
Under review as a conference paper at ICLR 2024

LEARNING SUCCESSOR REPRESENTATIONS WITH DIS-
TRIBUTED HEBBIAN TEMPORAL MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a novel approach to address the challenge of online hidden
representation learning for decision-making under uncertainty in non-stationary,
partially observable environments. The proposed algorithm, Distributed Hebbian
Temporal Memory (DHTM), is based on factor graph formalism and a multicom-
ponent neuron model. DHTM aims to capture sequential data relationships and
make cumulative predictions about future observations, forming Successor Rep-
resentation (SR). Inspired by neurophysiological models of the neocortex, the al-
gorithm utilizes distributed representations, sparse transition matrices, and local
Hebbian-like learning rules to overcome the instability and slow learning process
of traditional temporal memory algorithms like RNN and HMM. Experimental
results demonstrate that DHTM outperforms classical LSTM and performs com-
parably to more advanced RNN-like algorithms, speeding up Temporal Differ-
ence learning for SR in changing environments. Additionally, we compare the
SRs produced by DHTM to another biologically inspired HMM-like algorithm,
CSCG. Our findings suggest that DHTM is a promising approach for addressing
the challenges of online hidden representation learning in dynamic environments.

1 INTRODUCTION

Modelling sequential data is one of the most important tasks in Artificial Intelligence as it has many
applications, including decision-making and world models, natural language processing, conversa-
tional AI, time-series analysis, and video and music generation (Min et al., 2021; Eraslan et al.,
2019; Dwivedi et al., 2023; Ji et al., 2020; Moerland et al., 2023). One of the classical approaches
to modelling sequential data is forming a representation that stores and condenses the most relevant
information about a sequence, and finding a general transformation rule of this information through
the dimension of time (Lipton et al., 2015; Harshvardhan et al., 2020; Mathys et al., 2011). We
refer to the class of algorithms that use this approach as Temporal Memory (TM) algorithms, as they
essentially model the cognitive ability of complex living organisms to remember the experience and
make future predictions based on this memory (Hochreiter & Schmidhuber, 1997; Friston et al.,
2016; 2018; Parr & Friston, 2017).

This paper addresses the problem of hidden representation learning for decision-making under un-
certainty, which can be formalized as agent Reinforcement Learning (RL) for a Partially Observable
Markov Decision Process (POMDP) (Poupart, 2005). Inferring the hidden state in a partially observ-
able environment is, in effect, a sequence modelling problem as it requires processing a sequence
of observations to get enough information about hidden states. One of the most efficient representa-
tions of the hidden states for discrete POMDP is the Successor Representation (SR) that disentangles
hidden states and goals given by the reward function (Dayan, 1993). An extension of the SR into
continuous POMDP is the Successor Features framework, which employs the same idea of value
function decomposition, but, instead, for features of a hidden state (Barreto et al., 2017). Temporal
Memory algorithms can be leveraged to make cumulative predictions about future states and their
features to form SR or SF.

The most prominent TM algorithms, like a Recurrent Neural Network (RNN) or a Hidden Markov
Model (HMM), use backpropagation to capture data relationships, which is known for its instability
due to recurrent non-linear derivatives. They also require having complete sequences of data at hand
during the training. Although the gradient vanishing problem can be partially circumvented in a

1

Under review as a conference paper at ICLR 2024

way Receptance Weighted Key Value (RWKV) (Peng et al., 2023) or Linear Recurrent Unit (LRU)
(Orvieto et al., 2023) models do, the problem of online learning is still a viable topic. In contrast
to HMM, RNN models and their descendants also lack a probabilistic theory foundation, which is
beneficial for modeling sequences captured from stochastic environments (Salaün et al., 2019; Zhao
et al., 2020). There is little research on TM models that can be used in fully online adaptable systems
interacting with partially observable stochastic environments with access only to one sequence data
point at a time, a prevalent case in Reinforcement Learning (Jahromi et al., 2022).

We propose a Distributed Hebbian Temporal Memory (DHTM) algorithm based on the factor graph
formalism and multi-compartment neuron model. The resulting graphical structure of our model is
similar to one of the Factorial-HMM (Ghahramani & Jordan, 1995), but with a factor graph forming
online during training. We also show that depending on the graphical structure, our TM can be
viewed as an HMM version of either RNN or LRU regarding information propagation in time. An
important feature of our model is that transition matrices for each factor are stored as different
components (segments) of artificial neurons, which makes computations very efficient in the case
of sparse transition matrices. Our TM forms sequence representations fully online and employs
only local Hebbian-like learning rules (Hebb, 2005; Churchland & Sejnowski, 1992; Lillicrap et al.,
2020), circumventing gradient drawbacks and making the learning process much faster than gradient
methods.

Some key ideas for our TM algorithm are inspired by neurophysiological models of the neocor-
tex neural circuits and pyramidal neurons (George & Hawkins, 2009; Hawkins & Ahmad, 2016;
O’Reilly et al., 2021). For example, emission matrices for random variables are fixed to resemble
the columnar structure of the neocortex layers, which significantly lessens the number of trainable
parameters, speeding up learning and leading to sparse transition matrices. Another example is us-
ing multi-compartmental neurons with active dendritic segments as independent detectors of neuron
pattern activity (London & Häusser, 2005). Each dendritic segment can be viewed as a row of an
HMM state transition matrix or, more generally, a value of a discrete factor function. Thus, we don’t
explicitly store large transition matrices, only their non-zero parts.

The DHTM model notoriously fits Successor Features in the Reinforcement Learning setup to speed
up TD learning. The proposed TM is tested as a world model (Ha & Schmidhuber, 2018; Hafner
et al., 2023) for an RL agent architecture, making decisions in a simple Pinball-like environment
and in a more challenging AnimalAI testbed (Crosby et al., 2020). Our algorithm outperforms
a classic RNN algorithm LSTM and a more advanced RNN-like transformer algorithm RWKV in
online Successor Feature formation task due to combination of fast Hebbian-like learning and sparse
hidden state coding. Another advantage of our algorithm is that it allows its implementation for
neuromorphic processors, as it uses only local learning rules.

Our contribution in this work is the following:

• We propose a distributed memory model DHTM based on the factor graph formalism and
multicompartment neural model.

• Our model stores sparse factor functions in neural segments, which significantly lessens
the number of trainable parameters and speeds up learning.

• The DHTM learns fully online employing only local Hebbian-like rules.
• The DHTM model fits Successor Features in the RL setup to speed up TD learning.
• Tested as a world model for an RL agent architecture in a Pinball environment, DHTM

outperforms LSTM and RWKV in online Successor Features formation task.

2 BACKGROUND

This section provides basic information about some concepts necessary to follow the paper.

2.1 REINFORCEMENT LEARNING

In this paper, we consider decision-making in a partially observable environment, which is usu-
ally formalized as Partially Observable Decision Process (Poupart, 2005). A POMDP is defined
as a tuple M = (S,A, P,R,O,D, γ), where S—state space, A—action space, P (s, a, s‘) =

2

Under review as a conference paper at ICLR 2024

Pr(s‘ | s, a)—transition function, R(s)–reward function, O—observation space, D(a, s‘, o) =
Pr(o | a, s‘)—sensor model and γ ∈ [1, 0)—discount factor, given a transition s, a → s‘, where
s ∈ S, a ∈ A, o ∈ O. If S,A,O are finite, P,D can be viewed as real valued matrices, otherwise,
they are conditional density functions. Here we consider deterministic rewards, which depend only
on the current state, i.e. R(s) : S → R.

The task of RL is to find a policy π(a | s) : S × A → [0, 1], which maximizes expected return
G = E[

∑T
t=0 γ

lRt], where T is an episode length. For value based methods, it is convenient to
define optimal policy via Q-function: Qπ(st, at) = E[

∑
l≥t γ

lR(sl+1) | st, at, π]. For an optimal
value function Q∗ an optimal policy can be defined as π(a | s) = argmax

a
Q∗(s, a).

2.2 HIDDEN MARKOV MODEL

Partially observable Markov process can be approximated by a Hidden Markov model (HMM) with
hidden state space H and observation space O. O is the same as in M, but H generally is not
equal S. Variables Ht represent an unobservable (hidden) approximated state of the environment
which evolves over time, and observable variables Ot represent observations that depend on the
same time step state Ht, and ht, ot are corresponding values of this random variables. For the sake
of simplicity, we suppose that actions are fully observable and information about them is included
into Ht variables. For the process of length T with state values h1:T = (h1, . . . , hT) and o1:T =
(o1, . . . , oT), the Markov property yields the following factorization of the generative model:

p(o1:T , h1:T) = p(h1)

T∏
t=2

p(ht|ht−1)

T∏
t=1

p(ot|ht). (1)

In case of discrete hidden state, a time-independent stochastic transition matrix can be learned with
Baum–Welch algorithm (Baum et al., 1970), a variant of Expectation Maximization algorithm. To
compute the statistics for the expectation step, it employs the forward-backward algorithm, which is
a special case of sum-product algorithm (Kschischang et al., 2001).

2.3 SUCCESSOR REPRESENTATION

Successor Representations are such representations of hidden states from which we can linearly
infer the state value given the reward function (Dayan, 1993). Here, we assume observation and
state spaces are discrete.

V (ht = i) = E[

∞∑
l=0

γlRt+l+1 | ht = i] =

∞∑
l=0

γlE[Rt+l+1 | ht = i] =

=

∞∑
l=0

γl
∑
j

p(ht+l+1 = j | ht = i)Rj =
∑
j

∞∑
l=0

γlp(ht+l+1 = j | ht = i)Rj =
∑
j

MijRj ,

where γ is a discount factor, vector SR(h = i) = {Mij}j is a Successor Representation of a state
i, and Mij =

∑∞
l=0 γ

lp(ht+l+1 = j | ht = i). Rj is a reward for observing the state j. That is,
SR can be computed by a TM that is able to predict future states. TM algorithms effectively predict
observations only for a finite time horizon T . Therefore, in order to learn SR, a technique similar to
TD learning in standard RL may be employed:

δij =

T∑
l=0

γlp(ht+l+1 = j | ht = i)) + γT+1
∑
k

Mkjp(ht+T+1 = k | ht = i)−Mij , (2)

Mij ←Mij + αδij , (3)

where α ∈ (0, 1) is a learning rate, δij—TD error for SR.

In partially observable environments, however, exact state values are not known, therefore we op-
erate with state distributions or so-called belief states (Poupart, 2005), which are inferred from
observations. In that case, state value and SR are functions of hidden state variable distribution (see
details in Appendix B).

3

Under review as a conference paper at ICLR 2024

Figure 1: Partial factor graph for the DHTM. The input to the model is a sequence of binary images,
each pixel is modelled as Bernoulli random variable Olm

t , where l and m denote corresponding rows
and cols of the image. The encoder block forms image categorical features Φk

t in an unsupervised
manner. Each feature Φ has its own explaining hidden variable, which may depend on hidden
variables of the other features and on itself from the previous time step. F k

c and F k
e are context and

emission factors for the corresponding variables. Unary factors M i
t−1 called messages represent

accumulated information about previous time steps.

2.4 SPARSE DISTRIBUTED REPRESENTATIONS

In our work, we design our model to operate with sparse distributed representations (SDRs) to
reflect the spatiotemporal property of cortical network activity (Perin et al., 2011). In the discrete
time case, SDR is a sparse binary vector in a high-dimensional space. To encode observed dense
binary patterns to SDRs, we use a biologically plausible k-WTA (k-winners take all) neural network
algorithm called spatial pooler with a Hebbian-like unsupervised learning method (see details in
Appendix A).

3 DISTRIBUTED HEBBIAN TEMPORAL MEMORY

3.1 FACTOR GRAPH MODEL

Distributed Hebbian Temporal Memory is based on the sum-product belief propagation algorithm
in a factor graph (see Figure 1). Analogously to Factorial-HMM (Ghahramani & Jordan, 1997),
we divide the hidden space H into subspaces Hk. There are four sets of random variables (RV) in
the model: Hi

t−1—latent variables representing hidden states from the previous time step (context),
Hk

t —latent variables for the current time step, Φk
t —feature variables, and Olm

t —observable vari-
ables. Except for Olm

t , all random variables have a categorical distribution. In contrast, Olm
t , are

Bernoulli variables because they represent pixels from a binary input image observation. RV state
values are denoted as corresponding lowercase letters: hi

t−1, hk
t , φk

t , olmt .

Each variable Φk
t is considered independent and has a separate graphical model for increased com-

putational efficiency. However, hidden variables of the same time step are statistically interdepen-
dent in practice. We introduce their interdependence through a segment computation trick that goes
beyond the standard sum-product algorithm (see Eq. 7).

The model also has three types of factors: M i
t−1—messages from previous time steps, F k

c —context
factor (generalized transition matrix), F k

e —emission factor. We assume that messages M i
t−1 include

posterior information from the time step t − 1, therefore we don’t depict observable variables for
previous time steps in Figure 1.

4

Under review as a conference paper at ICLR 2024

Figure 2: Neuronal implementation of the DHTM. Random variables are represented by cell clus-
ters (white circles), where each cell corresponds to a state and its spike frequency—to the probabil-
ity of the state p(hk

t). Cell’s dendritic segments seg(k) correspond to context factor values fl for a
particular combination of states (active presynaptic cells) rec(l). Segments’ excitations El are com-
bined to determine cell’s spike frequency p(hk

t). Segment’s synaptic weights reflect specificity of
rec(l) combination for the segment. Emission factors F k

e are fixed and represented by minicolumns
inside a variable.

Further, we discuss only the upper block of the graph, which is DHTM itself. The lower block—an
encoder—is described in the Appendix A. The only requirement for the encoder is that its output
should be represented as states of categorical variables (features) for the current observation.

3.2 NEURAL IMPLEMENTATION

The main routine of the DHTM is to estimate distributions of currently hidden state variables given
by the equation 4, the computational flow of which is schematically depicted in Figure 2:

p(hk
t) ∝

∑
{hi

t−1:i∈ωk}

∏
i∈ωk

M i
t−1(h

i
t−1)F

k
c (h

k
t , {hi

t−1 : i ∈ ωk}), (4)

where ωk = i1, . . . , in—set of previous time step RV indexes included in F k
c factor, (n+1)—factor

size.

For computational purposes, we translate the problem to the neural network architecture with
Hebbian-like learning (for biological interpretation of the model, see Appendix C). As can be seen
from Figure 2, every RV can be viewed as a set of spiking neurons representing the RV’s states, that
is, p(hk

t) = p(cjt = 1), where j—index of a neuron corresponding to the state hk
t . Cell activity is

binary cjt ∈ {0, 1} (spike/no-spike), and the probability might be interpreted as a spike rate. Fac-
tors F k

c and M i
t−1 can be represented as vectors, where elements are factor values for all possible

combinations of RV states included in the factor. Let’s denote elements of the vectors as fl and
mu correspondingly, where l corresponds to a particular combination of k, hk

t , h
i1
t−1, . . . , h

inl
t−1 state

values and u indexes all neurons representing states of previous time step RVs.

Drawing inspiration from biological neural networks with active dendrites, we group a neuron’s
connections (dendrites) into segments. A segment acts as an independent computational unit that
detects a particular input pattern (a context state) defined by its own receptive field. In our model, a
segment links together factor value fl, the computational graph shown in Figure 2, and the excitation
El induced by the segment l to the cell it is attached to. The segment is active, i.e., sl = 1 if all
its presynaptic cells are active; otherwise, sl = 0. Computationally, a segment transmits its factor
value fl to a cell it is attached to if the context matches the corresponding state combination.

We can now rewrite equation 4 as the following:

p(hk
t) ∝

∑
l∈seg(j)

Llf
k
l , (5)

where Ll =
∏

u∈rec(l) mu is segment’s likelihood as long as messages are normalized, seg(j)—
indexes of segments that are attached to cell j, rec(l)—indexes of presynaptic cells that constitute
receptive field of a segment with index l.

5

Under review as a conference paper at ICLR 2024

Initially, all factor entries are zero, meaning cells have no segments. As learning proceeds, new
non-zero connections grouped into segments are grown. In equation 5 we benefit from having sparse
factor value vectors because its complexity depends linearly on the amount of non-zero components.
And that’s usually the case in our model due to one-step Monte-Carlo learning and specific form of
emission factors F k

e :
F k
e (h

k
t , o

k
t) = I[hk

t ∈ col(φk
t)], (6)

where I—indicator function, col(φk
t) is a set of hidden states connected to the feature state φk

t that
forms a column. The form of emission factor is inspired by presumably columnar structure of the
neocortex and was shown to induce sparse transition matrix in HMM (George et al., 2021).

Segment likelihood Ll, resulting from the sum-product algorithm, is calculated as if presynaptic
cells are independent. However, it’s not usually the case for sparse factors. To take into account, ap-
proximately, their interdependence, we substitute the following equation for segment log-likelihood:

logLl = log
∑

u∈rec(l)

wulmu +
∑

u∈rec(l)

(1− wul) logmu − log nl, (7)

where wpl—synapse efficiency or neuron specificity for segment, such that wul = p(sl = 1|cut−1 =
1), and nl-number of cells in segment’s receptive field.

The idea that underlies the formula is to approximate between two extreme cases:

• p(sl = 1|cut−1 = 1) → 1 for all u, which means that all cells in the receptive field are
dependent and are part of one cluster, i.e., they fire together. In that case, it should be
p(sl) = mu for any u, but we also reduce prediction variance by averaging between differ-
ent u.

• p(sl = 1|cut−1 = 1)→ 0 for all u means that presynaptic cells don’t form a cluster. In that
case, segment activation probability is just a product of the activation probability of each
cell.

The resulting equation for belief propagation in DHTM is the following:

p(hk
t) = p(cjt = 1) = softmax

j∈cells[Hk
t]
(max
l∈seg(j)

(El)), (8)

where El = log fl + logLl, cells[Hk
t]—indexes of cells that represent states for Hk

t variable. Here,
we also approximate logarithmic sum with max operation inspired by the neurophysiological model
of segment aggregation by cell (Stuart & Spruston, 2015).

The next step after computing p(hk
t) distribution parameters is to incorporate information about

current observations p(hk
t | okt) ∝ p(hk

t)I[hk
t ∈ col(okt)]. After that, the learning step is performed.

The step for closing the loop of our TM algorithm is to assign the posterior for the current step
p(hk

t | okt) to M i
t−1.

DHTM learns fl and wul weights by Monte-Carlo Hebbian-like updates. First, hi
t−1 and hk

t are
sampled from their posterior distributions: p(hi

t−1 | oit−1) ∝M i
t−1 and p(hk

t | okt) correspondingly.
Then fl is updated according to the segment’s sl and its cell’s cjt activity so that fl is proportional
to several coincidences sl = cjt = 1 during the recent past, i.e., cell and its segment are active at
the same time step. It’s similar to Baum-Welch’s update rule (Baum et al., 1970) for the transition
matrix in HMM, which, in effect, counts transitions from one state to another, but, in our case, the
previous state (context) is represented by a group of RVs, not just one hidden RV.

Weights wul are also updated by the Hebbian rule to reflect the specificity of a presynaptic u for
activating a segment l. That is, they are targeted to represent probability p(sl = 1 | cut−1 = 1) that
segment sl is active, given cell u was active at the previous time-step. We could learn it by counting
activation coincidences and mismatches. But in our algorithm it is approximated as exponential
moving average of segment’s sl frequency activation, given cut−1 = 1: ∆wul = α · I[cut−1 =
1] · (I[sl = 1]− wul), where α ∈ [0, 1) — learning rate.

3.3 AGENT ARCHITECTURE

We incorporate DHTM as a part of an RL agent. The agent consists of a DHTM memory model, an
SF mapping from hidden space, and a feature reward function. The memory model aims to speed

6

Under review as a conference paper at ICLR 2024

Algorithm 1 General agent training procedure
1: for episode=1..n do
2: RESET MEMORY()
3: action← null
4: while (not terminal) and (steps < max steps) do
5: obs, reward← STEP()
6: features← ENCODE(PREPROCESS(obs))
7: OBSERVE(features, action)
8: REINFORCE(reward, features)
9: action← SAMPLE ACTION()

10: ACT(action)
11: end while
12: end for

up SF learning by predicting cumulative future distributions of feature variables Φ according to
equation 17. As shown in equation 13, SF representations are learned to estimate state value. The
r(φk

t) reward function is also learned during interaction with the environment and, combined with
SF representations, is used to estimate the action value function.

The agent training procedure is outlined in Algorithm 1. For each episode, the memory state is
reset to a fixed initial message with RESET MEMORY() and action variable is initialized with
null value. An observation image returned by an environment (obs) is first preprocessed to get
events, mimicking a simple event-based camera with a floating threshold determined from the av-
erage difference between the current and previous step image intensities. The resulting events are
encoded to SDRs with a biologically inspired spatial pooling encoder described in Appendix A. In
OBSERVE() routine, the memory learns to predict next feature states as described in Section 3 and
SF learning happens according to equation 16. An agent learns associations to feature states and
rewards in line 8:

rki ← rki + αI[φk
t = i](Rt − rki) (9)

where α is a learning rate, Rt—a reward for the current time step.

We include actions into the model by forcing some of the hidden variables Hk
t to represent actions.

That is, we assume that information about action is included in the hidden state of the model. For
example, if we have 4 actions, we set 4 states for one of the hidden variables and set its state from
observation of the action. We form on-policy SFs, i.e. relying on policy iteration theorem.

An agent has a softmax policy over predicted values: π(at | o0:t) = softmax(V [p(ht+1 | o0:t, at)]).
We use the model to predict the hidden state distribution for every action in the next timestep t+ 1
and then estimate its value according to equation 13.

4 EXPERIMENTS

We test our model in a reinforcement learning task in a pinball-like 2D environment, where successor
features are easy to interpret, and in a more challenging AnimalAI 3D environment. This section
shows how different memory models affect SF learning and an RL agent’s adaptability. In our work,
we compare the proposed DHTM model with LSTM (Hochreiter & Schmidhuber, 1997), RWKV
(Peng et al., 2023), and CSCG (George et al., 2021) (see Appendix E for the details).

4.1 PINBALL

The first, classic maze, test is designed in the Pinball environment (see Appendix F for details) to
qualitatively assess SFs formed by different TMs for random policy (see Fig. 3). Ball is controlled
by the agent able to apply a momentum in four opposite directions. The ball and terminal state are
separated by a wall with a door on the right. Each episode is maximum of 30 steps. Memories
are tested in two regimes: 5-step planning (i.e. using equation 17 only) and prediction only (equa-
tion 18). As can be seen from the heatmaps, only DHTM yields adequate value functions. However,
as can be seen from the learning curves, surprise of DHTM is higher than of the other memories.
LSTM’s learning curve is much flatter than of the others. Five-step DHTM planning gives more

7

Under review as a conference paper at ICLR 2024

Figure 3: Results of 2D maze random policy experiment in the Pinball environment. Surprise learn-
ing curves for DHTM, LSTM, RWKV and CSCG. Heatmaps represent value functions for DHTM
and LSTM.

Figure 4: Surprise comparison for various memory models including DHTM (ours), LSTM, RWKV,
and Factorial version of CSCG (fchmm). The SFs generated by normalized five-step prediction
models are used to calculate surprise for three future time steps.

abrupt value function in comparison to prediction regime, as it usually requires more than five steps
to reach the goal. Heatmaps for other baselines can be found in Appendix G.

The second test is to show how TM can enhance adaptation in changing environments. For that
experiment, we use two configurations of the Pinball environment shown in Figure 7-A. We narrow
the action space to three momentum vectors: vertical, 30 degrees left and 30 degrees right from the
vertical axis. Each time step, the agent gets a small negative reward and a large positive reward if
the ball enters the force field in the centre. The episode finishes when the ball enters the rewarding
force field or the maximum number of steps is reached. Each trial is run for 500 episodes, each a
maximum of 15 steps long, and we average the results over three trials for each parameter set and
memory model.

We test the accuracy of five-step SF representations by measuring their pseudo-surprise, which is
surprise computed for observed states on different time steps after SF was predicted with respect to
normalized SF (more details in Appendix D). In all experiments, the encoder outputs five variables
Φ with 50 states each. As can be seen from Figure 4, SRs produced by our memory model (dhtm)
give lower surprise than SRs of LSTM (lstm) and RWKV (rwkv), and is on par with SRs produced
by Factorial version of CSCG (fchmm), which is just several CSCGs trained in parallel to enable
handling of multiple variables outputted by encoder.

Then, we test how the number of prediction steps affects the agent’s adaptability in the Pinball
environment. In the first 500 episodes, the agent is trained to reach the target in the centre, as shown
in Figure 7-A, then the target is blocked by a random force that applies force in perpendicular
direction to the ball’s movement. The results show that an agent that uses five prediction steps
during n-step TD learning of SF faster adapts to the changes in the environment in comparison to
1-step TD learning for SF, as seen from Figure 5-A.

8

Under review as a conference paper at ICLR 2024

Figure 5: A. Comparison of agent’s adaptability during changes in the environment with different
prediction steps during n-step TD learning of SF. At the 500th episode, the environment changes its
configuration, shown in Figure 7-A. B. AnimalAI changing food position experiment. Left picture
is DHTM reward curves each averaged over five trials for two cases: SF formed by 7-step planning
using DHTM and SF is predicted using TD learned weights and DHTM inferred belief states. At
the 300th episode, the food is moved to the opposite corridor (see Fig. 7-C).

4.2 ANIMALAI

We designed an experiment in AnimalAI environment shown on Figure 7-C. There are two corridors,
one of which contains food (yellow cirle). The agent makes a decision at the start of the trial, having
three options: go to the left corridor, go to the right and stay turning. After the decision is made,
the agent follows a fixed strategy, which brings it either to the right corridor or to the left, and it
observes its movement and actions. An episode ends when strategy is executed. Each time step,
agent gets small negative reward and big positive reward only if reaches food. After 300 episodes,
food is placed to the other corridor. Reward curves averaged over five trials for each setup are
presented in Figure 5-B. There are two cases on the plot: SF is formed by prediction (equation 18)
or planned (equation 17). The results for DHTM show that planning allows much faster adaptation
to the change of the rewarding food position.

5 CONCLUSION

In this paper, we introduce a novel probabilistic Factorial-HMM-like algorithm DHTM for learn-
ing an observation sequence model in stochastic environments that uses local Hebbian-like learning
rules, which renders it apt for running on neuromorphic processors. DHTM is scalable to multiple
feature variables as it employs sparse distributed representations and sparse factor function imple-
mentation using segments, which biologically plausible multicomponent neural models inspire. In
contrast to methods that use Monte-Carlo trajectory sampling for future states probability estima-
tion, our method is able to perform belief propagation, so each prediction step adds constant amount
of computations. We show that our memory model can quickly learn the observation sequences
representation and the transition dynamics. The DHTM produces more accurate n-step Succes-
sor Features than LSTM and RWKV, which speeds up n-step TD learning of the SF in Reinforced
Learning tasks with the changing environment.

One of the limitations of the DHTM is that its temporal context is random, as it is formed on the
fly. That is, the mechanism of context formation doesn’t allow generalizations. That is why we are
forced to use feature space inferred from observations for value function decomposition, to soften
this problem. Nevertheless, we believe that forming Successor Features combined with two level
hierarchy of DHTM layers may provide the next step to circumvent this limitation, which directs of
our further research. Another limitation is the maximum number of variables per factor. The amount
of segments in use grows exponentially with the number of variables per factor, especially in noisy
environments. Solving this issue would require to modify segment excitation or growth algorithms.

REFERENCES

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

9

Under review as a conference paper at ICLR 2024

Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization technique occur-
ring in the statistical analysis of probabilistic functions of markov chains. The annals of mathe-
matical statistics, 41(1):164–171, 1970.

Edward Beeching, Jilles Debangoye, Olivier Simonin, and Christian Wolf. Godot reinforcement
learning agents. arXiv preprint arXiv:2112.03636, 2021.

PENG Bo. Blinkdl/rwkv-lm: 0.01, August 2021. URL https://doi.org/10.5281/
zenodo.5196577.

Patricia Smith Churchland and Terrence Joseph Sejnowski. The computational brain. MIT press,
1992.

Matthew Crosby, Benjamin Beyret, Murray Shanahan, José Hernández-Orallo, Lucy Cheke, and
Marta Halina. The animal-ai testbed and competition. In Hugo Jair Escalante and Raia Hadsell
(eds.), Proceedings of the NeurIPS 2019 Competition and Demonstration Track, volume 123 of
Proceedings of Machine Learning Research, pp. 164–176. PMLR, 08–14 Dec 2020.

Yuwei Cui, Subutai Ahmad, and Jeff Hawkins. The htm spatial pooler—a neocortical algorithm for
online sparse distributed coding. Frontiers in Computational Neuroscience, 11:111, 2017. ISSN
1662-5188. doi: 10.3389/fncom.2017.00111. URL https://www.frontiersin.org/
article/10.3389/fncom.2017.00111.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural computation, 5(4):613–624, 1993.

Damir Dobric, Andreas Pech, Bogdan Ghita, and Thomas Wennekers. On the importance of the
newborn stage when learning patterns with the spatial pooler. SN Computer Science, 3(2):179,
2022.

Yogesh K Dwivedi, Nir Kshetri, Laurie Hughes, Emma Louise Slade, Anand Jeyaraj, Arpan Kumar
Kar, Abdullah M Baabdullah, Alex Koohang, Vishnupriya Raghavan, Manju Ahuja, et al. “so
what if chatgpt wrote it?” multidisciplinary perspectives on opportunities, challenges and impli-
cations of generative conversational ai for research, practice and policy. International Journal of
Information Management, 71:102642, 2023.

Gökcen Eraslan, Žiga Avsec, Julien Gagneur, and Fabian J Theis. Deep learning: new computational
modelling techniques for genomics. Nature Reviews Genetics, 20(7):389–403, 2019.

Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, Giovanni Pezzulo, et al.
Active inference and learning. Neuroscience & Biobehavioral Reviews, 68:862–879, 2016.

Karl J Friston, Richard Rosch, Thomas Parr, Cathy Price, and Howard Bowman. Deep temporal
models and active inference. Neuroscience & Biobehavioral Reviews, 90:486–501, 2018.

Dileep George and Jeff Hawkins. Towards a mathematical theory of cortical micro-circuits. PLoS
computational biology, 5(10):e1000532, 2009.

Dileep George, Rajeev V. Rikhye, Nishad Gothoskar, J. Swaroop Guntupalli, Antoine Dedieu, and
Miguel Lázaro-Gredilla. Clone-structured graph representations enable flexible learning and vi-
carious evaluation of cognitive maps. Nature Communications, 12(11):2392, Apr 2021. ISSN
2041-1723. doi: 10.1038/s41467-021-22559-5.

Z. Ghahramani and M.I. Jordan. Factorial Hidden Markov Models. Machine Learning, 29(2-3):
245–273, 1997. ISSN 0885-6125. doi: 10.1023/a:1007425814087.

Zoubin Ghahramani and Michael Jordan. Factorial hidden markov models. Advances in neural
information processing systems, 8, 1995.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

10

https://doi.org/10.5281/zenodo.5196577
https://doi.org/10.5281/zenodo.5196577
https://www.frontiersin.org/article/10.3389/fncom.2017.00111
https://www.frontiersin.org/article/10.3389/fncom.2017.00111

Under review as a conference paper at ICLR 2024

GM Harshvardhan, Mahendra Kumar Gourisaria, Manjusha Pandey, and Siddharth Swarup
Rautaray. A comprehensive survey and analysis of generative models in machine learning. Com-
puter Science Review, 38:100285, 2020.

Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a theory of sequence
memory in neocortex. Frontiers in Neural Circuits, 10, March 2016. ISSN 1662-5110. doi:
10.3389/fncir.2016.00023. URL http://journal.frontiersin.org/Article/10.
3389/fncir.2016.00023/abstract.

Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology
press, 2005.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735–
80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

Mehdi Jafarnia Jahromi, Rahul Jain, and Ashutosh Nayyar. Online learning for unknown partially
observable mdps. In International Conference on Artificial Intelligence and Statistics, pp. 1712–
1732. PMLR, 2022.

Shulei Ji, Jing Luo, and Xinyu Yang. A comprehensive survey on deep music generation: Multi-level
representations, algorithms, evaluations, and future directions. arXiv preprint arXiv:2011.06801,
2020.

F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47(2):498–519, 2001. doi: 10.1109/18.910572.

Petr Kuderov, Evgenii Dzhivelikian, and Aleksandr I Panov. Stabilize sequential data representation
via attraction module. In International Conference on Brain Informatics, pp. 83–95. Springer,
2023.

Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. Back-
propagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, Jun 2020. ISSN 1471-
003X, 1471-0048. doi: 10.1038/s41583-020-0277-3.

Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent neural networks
for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

Michael London and Michael Häusser. Dendritic computation. Annu. Rev. Neurosci., 28:503–532,
2005.

Christoph Mathys, Jean Daunizeau, Karl J Friston, and Klaas E Stephan. A bayesian foundation for
individual learning under uncertainty. Frontiers in human neuroscience, 5:39, 2011.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via
large pre-trained language models: A survey. ACM Computing Surveys, 2021.

James Mnatzaganian, Ernest Fokoué, and Dhireesha Kudithipudi. A mathematical formalization of
hierarchical temporal memory’s spatial pooler. Frontiers in Robotics and AI, 3, 2017. ISSN 2296-
9144. URL https://www.frontiersin.org/articles/10.3389/frobt.2016.
00081.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

V. Mountcastle. The columnar organization of the neocortex. Brain, 120(4):701–722, April 1997.
ISSN 14602156. doi: 10.1093/brain/120.4.701. URL https://academic.oup.com/
brain/article-lookup/doi/10.1093/brain/120.4.701.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

11

http://journal.frontiersin.org/Article/10.3389/fncir.2016.00023/abstract
http://journal.frontiersin.org/Article/10.3389/fncir.2016.00023/abstract
https://www.frontiersin.org/articles/10.3389/frobt.2016.00081
https://www.frontiersin.org/articles/10.3389/frobt.2016.00081
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/120.4.701
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/120.4.701

Under review as a conference paper at ICLR 2024

Matthias Oster, Rodney Douglas, and Shih-Chii Liu. Computation with spikes in a winner-take-all
network. Neural Computation, 21(9):2437–2465, 09 2009. doi: 10.1162/neco.2009.07-08-829.

Randall C. O’Reilly, Jacob L. Russin, Maryam Zolfaghar, and John Rohrlich. Deep predictive
learning in neocortex and pulvinar. Journal of Cognitive Neuroscience, 33(6):1158–1196, May
2021. ISSN 0898-929X. doi: 10.1162/jocn a 01708.

Thomas Parr and Karl J Friston. Working memory, attention, and salience in active inference.
Scientific reports, 7(1):14678, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Rodrigo Perin, Thomas K Berger, and Henry Markram. A synaptic organizing principle for cortical
neuronal groups. Proceedings of the National Academy of Sciences, 108(13):5419–5424, 2011.

Pascal Poupart. Exploiting structure to efficiently solve large scale partially observable Markov
decision processes. Citeseer, 2005.

Achille Salaün, Yohan Petetin, and François Desbouvries. Comparing the modeling powers of rnn
and hmm. In 2019 18th ieee international conference on machine learning and applications
(icmla), pp. 1496–1499. IEEE, 2019.

Jochen F. Staiger and Carl C. H. Petersen. Neuronal circuits in barrel cortex for whisker sensory
perception. Physiological Reviews, 101(1):353–415, 2021. doi: 10.1152/physrev.00019.2019.
URL https://doi.org/10.1152/physrev.00019.2019. PMID: 32816652.

Greg J. Stuart and Nelson Spruston. Dendritic integration: 60 years of progress. Nature Neu-
roscience, 18(12):1713–1721, Dec 2015. ISSN 1546-1726. doi: 10.1038/nn.4157. URL
https://doi.org/10.1038/nn.4157.

Jingyu Zhao, Feiqing Huang, Jia Lv, Yanjie Duan, Zhen Qin, Guodong Li, and Guangjian Tian.
Do rnn and lstm have long memory? In International Conference on Machine Learning, pp.
11365–11375. PMLR, 2020.

A ENCODING AND DECODING OBSERVATIONS

Because our model is designed to work with sparse distributed representations and the testing envi-
ronments do not provide observations as SDRs by default, an encoding procedure is required. For
this task, we use a modified version of the Spatial Pooler (SP) (Cui et al., 2017; Mnatzaganian et al.,
2017), a distributed noise-tolerant online clustering neural network algorithm that converts input
binary patterns into SDRs with fixed sparsity while retaining pairwise similarity (Kuderov et al.,
2023). The SP algorithm learns a spatial specialization of neurons’ receptive fields using the local
Hebbian rule and k-WTA (k winners take all) inhibition (Oster et al., 2009). Here we outline the
main differences from the “vanilla” version of the SP algorithm described in Cui et al. (2017).

During an agent’s decision-making process pipeline, the SP encoder accepts a current observation
o and transforms it to a latent state SDR z. In terms of processing, our SP encoder functions as a
standard artificial neural network with a k-WTA binary activation function.:

overlapsi = βiWio (10)
zi = I [i ∈ kWTA(overlaps)] , (11)

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1152/physrev.00019.2019
https://doi.org/10.1038/nn.4157

Under review as a conference paper at ICLR 2024

where o—a binary observation vector, Wi—a row-vector representing i-th neuron’s connection
weights (where non-existing connections have zero weights), overlapsi—a value representing the
strength of the input pattern recognition with the neuron i 1, βi—an i-th neuron boosting value, zi—
an i-th bit of an output SDR, I[. . .]—an indicator function, kWTA—a k-winners-take-all activation
function returning k indices of the neurons with the highest overlap.

One difference between the “vanilla” SP algorithm and ours is that we do not distinguish between
potential and active neural connections. Because all [existing] connections are active, they all partic-
ipate in calculating overlaps. In the overlaps calculation, non-binary, that is, real-valued weights are
used, similar to artificial neural networks, as shown in equation 10. Furthermore, each neuron has
a fixed capacity to produce neurotransmitters, which it distributes between its synaptic connections.
This means that we keep all neuron weights normalized and summed to one. While it achieves the
same Hebbian learning with homeostatic plasticity as the original SP, the exact formula is slightly
different:

W̃i = Wi + αzi
RFi ⊙ o∑
j RFi ⊙ o

Wi ←
W̃i∑
j W̃i

, (12)

where W̃i—a row of new i-th neuron weights before normalization, α—learning rate, zi—a binary
value representing the current activity state of the i-th neuron, RFi—an i-th row of the binary con-
nectivity matrix representing an i-th neuron receptive field, ⊙—elementwise product, o—a binary
observation vector.

The original SP algorithm has several drawbacks, including encoding instability caused by an innate
homeostatic plasticity mechanism known as boosting, which helps neurons specialize and increases
overall adaptability but makes memorization tasks more difficult, and slow processing on large in-
puts such as images, where an encoding overhead becomes noticeable when compared to overall
model timings around 1k input size.

The introduction of the newborn stage, which follows the ideas proposed in Dobric et al. (2022),
solves an encoding instability problem. The newborn stage of a spatial pooler occurs during the
early stages of its learning process, when its neurons are expected to specialize. The boosting,
which is intended to aid in the specialization process, is activated only during the newborn stage and
its scale gradually decreases from the configured value to zero. Boosting remains turned off during
an encoder’s “adulthood”, reducing the possibility of spontaneous re-specialization.

To reduce processing overhead, we use a much more sparsified connection matrix than in the original
SP version. We randomly initialize connections with 40-60% sparsity, which is typical for the
“vanilla” SP. Then, during the newborn stage, we gradually prune the vast majority of the weakest
connections, resulting in neurons that are highly specialized due to their small receptive fields. We
typically configure the final receptive field size in relation to the average input pattern size (usually
25-200% of it, resulting in 0.1-10% connections sparsity). For example, if binary input patterns have
on average 100 active bits out of 1000, we can set the target size of receptive fields to 25, which is
25% of the active input size and corresponds to 2.5% connection matrix sparsity. As a result, the
spatial pooler’s instability (and thus adaptiveness!) becomes even more limited in the adult stage.

Because of its soft discretization (from the distributed representation) and clusterization properties,
we expect SP to assist the model with input sequence memorization and an environment transition
dynamics generalization tasks in addition to the encoding itself. However, because the SP encoder
learns online, particularly during the newborn stage, its output representation can be highly unstable
during the early stages, potentially resulting in a performance drop.

To visualize and debug an encoded observation, we also learn a decoder, which is a linear neural
layer learned locally with gradient descend on the MSE error between the predicted reconstruction
and the actual observation.

1While the name “overlap” does not exactly reflect its meaning in our SP modification, because it is not a
binary overlap between a receptive field and an input pattern, we kept it on purpose to refer to the similar term
commonly used for the original SP.

13

Under review as a conference paper at ICLR 2024

B VALUE FUNCTION DECOMPOSITION

In our agent model, we approximate the reward function R(s) as a sum: Rt = 1
n

∑n
k=1 r(φ

k
t)φ

k
t ,

where r(φk
t) is a reward associated with state φk

t , n–number of feature variables. Then, similarly to
the Successor Representation idea (see Section 2.3), the value function can be represented as:

V (ht) = E[

∞∑
l=0

γlRt+l+1 | ht] =

∞∑
l=0

γlE[
1

n

n∑
k=1

r(φk
t) | ht]

=
1

n

n∑
k=1

∑
j

∞∑
l=0

γlp(φk
t+l+1 = j | hk

t)r
k
j

=
1

n

n∑
k=1

∑
j

Mk
j (h

k
t)r

k
j , (13)

where Mk
j (h

k
t) =

∑∞
l=0 γ

lp(φk
t+l+1 = j | hk

t), ht = (h1
t , ..., h

n
t)—hidden state vector of variables

{Hk
t }k.

Then, the temporal difference for Mk
ij = Mk

j (h
k
t = i) is:

δkij =

T∑
l=0

γlp(φk
t+l+1 = j | hk

t = i)) + γT+1
∑
m

Mk
mjp(h

k
t+T+1 = m | hk

t = i)−Mk
ij , (14)

However, in POMDP we can’t observe hk
t , we only have a distribution p(hk

t | o0:t). Therefore, we
need to average out the hidden state variable δkj =

∑
i δ

k
ij · p(hk

t = i | o0:t). Assuming that we
minimise L = (δkj)

2, we get the following update rule:

δkj = gent+T (φ
k = j | o0:t) + γT+1predt+T+1(φ

k = j | o0:t)−
∑
i

Mk
ijp(h

k
t = i | o0:t) (15)

Mk
ij ←Mk

ij + αδkj · p(hk
t = i | o0:t), (16)

where gent+T —Successor Features component, generated by temporal memory up to timestep T ,
and predt+T+1—SF component predicted using Mk

ij weights:

gent+T (φ
k = j | o0:t) =

T∑
l=0

γl
∑
i

p(φk
t+l+1 = j | hk

t = i)p(hk
t = i | o0:t) (17)

predt+T+1(φ
k = j | o0:t) =

∑
i

Mk
ijp(h

k
t+T+1 = i | o0:t) (18)

C BIOLOGICAL INTERPRETATION

Neural implementation of the DHTM is inspired by neocortical neural networks (see Fig. 6). Hid-
den variables Hk may be considered as populations of excitatory pyramidal neurons in cortical
layer L2/3 of somatosensory areas, with lateral inhibition modelled as softmax function. Staiger &
Petersen (2021) showed that neurons in this layer are responsible for temporal context formation.

The neuronal activity at timestep t can be thought to carry messages Mk
t−1. Messages are propagated

through synapses of dendritic segments, which correspond to factors F k
c . Dendritic segments of

biological neurons are known to be coincidence detectors of its synaptic input (Stuart & Spruston,
2015). We use the notion of dendritic segment to sparsely represent context factors F k

c , as each
factor value corresponds to a particular combination of states (or active cells).

Feature variables Φk
t may be considered to represent cells of a granular layer (L4), as they are known

to be the main hub for sensory excitation for L2/3. L2/3 cells that have common sensory input from
the layer L4 are modelled as columns for particular feature states col(φk

t) (Mountcastle, 1997).

14

Under review as a conference paper at ICLR 2024

Figure 6: Biological view of the neural implementation of the DHTM. Variables H ·
t−1 correspond to

populations of neurons that have common sensory input and lateral inhibitory competition. Dendritic
segments correspond to factor values fl. spike frequency of a neuron reflects state probability p(hk

t)
of a variable.

D PSEUDO-SURPRISE

To calculate the pseudo-surprise of SF, we do the following:

1. Normalize SF by summing it over corresponding variables Ψ and dividing SF by these
sums. The result is SF-induced probability distribution p(φk) of Ψk variables.

2. Measure average surprise over future observed states φk, according to this distribution:
− log p(φk = j), where j is the observed state.

Normalized SF represents future observation (feature) profile for the current state. Pseudo-surprise
shows whether SF is consistent with the observed feature states or not. For example, if SF doesn’t
predict feature j (p(φk = j) = 0), but we observe it, this’ll result in infinite surprise, which means
that the SF is of a bad quality.

E BASELINE RL AGENTS IMPLEMENTATION

As mentioned in Section 3.3, we incorporate DHTM as a part of an RL agent, which has a memory
model, an SF mapping from hidden space, and a feature reward function. Our memory model is
expected to speed up SF learning for an agent. We put this hypothesis to the test by experimenting
with other memory models while keeping the agent architecture the same. Thus, all tested mem-
ory models work in the same regime—they learn sequences of encoded binary observations (i.e.
SDRs that we get from Spatial Pooler encoder described in Appendix A) concatenated with one-hot
encoded actions.

LSTM baseline was implemented with a single LSTMCell from PyTorch library (Paszke et al.,
2019). It is supported by an additional symexp-layer to encode input before passing it to the LSTM
cell and a symexp-layer to decode the LSTM cell’s output from the LSTM’s hidden state back to the
input representation, where symexp activation function, symexp(x) = sign(x)e|x|−1, is a reverse
of symlog function: symlog = sign(x) log (|x|+ 1).

The similar way we implemented RWKV baseline: a single RWKV layer supported by single-layer
linear encoder and decoder. Current public RWKV implementation is a fast evolving framework
(Bo, 2021), and for the increased performance it is tightly bound to the offline batch training common

15

Under review as a conference paper at ICLR 2024

for the transformer architectures. In our case we needed a so-called sequential mode for online
learning similar to LSTM. Thus, we adapted another public implementation mentioned in the official
documentation (RWKV in 150 lines of code).

Both RNNs were trained online with backpropagation through time (BPTT) on the observed se-
quences with the backpropagation update step scheduled every k timesteps. We experimented with
different schedules and found that k = 20 provides a balance between the training stability and
speed. The learning rate was set to α = 6 · 10−4 for LSTM and α = 5 · 10−4 for RWKV.

We also incorporated some notion of random variables and their states by splitting the hidden state of
the tested RNNs into groups. In all experiments the hidden state represents 80 categorical variables
with 4 states. That is, both RNNs are forced to learn 80 categorical distributions with multi-cross-
entropy loss to explain the observed sequences, which is a somewhat close to the multi-categorical
hidden state representation used in DreamerV2/V3 (Hafner et al., 2023). The idea of using symexp
activation function, mentioned above, is inspired by Dreamer too, and is used to remedy the problem
of learning extreme probability values. Without symexp the neural network has to represent zero
probability with high negative logit values and one-probability with high positive logit values, which
is hard to reach with low learning rate and may lead to instabilities. Thus, symexp function makes it
faster to reach target values in log space.

CSCG baseline was implemented using code from the repository accompanying the paper (https:
//github.com/vicariousinc/naturecomm_cscg). In our experiments, in order to han-
dle multiple feature variables, we trained several CSCGs independently using the same data. CSCG
was trained on batches with size of 500 observation steps. We iteratively calculated exponential
moving average of transition matrices obtained for different batches with smoothing coefficient
α = 0.8. This smoothed transition matrix was used as initialization for the next batch training
and for inference.

All baselines employed a multilayer perceptron, implemented with PyTorch, in order to map from
the hidden state distribution to Successor Features because the simple linear model described in
Appendix B didn’t work for them. The MLP had one hidden layer with size 256 units and batch size
of 32 for CSCG and 256 for LSTM and RWKV with squared temporal difference as a loss function
defined by equation 16.

F EXPERIMENTAL SETUPS

Pinball is a partially observable environment developed in the Godot Game Engine (Beeching et al.,
2021). A ball that can move in the surface’s 2D space and a surface with borders make up the envi-
ronment (see Figure 7-A). Force fields depicted as circles introduce stochasticity to the environment
as they deflect the ball in random directions. An agent can apply arbitrary momentum to a ball. For
each time step, the environment returns an image of the top view of the table as an observation and
a reward. The agent gets the reward by entering force fields. Each force field can be configured to
pass a specific reward value and to terminate an episode.

AnimalAI is a testbed inspired by experiments with animals (Crosby et al., 2020). The environment
consists of 3D area surrounded by a wall and many different objects that can be placed using a
configuration file including: walls, food, ramps, trees, movable obstacles and so on (see Figure 7-
C).

G 2D MAZE VALUE FUNCTIONS

H GLOSSARY

Categorical Random Variable—a discrete random variable that can take on of finite K possible
states.
Cortical Column or Minicolumn—a population of neurons in the neocortex that spans across lay-
ers and shares sensory input.
Dendritic segment—a group of synapses (neuron’s connections) that acts as an independent com-
putational unit affecting the resulting neuron’s activity.

16

https://github.com/BlinkDL/ChatRWKV/blob/main/RWKV_in_150_lines.py
https://github.com/vicariousinc/naturecomm_cscg
https://github.com/vicariousinc/naturecomm_cscg

Under review as a conference paper at ICLR 2024

Figure 7: A. Pinball experiments used two different setups. The upper image shows a setup in which
the target is not blocked. The lower image depicts the setup, with the target obscured by a random
field that deflects the ball perpendicular to its movement direction. B. Visualization of several steps
in the Pinball environment. Each step is depicted by raw observation image, binary image of events,
predicted events and Successor Features. C. Animal experimental setup: two corridors, one of
which containing food (yellow circle), the agent is in between of the corridors (letter A). Food
position changes after 300 episodes. Images on the right: observations (raw), processed observations
(events), predictions and Successor Features decoded back to observation space for three last steps
of an episode.

Figure 8: Heatmaps representing value function in 2D maze Pinball environment setup.

Factor Graph—bipartite graph representing the factorization of a probability distribution, with one
part representing factor nodes and another—random variables.
Multi-compartment neuron model—a model of neuron that divides neuron’s connections into
groups (segments) of different types (compartments), where each group may be considered as partly
independent computational unit and groups of each compartment may affect the neuron’s activity
differently.
Sparse Distributed Representations (SDR)—sparse binary vector in a high-dimensional space,
usually formed by k-WTA algorithms.

17

Under review as a conference paper at ICLR 2024

Spatial Pooler (SP)—a distributed noise-tolerant online clustering neural network algorithm that
converts input binary patterns into SDRs with fixed sparsity while retaining pairwise similarity.
Successor Representations (SR)—a discounted sum of future [one-hot encoded] observations.
Successor Features (SF)—a generalization of SR, a discounted sum of future latent states.
Temporal Memory (TM)—in this work by this term we mean “memory for sequences”.
Hidden Markov Model (HMM)—statistical model of a stochastic process where state probability
depends only on previous state of the process.

18

	Introduction
	Background
	Reinforcement Learning
	Hidden Markov Model
	Successor Representation
	Sparse Distributed Representations

	Distributed Hebbian Temporal Memory
	Factor Graph Model
	Neural Implementation
	Agent Architecture

	Experiments
	Pinball
	AnimalAI

	Conclusion
	Encoding and Decoding Observations
	Value Function Decomposition
	Biological Interpretation
	Pseudo-Surprise
	Baseline RL agents implementation
	Experimental Setups
	2D Maze Value Functions
	Glossary

