± 0.003

ResNet152 0.05 0.950 0.951 0.950 0.950 14.384 ± 0.166 8.159 ± 0.136 4.091 ± 0.063 4.067 ± 0.046
0.10 0.901 0.901 0.900 0.901 6.229 ± 0.032 2.975 ± 0.033 2.254 ± 0.007 2.182 ± 0.006

ResNet101 0.05 0.950 0.950 0.950 0.949 15.678 ± 0.163 8.989 ± 0.121 4.445 ± 0.029 4.359 ± 0.025
0.10 0.902 0.901 0.901 0.901 6.924 ± 0.043 3.259 ± 0.034 2.376 ± 0.006 2.298 ± 0.003

DenseNet161 0.05 0.951 0.951 0.950 0.950 17.256 ± 0.151 9.980 ± 0.146 4.673 ± 0.028 4.671 ± 0.019
0.10 0.900 0.900 0.900 0.901 6.759 ± 0.073 3.300 ± 0.017 2.353 ± 0.005 2.296 ± 0.006

VGG16 0.05 0.952 0.951 0.951 0.951 24.374 ± 0.214 15.321 ± 0.152 8.341 ± 0.068 8.186 ± 0.068
0.10 0.899 0.899 0.899 0.900 11.596 ± 0.081 5.735 ± 0.045 3.802 ± 0.029 3.628 ± 0.022

ShuffleNet 0.05 0.951 0.952 0.951 0.951 55.364 ± 0.316 32.924 ± 4.682 14.811 ± 0.203 14.365 ± 0.179
0.10 0.898 0.899 0.901 0.901 22.990 ± 0.226 8.786 ± 0.106 4.968 ± 0.040 4.878 ± 0.047

data. However, Zeng et al. (2025) show that prediction-set coverage remains near nominal despite
violations of exchangeability in the non-conformity scores, as long as the calibration set is large. In
this section, we therefore allow Dtune := D∪Dc and Dcal to partially overlap. Specifically, we reuse
the same calibration set for tuning the FPS transformation and for the subsequent split conformal
prediction, i.e., Dc := Dcal. We report experimental results under this data-splitting scheme. We split
the dataset in a 1:2:2 ratio into a tuning set (used exclusively for gradient learning), a calibration set
(shared for estimating sc and executing the split CP procedures), and an evaluation set to evaluate
Coverage and Size. For example, we split the 50k-sample ImageNet validation set into three partially
overlapping subsets: 10k for tuning the FPS transformation (for gradient-based learning only), 20k for
both conformal calibration and searching for the threshold and the associated calibration components
needed to learn the FPS transformation, and 20k for evaluating prediction set size and coverage.
Apart from the changes noted above, all parameter settings are identical to those in Appendix A.

Tables 6, 7, and 8 show that even when the FPS transformation tuning set partially overlaps with
the conformal calibration set, FPS attains target coverage and yields smaller prediction sets for both
APS and RAPS. The improvements are consistent across α levels, base architectures, and multimodal
datasets. In conclusion, although this data-split scheme breaks exchangeability and thus invalidates
the coverage guarantee in Theorem 1, our experiments show that coverage is still achieved in practice,
thereby alleviating potential concerns about data waste.
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Table 7: Coverage and Size results on ImageNet-V2 under partially overlapping FPS tuning and
conformal calibration sets, across α levels and base image classifiers.

Coverage Size

Model α APS APS+ours RAPS RAPS+ours APS APS+ours RAPS RAPS+ours

ResNeXt101 0.05 0.949 0.950 0.952 0.951 69.305 ± 0.372 48.459 ± 0.189 18.774 ± 0.248 18.087 ± 0.137
0.10 0.899 0.901 0.897 0.897 25.773 ± 0.172 14.067 ± 0.068 6.150 ± 0.075 5.723 ± 0.048

ResNet152 0.05 0.950 0.951 0.951 0.951 42.697 ± 0.172 35.830 ± 0.141 15.850 ± 0.251 15.100 ± 0.165
0.10 0.900 0.900 0.898 0.899 17.912 ± 0.145 12.439 ± 0.083 5.437 ± 0.031 5.410 ± 0.022

ResNet101 0.05 0.950 0.950 0.949 0.950 49.713 ± 0.426 41.037 ± 0.295 19.823 ± 0.227 19.361 ± 0.248
0.10 0.900 0.903 0.903 0.901 20.763 ± 0.125 14.329 ± 0.060 6.860 ± 0.070 6.380 ± 0.023

DenseNet161 0.05 0.953 0.953 0.950 0.949 58.149 ± 0.469 45.249 ± 0.257 19.268 ± 0.112 18.487 ± 0.073
0.10 0.897 0.898 0.904 0.903 20.267 ± 0.156 13.468 ± 0.066 6.626 ± 0.077 6.344 ± 0.040

VGG16 0.05 0.948 0.947 0.951 0.950 56.276 ± 0.213 50.023 ± 0.230 30.646 ± 0.545 28.279 ± 0.358
0.10 0.899 0.898 0.898 0.899 27.661 ± 0.191 21.459 ± 0.125 11.440 ± 0.105 11.124 ± 0.073

ShuffleNet 0.05 0.951 0.952 0.949 0.947 132.295 ± 0.288 114.352 ± 0.266 72.303 ± 0.836 69.546 ± 0.585
0.10 0.903 0.901 0.903 0.901 60.811 ± 0.436 38.840 ± 0.223 24.045 ± 0.323 22.719 ± 0.199

Table 8: Coverage and Size results on Banking77 under partially overlapping FPS tuning and
conformal calibration sets, across α levels and base text classifiers.

Coverage Size

Model α APS APS+ours RAPS RAPS+ours APS APS+ours RAPS RAPS+ours

BERT 0.05 0.950 0.950 0.948 0.949 2.531 ± 0.024 1.469 ± 0.014 1.438 ± 0.009 1.351 ± 0.010
0.10 0.900 0.899 0.900 0.900 1.537 ± 0.011 1.155 ± 0.130 1.132 ± 0.005 0.976 ± 0.001

RoBERTa 0.05 0.950 0.950 0.949 0.949 2.019 ± 0.022 1.260 ± 0.010 1.224 ± 0.005 1.171 ± 0.004
0.10 0.901 0.901 0.900 0.899 1.335 ± 0.009 0.969 ± 0.001 1.059 ± 0.004 0.968 ± 0.001

DistilBERT 0.05 0.950 0.950 0.950 0.951 2.144 ± 0.018 1.420 ± 0.010 1.446 ± 0.009 1.346 ± 0.008
0.10 0.902 0.901 0.898 0.900 1.478 ± 0.007 0.979 ± 0.001 1.159 ± 0.005 0.979 ± 0.001

DistilRoBERTa 0.05 0.949 0.949 0.948 0.949 4.201 ± 0.028 2.054 ± 0.014 2.249 ± 0.019 1.819 ± 0.009
0.10 0.901 0.902 0.900 0.902 2.735 ± 0.018 1.451 ± 0.077 1.669 ± 0.010 1.081 ± 0.010

E PROOFS

In this section, we present the proofs of Theorems 1, 2, and 3, together with Lemma 1.

E.1 PROOF OF THEOREM 1

Proof. Let Eg be the measurable non-conformity score in Eq. (2), and let Zi = (xi, yi, ui), i =
1, . . . , n+ 1, be i.i.d. Algorithm 2 produces gâ from an independent tuning set Dtune. Conditioning
on Dtune makes gâ ∈ G ⊆ F a fixed measurable map, so Egâ is fixed and measurable as well,
while Z1, . . . , Zn+1 remain i.i.d. Applying the same fixed map to i.i.d. variables preserves i.i.d.,
hence Egâ(Z1), . . . , Egâ(Zn+1) are i.i.d. given Dtune. Unconditioning preserves exchangeability.
Thus selecting gâ via the independent tuning set does not affect the i.i.d. property of the scores
{Egâ(Zi)}

n+1
i=1 . The coverage guarantee

1− α ≤ P
{
yn+1 ∈ Cgâ(xn+1, un+1, τ)

}
≤ 1− α+

1

n+ 1

then follows directly from Theorem 1 of Romano et al. (2020).

E.2 PROOF OF LEMMA 1

Proof. For some ε > 0, define the ε-lifted function

f̃ ′ε(s) = f⋆ ′(s) + ε, f̃ε(0) = 0.

Then f̃ε ∈ C([0, D]) is strictly increasing and ∥f̃ε − f⋆∥∞ ≤ εD.
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Set ψε(s) = log
(
f̃ ′ε(s)

)
= log

(
f⋆ ′(s) + ε

)
∈ C([0, D]). By the Stone-Weierstrass theorem (Stone,

1948; Rudin, 1987), the algebra generated by {1, sin(ms), cos(ms) : m ≥ 1} is uniformly dense in
C([0, 2π]). Via the linear change of variable θ = 2π

D s, this density transfers to C([0, D]). Hence for
ψε ∈ C([0, D]), there exist trigonometric polynomials

ϕM (s) = a0 +

M∑
m=1

(
a2m−1 sin(ms) + a2m cos(ms)

)
(4)

such that ∥ϕM − ψε∥∞ → 0 as M →∞.

Define gM by g′M (s) = exp
(
ϕM (s)

)
and gM (0) = 0. Since ψε(s) is continuous and bounded on

[0, D]; denote Bε := ∥ψε∥∞ <∞. Fix any η ∈ (0, 1]. Because ∥ϕM − ψε∥∞ → 0, there exists M0

such that for all M ≥M0,

∥ϕM − ψε∥∞ ≤ η ⇒ max{ϕM (s), ψε(s)} ≤ Bε + η for all s ∈ [0, D].

By the mean value theorem, for each s ∈ [0, D] there exists ξ(s) between ϕM (s) and ψε(s) such that∣∣eϕM (s) − eψε(s)
∣∣ = eξ(s)

∣∣ϕM (s)− ψε(s)
∣∣ ≤ eBε+η

∣∣ϕM (s)− ψε(s)
∣∣.

Hence, for all M ≥M0 and all s ∈ [0, D],

|g′M (s)− f̃ ′ε(s)| =
∣∣eϕM (s) − eψε(s)

∣∣ ≤ eBε+η |ϕM (s)− ψε(s)|.

Integrating the pointwise bound from 0 to s and taking the supremum over s ∈ [0, D] gives

∥gM − f̃ε∥∞ ≤
∫ D

0

eBε+η |ϕM (t)− ψε(t)| dt ≤ DeBε+η ∥ϕM − ψε∥∞.

Therefore,
inf
g∈G
∥g − f⋆∥∞ ≤ ∥gM − f⋆∥∞

≤ ∥gM − f̃ε∥∞ + ∥f̃ε − f⋆∥∞
≤ D

(
eBε+η ∥ϕM − ψε∥∞ + ε

)
.

Since ε > 0 is arbitrary, letting ε ↓ 0 yields

lim
M→∞

inf
g∈G
∥g − f⋆∥∞ = 0,

which completes the proof.

E.3 PROOF OF THEOREM 2

Proof. We divide the proof into three steps.
Step 1 (L(·) is Lipschitz in function g). Denote one sample class-probability vector as Z =
({sci}

q
i=1, {si}Ki=1) and the corresponding loss:

ℓ(g;Z) :=

K∑
k=1

σ
(
β−1

{∑q
i=1 g(s

c
i )−

∑k
i=1 g(si)

})
.

Since the sigmoid function is 1
4 -Lipschitz, for any g1, g2 ∈ G,

|ℓ(g1;Z)− ℓ(g2;Z)| ≤
1

4β

K∑
k=1

∣∣∣ q∑
i=1

(g1 − g2)(sci )−
k∑
i=1

(g1 − g2)(si)
∣∣∣

≤ 1

4β

K∑
k=1

( q∑
i=1

|g1 − g2|(sci ) +
k∑
i=1

|g1 − g2|(si)
)

≤
Kq + K(K+1)

2

4β
∥g1 − g2∥∞.
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Since q may vary across iterations, we upper bound it by K. Finally, taking expectations yields the
Lipschitz property:

|L(g1)− L(g2)| ≤ LK ∥g1 − g2∥∞, LK =
K(3K + 1)

8β
. (5)

Step 2 (Rademacher complexity). Let R̂n(H) denote the empirical Rademacher complexity. Note
that ℓ(·) is LK -Lipschitz by Eq. (5), by the vector contraction inequality (Ledoux & Talagrand, 2013;
Maurer, 2016),

R̂n(ℓ ◦ G) ≤ LK R̂n(G; ∥ · ∥∞).

For ga(s) =
∫ s
0
exp(ϕa(t))dtwith ϕa(·) defined in Eq. (4) and ∥a∥1 ≤ A, we have |ga(s)| ≤ s eA ≤

DeA and, moreover, |ga1
(s)− ga2

(s)| ≤ DeA ∥a1 − a2∥1. Hence by standard Dudley bounds:

R̂n(G; ∥ · ∥∞) ≲
DeA√
n
.

Finally, with probability exceeding 1− δ,

sup
g∈G
|L(g)− Ln(g)| ≲ LK

DeA√
n

+

√
log(1/δ)

n
. (6)

Step 3: Generalization bound. Decompose

L
(
gâ
)
− L(f⋆) =

[
L
(
gâ
)
− Ln

(
gâ
)]

+
[
Ln

(
gâ
)
− inf
g∈G
Ln(g)

]
+
[
inf
g∈G
Ln(g)− inf

g∈G
L(g)

]
+

[
inf
g∈G
L(g)− L(f⋆)

]
,

where the second term is bounded by εopt with Assumption 1, and the first and third brackets are each
bounded by the uniform deviation in (6). For the fourth term, pick g̃ ∈ G with ∥g̃ − f⋆∥∞ ≤ δM (cf.
Lemma 1); then by the Lipschitz property (5),

0 ≤ inf
g∈G
L(g)− L(f⋆) ≤ L(g̃)− L(f⋆) ≤ LK δM .

Collecting the bounds yields

L(gâ)− L(f⋆) ≤ C1 LK
DeA√
n

+ C2

√
log(1/δ)

n
+ LK δM + εopt,

with probability at least 1 − δ, where C1, C2 > 0 are universal constants. Finally, by Lemma 1,
δM → 0 as M →∞, and thus L(gâ)− L(f⋆) = εopt + oP(1) as stated.

E.4 PROOF OF THEOREM 3

Proof. We divide the proof into three steps.

Step 1 (L-smooth in a). Fix t ≥ 1 and freeze the calibration sc,t−1. Consider the map a 7→
Ln

(
ga, s

c,t−1
)

for parameters constrained by ∥a∥1 ≤ A. Write ϕa(u) = ⟨a,b(u)⟩ with

b(u) = (1, sinu, cosu, . . . , sinMu, cosMu)⊤

so that ga(s) =
∫ s
0
eϕa(u) du. Define Ja(s) := ∇aga(s) =

∫ s
0
eϕa(u)b(u) du, and the inner term

zi,k(a) = β−1
{∑q

j=1 ga(s
c,t−1
j )−

∑k
j=1 ga(si,j)

}
. Then, the gradient w.r.t. a is

∇aLn(ga, sc,t−1) =
1

βn

n∑
i=1

K∑
k=1

σ′(zi,k(a))( q∑
j=1

Ja(s
c,t−1
j )−

k∑
j=1

Ja(si,j)
)
.

For two parameters a1,a2, by 0 < σ′(x) ≤ 1/4,

∥∥∇aLn(ga1
, sc,t−1)−∇aLn(ga2

, sc,t−1)
∥∥ ≤ 1

β

K∑
k=1

{
|∆σ′

i,k| ·
∥∥∑ Ja1

∥∥+ 1
4

∥∥∑(Ja1
− Ja2

)
∥∥}.
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Here we set, for each sample i and level k,

∆σ′
i,k := σ′(zi,k(a1))− σ′(zi,k(a2)), ∑

Ja :=

q∑
j=1

Ja(s
c,t−1
j ) −

k∑
j=1

Ja(si,j).

Since σ′ is Lσ′-Lipschitz with Lσ′ = supx |σ′′(x)| ≤ 1/6
√
3 ≤ 1/4 and

∥∥∑ Ja1

∥∥ ≤ (q + k)DeA,
we get

|∆σ′
i,k| ≤ Lσ′ |zi,k(a1)− zi,k(a2)| ≤

1

4β
(q + k)DeA ∥a1 − a2∥1.

Also, by the mean-value argument in parameter space,∥∥∑(Ja1
− Ja2

)
∥∥ ≤ (q + k)DeA ∥a1 − a2∥1.

Combining and summing over k (using q ≤ K) yields∥∥∇aLn(ga1
, sc,t−1)−∇aLn(ga2

, sc,t−1)
∥∥ ≤ LA ∥a1 − a2∥1,

where LA = KDeA

24 β

[
DeA

β (14K2 + 9K + 1) + 3(3K + 1)

]
.

Step 2 (One-step descent). With step size γ ∈ (0, 1/LA], the descent lemma (Beck, 2017) gives

Ln
(
gat , sc,t−1

)
≤ Ln

(
gat−1 , sc,t−1

)
− γ

2

∥∥∇aLn
(
gat−1 , sc,t−1

)∥∥2.
Step 3 (Limit point stationarity). By Assumption 2,

Ln
(
gat , sc,t

)
≤ Ln

(
gat , sc,t−1

)
+ δt,

which, combined with Step 2, yields

Ln
(
gat , sc,t

)
≤ Ln

(
gat−1 , sc,t−1

)
− γ

2

∥∥∇aLn
(
gat−1 , sc,t−1

)∥∥2 + δt.

Summing over t = 1, . . . , T and using Ln ≥ 0 gives

1

T

T∑
t=1

∥∥∇aLn
(
gat−1 , sc,t−1

)∥∥2 ≤ 2

γ

Ln
(
ga0 , sc,0

)
T

+
2

γ
· 1
T

T∑
t=1

δt.

Letting T →∞ and invoking 1
T

∑T
t=1 δt → 0 from Assumption 2 yields

lim
T→∞

1

T

T∑
t=1

∥∥∇aLn
(
gat , sc,t

)∥∥2 = 0, and hence lim inf
t→∞

∥∥∇aLn
(
gat , sc,t

)∥∥ = 0,

which completes the proof.

F COMPARISON WITH LEAST AMBIGUOUS SET-VALUED CLASSIFIER

The Least Ambiguous Set-valued Classifier (LAC; (Sadinle et al., 2019)) is a method known for size
efficiency. LAC induces prediction sets by thresholding the model scores π̂(x); in our notation this
corresponds to the following non-conformity score and prediction rule:

ELAC(x, y) = 1− π̂y(x).

Given a calibration set Dcal = {(xi, yi)}ni=1, compute ei = ELAC(xi, yi) and the empirical (1− α)
quantile

τ = inf
{
e :

∣∣{ i : ei ≤ e }∣∣
n

≥
⌈
(n+ 1)(1− α)

⌉
n

}
.

For a new input x, the LAC prediction set is

C(x) =
{
y ∈ Y : ELAC(x, y) ≤ τ

}
=

{
y ∈ Y : π̂y(x) ≥ 1− τ

}
.
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Table 9: SSCV (mean ± SE) results on ImageNet.
Model α = 0.05 α = 0.10

APS+ours RAPS+ours LAC APS+ours RAPS+ours LAC
ResNeXt101 0.031 ± 0.001 0.030 ± 0.003 0.082 ± 0.004 0.057 ± 0.003 0.068 ± 0.008 0.347 ± 0.063
ResNet152 0.026 ± 0.001 0.032 ± 0.004 0.118 ± 0.005 0.042 ± 0.003 0.083 ± 0.012 0.246 ± 0.014
ResNet101 0.030 ± 0.002 0.033 ± 0.004 0.107 ± 0.004 0.054 ± 0.003 0.082 ± 0.010 0.202 ± 0.011
DenseNet161 0.026 ± 0.001 0.038 ± 0.007 0.087 ± 0.004 0.045 ± 0.004 0.061 ± 0.009 0.264 ± 0.071
VGG16 0.020 ± 0.001 0.026 ± 0.004 0.064 ± 0.004 0.033 ± 0.002 0.040 ± 0.007 0.223 ± 0.008
ShuffleNet 0.022 ± 0.001 0.028 ± 0.006 0.130 ± 0.005 0.031 ± 0.001 0.033 ± 0.003 0.171 ± 0.003

As in standard split conformal classification, optional tie-breaking randomization can be used on the
boundary ELAC(x, y) = τ to ensure exact finite-sample coverage.

Though LAC is highly size efficient, it sacrifices (group) conditional coverage such as coverage
conditioned on the realized set size |C(X)|. To assess such heterogeneity in coverage, a common
metric is the Size-Stratified Coverage Violation (SSCV; (Angelopoulos et al., 2021)), which measures
deviations from the target level 1− α across strata defined by set size; we formalize SSCV below.

Let Deval = {(xi, yi)}neval
i=1 be an evaluation set. Fix a partition of possible set sizes {Sj}sj=1 with⋃s

j=1 Sj = {1, . . . ,K} and Sj ∩ Sj′ = ∅ for j ̸= j′. Define the index sets

Jj =
{
i ∈ {1, . . . , neval} :

∣∣C(xi)∣∣ ∈ Sj }.
Then the empirical SSCV at miscoverage α is

ŜSCVα
(
C, {Sj}sj=1

)
= sup

j: |Jj |>0

∣∣∣∣∣∣ 1

|Jj |
∑
i∈Jj

1{ yi ∈ C(xi) } − (1− α)

∣∣∣∣∣∣ .
We split the 50k-sample ImageNet validation set into three disjoint subsets: 20k for tuning
the FPS transformation (split evenly into 10k for gradient-based learning and 10k for search-
ing the threshold and associated calibration components), 10k for conformal calibration, and
20k for evaluating SSCV. Following Angelopoulos et al. (2021), we select kreg and search
λ ∈ {0.00001, 0.0001, 0.0008, 0.001, 0.0015, 0.002} for RAPS. We further set M = 1 and β = 1,
and tune FPS initialized at zero a0, with AdamW (learning rate γ = 10−3, weight decay 10−4). Each
experiment is repeated 10 times and we report the mean SSCV and its standard error. For SSCV,
prediction sets are stratified by size into bins 0–1, 2–3, 4–10, 11–100, and 101–1000.

From Table 9, our method suffers only a minor loss in (group-)conditional coverage, as indicated by
smaller SSCV, making it suitable for fairness-sensitive settings and scenarios that require adaptiveness.

G DISCUSSION ON TEMPERATURE SCALING

A relevant post-hoc method that also modifies a model’s predictions is Temperature Scaling (Guo
et al., 2017), which calibrates predicted class probabilities and yields smaller prediction sets when
incorporated into conformal prediction procedures. Importantly, temperature scaling and FPS are
not competitors but complementary stages in the same pipeline. One feasible approach is to first
fit a single temperature parameter to improve calibration which still preserves class order; then
treat the calibrated probabilities as s(x) and feed them to FPS, which learns an order-preserving
transformation and further reduces prediction set size. This design demonstrates FPS’s potential and
flexibility for enhancing conformal predictors.

H LARGE LANGUAGE MODEL USAGE

In accordance with the ICLR policy on Large Language Model (LLM) usage, we disclose that LLMs
were used exclusively for polishing the writing. They were not employed in the development of ideas,
the theoretical analysis, the design of experiments, or any other substantive aspects of this work.
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