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Abstract

Theoretical work in morphological typology
offers the possibility of measuring morpholog-
ical diversity on a continuous scale. However,
literature in NLP typically labels a whole lan-
guage with a strict type of morphology, e.g.
fusional or agglutinative. In this work, we
propose to reduce the theoretical rigidity of
such claims, by quantifying the morphologi-
cal typology at the word and segment level.
We consider Payne (2017)’s approach to clas-
sify morphology using two indices: synthesis
(from 1 for analytic to 3 or more for polysyn-
thetic) and fusion (from O for agglutinative to
1 for fusional). For computing synthesis, we
test unsupervised and supervised morpholog-
ical segmentation methods for English, Ger-
man and Turkish, whereas for fusion, we pro-
pose a semi-automatic method using Spanish
as a case study. Then, we analyse the re-
lationship between machine translation qual-
ity and the degree of synthesis and fusion at
word (nouns and verbs for English-Turkish,
and verbs in English-Spanish) and segment
level (previous language pairs plus English-
German in both directions). We complement
the word-level analysis with human evaluation,
and overall, we observe a consistent impact of
both indexes on machine translation quality.

1 Introduction

One of the first barriers to develop language tech-
nologies is morphology, i.e., how systematically
diverse their word formation processes are. For in-
stance, agglutination and fusion are two morpholog-
ical kind of processes that concatenate morphemes
to a root with explicit or non-explicit boundaries,
respectively. Processing morphologically-diverse
languages and evaluating morphological compe-
tence in NLP models is relevant for language gen-
eration and understanding tasks, such as machine
translation (MT). It is unfeasible to develop models
with capacity large enough to encode the full vocab-
ulary of every language, and it is a must to rely on

subword segmentation approaches that help to con-
strain the capacity when generating rare, or even
new words (Sennrich et al., 2016). Hence, under-
standing morphology is essential to develop robust
subword-based models and evaluate the quality of
their outputs (Vania and Lopez, 2017). Neverthe-
less, there is a potential gap between the probing
of whether an NLP model can handle "morpho-
logical richness", and what is a proper measure of
"morphological richness" from linguistic typology.

In most of the recent NLP literature, different
types of languages (e.g. agglutinative, polysyn-
thetic) are chosen to test a more diverse handling of
morphological richness (Ponti et al., 2019). There
is, however, a debate as to whether languages can
indeed be classified into discrete morphological
categories. Payne (2017) provided a morphological
typology measurement in a continuous spectrum
using the indices of synthesis and fusion. Syn-
thesis measures if a segment is highly analytic or
synthetic (from 1 to more), whereas fusion mea-
sures whether it is highly agglutinative or fusional
(from O to 1). And surprisingly, with respect to
the NLP literature, it is possible to identify English
sentences with a very low fusion index, meaning
that they are highly agglutinative'.

From a more applied perspective, if the refer-
ences of an evaluation set (in any language gener-
ation task) are labelled with the indices, we could
perform a stratified analysis (e.g. low fusion and
high fusion) to determine how well an NLP model
handles morphology for multiple languages. For
example, we could assess whether a machine trans-
lation model is failing in generating more fusional
than agglutinative segments for a specific target
language. Knowing and quantifying that problem

'For instance, in the following fragment (Payne, 2017),
the index of fusion is 1/8 or 0.125 (fusional morpheme joints
are marked with a dot and the rest with a hyphen): "The
company-’s great break-through came.PAST when they decid-
ed to buy trike-s to sell their ice cream around the street-s in
the nine-teen twenty-s".



concerning morphology is the first step towards
proposing a solution. Our contributions then are
listed as follows:

* We present the first computational quantifi-
cation of synthesis and fusion using standard
NLP evaluation sets.

* We analyse the relationship between the two
indices and machine translation quality at
word-level, and observe that a higher degree
of synthesis or fusion usually corresponds
to less accurate translations in specific word
types (studying nouns and verbs in English-
Turkish, and verbs in English-Spanish).

* We complement this evaluation with manual
annotation of synthesis and fusion?.

* We extend the analysis at segment-level, us-
ing the aforementioned language pairs plus
English-German in both directions, and iden-
tify that some synthesis and fusion-based pre-
dictors are significant for MT system outputs.

2 Background and related work

2.1 Morphological typology

Early approaches to morphological typology
tended to characterise languages in a holistic way,
in terms of their word formation strategies, such
as agglutination or fusion (Sapir, 1921). First was
the idea that languages can be characterised holis-
tically and unambiguously in terms of their word
and sentence-building processes, but different stud-
ies started to quantify these strategies, such as in
Payne (2017), that recently argued about synthesis
and fusion, which are defined as follows.

2.1.1 Synthesis

The index of synthesis offers a scale to contrast
highly analytic or synthetic languages. This im-
plies whether a word is composed by one (analytic)
or several (synthetic) morphemes (Payne, 2017).
Synthesis can be computed as the ratio of number
of morphemes per words, it is closer to 1 when
the language is more analytic (e.g. Mandarin, or
English to a less degree), and gets higher the more
synthetic the language is (e.g. Turkish, Inuktitut).
Polysynthesis can be present when the synthesis
degree is higher than 3, although the boundary is
arguable. Besides, as we claim in this study, any
language can present different levels of synthesis
if we evaluate them at a more fine-grained level.

2All annotated data will be released upon acceptance.

2.1.2 Fusion

Fusion is the ratio of the fusional morphemes
joints® per the total number of joints. This index
goes from 0 to 1, or from highly agglutinative (e.g.
Turkish) to highly fusional (e.g. Spanish) cases.
However, we noticed that the computation of fu-
sion is complex to automatiseFor instance, Payne
(2017) indicates potential cases to identify fusional
joints, such as in prefixes, suffixes, infixes, cir-
cumfixes, compounding, non-concatenation pro-
cesses (reduplication, apophony, substractive mor-
phology) or autosegmental morphemes. Current
automatic tools are not designed to identify these
cases for most languages.

2.2 Morphological typology on NLP

A survey by Ponti et al. (2019), on computational
typology for NLP, pointed out that morphologi-
cal knowledge is potentially helpful for analysing
the difficulty in generation tasks such as language
modelling and neural MT for both unsupervised
and supervised settings. More specifically, they
suggested that the degree of fusion (related to the
index of fusion proposed by Payne (2017)) impacts
in the rate of less frequent words, which is a rele-
vant parameter for generation tasks.

Besides, the studies that address morphologi-
cal typology are related to either the development
of morphological analysis systems or the evalua-
tion of typologically diverse languages in terms
of morphology (Vania and Lopez, 2017; Xu et al.,
2020). However, the typology used to distinguish
languages varies across different studies. For in-
stance, Vania and Lopez (2017) considers four phe-
nomena to label languages: fusionality, agglutina-
tion, reduplication and root-pattern; whereas Xu
et al. (2020) considers more fine-grained elements
such as affixation (prefixation, infixation and suf-
fixation) or partial reduplication. It is important
to note that none of the previous studies have ad-
dressed the phenomena as an index but rather as a
discrete label for a language.

Furthermore, other studies refer only to mor-
phological typological features as part of the task
of typological feature prediction from linguistic
databases (Bjerva and Augenstein, 2018; Bjerva
et al., 2020).

30r how many grammatical, syntactic and semantic fea-
tures are joint. More than one feature can be fused in a single
morpheme.



2.3 Morphological segmentation and analysis

Morphological segmentation was first introduced
by Harris (1951). Unsupervised methods are pop-
ular with the morfessor (Creutz and Lagus, 2002,
2007; Poon and Domingos, 2009) family of meth-
ods, including semi-supervised versions (Kohonen
et al., 2010; Gronroos et al., 2014). Also, Adaptor
Grammars have been applied with great success
to the task (Eskander et al., 2019). Besides, super-
vised methods have achieved the best results, such
as pointer generator networks (Mager et al., 2020).

Besides, the most widespread unsupervised seg-
mentation methods (Byte-Pair-Encoding (BPE;
Sennrich et al., 2016) and a method based on un-
igram language modelling (Kudo, 2018)) are not
linked at all to morphological segmentation, but
they are used to constrain the vocabulary size for
neural generation tasks.

Finally, it is important to note that the index
synthesis can be computed with a robust morpho-
logical analyser or segmentation model (to count
the number of morphemes), but neither of them are
built to compute the index of fusion directly.

3 How to compute Synthesis and Fusion?

3.1 Synthesis: automatic computation

To automatically compute the index of synthesis,
we require to perform a robust morphological seg-
mentation. A rule-based morphological analyser
and disambiguator might be the best option if avail-
able (which we use later for Turkish in §4.2), but
for the purpose of the study, we compare well-
known supervised and unsupervised methods:

* Byte-Pair-Encoding (BPE) and Unigram Lan-
guage Model (uniLM)* from SentencePiece
(Kudo and Richardson, 2018).

* Morfessor (Poon and Domingos, 2009).

* Pointer Generator Network (PtrNet) from the
implementation of Mager et al. (2020).

3.1.1 Datasets and evaluation

We used the CELEX dataset of segmented words
for English and German (Steiner, 2016, 2017),
where we randomly split training and evaluation
data (80-10-10). Besides, for the unsupervised
methods, we use the newscommentary-v15 (Bar-
rault et al., 2019) and EuroParl-v10 (Koehn, 2005)

YWe analysed several vocabulary sizes (4k, 8k, 16k, 32k,
64k) but report only the best one, which is 64k for all cases.

English German
#morphs. 1 2 3 4 1 2 3 4
16,914 28,900 1,798 73 |/13,061 32,007 5,808 360

Accuracy Count

uniLMeggy | 0.54 0.52 0.49 0.59| 0.35 0.27 0.21 0.18
BPEg4x 0.5 0.53 0.5 0.52{|0.29 0.33 0.28 0.26
Morfessor| 0.22 0.47 0.55 0.48| 0.17 0.26 0.28 0.25
PtrNet 0.82 0.84 0.56 0.81| 0.74 0.86 0.7 0.42
Exact Segmentation Precision

052 0.6 0.8|0.29 0.38 0.32 0.22
BPEeak 0.5 0.44 0.56 0.76]] 0.24 0.33 0.23 0.08
Morfessor| 0.21 0.58 0.7 0.78| 0.17 0.45 0.44 0.36
PtrNet 0.76 0.67 0.81 0.8 | 0.67 0.73 0.72 0.62

uniLM64k 0.54

Table 1: Accuracy count and segmentation precision
for English and German using unsupervised and super-
vised segmentation methods. Results are grouped by
the expected number of morphemes (e.g. "1" means
that the word should not be split).

corpora’. Furthermore, we define two metrics to
assess the performance on computing synthesis:

* Accuracy count: Evaluates if the number of
obtained morphemes in the hypothesis seg-
mentation is the same as in the reference.

* Exact segmentation precision: Analyses if
the split morphemes are the same. We first
perform an automatic alignment between the
hypothesis and reference segments with the
parallel Needleman-Wunsch algorithm for se-
quences (Naveed et al., 2005), and then com-
pute the exact match at morpheme level.

3.1.2 Results and discussion

Table 1 shows the scores on morphological segmen-
tation for both English and German. For uniLM
and BPE. we observe that they under-perform when
it is not expected to split the word (column "1").
This is a pattern observed by Bostrom and Durrett
(2020), where they noted that unsupervised segmen-
tation methods tend to over split the roots of words.
They both improve their accuracy and precision
when the number of morphemes expected is larger.
Unexpectedly, Morfessor also under-performs in
case "1" for both languages, and only surpasses
the other unsupervised methods when we measure
precision for many morphemes. Furthermore, The
PtrNet supervised method outperforms the rest in
almost all scenarios.

We conclude that, to compute synthesis, we
should prioritise, besides a rule-based morpholog-

3Other languages like Danish are also available and was
tested, but we did not report the results here as there is not
complementary machine translation evaluation sets.



ical analyser, a supervised segmentation method
like PtrNet if data is available. We take advantage
of this for the segment-level analysis in §5.

3.2 Fusion: Semi-automatic computation

Calculating fusion should be approached in a case
by case scenario, as there are different considera-
tions provided by Payne (2017). Therefore, there
is not an automatic tool that can obtain the fusion
score directly. We decided to focus on Spanish®
as a case study, where verbs and auxiliary verbs
contains the highest degree fusion of all the parts-
of-speech (POS).

Procedure We observed that we could perform
an annotation per paradigm and the termination
of the verb (-ar, -er, -ir), as the fusion degree will
remain the same regardless of the lemma’. Then,
on a chosen Spanish corpus:

1. Perform an automatic annotation of POS and
morphological features®.

2. Review the automatic annotation of special
cases. For instance, there are specific verb
forms that are missed as adjectives. We cor-
rected the POS and morphological annotation
of those cases in a manual step.

3. Obtain a set of all unique verb paradigms and
morphological features in the corpus, consid-
ering the three different types of verb termina-
tions in Spanish as different elements”’.

Now there is a list of unique verb paradigms and
terminationsthat can be annotated both in synthesis
and fusion. The steps are as follows:

1. For each unique verb paradigm and termi-
nation, segment a verb sample into its mor-
phemes. E.g. the verb hablo (‘talked’), is
split in habl-6, and habldramos (‘we were to
speak’) in habl-dra-mos.

2. Analyse how many morphological features
are fused in each morpheme: if you change

®We chose this language because of the ease of finding
annotators and MT training and evaluation data.

"Except for irregular ones, which presents a limitation and
potential noise. To reduce the risk of a biased assessment, we
also performed a human evaluation.

8We use the spaCy model es_dep_news_trf, avail-
able at https://spacy.io/models/es#es_dep_
news_trf. It has an accuracy of 0.99 in POS and mor-
phological tagging in the UD Spanish AnCora dataset (Taulé
et al., 2008), which contains news texts mostly.

Using the Unimorph database (McCarthy et al., 2020)
is another alternative for extracting all the possible unique
inflections (at least the ones that are annotated), but would
have required an extra aligning step of the Unimorph and
spaCy tag sets.

a value of a feature, will the surface form or
morpheme will change? E.g. in habl-0, -0
participates in 5 features (mode (indicative),
subject person (third person), subject num-
ber (singular), tense (past) and aspect (perfec-
tive)). For habl-dra-mos, -dra includes the
past and subjunctive, whereas -mos denotes
the person and number. If any of aforemen-
tioned feature changes its value, the surface
will change too.

3. Count and aggregate the results per mor-
phemes and obtain the fusion for each verb
paradigm. E.g. the fusion for habl-6 is 4/5 =
0.8, and for habl-dra-mos is 2/4 = 0.5.

Finally, with the annotation in the unique list of

verb inflections and terminations, we can extend
the degree of fusion to all the verbs in the original
Spanish corpus.

4 Word-level analysis of Synthesis and
Fusion in Machine Translation

In this analysis, we ask the following question: how
difficult is translating a word concerning its index
of synthesis or fusion? For evaluating synthesis,
we work with Turkish!'® nouns and verbs, and for
fusion, we keep working on Spanish verbs. For
both cases, English is the source language in the
translation task.

4.1 Experimental design

The experiment consists of comparing a gold stan-
dard reference with machine translation system
outputs at the word level:

1. For both the reference and system output, we
automatically tag all the words with a mor-
phological analyser (the Boun morpholog-
ical analyser and disambiguator (Sak et al.,
2008) for Turkish and an spaCy model trained
on the Ancora Universal Dependency parser
(Taulé et al., 2008) for Spanish). The POS
is needed to filter the target words. For syn-
thesis in Turkish, the number of morphemes
works as a proxy, as we are working at the
word level. For fusion in Spanish, we need
the inflection to obtain the degree of fusion
from the annotated unique list (see 3.2).

10Turkish presents high synthesis and agglutination (Zin-

gler, 2018), meaning that there are words composed with
several morphemes and the morpheme boundaries are explicit,
respectively. We focus on verbs and nouns, which usually con-
tain more morphemes than other parts-of-speech. We chose

this language due to the availability of an open-source rule-
based morphological analyser and an expert annotator.


https://spacy.io/models/es#es_dep_news_trf
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Figure 1: Accuracy (exact translation) for Nouns (top) and Verbs (bottom) in the English—Turkish translations.
Results are grouped by the training frequency of the words (less to more frequent from left to right), and each
subplot presents the scores for all the words, and whether they belong or not to the vocabulary input of the model.
The number of samples are stacked in each bar, and we do not show entries with less than 30 samples.

2. Align the words between the reference and
system output. We use the awesome-align
(Dou and Neubig, 2021) tool by fine-tuning
the multilingual BERT (Devlin et al., 2019)
model for word-alignment, using the refer-
ence and system output as parallel corpora.

3. Calculate the translation accuracy (exact
match of the word, O or 1) for the target POS.

We then fine-grain the results concerning the de-
gree of synthesis (number of morphemes) or fusion.
Additionally, we control different confounds: fre-
quency of the word in the training set, and whether
the full word is part of the vocabulary input of the
model or not. Finally, we complement the analysis
with a human evaluation (see §4.4).

4.2 Synthesis analysis: English— Turkish

Data We use the NEWSTEST2018.EN-TR evalua-
tion set from WMT (Bojar et al., 2018), with 3,000
samples. In the Turkish side there are 45,944 to-
kens, and Table 2 shows the distribution of the num-
ber of morphemes obtained with Sak et al. (2008).

Model We use an English-Turkish system trained
with the TIL corpus of 39.9M parallel sen-
tences (Mirzakhalov et al., 2021). On the
NEWSTEST2018.EN-TR set, the performance is
13.06 and 49.54 in BLEU and chrF, respectively.

Results and discussion Figure 1 shows the aver-
age accuracy (exact translation, O or 1) of nouns and
verbs in NEWSTEST2018.EN-TR, where the num-
ber of morphemes is a proxy for the index of synthe-
sis. In most cases, especially with a higher training
frequency, we observe that the average accuracy

| Total | #1 #2 #3  #4 #5+
Verbs | 3,834 | 133 2265 1,036 308 92
Nouns | 10,680 | 5,899 2,974 1,556 244 7

Table 2: Number of nouns and verbs in the Turskish ref-
erence set, and their respective number of morphemes.

drops as the number of morphemes increases from
1 to more. This is clearer in nouns than in verbs,
which have fewer cases to analyse overall. Between
2, 3 or more than 4 morphemes the differences are
not significant, and sometimes is not consistent (e.g.
verbs with the highest frequency). However, we can
argue that analytic nouns (synthesis=1) are easier
to translate than synthetic nouns (synthesis>1) for
the English—Turkish direction. The pattern holds
for whether the word is part of the vocabulary of
the model or not, although rare words (frequency in
[0, 10%] have generally lower translation accuracy
than more frequent words (frequency > 100).

4.3 Fusion analysis: English— Spanish

Data We use the NEWSTEST2013.EN-ES evalua-
tion set from WMT (Bojar et al., 2013) with 3,000
samples. In the Spanish side there are 62,055 to-
kens, with 6,317 verbs, and where 1,411 of them
are more agglutinative (fusion=0) and 4,822 more
fusional (fusion>0).

Model For training, we use the MarianNMT
toolkit (Junczys-Dowmunt et al., 2018), a
Transfomer-base model (Vaswani et al., 2017)
with default parameters, and four NVIDIA V100
GPUs. We obtained different English-Spanish mod-
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Figure 2: Accuracy (exact translation) for Verbs in the
English—Spanish translations. Results are grouped by
the training frequency and whether the word belongs to
the vocabulary of the model (In V) or not (Not in V).

els using the newscommentary-v8 (Bojar et al.,
2013) and EuroParl (Koehn, 2005) datasets with
joint vocabulary sizes of 8k, 16k and 32k (us-
ing unigram-LM from SentencePiece (Kudo and
Richardson, 2018)). For this analysis, we chose
the best performing system: combining both
datasets (2.2M sentences) with 16k pieces. On
NEWSTEST2013.EN-ES, the performance is 31.6
BLEU points.

Results and discussion Figure 2 shows the aver-
age accuracy of verbs in NEWSTEST2013.EN-ES
for verbs without and with some degree of fusion.
In the two higher frequency subplots (middle and
right), we can observe that the average accuracy of
the non-fusional verbs is higher than the fusional
ones, and the pattern holds whether the verb is
present in the vocabulary input of the model or not.
The exception is for the least frequent verbs, al-
though this is explained as the model do not have
enough information to learn from, regardless of
their degree of fusion.

4.4 Human evaluation

Exact translation accuracy has limitations, as there
are potential translations that could be acceptable
given a specific context (e.g. a synonym). For
that reason, we performed a human evaluation of a
sample of sentences on (10%) of each evaluation

set, focusing on two scores!!:

1. Semantic score: evaluates the meaning of the
word used in the automatic translation (system
output) and how it compares with the gold
standard translation. Scale goes from 1 (no
relationship at all) to 4 (it is the same lemma).

2. Grammar score: evaluates the grammatical
form and how it compares with the gold stan-
dard translation. Scale goes from 1 (different

"Details of the annotation protocol are in the Appendix
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Figure 4: Grammar score annotation for Turkish.

inflection) to 3 (same inflection).

Synthesis In Figures 3 and 4 we show the anno-
tation scores for the semantic and grammar met-
rics, respectively, for both Nouns (top) and Verbs
(bottom). We also divide the analysis w.r.t. the
frequency of the word in the training data. For
Nouns, we observe similar patterns as in the auto-
matic analysis, where the amount of words with
one morpheme (synthesis=1) has a higher semantic
or grammar score than the rest, suggesting they are
easier to generate for the model, except in the least
frequent block, which still cannot be well translated.
The Verbs tend to have more distributed scores sug-
gesting the difficulty of generating inflected forms
may remain equally high even when the words are
more frequent. Single morpheme Verbs are very
rare in Turkish and generally contain exceptional
forms which reflects in the low translation accuracy
in Figures 3 and 4. We also observe that a good
proportion of translated words with ’zero’ accu-
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Figure 5: Semantic (top) and Grammar (bottom) anno-
tation for Spanish.

racy (not the exact translation) has been annotated
with highest semantic (same lemma) or grammar
(same inflection) score, suggesting in some cases
the model is successful in generalization, although
we see this case when the words are relatively short
(1 to 3 morphemes at most).

Fusion Figure 5 shows the semantic and gram-
mar annotation scores for Spanish verbs. For the
semantic scores (top), in all levels, the gap between
the non-fusional and fusional verbs is reduced, for
all the frequency groups. This means that the model
is indeed able to generalise and offer alternative
translations (not the exact verb), which is more
complex to measure with automatic metrics. In the
grammar scale (bottom), however, we still note a
slight advantage in the maximum score (3) of the
non-fusional verbs against the fusional ones for the
two highest frequency subplots (middle and right).

5 Segment-level Analysis of Synthesis
and Fusion in Machine Translation

To analyse the relationship between machine trans-
lation difficulty and the degree of synthesis or fu-
sion at the segment level, we process a selection of
systems for the language pair we want to evaluate.
We obtain an automatic metric score of the out-
put with respect to the reference (BLEU (Papineni
et al., 2002), chrF (Popovi¢, 2015), COMET (Rei
et al., 2020)) per sentence, and also compute po-
tential predictor variables for each sentence, such
as the degree of synthesis or fusion. We comple-
ment the predictor variable list with other heuris-
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word.count
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Figure 6: Overview of significant predictors for degree
of synthesis across our TR-EN and EN-TR models.
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Figure 7: Overview of significant predictors for degree
of fusion across our ES-EN and EN-ES models.

DeERRWTH_Aachen_System
DeEnTaruNLR.c

0
estimate

Figure 8: Overview of significant predictors across DE-
EN models.

tics, such as the length of the sentence in characters
(char.count) or words (word.count). The full list
of all the predictors per language pair is in the Ap-
pendix. For simplification purposes, in the follow-
ing analysis and plots, we only show the predictors
that show a significant effect on the system outputs.

Synthesis on En-Tr and Tr-En We first start
evaluating the English-Turkish and Turkish-
English language pairs. The evaluated models
are EnTrl, EnTr2, and TrEn2 (details in the Ap-
pendix).Also, as we are studying synthesis in Turk-
ish, all predictors are computed on the Turkish side,
regardless of the translation direction.

We generate a unique model per system output
and evaluation metric (we use chrF and COMET),



in which each model’s output is set to the degree
of synthesis or other heuristics. The goal of this
model creation is to identify which predictors (i.e.,
the aforementioned variables) affect each method’s
performance. Following model creation, we extract
the significant predictors of each model. This pro-
vides an indication of which variables can be used
to predict the outcome of the model’s dependent
variable — in our case the degree of synthesis.

In this sense, Figure 6 presents an overview of
the significant predictors on En-Tr and Tr-En sys-
tems, where we observe a large impact of the syn-
thesis variable on the chrF scores of two different
systems (EnTr1 and TrEn2). The only other heuris-
tic that achieves a notable impact on system output
is morph.count, or the length of Turkish sentence
in morphemes, split by a morphological analyser.
Other predictors have only a minor effect.

Fusion on En-Es and Es-En In a similar way,
we evaluate the impact of fusion in English-Spanish
(EnEsl, EnEs2) and Spanish-English (EsEnl,
EsEn2) models (see Figure 7 and Appendix for
details). Again, as we are studying fusion in Span-
ish, all predictors are computed on the Spanish side,
regardless of the translation direction. Following
the same procedure as before, Figure 7 presents
an overview of the significant predictors, where
we can observe that R.fusion.verb, or the ratio of
the degree of fusion over the number of verbs, is
the predictor that has the highest impact in most
system outputs (EnEsl, EnEs2 and EsEn2). Ad-
ditionally, R.fusion.swEsEn2, or the ratio of the
degree of fusion over the number of subwords in-
put in the EsEn2 model, also has a high impact in
one system output (EnEs2, which uses the same
segmentation model).

Analysis on En-De and De-En Finally, we ex-
tend the analysis to English-German and German-
English language pairs, using the respective evalu-
ation sets of the WMT2018 campaign (Bojar et al.,
2018), and the system outputs provided for all
the participants (measured in BLEU). For com-
puting synthesis, we use the different segmentation
methods we compared in §3.1. However, for fu-
sion, we only use a shallow proxy with the number
of morphological features that are tagged using a
morphological analyser. In this case, the predic-
tors are computed for both the source and target
side. We present an overview of these significant
predictors for German-English in Figure 8 (and

we similarly discuss the English-German results
from Figure 9 in the Appendix). We can observe
that ref.SYN.uniLM and ref.SYN.PtrNet are the pre-
dictors that impact most of the different system
outputs. These variables refer to the synthesis
computed on the reference side (English) using
unil.M or PtrNet as the morpheme segmentation
method, respectively. Furthermore, we observe
that src.ref.R.feat.token has also some effect over
one system output,which is a shallow proxy for
the fusion degree in the source w.r.t. to reference
segment (using number of tagged morph. features).

6 Discussion and conclusion

Overall results do not suggest that translating into
more analytic languages (e.g. Chinese) or more
agglutinative ones (e.g. Turkish) is easier than their
counterparts. Highly analytic ones poses the signif-
icant issue of word coverage and vocabulary size of
the model. Besides, we cannot isolate the fusional
degree from synthesis at all. For instance, Turkish
is a highly agglutinative language, but also highly
synthetic, and there are languages that presents
both agglutinative and fusional traits, like Navajo.
Therefore, a word level analysis with specific tar-
get POS, as in this study, should be fundamental
to study the indexes. The language scope is an-
other limitation: is it possible to extend it to further
languages in a practical way? Synthesis can be
calculated directly only if the morphological anal-
yser splits the word into morphemes. Moreover,
the fusion degree poses several issues as mentioned
before. However, a less fine-grained analysis in the
index (e.g. synthesis=1 vs. synthesis>1 or fusion=0
vs. fusion>0), as in this work, could be beneficial
to evaluate more languages.

In conclusion, for the chosen study cases, we
observed that higher degrees of synthesis and fu-
sion have an impact in machine translation quality
both at word and segment level. Also, we consider
that performing our analysis for specific POS and
languages could aid NLP systems, like in MT. For
instance, as future work, we ask ourselves: how
can we make an MT system more aware of fusional
joints? And to evaluate the results, we need to fine-
grain words with low and high fusion, to observe
whether we are achieving improvements.

7 Ethical Considerations

The annotations in this paper were compensated ac-
cordingly (see Appendix). Also, for all the datasets



used in the research, we stick to the ethical stan-
dards giving credit to the original author in the
spirit of fair scientific usage. We further strongly
encourage future work that use these resources, to
cite also the original sources of the data. We also
see other ethical risks of this work: for the down-
stream task of MT, a translation system should not
be deployed with low quality translations, as it can
mislead the user, and have implicit biases.
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A Human Evaluation

A.1 Annotation Protocol

This study measures the translation quality of trans-
lations generated by a translation system. You
are given a list of sentences where one column
lists each word in the gold standard (correct) trans-
lation and the corresponding column the system-
generated translations. The evaluation of the trans-
lations will rely on the two scores described below.
The scores to use in the evaluation are:

Semantic score evaluates the meaning of the
word used in the automatic translation (system out-
put) and how it compares with the gold standard
translation.

Please assign each word in the output one of the
scores you find most appropriate:

1. There is no relationship between the two lem-
mas
The lemmas are different but the translation
does not fit well in the context
The lemmas are different but it is still an ac-
ceptable translation (e.g. synonym)
It is the same lemma
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Grammar score evaluates the grammatical form
and how it compares with the gold standard trans-
lation.

Please assign each word in the output one of the
scores you find most appropriate:

1. The word is inflected in a different way and it

is not necessarily correct

. The word has different inflection but it is still
grammatically correct

. The words have the same inflection, and it is
correct

Please annotate all words in the translations in
the file shared with you. In your evaluation try
assigning the two scores to each word indepen-
dently. The inflection of the word measures the
morphological feature and should also be evaluated
independently from the analyzer output which is
automated and may contain errors.

The file contains example annotations for your
reference, please ask any questions related to un-
resolved annotation examples by contacting the
project coordinators.

A.2 Annotators

For both Turkish and Spanish, the annotators were
contacted directly due to their expertise in morphol-
ogy (both of them are PhD students in Linguistics
and Computational Linguistics, respectively), be-
sides requiring that they are native speakers of the
target languages. Also, they were paid more than
the minimum wage per hour of annotation of their
country of residence, and were told that the anno-
tated data will be released upon acceptance of the
study.

B Segment-level Analysis of Synthesis
and Fusion

B.1 List of machine translation systems

* EnTrl: the same system used in §4.2

* EnTr2: Transformer-base model (Vaswani
et al., 2017) with joint vocabulary size of
8k pieces (unigram language modelling from
SentencePiece (Kudo and Richardson, 2018),
and trained with a sample (10%) of the corpus
of EnTrl.

* EnEsl: the same system used in §4.3

* EsEnl: similar configuration than EnEsl1 but
in the opposite direction

* EnEs2: same configuration as EnEs1 (model
and vocabulary) but with smaller training data.
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Predictor

Description

char.count
word.count
morph.count
synthesis
N+V.word.count
N-+V.morph.count
N+V.synthesis
swEnTrl.count
swEnTr2.count
swTrEn2.count
syn.swEnTrl
syn.swEnTr2
syn.swTrEn2

number of characters

number of words (no punct. or numbers)

number of morphemes.

ratio of morph.count / word.count

number of Nouns and Verbs

number of morphemes of the Nouns and Verbs

ratio of N+V.morph.count / word.count

number of subwords processed by the EnTr1 model
number of subwords processed by the EnTr2 model
number of subwords processed by the TrEn2 model
ratio of swEnTr1.count / word.count (synthesis proxy)
ratio of swEnTr1.count / word.count (synthesis proxy)
ratio of swEnTr1.count / word.count (synthesis proxy)

Table 3: List of predictors for En-Tr and Tr-En. All
variables are computed on the Turkish segment of the
evaluation set.

Predictor Description

char.count number of characters

word.count number of words (no punct. or numbers)

verb.count number of verbs

fusion sum of the degree of fusion of all the verbs in the segment

ratio of fusion / verb.count

ratio of fusion / word.count

number of subwords processed by the EsEnl model
number of subwords processed by the EsEn2 model
ratio of fusion / swEsEn1.count

ratio of fusion / swEsEn2.count

number of subwords processed by the EnEs1 model
number of subwords processed by the EnEs2 model
ratio of fusion / swEnEs|.count

ratio of fusion / swEnEs2.count

R fusion.verb
R.fusion.word
swEsEnl.count
swEsEn2.count
R.fusion.swEsEnl
R.fusion.swEsEn2
swEnEs1.count
swEnEs2.count
R.fusion.swEnEs1
R.fusion.swEnEs2

Table 4: List of predictors for En-Es and Es-En. All
variables are computed on the Spanish segment of the
evaluation set.

It uses only newscommentary-v8 data, with
around 300k sentences).

* EsEn2: similar configuration than EnEs2 but
in the opposite direction.

B.2 List of predictors

Tables 3, 4 and 5 describes all the predictors used
at the segment level analysis of English-Turkish,
English-Spanish and English-German (both direc-
tions), respectively.

B.3 Results on English-German

Figure 9 shows the analogous results for English
to German, where the synthesis-based variables
presents a high impact w.r.t. the other predictors.
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Predictor

Description

src.char.count
ref.char.count
src.word.count
ref.word.count
src.uniLM.count
ref.uniLM.count
src.SYN.uniLM
ref.SYN.uniLM
src.mrfsr.count
ref.mrfsr.count
src.SYN.mrfsr
ref. SYN.mrfsr
src.PtrNet.count
ref. PtrNet.count
src.SYN.PtrNet
ref. SYN.PtrNet
src.feat.count
src.R.feat.token
ref.feat.count
ref.R.feat.token
src-ref.feat.count
src-ref.R.feat.token
ref-src.feat.count
ref-src.R.feat.token

number of characters in the source side

number of characters in the target side

number of words in the source side

number of words in the target side

number of subwords obtained by uniLM in the source
number of subwords obtained by uniLM in the target
synthesis in source = src.uniLM.count / src.word.count
synthesis in target = ref.uniLM.count / ref.word.count
number of subwords obtained by Morfessor in the source
number of subwords obtained by Morfessor in the target
synthesis in source = src.mrfsr.count / src.word.count
synthesis in target = ref.mrfsr.count / ref.word.count
number of subwords obtained by PtrNet in the source
number of subwords obtained by PtrNet in the target
synthesis in source = src.PtrNet.count / src.word.count
synthesis in target = ref.PtrNet.count / ref.word.count
number of morph. features in the source (using spAcy)
ratio of src.feat.count / src.word.count

number of morph. features in the target (using spAcy)
ratio of ref.feat.count / ref.word.count

src.feat.count minus ref.feat.count

src.R.feat.token minus ref.R.feat.token

ref.feat.count minus src.feat.count

ref.R.feat.token minus src.R.feat.token

Table 5: List of predictors for En-De and De-En. Vari-
ables are computed either on source (src) or target (ref)

side.
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Figure 9: Overview of significant predictors for degree of synthesis across EN-DE models.
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