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Abstract

Theoretical work in morphological typology001
offers the possibility of measuring morpholog-002
ical diversity on a continuous scale. However,003
literature in NLP typically labels a whole lan-004
guage with a strict type of morphology, e.g.005
fusional or agglutinative. In this work, we006
propose to reduce the theoretical rigidity of007
such claims, by quantifying the morphologi-008
cal typology at the word and segment level.009
We consider Payne (2017)’s approach to clas-010
sify morphology using two indices: synthesis011
(from 1 for analytic to 3 or more for polysyn-012
thetic) and fusion (from 0 for agglutinative to013
1 for fusional). For computing synthesis, we014
test unsupervised and supervised morpholog-015
ical segmentation methods for English, Ger-016
man and Turkish, whereas for fusion, we pro-017
pose a semi-automatic method using Spanish018
as a case study. Then, we analyse the re-019
lationship between machine translation qual-020
ity and the degree of synthesis and fusion at021
word (nouns and verbs for English-Turkish,022
and verbs in English-Spanish) and segment023
level (previous language pairs plus English-024
German in both directions). We complement025
the word-level analysis with human evaluation,026
and overall, we observe a consistent impact of027
both indexes on machine translation quality.028

1 Introduction029

One of the first barriers to develop language tech-030

nologies is morphology, i.e., how systematically031

diverse their word formation processes are. For in-032

stance, agglutination and fusion are two morpholog-033

ical kind of processes that concatenate morphemes034

to a root with explicit or non-explicit boundaries,035

respectively. Processing morphologically-diverse036

languages and evaluating morphological compe-037

tence in NLP models is relevant for language gen-038

eration and understanding tasks, such as machine039

translation (MT). It is unfeasible to develop models040

with capacity large enough to encode the full vocab-041

ulary of every language, and it is a must to rely on042

subword segmentation approaches that help to con- 043

strain the capacity when generating rare, or even 044

new words (Sennrich et al., 2016). Hence, under- 045

standing morphology is essential to develop robust 046

subword-based models and evaluate the quality of 047

their outputs (Vania and Lopez, 2017). Neverthe- 048

less, there is a potential gap between the probing 049

of whether an NLP model can handle "morpho- 050

logical richness", and what is a proper measure of 051

"morphological richness" from linguistic typology. 052

In most of the recent NLP literature, different 053

types of languages (e.g. agglutinative, polysyn- 054

thetic) are chosen to test a more diverse handling of 055

morphological richness (Ponti et al., 2019). There 056

is, however, a debate as to whether languages can 057

indeed be classified into discrete morphological 058

categories. Payne (2017) provided a morphological 059

typology measurement in a continuous spectrum 060

using the indices of synthesis and fusion. Syn- 061

thesis measures if a segment is highly analytic or 062

synthetic (from 1 to more), whereas fusion mea- 063

sures whether it is highly agglutinative or fusional 064

(from 0 to 1). And surprisingly, with respect to 065

the NLP literature, it is possible to identify English 066

sentences with a very low fusion index, meaning 067

that they are highly agglutinative1. 068

From a more applied perspective, if the refer- 069

ences of an evaluation set (in any language gener- 070

ation task) are labelled with the indices, we could 071

perform a stratified analysis (e.g. low fusion and 072

high fusion) to determine how well an NLP model 073

handles morphology for multiple languages. For 074

example, we could assess whether a machine trans- 075

lation model is failing in generating more fusional 076

than agglutinative segments for a specific target 077

language. Knowing and quantifying that problem 078

1For instance, in the following fragment (Payne, 2017),
the index of fusion is 1/8 or 0.125 (fusional morpheme joints
are marked with a dot and the rest with a hyphen): "The
company-’s great break-through came.PAST when they decid-
ed to buy trike-s to sell their ice cream around the street-s in
the nine-teen twenty-s".
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concerning morphology is the first step towards079

proposing a solution. Our contributions then are080

listed as follows:081

• We present the first computational quantifi-082

cation of synthesis and fusion using standard083

NLP evaluation sets.084

• We analyse the relationship between the two085

indices and machine translation quality at086

word-level, and observe that a higher degree087

of synthesis or fusion usually corresponds088

to less accurate translations in specific word089

types (studying nouns and verbs in English-090

Turkish, and verbs in English-Spanish).091

• We complement this evaluation with manual092

annotation of synthesis and fusion2.093

• We extend the analysis at segment-level, us-094

ing the aforementioned language pairs plus095

English-German in both directions, and iden-096

tify that some synthesis and fusion-based pre-097

dictors are significant for MT system outputs.098

2 Background and related work099

2.1 Morphological typology100

Early approaches to morphological typology101

tended to characterise languages in a holistic way,102

in terms of their word formation strategies, such103

as agglutination or fusion (Sapir, 1921). First was104

the idea that languages can be characterised holis-105

tically and unambiguously in terms of their word106

and sentence-building processes, but different stud-107

ies started to quantify these strategies, such as in108

Payne (2017), that recently argued about synthesis109

and fusion, which are defined as follows.110

2.1.1 Synthesis111

The index of synthesis offers a scale to contrast112

highly analytic or synthetic languages. This im-113

plies whether a word is composed by one (analytic)114

or several (synthetic) morphemes (Payne, 2017).115

Synthesis can be computed as the ratio of number116

of morphemes per words, it is closer to 1 when117

the language is more analytic (e.g. Mandarin, or118

English to a less degree), and gets higher the more119

synthetic the language is (e.g. Turkish, Inuktitut).120

Polysynthesis can be present when the synthesis121

degree is higher than 3, although the boundary is122

arguable. Besides, as we claim in this study, any123

language can present different levels of synthesis124

if we evaluate them at a more fine-grained level.125

2All annotated data will be released upon acceptance.

2.1.2 Fusion 126

Fusion is the ratio of the fusional morphemes 127

joints3 per the total number of joints. This index 128

goes from 0 to 1, or from highly agglutinative (e.g. 129

Turkish) to highly fusional (e.g. Spanish) cases. 130

However, we noticed that the computation of fu- 131

sion is complex to automatiseFor instance, Payne 132

(2017) indicates potential cases to identify fusional 133

joints, such as in prefixes, suffixes, infixes, cir- 134

cumfixes, compounding, non-concatenation pro- 135

cesses (reduplication, apophony, substractive mor- 136

phology) or autosegmental morphemes. Current 137

automatic tools are not designed to identify these 138

cases for most languages. 139

2.2 Morphological typology on NLP 140

A survey by Ponti et al. (2019), on computational 141

typology for NLP, pointed out that morphologi- 142

cal knowledge is potentially helpful for analysing 143

the difficulty in generation tasks such as language 144

modelling and neural MT for both unsupervised 145

and supervised settings. More specifically, they 146

suggested that the degree of fusion (related to the 147

index of fusion proposed by Payne (2017)) impacts 148

in the rate of less frequent words, which is a rele- 149

vant parameter for generation tasks. 150

Besides, the studies that address morphologi- 151

cal typology are related to either the development 152

of morphological analysis systems or the evalua- 153

tion of typologically diverse languages in terms 154

of morphology (Vania and Lopez, 2017; Xu et al., 155

2020). However, the typology used to distinguish 156

languages varies across different studies. For in- 157

stance, Vania and Lopez (2017) considers four phe- 158

nomena to label languages: fusionality, agglutina- 159

tion, reduplication and root-pattern; whereas Xu 160

et al. (2020) considers more fine-grained elements 161

such as affixation (prefixation, infixation and suf- 162

fixation) or partial reduplication. It is important 163

to note that none of the previous studies have ad- 164

dressed the phenomena as an index but rather as a 165

discrete label for a language. 166

Furthermore, other studies refer only to mor- 167

phological typological features as part of the task 168

of typological feature prediction from linguistic 169

databases (Bjerva and Augenstein, 2018; Bjerva 170

et al., 2020). 171

3Or how many grammatical, syntactic and semantic fea-
tures are joint. More than one feature can be fused in a single
morpheme.
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2.3 Morphological segmentation and analysis172

Morphological segmentation was first introduced173

by Harris (1951). Unsupervised methods are pop-174

ular with the morfessor (Creutz and Lagus, 2002,175

2007; Poon and Domingos, 2009) family of meth-176

ods, including semi-supervised versions (Kohonen177

et al., 2010; Grönroos et al., 2014). Also, Adaptor178

Grammars have been applied with great success179

to the task (Eskander et al., 2019). Besides, super-180

vised methods have achieved the best results, such181

as pointer generator networks (Mager et al., 2020).182

Besides, the most widespread unsupervised seg-183

mentation methods (Byte-Pair-Encoding (BPE;184

Sennrich et al., 2016) and a method based on un-185

igram language modelling (Kudo, 2018)) are not186

linked at all to morphological segmentation, but187

they are used to constrain the vocabulary size for188

neural generation tasks.189

Finally, it is important to note that the index190

synthesis can be computed with a robust morpho-191

logical analyser or segmentation model (to count192

the number of morphemes), but neither of them are193

built to compute the index of fusion directly.194

3 How to compute Synthesis and Fusion?195

3.1 Synthesis: automatic computation196

To automatically compute the index of synthesis,197

we require to perform a robust morphological seg-198

mentation. A rule-based morphological analyser199

and disambiguator might be the best option if avail-200

able (which we use later for Turkish in §4.2), but201

for the purpose of the study, we compare well-202

known supervised and unsupervised methods:203

• Byte-Pair-Encoding (BPE) and Unigram Lan-204

guage Model (uniLM)4 from SentencePiece205

(Kudo and Richardson, 2018).206

• Morfessor (Poon and Domingos, 2009).207

• Pointer Generator Network (PtrNet) from the208

implementation of Mager et al. (2020).209

3.1.1 Datasets and evaluation210

We used the CELEX dataset of segmented words211

for English and German (Steiner, 2016, 2017),212

where we randomly split training and evaluation213

data (80-10-10). Besides, for the unsupervised214

methods, we use the newscommentary-v15 (Bar-215

rault et al., 2019) and EuroParl-v10 (Koehn, 2005)216

4We analysed several vocabulary sizes (4k, 8k, 16k, 32k,
64k) but report only the best one, which is 64k for all cases.

English German
#morphs. 1 2 3 4 1 2 3 4

16,914 28,900 1,798 73 13,061 32,007 5,808 360

Accuracy Count
uniLM64k 0.54 0.52 0.49 0.59 0.35 0.27 0.21 0.18
BPE64k 0.5 0.53 0.5 0.52 0.29 0.33 0.28 0.26
Morfessor 0.22 0.47 0.55 0.48 0.17 0.26 0.28 0.25
PtrNet 0.82 0.84 0.56 0.81 0.74 0.86 0.7 0.42

Exact Segmentation Precision
uniLM64k 0.54 0.52 0.6 0.8 0.29 0.38 0.32 0.22
BPE64k 0.5 0.44 0.56 0.76 0.24 0.33 0.23 0.08
Morfessor 0.21 0.58 0.7 0.78 0.17 0.45 0.44 0.36
PtrNet 0.76 0.67 0.81 0.8 0.67 0.73 0.72 0.62

Table 1: Accuracy count and segmentation precision
for English and German using unsupervised and super-
vised segmentation methods. Results are grouped by
the expected number of morphemes (e.g. "1" means
that the word should not be split).

corpora5. Furthermore, we define two metrics to 217

assess the performance on computing synthesis: 218

• Accuracy count: Evaluates if the number of 219

obtained morphemes in the hypothesis seg- 220

mentation is the same as in the reference. 221

• Exact segmentation precision: Analyses if 222

the split morphemes are the same. We first 223

perform an automatic alignment between the 224

hypothesis and reference segments with the 225

parallel Needleman-Wunsch algorithm for se- 226

quences (Naveed et al., 2005), and then com- 227

pute the exact match at morpheme level. 228

3.1.2 Results and discussion 229

Table 1 shows the scores on morphological segmen- 230

tation for both English and German. For uniLM 231

and BPE. we observe that they under-perform when 232

it is not expected to split the word (column "1"). 233

This is a pattern observed by Bostrom and Durrett 234

(2020), where they noted that unsupervised segmen- 235

tation methods tend to over split the roots of words. 236

They both improve their accuracy and precision 237

when the number of morphemes expected is larger. 238

Unexpectedly, Morfessor also under-performs in 239

case "1" for both languages, and only surpasses 240

the other unsupervised methods when we measure 241

precision for many morphemes. Furthermore, The 242

PtrNet supervised method outperforms the rest in 243

almost all scenarios. 244

We conclude that, to compute synthesis, we 245

should prioritise, besides a rule-based morpholog- 246

5Other languages like Danish are also available and was
tested, but we did not report the results here as there is not
complementary machine translation evaluation sets.
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ical analyser, a supervised segmentation method247

like PtrNet if data is available. We take advantage248

of this for the segment-level analysis in §5.249

3.2 Fusion: Semi-automatic computation250

Calculating fusion should be approached in a case251

by case scenario, as there are different considera-252

tions provided by Payne (2017). Therefore, there253

is not an automatic tool that can obtain the fusion254

score directly. We decided to focus on Spanish6255

as a case study, where verbs and auxiliary verbs256

contains the highest degree fusion of all the parts-257

of-speech (POS).258

Procedure We observed that we could perform259

an annotation per paradigm and the termination260

of the verb (-ar, -er, -ir), as the fusion degree will261

remain the same regardless of the lemma7. Then,262

on a chosen Spanish corpus:263

1. Perform an automatic annotation of POS and264

morphological features8.265

2. Review the automatic annotation of special266

cases. For instance, there are specific verb267

forms that are missed as adjectives. We cor-268

rected the POS and morphological annotation269

of those cases in a manual step.270

3. Obtain a set of all unique verb paradigms and271

morphological features in the corpus, consid-272

ering the three different types of verb termina-273

tions in Spanish as different elements9.274

Now there is a list of unique verb paradigms and275

terminationsthat can be annotated both in synthesis276

and fusion. The steps are as follows:277

1. For each unique verb paradigm and termi-278

nation, segment a verb sample into its mor-279

phemes. E.g. the verb habló (‘talked’), is280

split in habl-ó, and habláramos (‘we were to281

speak’) in habl-ára-mos.282

2. Analyse how many morphological features283

are fused in each morpheme: if you change284

6We chose this language because of the ease of finding
annotators and MT training and evaluation data.

7Except for irregular ones, which presents a limitation and
potential noise. To reduce the risk of a biased assessment, we
also performed a human evaluation.

8We use the spaCy model es_dep_news_trf, avail-
able at https://spacy.io/models/es#es_dep_
news_trf. It has an accuracy of 0.99 in POS and mor-
phological tagging in the UD Spanish AnCora dataset (Taulé
et al., 2008), which contains news texts mostly.

9Using the Unimorph database (McCarthy et al., 2020)
is another alternative for extracting all the possible unique
inflections (at least the ones that are annotated), but would
have required an extra aligning step of the Unimorph and
spaCy tag sets.

a value of a feature, will the surface form or 285

morpheme will change? E.g. in habl-ó, -ó 286

participates in 5 features (mode (indicative), 287

subject person (third person), subject num- 288

ber (singular), tense (past) and aspect (perfec- 289

tive)). For habl-ára-mos, -ára includes the 290

past and subjunctive, whereas -mos denotes 291

the person and number. If any of aforemen- 292

tioned feature changes its value, the surface 293

will change too. 294

3. Count and aggregate the results per mor- 295

phemes and obtain the fusion for each verb 296

paradigm. E.g. the fusion for habl-ó is 4/5 = 297

0.8, and for habl-ára-mos is 2/4 = 0.5. 298

Finally, with the annotation in the unique list of 299

verb inflections and terminations, we can extend 300

the degree of fusion to all the verbs in the original 301

Spanish corpus. 302

4 Word-level analysis of Synthesis and 303

Fusion in Machine Translation 304

In this analysis, we ask the following question: how 305

difficult is translating a word concerning its index 306

of synthesis or fusion? For evaluating synthesis, 307

we work with Turkish10 nouns and verbs, and for 308

fusion, we keep working on Spanish verbs. For 309

both cases, English is the source language in the 310

translation task. 311

4.1 Experimental design 312

The experiment consists of comparing a gold stan- 313

dard reference with machine translation system 314

outputs at the word level: 315

1. For both the reference and system output, we 316

automatically tag all the words with a mor- 317

phological analyser (the Boun morpholog- 318

ical analyser and disambiguator (Sak et al., 319

2008) for Turkish and an spaCy model trained 320

on the Ancora Universal Dependency parser 321

(Taulé et al., 2008) for Spanish). The POS 322

is needed to filter the target words. For syn- 323

thesis in Turkish, the number of morphemes 324

works as a proxy, as we are working at the 325

word level. For fusion in Spanish, we need 326

the inflection to obtain the degree of fusion 327

from the annotated unique list (see 3.2). 328

10Turkish presents high synthesis and agglutination (Zin-
gler, 2018), meaning that there are words composed with
several morphemes and the morpheme boundaries are explicit,
respectively. We focus on verbs and nouns, which usually con-
tain more morphemes than other parts-of-speech. We chose
this language due to the availability of an open-source rule-
based morphological analyser and an expert annotator.
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Figure 1: Accuracy (exact translation) for Nouns (top) and Verbs (bottom) in the English→Turkish translations.
Results are grouped by the training frequency of the words (less to more frequent from left to right), and each
subplot presents the scores for all the words, and whether they belong or not to the vocabulary input of the model.
The number of samples are stacked in each bar, and we do not show entries with less than 30 samples.

2. Align the words between the reference and329

system output. We use the awesome-align330

(Dou and Neubig, 2021) tool by fine-tuning331

the multilingual BERT (Devlin et al., 2019)332

model for word-alignment, using the refer-333

ence and system output as parallel corpora.334

3. Calculate the translation accuracy (exact335

match of the word, 0 or 1) for the target POS.336

We then fine-grain the results concerning the de-337

gree of synthesis (number of morphemes) or fusion.338

Additionally, we control different confounds: fre-339

quency of the word in the training set, and whether340

the full word is part of the vocabulary input of the341

model or not. Finally, we complement the analysis342

with a human evaluation (see §4.4).343

4.2 Synthesis analysis: English→Turkish344

Data We use the NEWSTEST2018.EN-TR evalua-345

tion set from WMT (Bojar et al., 2018), with 3,000346

samples. In the Turkish side there are 45,944 to-347

kens, and Table 2 shows the distribution of the num-348

ber of morphemes obtained with Sak et al. (2008).349

Model We use an English-Turkish system trained350

with the TIL corpus of 39.9M parallel sen-351

tences (Mirzakhalov et al., 2021). On the352

NEWSTEST2018.EN-TR set, the performance is353

13.06 and 49.54 in BLEU and chrF, respectively.354

Results and discussion Figure 1 shows the aver-355

age accuracy (exact translation, 0 or 1) of nouns and356

verbs in NEWSTEST2018.EN-TR, where the num-357

ber of morphemes is a proxy for the index of synthe-358

sis. In most cases, especially with a higher training359

frequency, we observe that the average accuracy360

Total #1 #2 #3 #4 #5+
Verbs 3,834 133 2,265 1,036 308 92
Nouns 10,680 5,899 2,974 1,556 244 7

Table 2: Number of nouns and verbs in the Turskish ref-
erence set, and their respective number of morphemes.

drops as the number of morphemes increases from 361

1 to more. This is clearer in nouns than in verbs, 362

which have fewer cases to analyse overall. Between 363

2, 3 or more than 4 morphemes the differences are 364

not significant, and sometimes is not consistent (e.g. 365

verbs with the highest frequency). However, we can 366

argue that analytic nouns (synthesis=1) are easier 367

to translate than synthetic nouns (synthesis>1) for 368

the English→Turkish direction. The pattern holds 369

for whether the word is part of the vocabulary of 370

the model or not, although rare words (frequency in 371

[0, 103] have generally lower translation accuracy 372

than more frequent words (frequency > 100). 373

4.3 Fusion analysis: English→Spanish 374

Data We use the NEWSTEST2013.EN-ES evalua- 375

tion set from WMT (Bojar et al., 2013) with 3,000 376

samples. In the Spanish side there are 62,055 to- 377

kens, with 6,317 verbs, and where 1,411 of them 378

are more agglutinative (fusion=0) and 4,822 more 379

fusional (fusion>0). 380

Model For training, we use the MarianNMT 381

toolkit (Junczys-Dowmunt et al., 2018), a 382

Transfomer-base model (Vaswani et al., 2017) 383

with default parameters, and four NVIDIA V100 384

GPUs. We obtained different English-Spanish mod- 385
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the training frequency and whether the word belongs to
the vocabulary of the model (In V) or not (Not in V).

els using the newscommentary-v8 (Bojar et al.,386

2013) and EuroParl (Koehn, 2005) datasets with387

joint vocabulary sizes of 8k, 16k and 32k (us-388

ing unigram-LM from SentencePiece (Kudo and389

Richardson, 2018)). For this analysis, we chose390

the best performing system: combining both391

datasets (2.2M sentences) with 16k pieces. On392

NEWSTEST2013.EN-ES, the performance is 31.6393

BLEU points.394

Results and discussion Figure 2 shows the aver-395

age accuracy of verbs in NEWSTEST2013.EN-ES396

for verbs without and with some degree of fusion.397

In the two higher frequency subplots (middle and398

right), we can observe that the average accuracy of399

the non-fusional verbs is higher than the fusional400

ones, and the pattern holds whether the verb is401

present in the vocabulary input of the model or not.402

The exception is for the least frequent verbs, al-403

though this is explained as the model do not have404

enough information to learn from, regardless of405

their degree of fusion.406

4.4 Human evaluation407

Exact translation accuracy has limitations, as there408

are potential translations that could be acceptable409

given a specific context (e.g. a synonym). For410

that reason, we performed a human evaluation of a411

sample of sentences on (10%) of each evaluation412

set, focusing on two scores11:413

1. Semantic score: evaluates the meaning of the414

word used in the automatic translation (system415

output) and how it compares with the gold416

standard translation. Scale goes from 1 (no417

relationship at all) to 4 (it is the same lemma).418

2. Grammar score: evaluates the grammatical419

form and how it compares with the gold stan-420

dard translation. Scale goes from 1 (different421

11Details of the annotation protocol are in the Appendix
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Figure 4: Grammar score annotation for Turkish.

inflection) to 3 (same inflection). 422

Synthesis In Figures 3 and 4 we show the anno- 423

tation scores for the semantic and grammar met- 424

rics, respectively, for both Nouns (top) and Verbs 425

(bottom). We also divide the analysis w.r.t. the 426

frequency of the word in the training data. For 427

Nouns, we observe similar patterns as in the auto- 428

matic analysis, where the amount of words with 429

one morpheme (synthesis=1) has a higher semantic 430

or grammar score than the rest, suggesting they are 431

easier to generate for the model, except in the least 432

frequent block, which still cannot be well translated. 433

The Verbs tend to have more distributed scores sug- 434

gesting the difficulty of generating inflected forms 435

may remain equally high even when the words are 436

more frequent. Single morpheme Verbs are very 437

rare in Turkish and generally contain exceptional 438

forms which reflects in the low translation accuracy 439

in Figures 3 and 4. We also observe that a good 440

proportion of translated words with ’zero’ accu- 441
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Figure 5: Semantic (top) and Grammar (bottom) anno-
tation for Spanish.

racy (not the exact translation) has been annotated442

with highest semantic (same lemma) or grammar443

(same inflection) score, suggesting in some cases444

the model is successful in generalization, although445

we see this case when the words are relatively short446

(1 to 3 morphemes at most).447

Fusion Figure 5 shows the semantic and gram-448

mar annotation scores for Spanish verbs. For the449

semantic scores (top), in all levels, the gap between450

the non-fusional and fusional verbs is reduced, for451

all the frequency groups. This means that the model452

is indeed able to generalise and offer alternative453

translations (not the exact verb), which is more454

complex to measure with automatic metrics. In the455

grammar scale (bottom), however, we still note a456

slight advantage in the maximum score (3) of the457

non-fusional verbs against the fusional ones for the458

two highest frequency subplots (middle and right).459

460

5 Segment-level Analysis of Synthesis461

and Fusion in Machine Translation462

To analyse the relationship between machine trans-463

lation difficulty and the degree of synthesis or fu-464

sion at the segment level, we process a selection of465

systems for the language pair we want to evaluate.466

We obtain an automatic metric score of the out-467

put with respect to the reference (BLEU (Papineni468

et al., 2002), chrF (Popović, 2015), COMET (Rei469

et al., 2020)) per sentence, and also compute po-470

tential predictor variables for each sentence, such471

as the degree of synthesis or fusion. We comple-472

ment the predictor variable list with other heuris-473

char.count

morph.count

swEnTr2.count

swTrEn2.count

synthesis

word.count

−12 −8 −4 0
estimate

EnTr1.chrF

EnTr1.COMET

EnTr2.chrF

EnTr2.COMET

TrEn2.chrF

TrEn2.COMET

Figure 6: Overview of significant predictors for degree
of synthesis across our TR-EN and EN-TR models.
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Figure 7: Overview of significant predictors for degree
of fusion across our ES-EN and EN-ES models.
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Figure 8: Overview of significant predictors across DE-
EN models.

tics, such as the length of the sentence in characters 474

(char.count) or words (word.count). The full list 475

of all the predictors per language pair is in the Ap- 476

pendix. For simplification purposes, in the follow- 477

ing analysis and plots, we only show the predictors 478

that show a significant effect on the system outputs. 479

Synthesis on En-Tr and Tr-En We first start 480

evaluating the English-Turkish and Turkish- 481

English language pairs. The evaluated models 482

are EnTr1, EnTr2, and TrEn2 (details in the Ap- 483

pendix).Also, as we are studying synthesis in Turk- 484

ish, all predictors are computed on the Turkish side, 485

regardless of the translation direction. 486

We generate a unique model per system output 487

and evaluation metric (we use chrF and COMET), 488

7



in which each model’s output is set to the degree489

of synthesis or other heuristics. The goal of this490

model creation is to identify which predictors (i.e.,491

the aforementioned variables) affect each method’s492

performance. Following model creation, we extract493

the significant predictors of each model. This pro-494

vides an indication of which variables can be used495

to predict the outcome of the model’s dependent496

variable – in our case the degree of synthesis.497

In this sense, Figure 6 presents an overview of498

the significant predictors on En-Tr and Tr-En sys-499

tems, where we observe a large impact of the syn-500

thesis variable on the chrF scores of two different501

systems (EnTr1 and TrEn2). The only other heuris-502

tic that achieves a notable impact on system output503

is morph.count, or the length of Turkish sentence504

in morphemes, split by a morphological analyser.505

Other predictors have only a minor effect.506

Fusion on En-Es and Es-En In a similar way,507

we evaluate the impact of fusion in English-Spanish508

(EnEs1, EnEs2) and Spanish-English (EsEn1,509

EsEn2) models (see Figure 7 and Appendix for510

details). Again, as we are studying fusion in Span-511

ish, all predictors are computed on the Spanish side,512

regardless of the translation direction. Following513

the same procedure as before, Figure 7 presents514

an overview of the significant predictors, where515

we can observe that R.fusion.verb, or the ratio of516

the degree of fusion over the number of verbs, is517

the predictor that has the highest impact in most518

system outputs (EnEs1, EnEs2 and EsEn2). Ad-519

ditionally, R.fusion.swEsEn2, or the ratio of the520

degree of fusion over the number of subwords in-521

put in the EsEn2 model, also has a high impact in522

one system output (EnEs2, which uses the same523

segmentation model).524

Analysis on En-De and De-En Finally, we ex-525

tend the analysis to English-German and German-526

English language pairs, using the respective evalu-527

ation sets of the WMT2018 campaign (Bojar et al.,528

2018), and the system outputs provided for all529

the participants (measured in BLEU). For com-530

puting synthesis, we use the different segmentation531

methods we compared in §3.1. However, for fu-532

sion, we only use a shallow proxy with the number533

of morphological features that are tagged using a534

morphological analyser. In this case, the predic-535

tors are computed for both the source and target536

side. We present an overview of these significant537

predictors for German-English in Figure 8 (and538

we similarly discuss the English-German results 539

from Figure 9 in the Appendix). We can observe 540

that ref.SYN.uniLM and ref.SYN.PtrNet are the pre- 541

dictors that impact most of the different system 542

outputs. These variables refer to the synthesis 543

computed on the reference side (English) using 544

uniLM or PtrNet as the morpheme segmentation 545

method, respectively. Furthermore, we observe 546

that src.ref.R.feat.token has also some effect over 547

one system output,which is a shallow proxy for 548

the fusion degree in the source w.r.t. to reference 549

segment (using number of tagged morph. features). 550

6 Discussion and conclusion 551

Overall results do not suggest that translating into 552

more analytic languages (e.g. Chinese) or more 553

agglutinative ones (e.g. Turkish) is easier than their 554

counterparts. Highly analytic ones poses the signif- 555

icant issue of word coverage and vocabulary size of 556

the model. Besides, we cannot isolate the fusional 557

degree from synthesis at all. For instance, Turkish 558

is a highly agglutinative language, but also highly 559

synthetic, and there are languages that presents 560

both agglutinative and fusional traits, like Navajo. 561

Therefore, a word level analysis with specific tar- 562

get POS, as in this study, should be fundamental 563

to study the indexes. The language scope is an- 564

other limitation: is it possible to extend it to further 565

languages in a practical way? Synthesis can be 566

calculated directly only if the morphological anal- 567

yser splits the word into morphemes. Moreover, 568

the fusion degree poses several issues as mentioned 569

before. However, a less fine-grained analysis in the 570

index (e.g. synthesis=1 vs. synthesis>1 or fusion=0 571

vs. fusion>0), as in this work, could be beneficial 572

to evaluate more languages. 573

In conclusion, for the chosen study cases, we 574

observed that higher degrees of synthesis and fu- 575

sion have an impact in machine translation quality 576

both at word and segment level. Also, we consider 577

that performing our analysis for specific POS and 578

languages could aid NLP systems, like in MT. For 579

instance, as future work, we ask ourselves: how 580

can we make an MT system more aware of fusional 581

joints? And to evaluate the results, we need to fine- 582

grain words with low and high fusion, to observe 583

whether we are achieving improvements. 584

7 Ethical Considerations 585

The annotations in this paper were compensated ac- 586

cordingly (see Appendix). Also, for all the datasets 587
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used in the research, we stick to the ethical stan-588

dards giving credit to the original author in the589

spirit of fair scientific usage. We further strongly590

encourage future work that use these resources, to591

cite also the original sources of the data. We also592

see other ethical risks of this work: for the down-593

stream task of MT, a translation system should not594

be deployed with low quality translations, as it can595

mislead the user, and have implicit biases.596
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Ondřej Bojar, Christian Buck, Chris Callison-Burch,625
Christian Federmann, Barry Haddow, Philipp626
Koehn, Christof Monz, Matt Post, Radu Soricut, and627
Lucia Specia. 2013. Findings of the 2013 Work-628
shop on Statistical Machine Translation. In Proceed-629
ings of the Eighth Workshop on Statistical Machine630
Translation, pages 1–44, Sofia, Bulgaria. Associa-631
tion for Computational Linguistics.632
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A Human Evaluation837

A.1 Annotation Protocol838

This study measures the translation quality of trans-839

lations generated by a translation system. You840

are given a list of sentences where one column841

lists each word in the gold standard (correct) trans-842

lation and the corresponding column the system-843

generated translations. The evaluation of the trans-844

lations will rely on the two scores described below.845

The scores to use in the evaluation are:846

Semantic score evaluates the meaning of the847

word used in the automatic translation (system out-848

put) and how it compares with the gold standard849

translation.850

Please assign each word in the output one of the851

scores you find most appropriate:852

1. There is no relationship between the two lem-853

mas854

2. The lemmas are different but the translation855

does not fit well in the context856

3. The lemmas are different but it is still an ac-857

ceptable translation (e.g. synonym)858

4. It is the same lemma859

Grammar score evaluates the grammatical form 860

and how it compares with the gold standard trans- 861

lation. 862

Please assign each word in the output one of the 863

scores you find most appropriate: 864

1. The word is inflected in a different way and it 865

is not necessarily correct 866

2. The word has different inflection but it is still 867

grammatically correct 868

3. The words have the same inflection, and it is 869

correct 870

Please annotate all words in the translations in 871

the file shared with you. In your evaluation try 872

assigning the two scores to each word indepen- 873

dently. The inflection of the word measures the 874

morphological feature and should also be evaluated 875

independently from the analyzer output which is 876

automated and may contain errors. 877

The file contains example annotations for your 878

reference, please ask any questions related to un- 879

resolved annotation examples by contacting the 880

project coordinators. 881

A.2 Annotators 882

For both Turkish and Spanish, the annotators were 883

contacted directly due to their expertise in morphol- 884

ogy (both of them are PhD students in Linguistics 885

and Computational Linguistics, respectively), be- 886

sides requiring that they are native speakers of the 887

target languages. Also, they were paid more than 888

the minimum wage per hour of annotation of their 889

country of residence, and were told that the anno- 890

tated data will be released upon acceptance of the 891

study. 892

B Segment-level Analysis of Synthesis 893

and Fusion 894

B.1 List of machine translation systems 895

• EnTr1: the same system used in §4.2 896

• EnTr2: Transformer-base model (Vaswani 897

et al., 2017) with joint vocabulary size of 898

8k pieces (unigram language modelling from 899

SentencePiece (Kudo and Richardson, 2018), 900

and trained with a sample (10%) of the corpus 901

of EnTr1. 902

• EnEs1: the same system used in §4.3 903

• EsEn1: similar configuration than EnEs1 but 904

in the opposite direction 905

• EnEs2: same configuration as EnEs1 (model 906

and vocabulary) but with smaller training data. 907
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Predictor Description
char.count number of characters
word.count number of words (no punct. or numbers)
morph.count number of morphemes.
synthesis ratio of morph.count / word.count
N+V.word.count number of Nouns and Verbs
N+V.morph.count number of morphemes of the Nouns and Verbs
N+V.synthesis ratio of N+V.morph.count / word.count
swEnTr1.count number of subwords processed by the EnTr1 model
swEnTr2.count number of subwords processed by the EnTr2 model
swTrEn2.count number of subwords processed by the TrEn2 model
syn.swEnTr1 ratio of swEnTr1.count / word.count (synthesis proxy)
syn.swEnTr2 ratio of swEnTr1.count / word.count (synthesis proxy)
syn.swTrEn2 ratio of swEnTr1.count / word.count (synthesis proxy)

Table 3: List of predictors for En-Tr and Tr-En. All
variables are computed on the Turkish segment of the
evaluation set.

Predictor Description
char.count number of characters
word.count number of words (no punct. or numbers)
verb.count number of verbs
fusion sum of the degree of fusion of all the verbs in the segment
R.fusion.verb ratio of fusion / verb.count
R.fusion.word ratio of fusion / word.count
swEsEn1.count number of subwords processed by the EsEn1 model
swEsEn2.count number of subwords processed by the EsEn2 model
R.fusion.swEsEn1 ratio of fusion / swEsEn1.count
R.fusion.swEsEn2 ratio of fusion / swEsEn2.count
swEnEs1.count number of subwords processed by the EnEs1 model
swEnEs2.count number of subwords processed by the EnEs2 model
R.fusion.swEnEs1 ratio of fusion / swEnEs1.count
R.fusion.swEnEs2 ratio of fusion / swEnEs2.count

Table 4: List of predictors for En-Es and Es-En. All
variables are computed on the Spanish segment of the
evaluation set.

It uses only newscommentary-v8 data, with908

around 300k sentences).909

• EsEn2: similar configuration than EnEs2 but910

in the opposite direction.911

B.2 List of predictors912

Tables 3, 4 and 5 describes all the predictors used913

at the segment level analysis of English-Turkish,914

English-Spanish and English-German (both direc-915

tions), respectively.916

B.3 Results on English-German917

Figure 9 shows the analogous results for English918

to German, where the synthesis-based variables919

presents a high impact w.r.t. the other predictors.920

Predictor Description
src.char.count number of characters in the source side
ref.char.count number of characters in the target side
src.word.count number of words in the source side
ref.word.count number of words in the target side
src.uniLM.count number of subwords obtained by uniLM in the source
ref.uniLM.count number of subwords obtained by uniLM in the target
src.SYN.uniLM synthesis in source = src.uniLM.count / src.word.count
ref.SYN.uniLM synthesis in target = ref.uniLM.count / ref.word.count
src.mrfsr.count number of subwords obtained by Morfessor in the source
ref.mrfsr.count number of subwords obtained by Morfessor in the target
src.SYN.mrfsr synthesis in source = src.mrfsr.count / src.word.count
ref.SYN.mrfsr synthesis in target = ref.mrfsr.count / ref.word.count
src.PtrNet.count number of subwords obtained by PtrNet in the source
ref.PtrNet.count number of subwords obtained by PtrNet in the target
src.SYN.PtrNet synthesis in source = src.PtrNet.count / src.word.count
ref.SYN.PtrNet synthesis in target = ref.PtrNet.count / ref.word.count
src.feat.count number of morph. features in the source (using spAcy)
src.R.feat.token ratio of src.feat.count / src.word.count
ref.feat.count number of morph. features in the target (using spAcy)
ref.R.feat.token ratio of ref.feat.count / ref.word.count
src-ref.feat.count src.feat.count minus ref.feat.count
src-ref.R.feat.token src.R.feat.token minus ref.R.feat.token
ref-src.feat.count ref.feat.count minus src.feat.count
ref-src.R.feat.token ref.R.feat.token minus src.R.feat.token

Table 5: List of predictors for En-De and De-En. Vari-
ables are computed either on source (src) or target (ref)
side.
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Figure 9: Overview of significant predictors for degree of synthesis across EN-DE models.
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