
GUARD: A Safe Reinforcement Learning Benchmark

Weiye Zhao
Robotics Institute

Carnegie Mellon University
weiyezha@andrew.cmu.edu

Rui Chen
Robotics Institute

Carnegie Mellon University
ruic3@andrew.cmu.edu

Yifan Sun
Robotics Institute

Carnegie Mellon University
yifansu2@andrew.cmu.edu

Ruixuan Liu
Robotics Institute

Carnegie Mellon University
ruixuanl@andrew.cmu.edu

Tianhao Wei
Robotics Institute

Carnegie Mellon University
twei2@andrew.cmu.edu

Changliu Liu
Robotics Institute

Carnegie Mellon University
cliu6@andrew.cmu.edu

Abstract

Due to the trial-and-error nature, it is typically challenging to apply RL algorithms1

to safety-critical real-world applications, such as autonomous driving, human-robot2

interaction, robot manipulation, etc, where such errors are not tolerable. Recently,3

safe RL (i.e., constrained RL) has emerged rapidly in the literature, in which the4

agents explore the environment while satisfying constraints. Due to the diversity of5

algorithms and tasks, it remains difficult to compare existing safe RL algorithms.6

To fill that gap, we introduce GUARD, a Generalized Unified SAfe Reinforcement7

Learning Development Benchmark. GUARD has several advantages compared8

to existing benchmarks. First, GUARD is a generalized benchmark with a wide9

variety of RL agents, tasks, and safety constraint specifications. Second, GUARD10

comprehensively covers state-of-the-art safe RL algorithms with self-contained11

implementations. Third, GUARD is highly customizable in tasks and algorithms.12

We present a comparison of state-of-the-art safe RL algorithms in various task13

settings using GUARD and establish baselines that future work can build on.14

1 Introduction15

Reinforcement learning (RL) has achieved tremendous success in many fields over the past decades.16

In RL tasks, the agent explores and interacts with the environment by trial and error, and improves its17

performance by maximizing the long-term reward signal. RL algorithms enable the development of18

intelligent agents that can achieve human-competitive performance in a wide variety of tasks, such19

as games [Mnih et al., 2013, Zhao et al., 2019a, Silver et al., 2018, OpenAI et al., 2019, Vinyals20

et al., 2019, Zhao et al., 2019b], manipulation [Popov et al., 2017, Zhao et al., 2022a, Chen et al.,21

2023, Agostinelli et al., 2019, Shek et al., 2022, Zhao et al., 2020a, Noren et al., 2021], autonomous22

driving [Isele et al., 2019, Kiran et al., 2022, Gu et al., 2022a], robotics [Kober et al., 2013, Brunke23

et al., 2022, Zhao et al., 2022b, 2020b, Sun et al., 2023, Cheng et al., 2019], and more. Despite their24

outstanding performance in maximizing rewards, recent works [Garcıa and Fernández, 2015, Gu et al.,25

2022b, Zhao et al., 2023] focus on the safety aspect of training and deploying RL algorithms due to26

the safety concern [Zhao et al., 2022c, He et al., 2023a, Wei et al., 2022] in real-world safety-critical27

applications, e.g., human-robot interaction, autonomous driving, etc. As safe RL topics emerge28

in the literature [Zhao et al., 2021, 2023, He et al., 2023b], it is crucial to employ a standardized29

benchmark for comparing and evaluating the performance of various safe RL algorithms across30

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets
and Benchmarks. Do not distribute.

different applications, ensuring a reliable transition from theory to practice. A benchmark includes 1)31

algorithms for comparison; 2) environments to evaluate algorithms; 3) a set of evaluation metrics, etc.32

There are benchmarks for unconfined RL and some safe RL, but not comprehensive enough [Duan33

et al., 2016, Brockman et al., 2016, Ellenberger, 2018–2019, Yu et al., 2019, Osband et al., 2020,34

Tunyasuvunakool et al., 2020, Dulac-Arnold et al., 2020, Zhang et al., 2022a].35

To create a robust safe RL benchmark, we identify three essential pillars. Firstly, the benchmark must36

be generalized, accommodating diverse agents, tasks, and safety constraints. Real-world applications37

involve various agent types (e.g., drones, robot arms) with distinct complexities, such as different38

control degrees-of-freedom (DOF) and interaction modes (e.g., 2D planar or 3D spatial motion).39

The performance of algorithms is influenced by several factors, including variations in robots (such40

as observation and action space dimensions), tasks (interactive or non-interactive, 2D or 3D), and41

safety constraints (number, trespassibility, movability, and motion space). Therefore, providing a42

comprehensive environment to test the generalizability of safe RL algorithms is crucial.43

Secondly, the benchmark should be unified, overcoming discrepancies in experiment setups prevalent44

in the emerging safe RL literature. A unified platform ensures consistent evaluation of different45

algorithms in controlled environments, promoting reliable performance comparison. Lastly, the46

benchmark must be extensible, allowing researchers to integrate new algorithms and extend setups47

to address evolving challenges. Given the ongoing progress in safe RL, the benchmark should48

incorporate major existing works and adapt to advancements. By encompassing these pillars, the49

benchmark provides a solid foundation for addressing these open problems in safe RL research.50

In light of the above-mentioned pillars, this paper introduces GUARD, a Generalized Unified SAfe51

Reinforcement Learning Development Benchmark. In particular, GUARD is developed based upon52

the Safety Gym [Ray et al., 2019], SafeRL-Kit [Zhang et al., 2022a] and SpinningUp [Achiam,53

2018]. Unlike existing benchmarks, GUARD pushes the boundary beyond the limit by significantly54

extending the algorithms in comparison , types of agents and tasks, and safety constraint specifications.55

The contributions of this paper are as follows:56

1. Generalized benchmark with a wide range of agents. GUARD genuinely supports 1157

different agents, covering the majority of real robot types.58

2. Generalized benchmark with a wide range of tasks. GUARD genuinely supports 759

different task specifications, which can be combined to represent most real robot tasks.60

3. Generalized benchmark with a wide range of safety constraints. GUARD genuinely61

supports 8 different safety constraint specifications. The included constraint options com-62

prehensively cover the safety requirements that would encounter in real-world applications.63

4. Unified benchmarking platform with comprehensive coverage of safe RL algorithms.64

Guard implements 8 state-of-the-art safe RL algorithms following a unified code structure.65

5. Highly customizable benchmarking platform. GUARD features a modularized design66

that enables effortless customization of new testing suites with self-customizable agents,67

tasks, and constraints. The algorithms in GUARD are self-contained, with a consistent struc-68

ture and independent implementations, ensuring clean code organization and eliminating69

dependencies between different algorithms. This self-contained structure greatly facilitates70

the seamless integration of new algorithms for further extensions.71

2 Related Work72

Open-source Libraries for Reinforcement Learning Algorithms Open-source RL libraries are73

code bases that implement representative RL algorithms for efficient deployment and comparison.74

They often serve as backbones for developing new RL algorithms, greatly facilitating RL research.75

We divide existing libraries into two categories: (a) safety-oriented RL libraries that support safe RL76

algorithms, and (b) general RL libraries that do not. Among safety-oriented libraries, Safety Gym77

[Ray et al., 2019] is the most famous one with highly configurable tasks and constraints but only78

2

supports three safe RL methods. SafeRL-Kit [Zhang et al., 2022a] supports five safe RL methods79

while missing some key methods such as CPO [Achiam et al., 2017a]. Bullet-Safety-Gym [Gronauer,80

2022] supports CPO but is limited in overall safe RL support at totally four methods. Compared to the81

above libraries, our proposed GUARD doubles the support at eight methods in total, covering a wider82

spectrum of general safe RL research. General RL libraries, on the other hand, can be summarized83

according to their backend into PyTorch [Achiam, 2018, Weng et al., 2022, Raffin et al., 2021, Liang84

et al., 2018], Tensorflow [Dhariwal et al., 2017, Hill et al., 2018], Jax [Castro et al., 2018, Hoffman85

et al., 2020], and Keras [Plappert, 2016]. In particular, SpinningUp [Achiam, 2018] serves as the86

major backbone of our GUARD benchmark on the safety-agnostic RL portion.87

Benchmark Platform for Safe RL Algorithms To facilitate safe RL research, the benchmark88

platform should support a wide range of task objectives, constraints, and agent types. Among existing89

work, the most representative one is Safety Gym [Ray et al., 2019] which is highly configurable.90

However, Safety Gym is limited in agent types in that it does not support high-dimensional agents91

(e.g., drone and arm) and lacks tasks with complex interactions (e.g., chase and defense). Moreover,92

Safety Gym only supports naive contact dynamics (e.g., touch and snap) instead of more realistic93

cases (e.g., objects bouncing off upon contact) in contact-rich tasks. Safe Control Gym [Yuan et al.,94

2022] is another open-source platform that supports very simple dynamics (i.e., cartpole, 1D/2D95

quadrotors) and only supports navigation tasks. Finally, Bullet Safety Gym [Gronauer, 2022] provides96

high-fidelity agents, but the types of agents are limited, and they only consider navigation tasks.97

Compared to the above platforms, our GUARD supports a much wider range of task objectives (e.g.,98

3D reaching, chase and defense) with a much larger variety of eight agents including high-dimensional99

ones such as drones, arms, ants, and walkers.100

3 Preliminaries101

Markov Decision Process An Markov Decision Process (MDP) is specified by a tuple102

(S,A, �,R, P, ⇢), where S is the state space, and A is the control space, R : S ⇥ A ! R is103

the reward function, 0  � < 1 is the discount factor, ⇢ : S ! [0, 1] is the starting state distribution,104

and P : S ⇥A⇥ S ! [0, 1] is the transition probability function (where P (s0|s, a) is the probability105

of transitioning to state s0 given that the previous state was s and the agent took action a at state s). A106

stationary policy ⇡ : S ! P(A) is a map from states to a probability distribution over actions, with107

⇡(a|s) denoting the probability of selecting action a in state s. We denote the set of all stationary108

policies by ⇧. Suppose the policy is parameterized by ✓; policy search algorithms search for the109

optimal policy within a set ⇧✓ ⇢ ⇧ of parameterized policies.110

The solution of the MDP is a policy ⇡ that maximizes the performance measure J (⇡) computed via111

the discounted sum of reward:112

J (⇡) = E⌧⇠⇡

" 1X

t=0

�
tR(st, at, st+1)

#
, (1)

where ⌧ = [s0, a0, s1, · · ·] is the state and control trajectory, and ⌧ ⇠ ⇡ is shorthand for that113

the distribution over trajectories depends on ⇡ : s0 ⇠ µ, at ⇠ ⇡(·|st), st+1 ⇠ P (·|st, at). Let114

R(⌧)
.
=

P1
t=0

�
tR(st, at, st+1) be the discounted return of a trajectory. We define the on-policy115

value function as V ⇡(s)
.
= E⌧⇠⇡[R(⌧)|s0 = s], the on-policy action-value function as Q⇡(s, a)

.
=116

E⌧⇠⇡[R(⌧)|s0 = s, a0 = a], and the advantage function as A⇡(s, a)
.
= Q

⇡(s, a)� V
⇡(s).117

Constrained Markov Decision Process A constrained Markov Decision Process (CMDP) is an118

MDP augmented with constraints that restrict the set of allowable policies. Specifically, CMDP119

introduces a set of cost functions, C1, C2, · · · , Cm, where Ci : S⇥A⇥S ! R maps the state action120

transition tuple into a cost value. Similar to (1), we denote JCi(⇡) = E⌧⇠⇡[
P1

t=0
�
t
Ci(st, at, st+1)]121

as the cost measure for policy ⇡ with respect to the cost function Ci. Hence, the set of feasible122

stationary policies for CMDP is then defined as ⇧C = {⇡ 2 ⇧
�� 8i,JCi(⇡)  di}, where di 2 R.123

In CMDP, the objective is to select a feasible stationary policy ⇡ that maximizes the performance:124

3

max
⇡2⇧✓\⇧C

J (⇡). Lastly, we define on-policy value, action-value, and advantage functions for the cost125

as V ⇡

Ci
, Q⇡

Ci
and A

⇡

Ci
, which as analogous to V

⇡ , Q⇡ , and A
⇡ , with Ci replacing R.126

4 GUARD Safe RL Library127

4.1 Overall Implementation128

GUARD contains the latest methods that can achieve safe RL: (i) end-to-end safe RL algorithms129

including CPO [Achiam et al., 2017a], TRPO-Lagrangian [Bohez et al., 2019], TRPO-FAC [Ma130

et al., 2021], TRPO-IPO [Liu et al., 2020], and PCPO [Yang et al., 2020]; and (ii) hierarchical131

safe RL algorithms including TRPO-SL (TRPO-Safety Layer) [Dalal et al., 2018] and TRPO-USL132

(TRPO-Unrolling Safety Layer) [Zhang et al., 2022a]. We also include TRPO [Schulman et al.,133

2015] as an unconstrained RL baseline. Note that GUARD only considers model-free approaches134

which rely less on assumptions than model-based ones. We highlight the benefits of our algorithm135

implementations in GUARD:136

• GUARD comprehensively covers a wide range of algorithms that enforce safety in both137

hierarchical and end-to-end structures. Hierarchical methods maintain a separate safety138

layer, while end-to-end methods solve the constrained learning problem as a whole.139

• GUARD provides a fair comparison among safety components by equipping every140

algorithm with the same reward-oriented RL backbone (i.e., TRPO [Schulman et al., 2015]),141

implementation (i.e., MLP policies with [64, 64] hidden layers and tanh activation), and142

training procedures. Hence, all algorithms inherit the performance guarantee of TRPO.143

• GUARD is implemented in PyTorch with a clean structure where every algorithm is self-144

contained, enabling fast customization and development of new safe RL algorithms.145

GUARD also comes with unified logging and plotting utilities which makes analysis easy.146

4.2 Unconstrained RL147

TRPO We include TRPO [Schulman et al., 2015] since it is state-of-the-art and several safe RL148

algorithms are based on it. TRPO is an unconstrained RL algorithm and only maximizes performance149

J . The key idea behind TRPO is to iteratively update the policy within a local range (trust region) of150

the most recent version ⇡k. Mathematically, TRPO updates policy via151

⇡k+1 = argmax
⇡2⇧✓

J (⇡) s.t.DKL(⇡,⇡k)  �, (2)

where DKL is Kullback-Leibler (KL) divergence, � > 0 and the set {⇡ 2 ⇧✓ : DKL(⇡,⇡k)  �} is152

called the trust region. To solve (2), TRPO applies Taylor expansion to the objective and constraint at153

⇡k to the first and second order, respectively. That results in an approximate optimization with linear154

objective and quadratic constraints (LOQC). TRPO guarantees a worst-case performance degradation.155

4.3 End-to-End Safe RL156

CPO Constrained Policy Optimizaiton (CPO) [Achiam et al., 2017b] handles CMDP by extending157

TRPO. Similar to TRPO, CPO also performs local policy updates in a trust region. Different from158

TRPO, CPO additionally requires ⇡k+1 to be constrained by ⇧✓ \⇧C . For practical implementation,159

CPO replaces the objective and constraints with surrogate functions (advantage functions), which can160

easily be estimated from samples collected on ⇡k, formally:161

⇡k+1 = argmax
⇡2⇧✓

E
s⇠d

⇡k

a⇠⇡

[A⇡k(s, a)] (3)

s.t. DKL(⇡,⇡k)  �, JCi(⇡k) +
1

1� �
E

s⇠d
⇡k

a⇠⇡

"
A

⇡k
Ci
(s, a)

#
 di, i = 1, · · · ,m.

4

where d
⇡k

.
= (1� �)

P
H

t=0
�
t
P (st = s|⇡k) is the discounted state distribution. Following TRPO,162

CPO also performs Taylor expansion on the objective and constraints, resulting in a Linear Objec-163

tive with Linear and Quadratic Constraints (LOLQC). CPO inherits the worst-case performance164

degradation guarantee from TRPO and has a worst-case cost violation guarantee.165

PCPO Projection-based Constrained Policy Optimization (PCPO) [Yang et al., 2020] is proposed166

based on CPO, where PCPO first maximizes reward using a trust region optimization method without167

any constraints, then PCPO reconciles the constraint violation (if any) by projecting the policy back168

onto the constraint set. Policy update then follows an analytical solution:169

⇡k+1 = ⇡k +

s
2�

g>H�1g
H

�1
g �max

✓
0,

q
2�

g>H�1g
g
>
c
H

�1
g + b

g>
c
L�1gc

◆
L
�1

gc (4)

where gc is the gradient of the cost advantage function, g is the gradient of the reward advantage170

function, H is the Hessian of the KL divergence constraint, b is the constraint violation of the policy171

⇡k, L = I for L2 norm projection, and L = H for KL divergence projection. PCPO provides a lower172

bound on reward improvement and an upper bound on constraint violation.173

TRPO-Lagrangian Lagrangian methods solve constrained optimization by transforming hard174

constraints into soft constraints in the form of penalties for violations. Given the objective J (⇡) and175

constraints {JCi(⇡)  di}i, TRPO-Lagrangian [Bohez et al., 2019] first constructs the dual problem176

max
8i,�i�0

min
⇡2⇧✓

�J (⇡) +
X

i

�i(JCi(⇡)� di). (5)

The update of ✓ is done via a trust region update with the objective of (2) replaced by that of (5) while177

fixing �i. The update of �i is done via standard gradient ascend. Note that TRPO-Lagrangian does178

not have a theoretical guarantee for constraint satisfaction.179

TRPO-FAC Inspired by Lagrangian methods and aiming at enforcing state-wise constraints (e.g.,180

preventing state from stepping into infeasible parts in the state space), Feasible Actor Critic (FAC) [Ma181

et al., 2021] introduces a multiplier (dual variable) network. Via an alternative update procedure182

similar to that for (5), TRPO-FAC solves the statewise Lagrangian objective:183

max
8i,⇠i

min
⇡2⇧✓

�J (⇡) +
X

i

Es⇠d
⇡k [�⇠i(s)(JCi(⇡)� di)] , (6)

where �⇠i(s) is a parameterized Lagrangian multiplier network and is parameterized by ⇠i for the184

i-th constraint. Note that TRPO-FAC does not have a theoretical guarantee for constraint satisfaction.185

TRPO-IPO TRPO-IPO [Liu et al., 2020] incorporates constraints by augmenting the optimization186

objective in (2) with logarithmic barrier functions, inspired by the interior-point method [Boyd and187

Vandenberghe, 2004]. Ideally, the augmented objective is I(JCi(⇡)� di) = 0 if JCi(⇡)� di  0188

or �1 otherwise. Intuitively, that enforces the constraints since the violation penalty would be �1.189

To make the objective differentiable, I(·) is approximated by �(x) = log(�x)/t where t > 0 is190

a hyperparameter. Then TRPO-IPO solves (2) with the objective replaced by JIPO(⇡) = J (⇡) +191 P
i
�(JCi(x)� di). TRPO-IPO does not have theoretical guarantees for constraint satisfaction.192

4.4 Hierarchical Safe RL193

Safety Layer Safety Layer [Dalal et al., 2018], added on top of the original policy network,194

conducts a quadratic-programming-based constrained optimization to project reference action into195

the nearest safe action. Mathematically:196

a
safe

t
= argmin

a

1

2
ka� a

ref

t
k2 s.t. 8i, ḡ'i(st)

>
a+ Ci(st�1, at�1, st)  di (7)

where aref
t

⇠ ⇡k(·|st), and ḡ'i(st)
>
at+Ci(st�1, at�1, st) ⇡ Ci(st, at, st+1) is a ' parameterized197

linear model. If there’s only one constraint, (7) has a closed-form solution.198

5

Swimmer Ant Walker Humanoid Hopper Arm3 Arm6 Drone

Figure 1: Robots of our environments.

USL Unrolling Safety Layer (USL) [Zhang et al., 2022b] is proposed to project the reference199

action into safe action via gradient-based correction. Specifically, USL iteratively updates the learned200

QC(s, a) function with the samples collected during training. With step size ⌘ and normalization201

factor Z , USL performs gradient descent as asafe
t

= a
ref

t
� ⌘

Z · @

@a
ref
t

[QC(st, a
ref

t
)� d].202

5 GUARD Testing Suite203

5.1 Robot Options204

In GUARD testing suite, the agent (in the form of a robot) perceives the world through sensors and205

interacts with the world through actuators. Robots are specified through MuJoCo XML files. The206

suite is equipped with 8 types of pre-made robots that we use in our benchmark environments as207

whosn in Figure 1. The action space of the robots are continuous, and linearly scaled to [-1, +1].208

Swimmer consist of three links and two joints. Each joint connects two links to form a linear chain.209

Swimmer can move around by applying 2 torques on the joints.210

Ant is a quadrupedal robot composed a torso and four legs. Each of the four legs has a hip joint and a211

knee joint; and can move around by applying 8 torques to the joints.212

Walker is a bipedal robot that consists of four main parts - a torso, two thighs, two legs, and two213

feet. Different from the knee joints and the ankle joints, each of the hip joints has three hinges in214

the x, y and z coordinates to help turning. With the torso height fixed, Walker can move around by215

controlling 10 joint torques.216

Humanoid is also a bipedal robot that has a torso with a pair of legs and arms. Each leg of Humanoid217

consists of two joints (no ankle joint). Since we mainly focus on the navigation ability of the robots218

in designed tasks, the arm joints of Humanoid are fixed, which enables Humanoid to move around by219

only controlling 6 torques.220

Hopper is a one-legged robot that consists of four main parts - a torso, a thigh, a leg, and a single221

foot. Similar to Walker, Hopper can move around by controlling 5 joint torques.222

Arm3 is designed to simulate a fixed three-joint robot arm. Arm is equipped with multiple sensors on223

each links in order to fully observe the environment. By controlling 3 joint torques, Arm can move224

its end effector around with high flexibility.225

Arm6 is designed to simulate a robot manipulator with a fixed base and six joints. Similar to Arm3,226

Arm6 can move its end effector around by controlling 6 torques.227

Drone is designed to simulate a quadrotor. The interaction between the quadrotor and the air is228

simulated by applying four external forces on each of the propellers. The external forces are set229

to balance the gravity when the control action is zero. Drone can move in 3D space by applying 4230

additional control forces on the propellers.231

5.2 Task Options232

We categorize robot tasks in two ways: (i) interactive versus non-interactive tasks, and (ii) 2D space233

versus 3D space tasks. 2D space tasks constrain agents to a planar space, while 3D space tasks do234

not. Non-interactive tasks primarily involve achieving a target state (e.g., trajectory tracking) while235

6

(a) Goal (b) Push (c) Chase (d) Defense

Figure 2: Tasks of our environments.

interactive tasks (e.g., human-robot collaboration and unstructured object pickup) necessitate contact236

or non-contact interactions between the robot and humans or movable objects, rendering them more237

challenging. On a variety of tasks that cover different situations, GUARD facilitates a thorough238

evaluation of safe RL algorithms via the following tasks. See Table 17 for more information.239

Goal (Figure 2a) requires the robot navigating towards a series of 2D or 3D goal positions. Upon240

reaching a goal, the location is randomly reset. The task provides a sparse reward upon goal241

achievement and a dense reward for making progress toward the goal.242

Push (Figure 2b) requires the robot pushing a ball toward different goal positions. The task includes243

a sparse reward for the ball reaching the goal circle and a dense reward that encourages the agent to244

approach both the ball and the goal. Unlike pushing a box in Safety Gym, it is more challenging to245

push a ball since the ball can roll away and the contact dynamics are more complex.246

Chase (Figure 2c) requires the robot tracking multiple dynamic targets. Those targets continuously247

move away from the robot at a slow speed. The dense reward component provides a bonus for248

minimizing the distance between the robot and the targets. The targets are constrained to a circular249

area. A 3D version of this task is also available, where the targets move within a restricted 3D space.250

Detailed dynamics of the targets is described in Appendix A.5.1.251

Defense (Figure 2d) requires the robot to prevent dynamic targets from entering a protected circle252

area. The targets will head straight toward the protected area or avoid the robot if the robot gets too253

close. Dense reward component provides a bonus for increasing the cumulative distance between the254

targets and the protected area. Detailed dynamics of the targets is described in Appendix A.5.2.255

5.3 Constraint Options256

We classify constraints based on various factors: trespassibility: whether constraints are trespassable257

or untrespassable. Trespassable constraints allow violations without causing any changes to the258

robot’s behaviors, and vice versa. (ii) movability: whether they are immovable, passively movable,259

or actively movable; and (iii) motion space: whether they pertain to 2D or 3D environments. To260

cover a comprehensive range of constraint configurations, we introduce additional constraint types261

via expanding Safety Gym. Please refer to Table 18 for all configurable constraints.262

3D Hazards (Figure 3a) are dangerous 3D areas to avoid. These are floating spheres that are263

trespassable, and the robot is penalized for entering them.264

Ghosts (Figure 3b) are dangerous areas to avoid. Different from hazards, ghosts always move265

toward the robot slowly, represented by circles on the ground. Ghosts can be either trespassable266

or untrespassable. The robot is penalized for touching the untrespassable ghosts and entering the267

trespassable ghosts. Moreover, ghosts can be configured to start chasing the robot when the distance268

from the robot is larger than some threshold. This feature together with the adjustable velocity allows269

users to design the ghosts with different aggressiveness. Detailed dynamics of the targets is described270

in Appendix A.5.3.271

3D Ghosts (Figure 3c) are dangerous 3D areas to avoid. These are floating spheres as 3D version of272

ghosts, sharing the similar behaviour with ghosts.273

7

(a) 3D Hazards (b) Ghosts (c) 3D Ghosts

Figure 3: Constraints of our environments.

6 GUARD Experiments274

Benchmark Suite GUARD includes a set of predefined benchmark testing suite in form of275

{Task}_{Robot}_{Constraint Number}{Constraint Type}. The full list of our testing suite276

can be found in Table 20.277

Benchmark Results The summarized results can be found in Tables 21 to 25, and the learning278

rate curves are presented in Figures 6 to 10. As shown in Figure 4, we select 8 set of results to279

demonstrate the performance of different robot, task and constraints in GUARD. At a high level, the280

experiments show that all methods can consistently improve reward performance.281

When comparing constrained RL methods to unconstrained RL methods, the former exhibit superior282

performance in terms of cost reduction. By incorporating constraints into the RL framework, the robot283

can navigate its environment while minimizing costs. This feature is particularly crucial for real-world284

applications where the avoidance of hazards and obstacles is of utmost importance. Nevertheless, it285

is important to point out that hierarchical RL methods (i.e., TRPO-SL and TRPO-USL) result in a286

trade-off between reward performance and cost reduction. While these methods excel at minimizing287

costs, they may sacrifice some degree of reward attainment in the process.288

As shown in Figures 4b and 4c, tasks that involve high-dimensional robot action spaces and complex289

workspaces suffer from slower convergence due to the increased complexity of the learning problem.290

Moreover, the presence of dynamic ghosts in our tasks introduces further complexities. These291

tasks exhibit higher variance during the training process due to the collision-inducing behaviors292

of the dynamic ghosts. The robot must adapt and respond effectively to the ghosts’ unpredictable293

movements. Addressing these challenges requires robust algorithms capable of handling the dynamic294

nature of the ghosts while optimizing the robot’s overall performance. The influence of ghosts is295

evident by comparing Figure 4a and 4e, where the variance of cost performance increases with ghosts296

for several methods (e.g., PCPO and USL).297

Figure 4a, 4f, 4g, and 4h illustrate the performance of a point robot on four distinct tasks. It is298

evident that the chase task exhibits the quickest convergence, while the defense task reveals the most299

performance gaps between methods. These verify that GUARD effectively benchmarks different300

methods under diverse scenarios.301

7 Conclusions302

Applying RL algorithms to safety-critical real-world applications poses significant challenges due to303

their trial-and-error nature. To address the problem, the literature has witnessed a rapid emergence304

of safe RL (constrained RL) approaches, where agents explore the environment while adhering305

to safety constraints. However, comparing diverse safe RL algorithms remains challenging. This306

paper introduces GUARD, the Generalized Unified SAfe Reinforcement Learning Development307

Benchmark. GUARD offers several advantages over existing benchmarks. Firstly, it provides a308

generalized framework with a wide range of RL agents, tasks, and constraint specifications. Secondly,309

GUARD has self-contained implementations of a comprehensive range of state-of-the-art safe RL310

algorithms. Lastly, GUARD is highly customizable, allowing researchers to tailor tasks and algorithms311

to specific needs. Using GUARD, we present a comparative analysis of state-of-the-art safe RL312

algorithms across various task settings, establishing essential baselines for future research.313

8

(a)
Goal_Point_8Hazards

(b)
Goal_Walker_8Hazards

(c)
Goal_Arm3_8Hazards

(d)
Goal_Drone_8Hazards

(e)
Goal_Point_8Ghosts

(f)
Push_Point_8Hazards

(g)
Chase_Point_8Hazards

(h)
Defense_Point_8Hazards

Figure 4: Comparison of results from four representative tasks. (a) to (d) cover four robots on the goal task. (e)
shows the performance of a task with ghosts. (f) to (h) cover three different tasks with the point robot.

9

References314

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan315

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint316

arXiv:1312.5602, 2013.317

Weiye Zhao, Yang Liu, Xiaoming Zhao, J Qiu, and Jian Peng. Approximation gradient error318

variance reduced optimization. In Workshop on Reinforcement Learning in Games (RLG) at The319

Thirty-Third AAAI Conference on Artificial Intelligence, 2019a.320

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,321

Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement322

learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):323

1140–1144, 2018.324

OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,325

Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,326

Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan327

Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie328

Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning. arXiv329

preprint arXiv:1912.06680, 2019.330

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wojtek331

Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo Ewalds,332

Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin Dal-333

ibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor334

Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen,335

Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lil-336

licrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. AlphaS-337

tar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/338

alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.339

Wei-Ye Zhao, Xi-Ya Guan, Yang Liu, Xiaoming Zhao, and Jian Peng. Stochastic variance reduction340

for deep q-learning. arXiv preprint arXiv:1905.08152, 2019b.341

Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej Vecerik,342

Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. Data-efficient deep reinforcement343

learning for dexterous manipulation. arXiv preprint arXiv:1704.03073, 2017.344

Weiye Zhao, Suqin He, and Changliu Liu. Provably safe tolerance estimation for robot arms via345

sum-of-squares programming. IEEE Control Systems Letters, 6:3439–3444, 2022a.346

Rui Chen, Alvin Shek, and Changliu Liu. Robust and context-aware real-time collaborative robot347

handling via dynamic gesture commands. IEEE Robotics and Automation Letters, 2023.348

Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s cube349

with deep reinforcement learning and search. Nature Machine Intelligence, pages 1–8, 2019.350

Alvin Shek, Rui Chen, and Changliu Liu. Learning from physical human feedback: An object-centric351

one-shot adaptation method. arXiv preprint arXiv:2203.04951, 2022.352

Wei-Ye Zhao, Suqin He, Chengtao Wen, and Changliu Liu. Contact-rich trajectory generation in353

confined environments using iterative convex optimization. In Dynamic Systems and Control354

Conference, volume 84287, page V002T31A002. American Society of Mechanical Engineers,355

2020a.356

Charles Noren, Weiye Zhao, and Changliu Liu. Safe adaptation with multiplicative uncertainties357

using robust safe set algorithm. IFAC-PapersOnLine, 54(20):360–365, 2021.358

10

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

David Isele, Alireza Nakhaei, and Kikuo Fujimura. Safe reinforcement learning on autonomous359

vehicles. arXiv preprint arXiv:1910.00399, 2019.360

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil361

Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.362

IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2022.363

Shangding Gu, Guang Chen, Lijun Zhang, Jing Hou, Yingbai Hu, and Alois Knoll. Constrained364

reinforcement learning for vehicle motion planning with topological reachability analysis. Robotics,365

11(4), 2022a.366

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The367

International Journal of Robotics Research, 32(11):1238–1274, 2013.368

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and369

Angela P. Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement370

learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(1):411–444, 2022.371

Weiye Zhao, Tairan He, Tianhao Wei, Simin Liu, and Changliu Liu. Safety index synthesis via372

sum-of-squares programming. arXiv preprint arXiv:2209.09134, 2022b.373

Weiye Zhao, Liting Sun, Changliu Liu, and Masayoshi Tomizuka. Experimental evaluation of human374

motion prediction toward safe and efficient human robot collaboration. In 2020 American Control375

Conference (ACC), pages 4349–4354. IEEE, 2020b.376

Yifan Sun, Weiye Zhao, and Changliu Liu. Hybrid task constrained planner for robot manipulator in377

confined environment. arXiv preprint arXiv:2304.09260, 2023.378

Yujiao Cheng, Weiye Zhao, Changliu Liu, and Masayoshi Tomizuka. Human motion prediction using379

semi-adaptable neural networks. In 2019 American Control Conference (ACC), pages 4884–4890.380

IEEE, 2019.381

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.382

Journal of Machine Learning Research, 16(1):1437–1480, 2015.383

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and384

Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv385

preprint arXiv:2205.10330, 2022b.386

Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. State-wise safe reinforcement387

learning: A survey. The 32nd International Joint Conference on Artificial Intelligence (IJCAI),388

2023.389

Weiye Zhao, Tairan He, and Changliu Liu. Probabilistic safeguard for reinforcement learning using390

safety index guided gaussian process models. arXiv preprint arXiv:2210.01041, 2022c.391

Suqin He, Weiye Zhao, Chuxiong Hu, Yu Zhu, and Changliu Liu. A hierarchical long short term safety392

framework for efficient robot manipulation under uncertainty. Robotics and Computer-Integrated393

Manufacturing, 82:102522, 2023a.394

Tianhao Wei, Shucheng Kang, Weiye Zhao, and Changliu Liu. Persistently feasible robust safe395

control by safety index synthesis and convex semi-infinite programming. IEEE Control Systems396

Letters, 2022.397

Weiye Zhao, Tairan He, and Changliu Liu. Model-free safe control for zero-violation reinforcement398

learning. In 5th Annual Conference on Robot Learning, 2021.399

Tairan He, Weiye Zhao, and Changliu Liu. Autocost: Evolving intrinsic cost for zero-violation400

reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2023b.401

11

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep402

reinforcement learning for continuous control. In International conference on machine learning,403

pages 1329–1338. PMLR, 2016.404

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and405

Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.406

Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/pybullet-gym,407

2018–2019.408

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey409

Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.410

In Conference on Robot Learning (CoRL), 2019.411

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina412

McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy, Richard Sutton,413

David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. In International414

Conference on Learning Representations, 2020.415

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom416

Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for417

continuous control. Software Impacts, 6:100022, 2020.418

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,419

and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learning.420

2020.421

Linrui Zhang, Qin Zhang, Li Shen, Bo Yuan, and Xueqian Wang. Saferl-kit: Evaluating efficient422

reinforcement learning methods for safe autonomous driving. arXiv preprint arXiv:2206.08528,423

2022a.424

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement425

learning. CoRR, abs/1910.01708, 2019.426

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.427

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In428

International conference on machine learning, pages 22–31. PMLR, 2017a.429

Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. Technical430

report, TUM Department of Electrical and Computer Engineering, Jan 2022.431

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang432

Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal433

of Machine Learning Research, 23(267):1–6, 2022. URL http://jmlr.org/papers/v23/434

21-1127.html.435

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah436

Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine437

Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.438

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E.439

Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement440

learning. In International Conference on Machine Learning (ICML), 2018.441

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,442

John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:443

//github.com/openai/baselines, 2017.444

12

%20https://github.com/benelot/pybullet-gym
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v22/20-1364.html
https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/openai/baselines

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,445

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,446

John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/447

hill-a/stable-baselines, 2018.448

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.449

Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http:450

//arxiv.org/abs/1812.06110.451

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,452

Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard453

Hussenot, Robert Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino454

Vieillard, Seyed Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani,455

Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson,456

Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar457

Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando458

de Freitas. Acme: A research framework for distributed reinforcement learning. arXiv preprint459

arXiv:2006.00979, 2020. URL https://arxiv.org/abs/2006.00979.460

Matthias Plappert. keras-rl. https://github.com/keras-rl/keras-rl, 2016.461

Zhaocong Yuan, Adam W. Hall, Siqi Zhou, Lukas Brunke, Melissa Greeff, Jacopo Panerati, and462

Angela P. Schoellig. Safe-control-gym: A unified benchmark suite for safe learning-based control463

and reinforcement learning in robotics. IEEE Robotics and Automation Letters, 7(4):11142–11149,464

2022. doi: 10.1109/LRA.2022.3196132.465

Steven Bohez, Abbas Abdolmaleki, Michael Neunert, Jonas Buchli, Nicolas Heess, and Raia Hadsell.466

Value constrained model-free continuous control. arXiv preprint arXiv:1902.04623, 2019.467

Haitong Ma, Yang Guan, Shegnbo Eben Li, Xiangteng Zhang, Sifa Zheng, and Jianyu Chen. Feasible468

actor-critic: Constrained reinforcement learning for ensuring statewise safety. arXiv preprint469

arXiv:2105.10682, 2021.470

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.471

In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 4940–4947,472

2020.473

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based474

constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.475

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval476

Tassa. Safe exploration in continuous action spaces. CoRR, abs/1801.08757, 2018.477

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region478

policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,479

2015.480

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In481

International Conference on Machine Learning, pages 22–31. PMLR, 2017b.482

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.483

Linrui Zhang, Qin Zhang, Li Shen, Bo Yuan, Xueqian Wang, and Dacheng Tao. Evaluating model-free484

reinforcement learning toward safety-critical tasks. arXiv preprint arXiv:2212.05727, 2022b.485

13

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://arxiv.org/abs/2006.00979
https://github.com/keras-rl/keras-rl

	Introduction
	Related Work
	Preliminaries
	GUARD Safe RL Library
	Overall Implementation
	Unconstrained RL
	End-to-End Safe RL
	Hierarchical Safe RL

	GUARD Testing Suite
	Robot Options
	Task Options
	Constraint Options

	GUARD Experiments
	Conclusions
	Environment Details
	Observation Space and Action space of different robots
	Observation Space Options and Desiderata
	Layout Randomization Options and Desiderata
	Task and Constraint Details
	Dynamics of movable objects
	Dynamics of targets of Chase task
	Dynamics of targets of Defense task
	Dynamics of ghost and 3D ghost

	Expeiment Details
	Policy Settings
	Experiment tasks
	Metrics Comparison

